[DWARF] Fix referencing Range List Tables from CUs for DWARF64.
[llvm-complete.git] / include / llvm / Analysis / MemoryLocation.h
blob7c26353e618b6a90426c22fc4ea9df589bb5c67e
1 //===- MemoryLocation.h - Memory location descriptions ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file provides utility analysis objects describing memory locations.
10 /// These are used both by the Alias Analysis infrastructure and more
11 /// specialized memory analysis layers.
12 ///
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_ANALYSIS_MEMORYLOCATION_H
16 #define LLVM_ANALYSIS_MEMORYLOCATION_H
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Metadata.h"
23 namespace llvm {
25 class LoadInst;
26 class StoreInst;
27 class MemTransferInst;
28 class MemIntrinsic;
29 class AtomicMemTransferInst;
30 class AtomicMemIntrinsic;
31 class AnyMemTransferInst;
32 class AnyMemIntrinsic;
33 class TargetLibraryInfo;
35 // Represents the size of a MemoryLocation. Logically, it's an
36 // Optional<uint63_t> that also carries a bit to represent whether the integer
37 // it contains, N, is 'precise'. Precise, in this context, means that we know
38 // that the area of storage referenced by the given MemoryLocation must be
39 // precisely N bytes. An imprecise value is formed as the union of two or more
40 // precise values, and can conservatively represent all of the values unioned
41 // into it. Importantly, imprecise values are an *upper-bound* on the size of a
42 // MemoryLocation.
44 // Concretely, a precise MemoryLocation is (%p, 4) in
45 // store i32 0, i32* %p
47 // Since we know that %p must be at least 4 bytes large at this point.
48 // Otherwise, we have UB. An example of an imprecise MemoryLocation is (%p, 4)
49 // at the memcpy in
51 // %n = select i1 %foo, i64 1, i64 4
52 // call void @llvm.memcpy.p0i8.p0i8.i64(i8* %p, i8* %baz, i64 %n, i32 1,
53 // i1 false)
55 // ...Since we'll copy *up to* 4 bytes into %p, but we can't guarantee that
56 // we'll ever actually do so.
58 // If asked to represent a pathologically large value, this will degrade to
59 // None.
60 class LocationSize {
61 enum : uint64_t {
62 Unknown = ~uint64_t(0),
63 ImpreciseBit = uint64_t(1) << 63,
64 MapEmpty = Unknown - 1,
65 MapTombstone = Unknown - 2,
67 // The maximum value we can represent without falling back to 'unknown'.
68 MaxValue = (MapTombstone - 1) & ~ImpreciseBit,
71 uint64_t Value;
73 // Hack to support implicit construction. This should disappear when the
74 // public LocationSize ctor goes away.
75 enum DirectConstruction { Direct };
77 constexpr LocationSize(uint64_t Raw, DirectConstruction): Value(Raw) {}
79 static_assert(Unknown & ImpreciseBit, "Unknown is imprecise by definition.");
80 public:
81 // FIXME: Migrate all users to construct via either `precise` or `upperBound`,
82 // to make it more obvious at the callsite the kind of size that they're
83 // providing.
85 // Since the overwhelming majority of users of this provide precise values,
86 // this assumes the provided value is precise.
87 constexpr LocationSize(uint64_t Raw)
88 : Value(Raw > MaxValue ? Unknown : Raw) {}
90 static LocationSize precise(uint64_t Value) { return LocationSize(Value); }
92 static LocationSize upperBound(uint64_t Value) {
93 // You can't go lower than 0, so give a precise result.
94 if (LLVM_UNLIKELY(Value == 0))
95 return precise(0);
96 if (LLVM_UNLIKELY(Value > MaxValue))
97 return unknown();
98 return LocationSize(Value | ImpreciseBit, Direct);
101 constexpr static LocationSize unknown() {
102 return LocationSize(Unknown, Direct);
105 // Sentinel values, generally used for maps.
106 constexpr static LocationSize mapTombstone() {
107 return LocationSize(MapTombstone, Direct);
109 constexpr static LocationSize mapEmpty() {
110 return LocationSize(MapEmpty, Direct);
113 // Returns a LocationSize that can correctly represent either `*this` or
114 // `Other`.
115 LocationSize unionWith(LocationSize Other) const {
116 if (Other == *this)
117 return *this;
119 if (!hasValue() || !Other.hasValue())
120 return unknown();
122 return upperBound(std::max(getValue(), Other.getValue()));
125 bool hasValue() const { return Value != Unknown; }
126 uint64_t getValue() const {
127 assert(hasValue() && "Getting value from an unknown LocationSize!");
128 return Value & ~ImpreciseBit;
131 // Returns whether or not this value is precise. Note that if a value is
132 // precise, it's guaranteed to not be `unknown()`.
133 bool isPrecise() const {
134 return (Value & ImpreciseBit) == 0;
137 // Convenience method to check if this LocationSize's value is 0.
138 bool isZero() const { return hasValue() && getValue() == 0; }
140 bool operator==(const LocationSize &Other) const {
141 return Value == Other.Value;
144 bool operator!=(const LocationSize &Other) const {
145 return !(*this == Other);
148 // Ordering operators are not provided, since it's unclear if there's only one
149 // reasonable way to compare:
150 // - values that don't exist against values that do, and
151 // - precise values to imprecise values
153 void print(raw_ostream &OS) const;
155 // Returns an opaque value that represents this LocationSize. Cannot be
156 // reliably converted back into a LocationSize.
157 uint64_t toRaw() const { return Value; }
160 inline raw_ostream &operator<<(raw_ostream &OS, LocationSize Size) {
161 Size.print(OS);
162 return OS;
165 /// Representation for a specific memory location.
167 /// This abstraction can be used to represent a specific location in memory.
168 /// The goal of the location is to represent enough information to describe
169 /// abstract aliasing, modification, and reference behaviors of whatever
170 /// value(s) are stored in memory at the particular location.
172 /// The primary user of this interface is LLVM's Alias Analysis, but other
173 /// memory analyses such as MemoryDependence can use it as well.
174 class MemoryLocation {
175 public:
176 /// UnknownSize - This is a special value which can be used with the
177 /// size arguments in alias queries to indicate that the caller does not
178 /// know the sizes of the potential memory references.
179 enum : uint64_t { UnknownSize = ~UINT64_C(0) };
181 /// The address of the start of the location.
182 const Value *Ptr;
184 /// The maximum size of the location, in address-units, or
185 /// UnknownSize if the size is not known.
187 /// Note that an unknown size does not mean the pointer aliases the entire
188 /// virtual address space, because there are restrictions on stepping out of
189 /// one object and into another. See
190 /// http://llvm.org/docs/LangRef.html#pointeraliasing
191 LocationSize Size;
193 /// The metadata nodes which describes the aliasing of the location (each
194 /// member is null if that kind of information is unavailable).
195 AAMDNodes AATags;
197 /// Return a location with information about the memory reference by the given
198 /// instruction.
199 static MemoryLocation get(const LoadInst *LI);
200 static MemoryLocation get(const StoreInst *SI);
201 static MemoryLocation get(const VAArgInst *VI);
202 static MemoryLocation get(const AtomicCmpXchgInst *CXI);
203 static MemoryLocation get(const AtomicRMWInst *RMWI);
204 static MemoryLocation get(const Instruction *Inst) {
205 return *MemoryLocation::getOrNone(Inst);
207 static Optional<MemoryLocation> getOrNone(const Instruction *Inst) {
208 switch (Inst->getOpcode()) {
209 case Instruction::Load:
210 return get(cast<LoadInst>(Inst));
211 case Instruction::Store:
212 return get(cast<StoreInst>(Inst));
213 case Instruction::VAArg:
214 return get(cast<VAArgInst>(Inst));
215 case Instruction::AtomicCmpXchg:
216 return get(cast<AtomicCmpXchgInst>(Inst));
217 case Instruction::AtomicRMW:
218 return get(cast<AtomicRMWInst>(Inst));
219 default:
220 return None;
224 /// Return a location representing the source of a memory transfer.
225 static MemoryLocation getForSource(const MemTransferInst *MTI);
226 static MemoryLocation getForSource(const AtomicMemTransferInst *MTI);
227 static MemoryLocation getForSource(const AnyMemTransferInst *MTI);
229 /// Return a location representing the destination of a memory set or
230 /// transfer.
231 static MemoryLocation getForDest(const MemIntrinsic *MI);
232 static MemoryLocation getForDest(const AtomicMemIntrinsic *MI);
233 static MemoryLocation getForDest(const AnyMemIntrinsic *MI);
235 /// Return a location representing a particular argument of a call.
236 static MemoryLocation getForArgument(const CallBase *Call, unsigned ArgIdx,
237 const TargetLibraryInfo *TLI);
238 static MemoryLocation getForArgument(const CallBase *Call, unsigned ArgIdx,
239 const TargetLibraryInfo &TLI) {
240 return getForArgument(Call, ArgIdx, &TLI);
243 explicit MemoryLocation(const Value *Ptr = nullptr,
244 LocationSize Size = LocationSize::unknown(),
245 const AAMDNodes &AATags = AAMDNodes())
246 : Ptr(Ptr), Size(Size), AATags(AATags) {}
248 MemoryLocation getWithNewPtr(const Value *NewPtr) const {
249 MemoryLocation Copy(*this);
250 Copy.Ptr = NewPtr;
251 return Copy;
254 MemoryLocation getWithNewSize(LocationSize NewSize) const {
255 MemoryLocation Copy(*this);
256 Copy.Size = NewSize;
257 return Copy;
260 MemoryLocation getWithoutAATags() const {
261 MemoryLocation Copy(*this);
262 Copy.AATags = AAMDNodes();
263 return Copy;
266 bool operator==(const MemoryLocation &Other) const {
267 return Ptr == Other.Ptr && Size == Other.Size && AATags == Other.AATags;
271 // Specialize DenseMapInfo.
272 template <> struct DenseMapInfo<LocationSize> {
273 static inline LocationSize getEmptyKey() {
274 return LocationSize::mapEmpty();
276 static inline LocationSize getTombstoneKey() {
277 return LocationSize::mapTombstone();
279 static unsigned getHashValue(const LocationSize &Val) {
280 return DenseMapInfo<uint64_t>::getHashValue(Val.toRaw());
282 static bool isEqual(const LocationSize &LHS, const LocationSize &RHS) {
283 return LHS == RHS;
287 template <> struct DenseMapInfo<MemoryLocation> {
288 static inline MemoryLocation getEmptyKey() {
289 return MemoryLocation(DenseMapInfo<const Value *>::getEmptyKey(),
290 DenseMapInfo<LocationSize>::getEmptyKey());
292 static inline MemoryLocation getTombstoneKey() {
293 return MemoryLocation(DenseMapInfo<const Value *>::getTombstoneKey(),
294 DenseMapInfo<LocationSize>::getTombstoneKey());
296 static unsigned getHashValue(const MemoryLocation &Val) {
297 return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
298 DenseMapInfo<LocationSize>::getHashValue(Val.Size) ^
299 DenseMapInfo<AAMDNodes>::getHashValue(Val.AATags);
301 static bool isEqual(const MemoryLocation &LHS, const MemoryLocation &RHS) {
302 return LHS == RHS;
307 #endif