[llvm-exegesis][NFC] moving code around.
[llvm-complete.git] / tools / llvm-exegesis / lib / Analysis.cpp
blob805bd52daf1357ce9cf0aaa51b529e61537209db
1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "Analysis.h"
11 #include "BenchmarkResult.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/MC/MCAsmInfo.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <unordered_set>
16 #include <vector>
18 namespace exegesis {
20 static const char kCsvSep = ',';
22 namespace {
24 enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
26 template <EscapeTag Tag>
27 void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);
29 template <>
30 void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
31 if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
32 OS << S;
33 } else {
34 // Needs escaping.
35 OS << '"';
36 for (const char C : S) {
37 if (C == '"')
38 OS << "\"\"";
39 else
40 OS << C;
42 OS << '"';
46 template <>
47 void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
48 for (const char C : S) {
49 if (C == '<')
50 OS << "&lt;";
51 else if (C == '>')
52 OS << "&gt;";
53 else if (C == '&')
54 OS << "&amp;";
55 else
56 OS << C;
60 template <>
61 void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS,
62 const llvm::StringRef S) {
63 for (const char C : S) {
64 if (C == '"')
65 OS << "\\\"";
66 else
67 OS << C;
71 } // namespace
73 template <EscapeTag Tag>
74 static void
75 writeClusterId(llvm::raw_ostream &OS,
76 const InstructionBenchmarkClustering::ClusterId &CID) {
77 if (CID.isNoise())
78 writeEscaped<Tag>(OS, "[noise]");
79 else if (CID.isError())
80 writeEscaped<Tag>(OS, "[error]");
81 else
82 OS << CID.getId();
85 template <EscapeTag Tag>
86 static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
87 writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str());
90 template <typename EscapeTag, EscapeTag Tag>
91 void Analysis::writeSnippet(llvm::raw_ostream &OS,
92 llvm::ArrayRef<uint8_t> Bytes,
93 const char *Separator) const {
94 llvm::SmallVector<std::string, 3> Lines;
95 // Parse the asm snippet and print it.
96 while (!Bytes.empty()) {
97 llvm::MCInst MI;
98 uint64_t MISize = 0;
99 if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(),
100 llvm::nulls())) {
101 writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
102 writeEscaped<Tag>(OS, Separator);
103 writeEscaped<Tag>(OS, "[error decoding asm snippet]");
104 return;
106 Lines.emplace_back();
107 std::string &Line = Lines.back();
108 llvm::raw_string_ostream OSS(Line);
109 InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_);
110 Bytes = Bytes.drop_front(MISize);
111 OSS.flush();
112 Line = llvm::StringRef(Line).trim().str();
114 writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
117 // Prints a row representing an instruction, along with scheduling info and
118 // point coordinates (measurements).
119 void Analysis::printInstructionRowCsv(const size_t PointId,
120 llvm::raw_ostream &OS) const {
121 const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
122 writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
123 OS << kCsvSep;
124 writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
125 OS << kCsvSep;
126 writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
127 OS << kCsvSep;
128 assert(!Point.Key.Instructions.empty());
129 // FIXME: Resolve variant classes.
130 const unsigned SchedClassId =
131 InstrInfo_->get(Point.Key.Instructions[0].getOpcode()).getSchedClass();
132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
133 const auto &SchedModel = SubtargetInfo_->getSchedModel();
134 const llvm::MCSchedClassDesc *const SCDesc =
135 SchedModel.getSchedClassDesc(SchedClassId);
136 writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
137 #else
138 OS << SchedClassId;
139 #endif
140 for (const auto &Measurement : Point.Measurements) {
141 OS << kCsvSep;
142 writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
144 OS << "\n";
147 Analysis::Analysis(const llvm::Target &Target,
148 const InstructionBenchmarkClustering &Clustering)
149 : Clustering_(Clustering) {
150 if (Clustering.getPoints().empty())
151 return;
153 const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
154 InstrInfo_.reset(Target.createMCInstrInfo());
155 RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
156 AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple));
157 SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
158 FirstPoint.CpuName, ""));
159 InstPrinter_.reset(Target.createMCInstPrinter(
160 llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
161 *InstrInfo_, *RegInfo_));
163 Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(),
164 &ObjectFileInfo_);
165 Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
166 assert(Disasm_ && "cannot create MCDisassembler. missing call to "
167 "InitializeXXXTargetDisassembler ?");
170 template <>
171 llvm::Error
172 Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
173 if (Clustering_.getPoints().empty())
174 return llvm::Error::success();
176 // Write the header.
177 OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
178 << kCsvSep << "sched_class";
179 for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
180 OS << kCsvSep;
181 writeEscaped<kEscapeCsv>(OS, Measurement.Key);
183 OS << "\n";
185 // Write the points.
186 const auto &Clusters = Clustering_.getValidClusters();
187 for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
188 for (const size_t PointId : Clusters[I].PointIndices) {
189 printInstructionRowCsv(PointId, OS);
191 OS << "\n\n";
193 return llvm::Error::success();
196 std::unordered_map<unsigned, std::vector<size_t>>
197 Analysis::makePointsPerSchedClass() const {
198 std::unordered_map<unsigned, std::vector<size_t>> PointsPerSchedClass;
199 const auto &Points = Clustering_.getPoints();
200 for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
201 const InstructionBenchmark &Point = Points[PointId];
202 if (!Point.Error.empty())
203 continue;
204 assert(!Point.Key.Instructions.empty());
205 const auto Opcode = Point.Key.Instructions[0].getOpcode();
206 // FIXME: Resolve variant classes.
207 PointsPerSchedClass[InstrInfo_->get(Opcode).getSchedClass()].push_back(
208 PointId);
210 return PointsPerSchedClass;
213 // Uops repeat the same opcode over again. Just show this opcode and show the
214 // whole snippet only on hover.
215 static void writeUopsSnippetHtml(llvm::raw_ostream &OS,
216 const std::vector<llvm::MCInst> &Instructions,
217 const llvm::MCInstrInfo &InstrInfo) {
218 if (Instructions.empty())
219 return;
220 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
221 if (Instructions.size() > 1)
222 OS << " (x" << Instructions.size() << ")";
225 // Latency tries to find a serial path. Just show the opcode path and show the
226 // whole snippet only on hover.
227 static void
228 writeLatencySnippetHtml(llvm::raw_ostream &OS,
229 const std::vector<llvm::MCInst> &Instructions,
230 const llvm::MCInstrInfo &InstrInfo) {
231 bool First = true;
232 for (const llvm::MCInst &Instr : Instructions) {
233 if (First)
234 First = false;
235 else
236 OS << " &rarr; ";
237 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
241 void Analysis::printSchedClassClustersHtml(
242 const std::vector<SchedClassCluster> &Clusters, const SchedClass &SC,
243 llvm::raw_ostream &OS) const {
244 const auto &Points = Clustering_.getPoints();
245 OS << "<table class=\"sched-class-clusters\">";
246 OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
247 assert(!Clusters.empty());
248 for (const auto &Measurement :
249 Points[Clusters[0].getPointIds()[0]].Measurements) {
250 OS << "<th>";
251 writeEscaped<kEscapeHtml>(OS, Measurement.Key);
252 OS << "</th>";
254 OS << "</tr>";
255 for (const SchedClassCluster &Cluster : Clusters) {
256 OS << "<tr class=\""
257 << (Cluster.measurementsMatch(*SubtargetInfo_, SC, Clustering_)
258 ? "good-cluster"
259 : "bad-cluster")
260 << "\"><td>";
261 writeClusterId<kEscapeHtml>(OS, Cluster.id());
262 OS << "</td><td><ul>";
263 for (const size_t PointId : Cluster.getPointIds()) {
264 const auto &Point = Points[PointId];
265 OS << "<li><span class=\"mono\" title=\"";
266 writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet,
267 "\n");
268 OS << "\">";
269 switch (Point.Mode) {
270 case InstructionBenchmark::Latency:
271 writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
272 break;
273 case InstructionBenchmark::Uops:
274 writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
275 break;
276 default:
277 llvm_unreachable("invalid mode");
279 OS << "</span> <span class=\"mono\">";
280 writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
281 OS << "</span></li>";
283 OS << "</ul></td>";
284 for (const auto &Stats : Cluster.getRepresentative()) {
285 OS << "<td class=\"measurement\">";
286 writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
287 OS << "<br><span class=\"minmax\">[";
288 writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
289 OS << ";";
290 writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
291 OS << "]</span></td>";
293 OS << "</tr>";
295 OS << "</table>";
298 // Return the non-redundant list of WriteProcRes used by the given sched class.
299 // The scheduling model for LLVM is such that each instruction has a certain
300 // number of uops which consume resources which are described by WriteProcRes
301 // entries. Each entry describe how many cycles are spent on a specific ProcRes
302 // kind.
303 // For example, an instruction might have 3 uOps, one dispatching on P0
304 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
305 // Note that LLVM additionally denormalizes resource consumption to include
306 // usage of super resources by subresources. So in practice if there exists a
307 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
308 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
309 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
310 // denote implied usage of superresources by subresources:
311 // P0 P06 P016
312 // uOp1 1 (1) (1)
313 // uOp2 1 (1)
314 // uOp3 1 (1)
315 // =============================
316 // 1 3 3
317 // Eventually we end up with three entries for the WriteProcRes of the
318 // instruction:
319 // {ProcResIdx=1, Cycles=1} // P0
320 // {ProcResIdx=7, Cycles=3} // P06
321 // {ProcResIdx=10, Cycles=3} // P016
323 // Note that in this case, P016 does not contribute any cycles, so it would
324 // be removed by this function.
325 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
326 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
327 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
328 const llvm::MCSubtargetInfo &STI) {
329 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
330 const auto &SM = STI.getSchedModel();
331 const unsigned NumProcRes = SM.getNumProcResourceKinds();
333 // This assumes that the ProcResDescs are sorted in topological order, which
334 // is guaranteed by the tablegen backend.
335 llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
336 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
337 *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
338 WPR != WPREnd; ++WPR) {
339 const llvm::MCProcResourceDesc *const ProcResDesc =
340 SM.getProcResource(WPR->ProcResourceIdx);
341 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
342 // This is a ProcResUnit.
343 Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
344 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
345 } else {
346 // This is a ProcResGroup. First see if it contributes any cycles or if
347 // it has cycles just from subunits.
348 float RemainingCycles = WPR->Cycles;
349 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
350 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
351 ++SubResIdx) {
352 RemainingCycles -= ProcResUnitUsage[*SubResIdx];
354 if (RemainingCycles < 0.01f) {
355 // The ProcResGroup contributes no cycles of its own.
356 continue;
358 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
359 Result.push_back({WPR->ProcResourceIdx,
360 static_cast<uint16_t>(std::round(RemainingCycles))});
361 // Spread the remaining cycles over all subunits.
362 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
363 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
364 ++SubResIdx) {
365 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
369 return Result;
372 Analysis::SchedClass::SchedClass(const llvm::MCSchedClassDesc &SD,
373 const llvm::MCSubtargetInfo &STI)
374 : SCDesc(&SD),
375 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(SD, STI)),
376 IdealizedProcResPressure(computeIdealizedProcResPressure(
377 STI.getSchedModel(), NonRedundantWriteProcRes)) {}
379 void Analysis::SchedClassCluster::addPoint(
380 size_t PointId, const InstructionBenchmarkClustering &Clustering) {
381 PointIds.push_back(PointId);
382 const auto &Point = Clustering.getPoints()[PointId];
383 if (ClusterId.isUndef()) {
384 ClusterId = Clustering.getClusterIdForPoint(PointId);
385 Representative.resize(Point.Measurements.size());
387 for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) {
388 Representative[I].push(Point.Measurements[I]);
390 assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
393 bool Analysis::SchedClassCluster::measurementsMatch(
394 const llvm::MCSubtargetInfo &STI, const SchedClass &SC,
395 const InstructionBenchmarkClustering &Clustering) const {
396 const size_t NumMeasurements = Representative.size();
397 std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements);
398 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
399 // Latency case.
400 assert(!Clustering.getPoints().empty());
401 const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
402 if (Mode == InstructionBenchmark::Latency) {
403 if (NumMeasurements != 1) {
404 llvm::errs()
405 << "invalid number of measurements in latency mode: expected 1, got "
406 << NumMeasurements << "\n";
407 return false;
409 // Find the latency.
410 SchedClassPoint[0].PerInstructionValue = 0.0;
411 for (unsigned I = 0; I < SC.SCDesc->NumWriteLatencyEntries; ++I) {
412 const llvm::MCWriteLatencyEntry *const WLE =
413 STI.getWriteLatencyEntry(SC.SCDesc, I);
414 SchedClassPoint[0].PerInstructionValue =
415 std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles);
417 ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg();
418 } else if (Mode == InstructionBenchmark::Uops) {
419 for (int I = 0, E = Representative.size(); I < E; ++I) {
420 // Find the pressure on ProcResIdx `Key`.
421 uint16_t ProcResIdx = 0;
422 if (!llvm::to_integer(Representative[I].key(), ProcResIdx, 10)) {
423 llvm::errs() << "expected ProcResIdx key, got "
424 << Representative[I].key() << "\n";
425 return false;
427 const auto ProcResPressureIt =
428 std::find_if(SC.IdealizedProcResPressure.begin(),
429 SC.IdealizedProcResPressure.end(),
430 [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
431 return WPR.first == ProcResIdx;
433 SchedClassPoint[I].PerInstructionValue =
434 ProcResPressureIt == SC.IdealizedProcResPressure.end()
435 ? 0.0
436 : ProcResPressureIt->second;
437 ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg();
439 } else {
440 llvm::errs() << "unimplemented measurement matching for mode " << Mode
441 << "\n";
442 return false;
444 return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint);
447 void Analysis::printSchedClassDescHtml(const SchedClass &SC,
448 llvm::raw_ostream &OS) const {
449 OS << "<table class=\"sched-class-desc\">";
450 OS << "<tr><th>Valid</th><th>Variant</th><th>uOps</th><th>Latency</"
451 "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
452 "resource (port) pressure assuming ideal distribution\">Idealized "
453 "Resource Pressure</th></tr>";
454 if (SC.SCDesc->isValid()) {
455 const auto &SM = SubtargetInfo_->getSchedModel();
456 OS << "<tr><td>&#10004;</td>";
457 OS << "<td>" << (SC.SCDesc->isVariant() ? "&#10004;" : "&#10005;")
458 << "</td>";
459 OS << "<td>" << SC.SCDesc->NumMicroOps << "</td>";
460 // Latencies.
461 OS << "<td><ul>";
462 for (int I = 0, E = SC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
463 const auto *const Entry =
464 SubtargetInfo_->getWriteLatencyEntry(SC.SCDesc, I);
465 OS << "<li>" << Entry->Cycles;
466 if (SC.SCDesc->NumWriteLatencyEntries > 1) {
467 // Dismabiguate if more than 1 latency.
468 OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
470 OS << "</li>";
472 OS << "</ul></td>";
473 // WriteProcRes.
474 OS << "<td><ul>";
475 for (const auto &WPR : SC.NonRedundantWriteProcRes) {
476 OS << "<li><span class=\"mono\">";
477 writeEscaped<kEscapeHtml>(OS,
478 SM.getProcResource(WPR.ProcResourceIdx)->Name);
479 OS << "</span>: " << WPR.Cycles << "</li>";
481 OS << "</ul></td>";
482 // Idealized port pressure.
483 OS << "<td><ul>";
484 for (const auto &Pressure : SC.IdealizedProcResPressure) {
485 OS << "<li><span class=\"mono\">";
486 writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
487 .getProcResource(Pressure.first)
488 ->Name);
489 OS << "</span>: ";
490 writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
491 OS << "</li>";
493 OS << "</ul></td>";
494 OS << "</tr>";
495 } else {
496 OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
498 OS << "</table>";
501 static constexpr const char kHtmlHead[] = R"(
502 <head>
503 <title>llvm-exegesis Analysis Results</title>
504 <style>
505 body {
506 font-family: sans-serif
508 span.sched-class-name {
509 font-weight: bold;
510 font-family: monospace;
512 span.opcode {
513 font-family: monospace;
515 span.config {
516 font-family: monospace;
518 div.inconsistency {
519 margin-top: 50px;
521 table {
522 margin-left: 50px;
523 border-collapse: collapse;
525 table, table tr,td,th {
526 border: 1px solid #444;
528 table ul {
529 padding-left: 0px;
530 margin: 0px;
531 list-style-type: none;
533 table.sched-class-clusters td {
534 padding-left: 10px;
535 padding-right: 10px;
536 padding-top: 10px;
537 padding-bottom: 10px;
539 table.sched-class-desc td {
540 padding-left: 10px;
541 padding-right: 10px;
542 padding-top: 2px;
543 padding-bottom: 2px;
545 span.mono {
546 font-family: monospace;
548 td.measurement {
549 text-align: center;
551 tr.good-cluster td.measurement {
552 color: #292
554 tr.bad-cluster td.measurement {
555 color: #922
557 tr.good-cluster td.measurement span.minmax {
558 color: #888;
560 tr.bad-cluster td.measurement span.minmax {
561 color: #888;
563 </style>
564 </head>
567 template <>
568 llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
569 llvm::raw_ostream &OS) const {
570 const auto &FirstPoint = Clustering_.getPoints()[0];
571 // Print the header.
572 OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
573 OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
574 OS << "<h3>Triple: <span class=\"mono\">";
575 writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
576 OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
577 writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
578 OS << "</span></h3>";
580 for (const auto &SchedClassAndPoints : makePointsPerSchedClass()) {
581 const auto SchedClassId = SchedClassAndPoints.first;
582 const std::vector<size_t> &SchedClassPoints = SchedClassAndPoints.second;
583 const auto &SchedModel = SubtargetInfo_->getSchedModel();
584 const llvm::MCSchedClassDesc *const SCDesc =
585 SchedModel.getSchedClassDesc(SchedClassId);
586 if (!SCDesc)
587 continue;
588 const SchedClass SC(*SCDesc, *SubtargetInfo_);
590 // Bucket sched class points into sched class clusters.
591 std::vector<SchedClassCluster> SchedClassClusters;
592 for (const size_t PointId : SchedClassPoints) {
593 const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
594 if (!ClusterId.isValid())
595 continue; // Ignore noise and errors. FIXME: take noise into account ?
596 auto SchedClassClusterIt =
597 std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
598 [ClusterId](const SchedClassCluster &C) {
599 return C.id() == ClusterId;
601 if (SchedClassClusterIt == SchedClassClusters.end()) {
602 SchedClassClusters.emplace_back();
603 SchedClassClusterIt = std::prev(SchedClassClusters.end());
605 SchedClassClusterIt->addPoint(PointId, Clustering_);
608 // Print any scheduling class that has at least one cluster that does not
609 // match the checked-in data.
610 if (std::all_of(SchedClassClusters.begin(), SchedClassClusters.end(),
611 [this, &SC](const SchedClassCluster &C) {
612 return C.measurementsMatch(*SubtargetInfo_, SC,
613 Clustering_);
615 continue; // Nothing weird.
617 OS << "<div class=\"inconsistency\"><p>Sched Class <span "
618 "class=\"sched-class-name\">";
619 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
620 writeEscaped<kEscapeHtml>(OS, SCDesc->Name);
621 #else
622 OS << SchedClassId;
623 #endif
624 OS << "</span> contains instructions whose performance characteristics do"
625 " not match that of LLVM:</p>";
626 printSchedClassClustersHtml(SchedClassClusters, SC, OS);
627 OS << "<p>llvm SchedModel data:</p>";
628 printSchedClassDescHtml(SC, OS);
629 OS << "</div>";
632 OS << "</body></html>";
633 return llvm::Error::success();
636 // Distributes a pressure budget as evenly as possible on the provided subunits
637 // given the already existing port pressure distribution.
639 // The algorithm is as follows: while there is remaining pressure to
640 // distribute, find the subunits with minimal pressure, and distribute
641 // remaining pressure equally up to the pressure of the unit with
642 // second-to-minimal pressure.
643 // For example, let's assume we want to distribute 2*P1256
644 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
645 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
646 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
647 // RemainingPressure = 2.0
648 // We sort the subunits by pressure:
649 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
650 // We'll first start by the subunits with minimal pressure, which are at
651 // the beginning of the sorted array. In this example there is one (P2).
652 // The subunit with second-to-minimal pressure is the next one in the
653 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
654 // from the budget.
655 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
656 // RemainingPressure = 1.9
657 // We repeat this process: distribute 0.2 pressure on each of the minimal
658 // P2 and P1, decrease budget by 2*0.2:
659 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
660 // RemainingPressure = 1.5
661 // There are no second-to-minimal subunits so we just share the remaining
662 // budget (1.5 cycles) equally:
663 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
664 // RemainingPressure = 0.0
665 // We stop as there is no remaining budget to distribute.
666 void distributePressure(float RemainingPressure,
667 llvm::SmallVector<uint16_t, 32> Subunits,
668 llvm::SmallVector<float, 32> &DensePressure) {
669 // Find the number of subunits with minimal pressure (they are at the
670 // front).
671 llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
672 return DensePressure[A] < DensePressure[B];
674 const auto getPressureForSubunit = [&DensePressure,
675 &Subunits](size_t I) -> float & {
676 return DensePressure[Subunits[I]];
678 size_t NumMinimalSU = 1;
679 while (NumMinimalSU < Subunits.size() &&
680 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
681 ++NumMinimalSU;
683 while (RemainingPressure > 0.0f) {
684 if (NumMinimalSU == Subunits.size()) {
685 // All units are minimal, just distribute evenly and be done.
686 for (size_t I = 0; I < NumMinimalSU; ++I) {
687 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
689 return;
691 // Distribute the remaining pressure equally.
692 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
693 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
694 assert(MinimalPressure < SecondToMinimalPressure);
695 const float Increment = SecondToMinimalPressure - MinimalPressure;
696 if (RemainingPressure <= NumMinimalSU * Increment) {
697 // There is not enough remaining pressure.
698 for (size_t I = 0; I < NumMinimalSU; ++I) {
699 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
701 return;
703 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
704 for (size_t I = 0; I < NumMinimalSU; ++I) {
705 getPressureForSubunit(I) = SecondToMinimalPressure;
706 RemainingPressure -= SecondToMinimalPressure;
708 while (NumMinimalSU < Subunits.size() &&
709 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
710 ++NumMinimalSU;
715 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
716 const llvm::MCSchedModel &SM,
717 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
718 // DensePressure[I] is the port pressure for Proc Resource I.
719 llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
720 llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
721 const llvm::MCWriteProcResEntry &B) {
722 return A.ProcResourceIdx < B.ProcResourceIdx;
724 for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
725 // Get units for the entry.
726 const llvm::MCProcResourceDesc *const ProcResDesc =
727 SM.getProcResource(WPR.ProcResourceIdx);
728 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
729 // This is a ProcResUnit.
730 DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
731 } else {
732 // This is a ProcResGroup.
733 llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
734 ProcResDesc->SubUnitsIdxBegin +
735 ProcResDesc->NumUnits);
736 distributePressure(WPR.Cycles, Subunits, DensePressure);
739 // Turn dense pressure into sparse pressure by removing zero entries.
740 std::vector<std::pair<uint16_t, float>> Pressure;
741 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
742 if (DensePressure[I] > 0.0f)
743 Pressure.emplace_back(I, DensePressure[I]);
745 return Pressure;
748 } // namespace exegesis