[DWARF] Fix referencing Range List Tables from CUs for DWARF64.
[llvm-complete.git] / utils / TableGen / GlobalISelEmitter.cpp
blob899ad5ed29832d65947f385070e32a461d0e58ce
1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12 ///
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
17 ///
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20 /// as well as why.
21 ///
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
26 ///
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
29 ///
30 //===----------------------------------------------------------------------===//
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
46 #include <numeric>
47 #include <string>
48 using namespace llvm;
50 #define DEBUG_TYPE "gisel-emitter"
52 STATISTIC(NumPatternTotal, "Total number of patterns");
53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
60 static cl::opt<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat));
66 static cl::opt<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat));
71 static cl::opt<std::string> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat));
76 static cl::opt<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat));
81 namespace {
82 //===- Helper functions ---------------------------------------------------===//
84 /// Get the name of the enum value used to number the predicate function.
85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86 if (Predicate.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate.getFnName();
88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89 Predicate.getFnName();
92 /// Get the opcode used to check this predicate.
93 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
99 class LLTCodeGen {
100 private:
101 LLT Ty;
103 public:
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
107 std::string getCxxEnumValue() const {
108 std::string Str;
109 raw_string_ostream OS(Str);
111 emitCxxEnumValue(OS);
112 return OS.str();
115 void emitCxxEnumValue(raw_ostream &OS) const {
116 if (Ty.isScalar()) {
117 OS << "GILLT_s" << Ty.getSizeInBits();
118 return;
120 if (Ty.isVector()) {
121 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
122 return;
124 if (Ty.isPointer()) {
125 OS << "GILLT_p" << Ty.getAddressSpace();
126 if (Ty.getSizeInBits() > 0)
127 OS << "s" << Ty.getSizeInBits();
128 return;
130 llvm_unreachable("Unhandled LLT");
133 void emitCxxConstructorCall(raw_ostream &OS) const {
134 if (Ty.isScalar()) {
135 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
136 return;
138 if (Ty.isVector()) {
139 OS << "LLT::vector(" << Ty.getNumElements() << ", "
140 << Ty.getScalarSizeInBits() << ")";
141 return;
143 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
144 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
145 << Ty.getSizeInBits() << ")";
146 return;
148 llvm_unreachable("Unhandled LLT");
151 const LLT &get() const { return Ty; }
153 /// This ordering is used for std::unique() and llvm::sort(). There's no
154 /// particular logic behind the order but either A < B or B < A must be
155 /// true if A != B.
156 bool operator<(const LLTCodeGen &Other) const {
157 if (Ty.isValid() != Other.Ty.isValid())
158 return Ty.isValid() < Other.Ty.isValid();
159 if (!Ty.isValid())
160 return false;
162 if (Ty.isVector() != Other.Ty.isVector())
163 return Ty.isVector() < Other.Ty.isVector();
164 if (Ty.isScalar() != Other.Ty.isScalar())
165 return Ty.isScalar() < Other.Ty.isScalar();
166 if (Ty.isPointer() != Other.Ty.isPointer())
167 return Ty.isPointer() < Other.Ty.isPointer();
169 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
170 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
172 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
173 return Ty.getNumElements() < Other.Ty.getNumElements();
175 return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
178 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
181 // Track all types that are used so we can emit the corresponding enum.
182 std::set<LLTCodeGen> KnownTypes;
184 class InstructionMatcher;
185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
188 MVT VT(SVT);
190 if (VT.isVector() && VT.getVectorNumElements() != 1)
191 return LLTCodeGen(
192 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
194 if (VT.isInteger() || VT.isFloatingPoint())
195 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
196 return None;
199 static std::string explainPredicates(const TreePatternNode *N) {
200 std::string Explanation = "";
201 StringRef Separator = "";
202 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
203 const TreePredicateFn &P = Call.Fn;
204 Explanation +=
205 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
206 Separator = ", ";
208 if (P.isAlwaysTrue())
209 Explanation += " always-true";
210 if (P.isImmediatePattern())
211 Explanation += " immediate";
213 if (P.isUnindexed())
214 Explanation += " unindexed";
216 if (P.isNonExtLoad())
217 Explanation += " non-extload";
218 if (P.isAnyExtLoad())
219 Explanation += " extload";
220 if (P.isSignExtLoad())
221 Explanation += " sextload";
222 if (P.isZeroExtLoad())
223 Explanation += " zextload";
225 if (P.isNonTruncStore())
226 Explanation += " non-truncstore";
227 if (P.isTruncStore())
228 Explanation += " truncstore";
230 if (Record *VT = P.getMemoryVT())
231 Explanation += (" MemVT=" + VT->getName()).str();
232 if (Record *VT = P.getScalarMemoryVT())
233 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
235 if (ListInit *AddrSpaces = P.getAddressSpaces()) {
236 raw_string_ostream OS(Explanation);
237 OS << " AddressSpaces=[";
239 StringRef AddrSpaceSeparator;
240 for (Init *Val : AddrSpaces->getValues()) {
241 IntInit *IntVal = dyn_cast<IntInit>(Val);
242 if (!IntVal)
243 continue;
245 OS << AddrSpaceSeparator << IntVal->getValue();
246 AddrSpaceSeparator = ", ";
249 OS << ']';
252 int64_t MinAlign = P.getMinAlignment();
253 if (MinAlign > 0)
254 Explanation += " MinAlign=" + utostr(MinAlign);
256 if (P.isAtomicOrderingMonotonic())
257 Explanation += " monotonic";
258 if (P.isAtomicOrderingAcquire())
259 Explanation += " acquire";
260 if (P.isAtomicOrderingRelease())
261 Explanation += " release";
262 if (P.isAtomicOrderingAcquireRelease())
263 Explanation += " acq_rel";
264 if (P.isAtomicOrderingSequentiallyConsistent())
265 Explanation += " seq_cst";
266 if (P.isAtomicOrderingAcquireOrStronger())
267 Explanation += " >=acquire";
268 if (P.isAtomicOrderingWeakerThanAcquire())
269 Explanation += " <acquire";
270 if (P.isAtomicOrderingReleaseOrStronger())
271 Explanation += " >=release";
272 if (P.isAtomicOrderingWeakerThanRelease())
273 Explanation += " <release";
275 return Explanation;
278 std::string explainOperator(Record *Operator) {
279 if (Operator->isSubClassOf("SDNode"))
280 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
282 if (Operator->isSubClassOf("Intrinsic"))
283 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
285 if (Operator->isSubClassOf("ComplexPattern"))
286 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
287 ")")
288 .str();
290 if (Operator->isSubClassOf("SDNodeXForm"))
291 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
292 ")")
293 .str();
295 return (" (Operator " + Operator->getName() + " not understood)").str();
298 /// Helper function to let the emitter report skip reason error messages.
299 static Error failedImport(const Twine &Reason) {
300 return make_error<StringError>(Reason, inconvertibleErrorCode());
303 static Error isTrivialOperatorNode(const TreePatternNode *N) {
304 std::string Explanation = "";
305 std::string Separator = "";
307 bool HasUnsupportedPredicate = false;
308 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
309 const TreePredicateFn &Predicate = Call.Fn;
311 if (Predicate.isAlwaysTrue())
312 continue;
314 if (Predicate.isImmediatePattern())
315 continue;
317 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
318 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
319 continue;
321 if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
322 continue;
324 if (Predicate.isLoad() && Predicate.getMemoryVT())
325 continue;
327 if (Predicate.isLoad() || Predicate.isStore()) {
328 if (Predicate.isUnindexed())
329 continue;
332 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
333 const ListInit *AddrSpaces = Predicate.getAddressSpaces();
334 if (AddrSpaces && !AddrSpaces->empty())
335 continue;
337 if (Predicate.getMinAlignment() > 0)
338 continue;
341 if (Predicate.isAtomic() && Predicate.getMemoryVT())
342 continue;
344 if (Predicate.isAtomic() &&
345 (Predicate.isAtomicOrderingMonotonic() ||
346 Predicate.isAtomicOrderingAcquire() ||
347 Predicate.isAtomicOrderingRelease() ||
348 Predicate.isAtomicOrderingAcquireRelease() ||
349 Predicate.isAtomicOrderingSequentiallyConsistent() ||
350 Predicate.isAtomicOrderingAcquireOrStronger() ||
351 Predicate.isAtomicOrderingWeakerThanAcquire() ||
352 Predicate.isAtomicOrderingReleaseOrStronger() ||
353 Predicate.isAtomicOrderingWeakerThanRelease()))
354 continue;
356 if (Predicate.hasGISelPredicateCode())
357 continue;
359 HasUnsupportedPredicate = true;
360 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
361 Separator = ", ";
362 Explanation += (Separator + "first-failing:" +
363 Predicate.getOrigPatFragRecord()->getRecord()->getName())
364 .str();
365 break;
368 if (!HasUnsupportedPredicate)
369 return Error::success();
371 return failedImport(Explanation);
374 static Record *getInitValueAsRegClass(Init *V) {
375 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
376 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
377 return VDefInit->getDef()->getValueAsDef("RegClass");
378 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
379 return VDefInit->getDef();
381 return nullptr;
384 std::string
385 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
386 std::string Name = "GIFBS";
387 for (const auto &Feature : FeatureBitset)
388 Name += ("_" + Feature->getName()).str();
389 return Name;
392 //===- MatchTable Helpers -------------------------------------------------===//
394 class MatchTable;
396 /// A record to be stored in a MatchTable.
398 /// This class represents any and all output that may be required to emit the
399 /// MatchTable. Instances are most often configured to represent an opcode or
400 /// value that will be emitted to the table with some formatting but it can also
401 /// represent commas, comments, and other formatting instructions.
402 struct MatchTableRecord {
403 enum RecordFlagsBits {
404 MTRF_None = 0x0,
405 /// Causes EmitStr to be formatted as comment when emitted.
406 MTRF_Comment = 0x1,
407 /// Causes the record value to be followed by a comma when emitted.
408 MTRF_CommaFollows = 0x2,
409 /// Causes the record value to be followed by a line break when emitted.
410 MTRF_LineBreakFollows = 0x4,
411 /// Indicates that the record defines a label and causes an additional
412 /// comment to be emitted containing the index of the label.
413 MTRF_Label = 0x8,
414 /// Causes the record to be emitted as the index of the label specified by
415 /// LabelID along with a comment indicating where that label is.
416 MTRF_JumpTarget = 0x10,
417 /// Causes the formatter to add a level of indentation before emitting the
418 /// record.
419 MTRF_Indent = 0x20,
420 /// Causes the formatter to remove a level of indentation after emitting the
421 /// record.
422 MTRF_Outdent = 0x40,
425 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
426 /// reference or define.
427 unsigned LabelID;
428 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
429 /// value, a label name.
430 std::string EmitStr;
432 private:
433 /// The number of MatchTable elements described by this record. Comments are 0
434 /// while values are typically 1. Values >1 may occur when we need to emit
435 /// values that exceed the size of a MatchTable element.
436 unsigned NumElements;
438 public:
439 /// A bitfield of RecordFlagsBits flags.
440 unsigned Flags;
442 /// The actual run-time value, if known
443 int64_t RawValue;
445 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
446 unsigned NumElements, unsigned Flags,
447 int64_t RawValue = std::numeric_limits<int64_t>::min())
448 : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
449 EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
450 RawValue(RawValue) {
452 assert((!LabelID_.hasValue() || LabelID != ~0u) &&
453 "This value is reserved for non-labels");
455 MatchTableRecord(const MatchTableRecord &Other) = default;
456 MatchTableRecord(MatchTableRecord &&Other) = default;
458 /// Useful if a Match Table Record gets optimized out
459 void turnIntoComment() {
460 Flags |= MTRF_Comment;
461 Flags &= ~MTRF_CommaFollows;
462 NumElements = 0;
465 /// For Jump Table generation purposes
466 bool operator<(const MatchTableRecord &Other) const {
467 return RawValue < Other.RawValue;
469 int64_t getRawValue() const { return RawValue; }
471 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
472 const MatchTable &Table) const;
473 unsigned size() const { return NumElements; }
476 class Matcher;
478 /// Holds the contents of a generated MatchTable to enable formatting and the
479 /// necessary index tracking needed to support GIM_Try.
480 class MatchTable {
481 /// An unique identifier for the table. The generated table will be named
482 /// MatchTable${ID}.
483 unsigned ID;
484 /// The records that make up the table. Also includes comments describing the
485 /// values being emitted and line breaks to format it.
486 std::vector<MatchTableRecord> Contents;
487 /// The currently defined labels.
488 DenseMap<unsigned, unsigned> LabelMap;
489 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
490 unsigned CurrentSize = 0;
491 /// A unique identifier for a MatchTable label.
492 unsigned CurrentLabelID = 0;
493 /// Determines if the table should be instrumented for rule coverage tracking.
494 bool IsWithCoverage;
496 public:
497 static MatchTableRecord LineBreak;
498 static MatchTableRecord Comment(StringRef Comment) {
499 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
501 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
502 unsigned ExtraFlags = 0;
503 if (IndentAdjust > 0)
504 ExtraFlags |= MatchTableRecord::MTRF_Indent;
505 if (IndentAdjust < 0)
506 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
508 return MatchTableRecord(None, Opcode, 1,
509 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
511 static MatchTableRecord NamedValue(StringRef NamedValue) {
512 return MatchTableRecord(None, NamedValue, 1,
513 MatchTableRecord::MTRF_CommaFollows);
515 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
516 return MatchTableRecord(None, NamedValue, 1,
517 MatchTableRecord::MTRF_CommaFollows, RawValue);
519 static MatchTableRecord NamedValue(StringRef Namespace,
520 StringRef NamedValue) {
521 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
522 MatchTableRecord::MTRF_CommaFollows);
524 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
525 int64_t RawValue) {
526 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
527 MatchTableRecord::MTRF_CommaFollows, RawValue);
529 static MatchTableRecord IntValue(int64_t IntValue) {
530 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
531 MatchTableRecord::MTRF_CommaFollows);
533 static MatchTableRecord Label(unsigned LabelID) {
534 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
535 MatchTableRecord::MTRF_Label |
536 MatchTableRecord::MTRF_Comment |
537 MatchTableRecord::MTRF_LineBreakFollows);
539 static MatchTableRecord JumpTarget(unsigned LabelID) {
540 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
541 MatchTableRecord::MTRF_JumpTarget |
542 MatchTableRecord::MTRF_Comment |
543 MatchTableRecord::MTRF_CommaFollows);
546 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
548 MatchTable(bool WithCoverage, unsigned ID = 0)
549 : ID(ID), IsWithCoverage(WithCoverage) {}
551 bool isWithCoverage() const { return IsWithCoverage; }
553 void push_back(const MatchTableRecord &Value) {
554 if (Value.Flags & MatchTableRecord::MTRF_Label)
555 defineLabel(Value.LabelID);
556 Contents.push_back(Value);
557 CurrentSize += Value.size();
560 unsigned allocateLabelID() { return CurrentLabelID++; }
562 void defineLabel(unsigned LabelID) {
563 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
566 unsigned getLabelIndex(unsigned LabelID) const {
567 const auto I = LabelMap.find(LabelID);
568 assert(I != LabelMap.end() && "Use of undeclared label");
569 return I->second;
572 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
574 void emitDeclaration(raw_ostream &OS) const {
575 unsigned Indentation = 4;
576 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
577 LineBreak.emit(OS, true, *this);
578 OS << std::string(Indentation, ' ');
580 for (auto I = Contents.begin(), E = Contents.end(); I != E;
581 ++I) {
582 bool LineBreakIsNext = false;
583 const auto &NextI = std::next(I);
585 if (NextI != E) {
586 if (NextI->EmitStr == "" &&
587 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
588 LineBreakIsNext = true;
591 if (I->Flags & MatchTableRecord::MTRF_Indent)
592 Indentation += 2;
594 I->emit(OS, LineBreakIsNext, *this);
595 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
596 OS << std::string(Indentation, ' ');
598 if (I->Flags & MatchTableRecord::MTRF_Outdent)
599 Indentation -= 2;
601 OS << "};\n";
605 MatchTableRecord MatchTable::LineBreak = {
606 None, "" /* Emit String */, 0 /* Elements */,
607 MatchTableRecord::MTRF_LineBreakFollows};
609 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
610 const MatchTable &Table) const {
611 bool UseLineComment =
612 LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
613 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
614 UseLineComment = false;
616 if (Flags & MTRF_Comment)
617 OS << (UseLineComment ? "// " : "/*");
619 OS << EmitStr;
620 if (Flags & MTRF_Label)
621 OS << ": @" << Table.getLabelIndex(LabelID);
623 if (Flags & MTRF_Comment && !UseLineComment)
624 OS << "*/";
626 if (Flags & MTRF_JumpTarget) {
627 if (Flags & MTRF_Comment)
628 OS << " ";
629 OS << Table.getLabelIndex(LabelID);
632 if (Flags & MTRF_CommaFollows) {
633 OS << ",";
634 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
635 OS << " ";
638 if (Flags & MTRF_LineBreakFollows)
639 OS << "\n";
642 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
643 Table.push_back(Value);
644 return Table;
647 //===- Matchers -----------------------------------------------------------===//
649 class OperandMatcher;
650 class MatchAction;
651 class PredicateMatcher;
652 class RuleMatcher;
654 class Matcher {
655 public:
656 virtual ~Matcher() = default;
657 virtual void optimize() {}
658 virtual void emit(MatchTable &Table) = 0;
660 virtual bool hasFirstCondition() const = 0;
661 virtual const PredicateMatcher &getFirstCondition() const = 0;
662 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
665 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
666 bool WithCoverage) {
667 MatchTable Table(WithCoverage);
668 for (Matcher *Rule : Rules)
669 Rule->emit(Table);
671 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
674 class GroupMatcher final : public Matcher {
675 /// Conditions that form a common prefix of all the matchers contained.
676 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
678 /// All the nested matchers, sharing a common prefix.
679 std::vector<Matcher *> Matchers;
681 /// An owning collection for any auxiliary matchers created while optimizing
682 /// nested matchers contained.
683 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
685 public:
686 /// Add a matcher to the collection of nested matchers if it meets the
687 /// requirements, and return true. If it doesn't, do nothing and return false.
689 /// Expected to preserve its argument, so it could be moved out later on.
690 bool addMatcher(Matcher &Candidate);
692 /// Mark the matcher as fully-built and ensure any invariants expected by both
693 /// optimize() and emit(...) methods. Generally, both sequences of calls
694 /// are expected to lead to a sensible result:
696 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
697 /// addMatcher(...)*; finalize(); emit(...);
699 /// or generally
701 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
703 /// Multiple calls to optimize() are expected to be handled gracefully, though
704 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
705 /// aren't generally supported. emit(...) is expected to be non-mutating and
706 /// producing the exact same results upon repeated calls.
708 /// addMatcher() calls after the finalize() call are not supported.
710 /// finalize() and optimize() are both allowed to mutate the contained
711 /// matchers, so moving them out after finalize() is not supported.
712 void finalize();
713 void optimize() override;
714 void emit(MatchTable &Table) override;
716 /// Could be used to move out the matchers added previously, unless finalize()
717 /// has been already called. If any of the matchers are moved out, the group
718 /// becomes safe to destroy, but not safe to re-use for anything else.
719 iterator_range<std::vector<Matcher *>::iterator> matchers() {
720 return make_range(Matchers.begin(), Matchers.end());
722 size_t size() const { return Matchers.size(); }
723 bool empty() const { return Matchers.empty(); }
725 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
726 assert(!Conditions.empty() &&
727 "Trying to pop a condition from a condition-less group");
728 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
729 Conditions.erase(Conditions.begin());
730 return P;
732 const PredicateMatcher &getFirstCondition() const override {
733 assert(!Conditions.empty() &&
734 "Trying to get a condition from a condition-less group");
735 return *Conditions.front();
737 bool hasFirstCondition() const override { return !Conditions.empty(); }
739 private:
740 /// See if a candidate matcher could be added to this group solely by
741 /// analyzing its first condition.
742 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
745 class SwitchMatcher : public Matcher {
746 /// All the nested matchers, representing distinct switch-cases. The first
747 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
748 /// matchers must share the same type and path to a value they check, in other
749 /// words, be isIdenticalDownToValue, but have different values they check
750 /// against.
751 std::vector<Matcher *> Matchers;
753 /// The representative condition, with a type and a path (InsnVarID and OpIdx
754 /// in most cases) shared by all the matchers contained.
755 std::unique_ptr<PredicateMatcher> Condition = nullptr;
757 /// Temporary set used to check that the case values don't repeat within the
758 /// same switch.
759 std::set<MatchTableRecord> Values;
761 /// An owning collection for any auxiliary matchers created while optimizing
762 /// nested matchers contained.
763 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
765 public:
766 bool addMatcher(Matcher &Candidate);
768 void finalize();
769 void emit(MatchTable &Table) override;
771 iterator_range<std::vector<Matcher *>::iterator> matchers() {
772 return make_range(Matchers.begin(), Matchers.end());
774 size_t size() const { return Matchers.size(); }
775 bool empty() const { return Matchers.empty(); }
777 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
778 // SwitchMatcher doesn't have a common first condition for its cases, as all
779 // the cases only share a kind of a value (a type and a path to it) they
780 // match, but deliberately differ in the actual value they match.
781 llvm_unreachable("Trying to pop a condition from a condition-less group");
783 const PredicateMatcher &getFirstCondition() const override {
784 llvm_unreachable("Trying to pop a condition from a condition-less group");
786 bool hasFirstCondition() const override { return false; }
788 private:
789 /// See if the predicate type has a Switch-implementation for it.
790 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
792 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
794 /// emit()-helper
795 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
796 MatchTable &Table);
799 /// Generates code to check that a match rule matches.
800 class RuleMatcher : public Matcher {
801 public:
802 using ActionList = std::list<std::unique_ptr<MatchAction>>;
803 using action_iterator = ActionList::iterator;
805 protected:
806 /// A list of matchers that all need to succeed for the current rule to match.
807 /// FIXME: This currently supports a single match position but could be
808 /// extended to support multiple positions to support div/rem fusion or
809 /// load-multiple instructions.
810 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
811 MatchersTy Matchers;
813 /// A list of actions that need to be taken when all predicates in this rule
814 /// have succeeded.
815 ActionList Actions;
817 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
819 /// A map of instruction matchers to the local variables
820 DefinedInsnVariablesMap InsnVariableIDs;
822 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
824 // The set of instruction matchers that have not yet been claimed for mutation
825 // by a BuildMI.
826 MutatableInsnSet MutatableInsns;
828 /// A map of named operands defined by the matchers that may be referenced by
829 /// the renderers.
830 StringMap<OperandMatcher *> DefinedOperands;
832 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
833 unsigned NextInsnVarID;
835 /// ID for the next output instruction allocated with allocateOutputInsnID()
836 unsigned NextOutputInsnID;
838 /// ID for the next temporary register ID allocated with allocateTempRegID()
839 unsigned NextTempRegID;
841 std::vector<Record *> RequiredFeatures;
842 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
844 ArrayRef<SMLoc> SrcLoc;
846 typedef std::tuple<Record *, unsigned, unsigned>
847 DefinedComplexPatternSubOperand;
848 typedef StringMap<DefinedComplexPatternSubOperand>
849 DefinedComplexPatternSubOperandMap;
850 /// A map of Symbolic Names to ComplexPattern sub-operands.
851 DefinedComplexPatternSubOperandMap ComplexSubOperands;
853 uint64_t RuleID;
854 static uint64_t NextRuleID;
856 public:
857 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
858 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
859 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
860 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
861 RuleID(NextRuleID++) {}
862 RuleMatcher(RuleMatcher &&Other) = default;
863 RuleMatcher &operator=(RuleMatcher &&Other) = default;
865 uint64_t getRuleID() const { return RuleID; }
867 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
868 void addRequiredFeature(Record *Feature);
869 const std::vector<Record *> &getRequiredFeatures() const;
871 template <class Kind, class... Args> Kind &addAction(Args &&... args);
872 template <class Kind, class... Args>
873 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
875 /// Define an instruction without emitting any code to do so.
876 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
878 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
879 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
880 return InsnVariableIDs.begin();
882 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
883 return InsnVariableIDs.end();
885 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
886 defined_insn_vars() const {
887 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
890 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
891 return MutatableInsns.begin();
893 MutatableInsnSet::const_iterator mutatable_insns_end() const {
894 return MutatableInsns.end();
896 iterator_range<typename MutatableInsnSet::const_iterator>
897 mutatable_insns() const {
898 return make_range(mutatable_insns_begin(), mutatable_insns_end());
900 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
901 bool R = MutatableInsns.erase(InsnMatcher);
902 assert(R && "Reserving a mutatable insn that isn't available");
903 (void)R;
906 action_iterator actions_begin() { return Actions.begin(); }
907 action_iterator actions_end() { return Actions.end(); }
908 iterator_range<action_iterator> actions() {
909 return make_range(actions_begin(), actions_end());
912 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
914 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
915 unsigned RendererID, unsigned SubOperandID) {
916 if (ComplexSubOperands.count(SymbolicName))
917 return failedImport(
918 "Complex suboperand referenced more than once (Operand: " +
919 SymbolicName + ")");
921 ComplexSubOperands[SymbolicName] =
922 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
924 return Error::success();
927 Optional<DefinedComplexPatternSubOperand>
928 getComplexSubOperand(StringRef SymbolicName) const {
929 const auto &I = ComplexSubOperands.find(SymbolicName);
930 if (I == ComplexSubOperands.end())
931 return None;
932 return I->second;
935 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
936 const OperandMatcher &getOperandMatcher(StringRef Name) const;
938 void optimize() override;
939 void emit(MatchTable &Table) override;
941 /// Compare the priority of this object and B.
943 /// Returns true if this object is more important than B.
944 bool isHigherPriorityThan(const RuleMatcher &B) const;
946 /// Report the maximum number of temporary operands needed by the rule
947 /// matcher.
948 unsigned countRendererFns() const;
950 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
951 const PredicateMatcher &getFirstCondition() const override;
952 LLTCodeGen getFirstConditionAsRootType();
953 bool hasFirstCondition() const override;
954 unsigned getNumOperands() const;
955 StringRef getOpcode() const;
957 // FIXME: Remove this as soon as possible
958 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
960 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
961 unsigned allocateTempRegID() { return NextTempRegID++; }
963 iterator_range<MatchersTy::iterator> insnmatchers() {
964 return make_range(Matchers.begin(), Matchers.end());
966 bool insnmatchers_empty() const { return Matchers.empty(); }
967 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
970 uint64_t RuleMatcher::NextRuleID = 0;
972 using action_iterator = RuleMatcher::action_iterator;
974 template <class PredicateTy> class PredicateListMatcher {
975 private:
976 /// Template instantiations should specialize this to return a string to use
977 /// for the comment emitted when there are no predicates.
978 std::string getNoPredicateComment() const;
980 protected:
981 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
982 PredicatesTy Predicates;
984 /// Track if the list of predicates was manipulated by one of the optimization
985 /// methods.
986 bool Optimized = false;
988 public:
989 /// Construct a new predicate and add it to the matcher.
990 template <class Kind, class... Args>
991 Optional<Kind *> addPredicate(Args &&... args);
993 typename PredicatesTy::iterator predicates_begin() {
994 return Predicates.begin();
996 typename PredicatesTy::iterator predicates_end() {
997 return Predicates.end();
999 iterator_range<typename PredicatesTy::iterator> predicates() {
1000 return make_range(predicates_begin(), predicates_end());
1002 typename PredicatesTy::size_type predicates_size() const {
1003 return Predicates.size();
1005 bool predicates_empty() const { return Predicates.empty(); }
1007 std::unique_ptr<PredicateTy> predicates_pop_front() {
1008 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
1009 Predicates.pop_front();
1010 Optimized = true;
1011 return Front;
1014 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
1015 Predicates.push_front(std::move(Predicate));
1018 void eraseNullPredicates() {
1019 const auto NewEnd =
1020 std::stable_partition(Predicates.begin(), Predicates.end(),
1021 std::logical_not<std::unique_ptr<PredicateTy>>());
1022 if (NewEnd != Predicates.begin()) {
1023 Predicates.erase(Predicates.begin(), NewEnd);
1024 Optimized = true;
1028 /// Emit MatchTable opcodes that tests whether all the predicates are met.
1029 template <class... Args>
1030 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1031 if (Predicates.empty() && !Optimized) {
1032 Table << MatchTable::Comment(getNoPredicateComment())
1033 << MatchTable::LineBreak;
1034 return;
1037 for (const auto &Predicate : predicates())
1038 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1042 class PredicateMatcher {
1043 public:
1044 /// This enum is used for RTTI and also defines the priority that is given to
1045 /// the predicate when generating the matcher code. Kinds with higher priority
1046 /// must be tested first.
1048 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1049 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1050 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1052 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1053 /// are currently not compared between each other.
1054 enum PredicateKind {
1055 IPM_Opcode,
1056 IPM_NumOperands,
1057 IPM_ImmPredicate,
1058 IPM_AtomicOrderingMMO,
1059 IPM_MemoryLLTSize,
1060 IPM_MemoryVsLLTSize,
1061 IPM_MemoryAddressSpace,
1062 IPM_MemoryAlignment,
1063 IPM_GenericPredicate,
1064 OPM_SameOperand,
1065 OPM_ComplexPattern,
1066 OPM_IntrinsicID,
1067 OPM_CmpPredicate,
1068 OPM_Instruction,
1069 OPM_Int,
1070 OPM_LiteralInt,
1071 OPM_LLT,
1072 OPM_PointerToAny,
1073 OPM_RegBank,
1074 OPM_MBB,
1077 protected:
1078 PredicateKind Kind;
1079 unsigned InsnVarID;
1080 unsigned OpIdx;
1082 public:
1083 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1084 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1086 unsigned getInsnVarID() const { return InsnVarID; }
1087 unsigned getOpIdx() const { return OpIdx; }
1089 virtual ~PredicateMatcher() = default;
1090 /// Emit MatchTable opcodes that check the predicate for the given operand.
1091 virtual void emitPredicateOpcodes(MatchTable &Table,
1092 RuleMatcher &Rule) const = 0;
1094 PredicateKind getKind() const { return Kind; }
1096 virtual bool isIdentical(const PredicateMatcher &B) const {
1097 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1098 OpIdx == B.OpIdx;
1101 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1102 return hasValue() && PredicateMatcher::isIdentical(B);
1105 virtual MatchTableRecord getValue() const {
1106 assert(hasValue() && "Can not get a value of a value-less predicate!");
1107 llvm_unreachable("Not implemented yet");
1109 virtual bool hasValue() const { return false; }
1111 /// Report the maximum number of temporary operands needed by the predicate
1112 /// matcher.
1113 virtual unsigned countRendererFns() const { return 0; }
1116 /// Generates code to check a predicate of an operand.
1118 /// Typical predicates include:
1119 /// * Operand is a particular register.
1120 /// * Operand is assigned a particular register bank.
1121 /// * Operand is an MBB.
1122 class OperandPredicateMatcher : public PredicateMatcher {
1123 public:
1124 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1125 unsigned OpIdx)
1126 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
1127 virtual ~OperandPredicateMatcher() {}
1129 /// Compare the priority of this object and B.
1131 /// Returns true if this object is more important than B.
1132 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1135 template <>
1136 std::string
1137 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1138 return "No operand predicates";
1141 /// Generates code to check that a register operand is defined by the same exact
1142 /// one as another.
1143 class SameOperandMatcher : public OperandPredicateMatcher {
1144 std::string MatchingName;
1146 public:
1147 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1148 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1149 MatchingName(MatchingName) {}
1151 static bool classof(const PredicateMatcher *P) {
1152 return P->getKind() == OPM_SameOperand;
1155 void emitPredicateOpcodes(MatchTable &Table,
1156 RuleMatcher &Rule) const override;
1158 bool isIdentical(const PredicateMatcher &B) const override {
1159 return OperandPredicateMatcher::isIdentical(B) &&
1160 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1164 /// Generates code to check that an operand is a particular LLT.
1165 class LLTOperandMatcher : public OperandPredicateMatcher {
1166 protected:
1167 LLTCodeGen Ty;
1169 public:
1170 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1172 static void initTypeIDValuesMap() {
1173 TypeIDValues.clear();
1175 unsigned ID = 0;
1176 for (const LLTCodeGen LLTy : KnownTypes)
1177 TypeIDValues[LLTy] = ID++;
1180 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1181 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1182 KnownTypes.insert(Ty);
1185 static bool classof(const PredicateMatcher *P) {
1186 return P->getKind() == OPM_LLT;
1188 bool isIdentical(const PredicateMatcher &B) const override {
1189 return OperandPredicateMatcher::isIdentical(B) &&
1190 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1192 MatchTableRecord getValue() const override {
1193 const auto VI = TypeIDValues.find(Ty);
1194 if (VI == TypeIDValues.end())
1195 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1196 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1198 bool hasValue() const override {
1199 if (TypeIDValues.size() != KnownTypes.size())
1200 initTypeIDValuesMap();
1201 return TypeIDValues.count(Ty);
1204 LLTCodeGen getTy() const { return Ty; }
1206 void emitPredicateOpcodes(MatchTable &Table,
1207 RuleMatcher &Rule) const override {
1208 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1209 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1210 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1211 << getValue() << MatchTable::LineBreak;
1215 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1217 /// Generates code to check that an operand is a pointer to any address space.
1219 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1220 /// result, iN is used to describe a pointer of N bits to any address space and
1221 /// PatFrag predicates are typically used to constrain the address space. There's
1222 /// no reliable means to derive the missing type information from the pattern so
1223 /// imported rules must test the components of a pointer separately.
1225 /// If SizeInBits is zero, then the pointer size will be obtained from the
1226 /// subtarget.
1227 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1228 protected:
1229 unsigned SizeInBits;
1231 public:
1232 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1233 unsigned SizeInBits)
1234 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1235 SizeInBits(SizeInBits) {}
1237 static bool classof(const OperandPredicateMatcher *P) {
1238 return P->getKind() == OPM_PointerToAny;
1241 void emitPredicateOpcodes(MatchTable &Table,
1242 RuleMatcher &Rule) const override {
1243 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1244 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1245 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1246 << MatchTable::Comment("SizeInBits")
1247 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1251 /// Generates code to check that an operand is a particular target constant.
1252 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1253 protected:
1254 const OperandMatcher &Operand;
1255 const Record &TheDef;
1257 unsigned getAllocatedTemporariesBaseID() const;
1259 public:
1260 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1262 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1263 const OperandMatcher &Operand,
1264 const Record &TheDef)
1265 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1266 Operand(Operand), TheDef(TheDef) {}
1268 static bool classof(const PredicateMatcher *P) {
1269 return P->getKind() == OPM_ComplexPattern;
1272 void emitPredicateOpcodes(MatchTable &Table,
1273 RuleMatcher &Rule) const override {
1274 unsigned ID = getAllocatedTemporariesBaseID();
1275 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1276 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1277 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1278 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1279 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1280 << MatchTable::LineBreak;
1283 unsigned countRendererFns() const override {
1284 return 1;
1288 /// Generates code to check that an operand is in a particular register bank.
1289 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1290 protected:
1291 const CodeGenRegisterClass &RC;
1293 public:
1294 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1295 const CodeGenRegisterClass &RC)
1296 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1298 bool isIdentical(const PredicateMatcher &B) const override {
1299 return OperandPredicateMatcher::isIdentical(B) &&
1300 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1303 static bool classof(const PredicateMatcher *P) {
1304 return P->getKind() == OPM_RegBank;
1307 void emitPredicateOpcodes(MatchTable &Table,
1308 RuleMatcher &Rule) const override {
1309 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1310 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1311 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1312 << MatchTable::Comment("RC")
1313 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1314 << MatchTable::LineBreak;
1318 /// Generates code to check that an operand is a basic block.
1319 class MBBOperandMatcher : public OperandPredicateMatcher {
1320 public:
1321 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1322 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1324 static bool classof(const PredicateMatcher *P) {
1325 return P->getKind() == OPM_MBB;
1328 void emitPredicateOpcodes(MatchTable &Table,
1329 RuleMatcher &Rule) const override {
1330 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1331 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1332 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1336 /// Generates code to check that an operand is a G_CONSTANT with a particular
1337 /// int.
1338 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1339 protected:
1340 int64_t Value;
1342 public:
1343 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1344 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1346 bool isIdentical(const PredicateMatcher &B) const override {
1347 return OperandPredicateMatcher::isIdentical(B) &&
1348 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1351 static bool classof(const PredicateMatcher *P) {
1352 return P->getKind() == OPM_Int;
1355 void emitPredicateOpcodes(MatchTable &Table,
1356 RuleMatcher &Rule) const override {
1357 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1358 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1359 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1360 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1364 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1365 /// MO.isCImm() is true).
1366 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1367 protected:
1368 int64_t Value;
1370 public:
1371 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1372 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1373 Value(Value) {}
1375 bool isIdentical(const PredicateMatcher &B) const override {
1376 return OperandPredicateMatcher::isIdentical(B) &&
1377 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1380 static bool classof(const PredicateMatcher *P) {
1381 return P->getKind() == OPM_LiteralInt;
1384 void emitPredicateOpcodes(MatchTable &Table,
1385 RuleMatcher &Rule) const override {
1386 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1387 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1388 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1389 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1393 /// Generates code to check that an operand is an CmpInst predicate
1394 class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
1395 protected:
1396 std::string PredName;
1398 public:
1399 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1400 std::string P)
1401 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
1403 bool isIdentical(const PredicateMatcher &B) const override {
1404 return OperandPredicateMatcher::isIdentical(B) &&
1405 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
1408 static bool classof(const PredicateMatcher *P) {
1409 return P->getKind() == OPM_CmpPredicate;
1412 void emitPredicateOpcodes(MatchTable &Table,
1413 RuleMatcher &Rule) const override {
1414 Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
1415 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1416 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1417 << MatchTable::Comment("Predicate")
1418 << MatchTable::NamedValue("CmpInst", PredName)
1419 << MatchTable::LineBreak;
1423 /// Generates code to check that an operand is an intrinsic ID.
1424 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1425 protected:
1426 const CodeGenIntrinsic *II;
1428 public:
1429 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1430 const CodeGenIntrinsic *II)
1431 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1433 bool isIdentical(const PredicateMatcher &B) const override {
1434 return OperandPredicateMatcher::isIdentical(B) &&
1435 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1438 static bool classof(const PredicateMatcher *P) {
1439 return P->getKind() == OPM_IntrinsicID;
1442 void emitPredicateOpcodes(MatchTable &Table,
1443 RuleMatcher &Rule) const override {
1444 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1445 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1446 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1447 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1448 << MatchTable::LineBreak;
1452 /// Generates code to check that a set of predicates match for a particular
1453 /// operand.
1454 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1455 protected:
1456 InstructionMatcher &Insn;
1457 unsigned OpIdx;
1458 std::string SymbolicName;
1460 /// The index of the first temporary variable allocated to this operand. The
1461 /// number of allocated temporaries can be found with
1462 /// countRendererFns().
1463 unsigned AllocatedTemporariesBaseID;
1465 public:
1466 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1467 const std::string &SymbolicName,
1468 unsigned AllocatedTemporariesBaseID)
1469 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1470 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1472 bool hasSymbolicName() const { return !SymbolicName.empty(); }
1473 const StringRef getSymbolicName() const { return SymbolicName; }
1474 void setSymbolicName(StringRef Name) {
1475 assert(SymbolicName.empty() && "Operand already has a symbolic name");
1476 SymbolicName = Name;
1479 /// Construct a new operand predicate and add it to the matcher.
1480 template <class Kind, class... Args>
1481 Optional<Kind *> addPredicate(Args &&... args) {
1482 if (isSameAsAnotherOperand())
1483 return None;
1484 Predicates.emplace_back(std::make_unique<Kind>(
1485 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1486 return static_cast<Kind *>(Predicates.back().get());
1489 unsigned getOpIdx() const { return OpIdx; }
1490 unsigned getInsnVarID() const;
1492 std::string getOperandExpr(unsigned InsnVarID) const {
1493 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1494 llvm::to_string(OpIdx) + ")";
1497 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1499 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1500 bool OperandIsAPointer);
1502 /// Emit MatchTable opcodes that test whether the instruction named in
1503 /// InsnVarID matches all the predicates and all the operands.
1504 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1505 if (!Optimized) {
1506 std::string Comment;
1507 raw_string_ostream CommentOS(Comment);
1508 CommentOS << "MIs[" << getInsnVarID() << "] ";
1509 if (SymbolicName.empty())
1510 CommentOS << "Operand " << OpIdx;
1511 else
1512 CommentOS << SymbolicName;
1513 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1516 emitPredicateListOpcodes(Table, Rule);
1519 /// Compare the priority of this object and B.
1521 /// Returns true if this object is more important than B.
1522 bool isHigherPriorityThan(OperandMatcher &B) {
1523 // Operand matchers involving more predicates have higher priority.
1524 if (predicates_size() > B.predicates_size())
1525 return true;
1526 if (predicates_size() < B.predicates_size())
1527 return false;
1529 // This assumes that predicates are added in a consistent order.
1530 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1531 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1532 return true;
1533 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1534 return false;
1537 return false;
1540 /// Report the maximum number of temporary operands needed by the operand
1541 /// matcher.
1542 unsigned countRendererFns() {
1543 return std::accumulate(
1544 predicates().begin(), predicates().end(), 0,
1545 [](unsigned A,
1546 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1547 return A + Predicate->countRendererFns();
1551 unsigned getAllocatedTemporariesBaseID() const {
1552 return AllocatedTemporariesBaseID;
1555 bool isSameAsAnotherOperand() {
1556 for (const auto &Predicate : predicates())
1557 if (isa<SameOperandMatcher>(Predicate))
1558 return true;
1559 return false;
1563 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1564 bool OperandIsAPointer) {
1565 if (!VTy.isMachineValueType())
1566 return failedImport("unsupported typeset");
1568 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1569 addPredicate<PointerToAnyOperandMatcher>(0);
1570 return Error::success();
1573 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1574 if (!OpTyOrNone)
1575 return failedImport("unsupported type");
1577 if (OperandIsAPointer)
1578 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1579 else if (VTy.isPointer())
1580 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1581 OpTyOrNone->get().getSizeInBits()));
1582 else
1583 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1584 return Error::success();
1587 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1588 return Operand.getAllocatedTemporariesBaseID();
1591 /// Generates code to check a predicate on an instruction.
1593 /// Typical predicates include:
1594 /// * The opcode of the instruction is a particular value.
1595 /// * The nsw/nuw flag is/isn't set.
1596 class InstructionPredicateMatcher : public PredicateMatcher {
1597 public:
1598 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1599 : PredicateMatcher(Kind, InsnVarID) {}
1600 virtual ~InstructionPredicateMatcher() {}
1602 /// Compare the priority of this object and B.
1604 /// Returns true if this object is more important than B.
1605 virtual bool
1606 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1607 return Kind < B.Kind;
1611 template <>
1612 std::string
1613 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1614 return "No instruction predicates";
1617 /// Generates code to check the opcode of an instruction.
1618 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1619 protected:
1620 const CodeGenInstruction *I;
1622 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1624 public:
1625 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1626 OpcodeValues.clear();
1628 unsigned OpcodeValue = 0;
1629 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1630 OpcodeValues[I] = OpcodeValue++;
1633 InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
1634 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
1636 static bool classof(const PredicateMatcher *P) {
1637 return P->getKind() == IPM_Opcode;
1640 bool isIdentical(const PredicateMatcher &B) const override {
1641 return InstructionPredicateMatcher::isIdentical(B) &&
1642 I == cast<InstructionOpcodeMatcher>(&B)->I;
1644 MatchTableRecord getValue() const override {
1645 const auto VI = OpcodeValues.find(I);
1646 if (VI != OpcodeValues.end())
1647 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1648 VI->second);
1649 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1651 bool hasValue() const override { return OpcodeValues.count(I); }
1653 void emitPredicateOpcodes(MatchTable &Table,
1654 RuleMatcher &Rule) const override {
1655 Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1656 << MatchTable::IntValue(InsnVarID) << getValue()
1657 << MatchTable::LineBreak;
1660 /// Compare the priority of this object and B.
1662 /// Returns true if this object is more important than B.
1663 bool
1664 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1665 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1666 return true;
1667 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1668 return false;
1670 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1671 // this is cosmetic at the moment, we may want to drive a similar ordering
1672 // using instruction frequency information to improve compile time.
1673 if (const InstructionOpcodeMatcher *BO =
1674 dyn_cast<InstructionOpcodeMatcher>(&B))
1675 return I->TheDef->getName() < BO->I->TheDef->getName();
1677 return false;
1680 bool isConstantInstruction() const {
1681 return I->TheDef->getName() == "G_CONSTANT";
1684 StringRef getOpcode() const { return I->TheDef->getName(); }
1685 unsigned getNumOperands() const { return I->Operands.size(); }
1687 StringRef getOperandType(unsigned OpIdx) const {
1688 return I->Operands[OpIdx].OperandType;
1692 DenseMap<const CodeGenInstruction *, unsigned>
1693 InstructionOpcodeMatcher::OpcodeValues;
1695 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1696 unsigned NumOperands = 0;
1698 public:
1699 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1700 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1701 NumOperands(NumOperands) {}
1703 static bool classof(const PredicateMatcher *P) {
1704 return P->getKind() == IPM_NumOperands;
1707 bool isIdentical(const PredicateMatcher &B) const override {
1708 return InstructionPredicateMatcher::isIdentical(B) &&
1709 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1712 void emitPredicateOpcodes(MatchTable &Table,
1713 RuleMatcher &Rule) const override {
1714 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1715 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1716 << MatchTable::Comment("Expected")
1717 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1721 /// Generates code to check that this instruction is a constant whose value
1722 /// meets an immediate predicate.
1724 /// Immediates are slightly odd since they are typically used like an operand
1725 /// but are represented as an operator internally. We typically write simm8:$src
1726 /// in a tablegen pattern, but this is just syntactic sugar for
1727 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1728 /// that will be matched and the predicate (which is attached to the imm
1729 /// operator) that will be tested. In SelectionDAG this describes a
1730 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1732 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1733 /// this representation, the immediate could be tested with an
1734 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1735 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1736 /// there are two implementation issues with producing that matcher
1737 /// configuration from the SelectionDAG pattern:
1738 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1739 /// were we to sink the immediate predicate to the operand we would have to
1740 /// have two partial implementations of PatFrag support, one for immediates
1741 /// and one for non-immediates.
1742 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1743 /// created yet. If we were to sink the predicate to the OperandMatcher we
1744 /// would also have to complicate (or duplicate) the code that descends and
1745 /// creates matchers for the subtree.
1746 /// Overall, it's simpler to handle it in the place it was found.
1747 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1748 protected:
1749 TreePredicateFn Predicate;
1751 public:
1752 InstructionImmPredicateMatcher(unsigned InsnVarID,
1753 const TreePredicateFn &Predicate)
1754 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1755 Predicate(Predicate) {}
1757 bool isIdentical(const PredicateMatcher &B) const override {
1758 return InstructionPredicateMatcher::isIdentical(B) &&
1759 Predicate.getOrigPatFragRecord() ==
1760 cast<InstructionImmPredicateMatcher>(&B)
1761 ->Predicate.getOrigPatFragRecord();
1764 static bool classof(const PredicateMatcher *P) {
1765 return P->getKind() == IPM_ImmPredicate;
1768 void emitPredicateOpcodes(MatchTable &Table,
1769 RuleMatcher &Rule) const override {
1770 Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
1771 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1772 << MatchTable::Comment("Predicate")
1773 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1774 << MatchTable::LineBreak;
1778 /// Generates code to check that a memory instruction has a atomic ordering
1779 /// MachineMemoryOperand.
1780 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1781 public:
1782 enum AOComparator {
1783 AO_Exactly,
1784 AO_OrStronger,
1785 AO_WeakerThan,
1788 protected:
1789 StringRef Order;
1790 AOComparator Comparator;
1792 public:
1793 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1794 AOComparator Comparator = AO_Exactly)
1795 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1796 Order(Order), Comparator(Comparator) {}
1798 static bool classof(const PredicateMatcher *P) {
1799 return P->getKind() == IPM_AtomicOrderingMMO;
1802 bool isIdentical(const PredicateMatcher &B) const override {
1803 if (!InstructionPredicateMatcher::isIdentical(B))
1804 return false;
1805 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
1806 return Order == R.Order && Comparator == R.Comparator;
1809 void emitPredicateOpcodes(MatchTable &Table,
1810 RuleMatcher &Rule) const override {
1811 StringRef Opcode = "GIM_CheckAtomicOrdering";
1813 if (Comparator == AO_OrStronger)
1814 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
1815 if (Comparator == AO_WeakerThan)
1816 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
1818 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
1819 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
1820 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
1821 << MatchTable::LineBreak;
1825 /// Generates code to check that the size of an MMO is exactly N bytes.
1826 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
1827 protected:
1828 unsigned MMOIdx;
1829 uint64_t Size;
1831 public:
1832 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
1833 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
1834 MMOIdx(MMOIdx), Size(Size) {}
1836 static bool classof(const PredicateMatcher *P) {
1837 return P->getKind() == IPM_MemoryLLTSize;
1839 bool isIdentical(const PredicateMatcher &B) const override {
1840 return InstructionPredicateMatcher::isIdentical(B) &&
1841 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
1842 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
1845 void emitPredicateOpcodes(MatchTable &Table,
1846 RuleMatcher &Rule) const override {
1847 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1848 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1849 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1850 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
1851 << MatchTable::LineBreak;
1855 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
1856 protected:
1857 unsigned MMOIdx;
1858 SmallVector<unsigned, 4> AddrSpaces;
1860 public:
1861 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1862 ArrayRef<unsigned> AddrSpaces)
1863 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
1864 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
1866 static bool classof(const PredicateMatcher *P) {
1867 return P->getKind() == IPM_MemoryAddressSpace;
1869 bool isIdentical(const PredicateMatcher &B) const override {
1870 if (!InstructionPredicateMatcher::isIdentical(B))
1871 return false;
1872 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
1873 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
1876 void emitPredicateOpcodes(MatchTable &Table,
1877 RuleMatcher &Rule) const override {
1878 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
1879 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1880 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1881 // Encode number of address spaces to expect.
1882 << MatchTable::Comment("NumAddrSpace")
1883 << MatchTable::IntValue(AddrSpaces.size());
1884 for (unsigned AS : AddrSpaces)
1885 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
1887 Table << MatchTable::LineBreak;
1891 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
1892 protected:
1893 unsigned MMOIdx;
1894 int MinAlign;
1896 public:
1897 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1898 int MinAlign)
1899 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
1900 MMOIdx(MMOIdx), MinAlign(MinAlign) {
1901 assert(MinAlign > 0);
1904 static bool classof(const PredicateMatcher *P) {
1905 return P->getKind() == IPM_MemoryAlignment;
1908 bool isIdentical(const PredicateMatcher &B) const override {
1909 if (!InstructionPredicateMatcher::isIdentical(B))
1910 return false;
1911 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
1912 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
1915 void emitPredicateOpcodes(MatchTable &Table,
1916 RuleMatcher &Rule) const override {
1917 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
1918 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1919 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1920 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
1921 << MatchTable::LineBreak;
1925 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1926 /// greater than a given LLT.
1927 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
1928 public:
1929 enum RelationKind {
1930 GreaterThan,
1931 EqualTo,
1932 LessThan,
1935 protected:
1936 unsigned MMOIdx;
1937 RelationKind Relation;
1938 unsigned OpIdx;
1940 public:
1941 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1942 enum RelationKind Relation,
1943 unsigned OpIdx)
1944 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
1945 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
1947 static bool classof(const PredicateMatcher *P) {
1948 return P->getKind() == IPM_MemoryVsLLTSize;
1950 bool isIdentical(const PredicateMatcher &B) const override {
1951 return InstructionPredicateMatcher::isIdentical(B) &&
1952 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
1953 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
1954 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
1957 void emitPredicateOpcodes(MatchTable &Table,
1958 RuleMatcher &Rule) const override {
1959 Table << MatchTable::Opcode(Relation == EqualTo
1960 ? "GIM_CheckMemorySizeEqualToLLT"
1961 : Relation == GreaterThan
1962 ? "GIM_CheckMemorySizeGreaterThanLLT"
1963 : "GIM_CheckMemorySizeLessThanLLT")
1964 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1965 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1966 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
1967 << MatchTable::LineBreak;
1971 /// Generates code to check an arbitrary C++ instruction predicate.
1972 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
1973 protected:
1974 TreePredicateFn Predicate;
1976 public:
1977 GenericInstructionPredicateMatcher(unsigned InsnVarID,
1978 TreePredicateFn Predicate)
1979 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
1980 Predicate(Predicate) {}
1982 static bool classof(const InstructionPredicateMatcher *P) {
1983 return P->getKind() == IPM_GenericPredicate;
1985 bool isIdentical(const PredicateMatcher &B) const override {
1986 return InstructionPredicateMatcher::isIdentical(B) &&
1987 Predicate ==
1988 static_cast<const GenericInstructionPredicateMatcher &>(B)
1989 .Predicate;
1991 void emitPredicateOpcodes(MatchTable &Table,
1992 RuleMatcher &Rule) const override {
1993 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
1994 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1995 << MatchTable::Comment("FnId")
1996 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1997 << MatchTable::LineBreak;
2001 /// Generates code to check that a set of predicates and operands match for a
2002 /// particular instruction.
2004 /// Typical predicates include:
2005 /// * Has a specific opcode.
2006 /// * Has an nsw/nuw flag or doesn't.
2007 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
2008 protected:
2009 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
2011 RuleMatcher &Rule;
2013 /// The operands to match. All rendered operands must be present even if the
2014 /// condition is always true.
2015 OperandVec Operands;
2016 bool NumOperandsCheck = true;
2018 std::string SymbolicName;
2019 unsigned InsnVarID;
2021 public:
2022 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
2023 : Rule(Rule), SymbolicName(SymbolicName) {
2024 // We create a new instruction matcher.
2025 // Get a new ID for that instruction.
2026 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
2029 /// Construct a new instruction predicate and add it to the matcher.
2030 template <class Kind, class... Args>
2031 Optional<Kind *> addPredicate(Args &&... args) {
2032 Predicates.emplace_back(
2033 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
2034 return static_cast<Kind *>(Predicates.back().get());
2037 RuleMatcher &getRuleMatcher() const { return Rule; }
2039 unsigned getInsnVarID() const { return InsnVarID; }
2041 /// Add an operand to the matcher.
2042 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
2043 unsigned AllocatedTemporariesBaseID) {
2044 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
2045 AllocatedTemporariesBaseID));
2046 if (!SymbolicName.empty())
2047 Rule.defineOperand(SymbolicName, *Operands.back());
2049 return *Operands.back();
2052 OperandMatcher &getOperand(unsigned OpIdx) {
2053 auto I = std::find_if(Operands.begin(), Operands.end(),
2054 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
2055 return X->getOpIdx() == OpIdx;
2057 if (I != Operands.end())
2058 return **I;
2059 llvm_unreachable("Failed to lookup operand");
2062 StringRef getSymbolicName() const { return SymbolicName; }
2063 unsigned getNumOperands() const { return Operands.size(); }
2064 OperandVec::iterator operands_begin() { return Operands.begin(); }
2065 OperandVec::iterator operands_end() { return Operands.end(); }
2066 iterator_range<OperandVec::iterator> operands() {
2067 return make_range(operands_begin(), operands_end());
2069 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
2070 OperandVec::const_iterator operands_end() const { return Operands.end(); }
2071 iterator_range<OperandVec::const_iterator> operands() const {
2072 return make_range(operands_begin(), operands_end());
2074 bool operands_empty() const { return Operands.empty(); }
2076 void pop_front() { Operands.erase(Operands.begin()); }
2078 void optimize();
2080 /// Emit MatchTable opcodes that test whether the instruction named in
2081 /// InsnVarName matches all the predicates and all the operands.
2082 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
2083 if (NumOperandsCheck)
2084 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
2085 .emitPredicateOpcodes(Table, Rule);
2087 emitPredicateListOpcodes(Table, Rule);
2089 for (const auto &Operand : Operands)
2090 Operand->emitPredicateOpcodes(Table, Rule);
2093 /// Compare the priority of this object and B.
2095 /// Returns true if this object is more important than B.
2096 bool isHigherPriorityThan(InstructionMatcher &B) {
2097 // Instruction matchers involving more operands have higher priority.
2098 if (Operands.size() > B.Operands.size())
2099 return true;
2100 if (Operands.size() < B.Operands.size())
2101 return false;
2103 for (auto &&P : zip(predicates(), B.predicates())) {
2104 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
2105 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
2106 if (L->isHigherPriorityThan(*R))
2107 return true;
2108 if (R->isHigherPriorityThan(*L))
2109 return false;
2112 for (const auto &Operand : zip(Operands, B.Operands)) {
2113 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
2114 return true;
2115 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
2116 return false;
2119 return false;
2122 /// Report the maximum number of temporary operands needed by the instruction
2123 /// matcher.
2124 unsigned countRendererFns() {
2125 return std::accumulate(
2126 predicates().begin(), predicates().end(), 0,
2127 [](unsigned A,
2128 const std::unique_ptr<PredicateMatcher> &Predicate) {
2129 return A + Predicate->countRendererFns();
2130 }) +
2131 std::accumulate(
2132 Operands.begin(), Operands.end(), 0,
2133 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2134 return A + Operand->countRendererFns();
2138 InstructionOpcodeMatcher &getOpcodeMatcher() {
2139 for (auto &P : predicates())
2140 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2141 return *OpMatcher;
2142 llvm_unreachable("Didn't find an opcode matcher");
2145 bool isConstantInstruction() {
2146 return getOpcodeMatcher().isConstantInstruction();
2149 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2152 StringRef RuleMatcher::getOpcode() const {
2153 return Matchers.front()->getOpcode();
2156 unsigned RuleMatcher::getNumOperands() const {
2157 return Matchers.front()->getNumOperands();
2160 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2161 InstructionMatcher &InsnMatcher = *Matchers.front();
2162 if (!InsnMatcher.predicates_empty())
2163 if (const auto *TM =
2164 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2165 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2166 return TM->getTy();
2167 return {};
2170 /// Generates code to check that the operand is a register defined by an
2171 /// instruction that matches the given instruction matcher.
2173 /// For example, the pattern:
2174 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2175 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2176 /// the:
2177 /// (G_ADD $src1, $src2)
2178 /// subpattern.
2179 class InstructionOperandMatcher : public OperandPredicateMatcher {
2180 protected:
2181 std::unique_ptr<InstructionMatcher> InsnMatcher;
2183 public:
2184 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2185 RuleMatcher &Rule, StringRef SymbolicName)
2186 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2187 InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
2189 static bool classof(const PredicateMatcher *P) {
2190 return P->getKind() == OPM_Instruction;
2193 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2195 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2196 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2197 Table << MatchTable::Opcode("GIM_RecordInsn")
2198 << MatchTable::Comment("DefineMI")
2199 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2200 << MatchTable::IntValue(getInsnVarID())
2201 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2202 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2203 << MatchTable::LineBreak;
2206 void emitPredicateOpcodes(MatchTable &Table,
2207 RuleMatcher &Rule) const override {
2208 emitCaptureOpcodes(Table, Rule);
2209 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2212 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2213 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2214 return true;
2215 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2216 return false;
2218 if (const InstructionOperandMatcher *BP =
2219 dyn_cast<InstructionOperandMatcher>(&B))
2220 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2221 return true;
2222 return false;
2226 void InstructionMatcher::optimize() {
2227 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2228 const auto &OpcMatcher = getOpcodeMatcher();
2230 Stash.push_back(predicates_pop_front());
2231 if (Stash.back().get() == &OpcMatcher) {
2232 if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
2233 Stash.emplace_back(
2234 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2235 NumOperandsCheck = false;
2237 for (auto &OM : Operands)
2238 for (auto &OP : OM->predicates())
2239 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2240 Stash.push_back(std::move(OP));
2241 OM->eraseNullPredicates();
2242 break;
2246 if (InsnVarID > 0) {
2247 assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2248 for (auto &OP : Operands[0]->predicates())
2249 OP.reset();
2250 Operands[0]->eraseNullPredicates();
2252 for (auto &OM : Operands) {
2253 for (auto &OP : OM->predicates())
2254 if (isa<LLTOperandMatcher>(OP))
2255 Stash.push_back(std::move(OP));
2256 OM->eraseNullPredicates();
2258 while (!Stash.empty())
2259 prependPredicate(Stash.pop_back_val());
2262 //===- Actions ------------------------------------------------------------===//
2263 class OperandRenderer {
2264 public:
2265 enum RendererKind {
2266 OR_Copy,
2267 OR_CopyOrAddZeroReg,
2268 OR_CopySubReg,
2269 OR_CopyConstantAsImm,
2270 OR_CopyFConstantAsFPImm,
2271 OR_Imm,
2272 OR_Register,
2273 OR_TempRegister,
2274 OR_ComplexPattern,
2275 OR_Custom
2278 protected:
2279 RendererKind Kind;
2281 public:
2282 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
2283 virtual ~OperandRenderer() {}
2285 RendererKind getKind() const { return Kind; }
2287 virtual void emitRenderOpcodes(MatchTable &Table,
2288 RuleMatcher &Rule) const = 0;
2291 /// A CopyRenderer emits code to copy a single operand from an existing
2292 /// instruction to the one being built.
2293 class CopyRenderer : public OperandRenderer {
2294 protected:
2295 unsigned NewInsnID;
2296 /// The name of the operand.
2297 const StringRef SymbolicName;
2299 public:
2300 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2301 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2302 SymbolicName(SymbolicName) {
2303 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2306 static bool classof(const OperandRenderer *R) {
2307 return R->getKind() == OR_Copy;
2310 const StringRef getSymbolicName() const { return SymbolicName; }
2312 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2313 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2314 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2315 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2316 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2317 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2318 << MatchTable::IntValue(Operand.getOpIdx())
2319 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2323 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2324 /// existing instruction to the one being built. If the operand turns out to be
2325 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2326 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2327 protected:
2328 unsigned NewInsnID;
2329 /// The name of the operand.
2330 const StringRef SymbolicName;
2331 const Record *ZeroRegisterDef;
2333 public:
2334 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2335 StringRef SymbolicName, Record *ZeroRegisterDef)
2336 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2337 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2338 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2341 static bool classof(const OperandRenderer *R) {
2342 return R->getKind() == OR_CopyOrAddZeroReg;
2345 const StringRef getSymbolicName() const { return SymbolicName; }
2347 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2348 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2349 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2350 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2351 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2352 << MatchTable::Comment("OldInsnID")
2353 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2354 << MatchTable::IntValue(Operand.getOpIdx())
2355 << MatchTable::NamedValue(
2356 (ZeroRegisterDef->getValue("Namespace")
2357 ? ZeroRegisterDef->getValueAsString("Namespace")
2358 : ""),
2359 ZeroRegisterDef->getName())
2360 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2364 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2365 /// an extended immediate operand.
2366 class CopyConstantAsImmRenderer : public OperandRenderer {
2367 protected:
2368 unsigned NewInsnID;
2369 /// The name of the operand.
2370 const std::string SymbolicName;
2371 bool Signed;
2373 public:
2374 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2375 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2376 SymbolicName(SymbolicName), Signed(true) {}
2378 static bool classof(const OperandRenderer *R) {
2379 return R->getKind() == OR_CopyConstantAsImm;
2382 const StringRef getSymbolicName() const { return SymbolicName; }
2384 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2385 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2386 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2387 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2388 : "GIR_CopyConstantAsUImm")
2389 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2390 << MatchTable::Comment("OldInsnID")
2391 << MatchTable::IntValue(OldInsnVarID)
2392 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2396 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2397 /// instruction to an extended immediate operand.
2398 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2399 protected:
2400 unsigned NewInsnID;
2401 /// The name of the operand.
2402 const std::string SymbolicName;
2404 public:
2405 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2406 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2407 SymbolicName(SymbolicName) {}
2409 static bool classof(const OperandRenderer *R) {
2410 return R->getKind() == OR_CopyFConstantAsFPImm;
2413 const StringRef getSymbolicName() const { return SymbolicName; }
2415 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2416 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2417 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2418 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2419 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2420 << MatchTable::Comment("OldInsnID")
2421 << MatchTable::IntValue(OldInsnVarID)
2422 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2426 /// A CopySubRegRenderer emits code to copy a single register operand from an
2427 /// existing instruction to the one being built and indicate that only a
2428 /// subregister should be copied.
2429 class CopySubRegRenderer : public OperandRenderer {
2430 protected:
2431 unsigned NewInsnID;
2432 /// The name of the operand.
2433 const StringRef SymbolicName;
2434 /// The subregister to extract.
2435 const CodeGenSubRegIndex *SubReg;
2437 public:
2438 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2439 const CodeGenSubRegIndex *SubReg)
2440 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2441 SymbolicName(SymbolicName), SubReg(SubReg) {}
2443 static bool classof(const OperandRenderer *R) {
2444 return R->getKind() == OR_CopySubReg;
2447 const StringRef getSymbolicName() const { return SymbolicName; }
2449 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2450 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2451 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2452 Table << MatchTable::Opcode("GIR_CopySubReg")
2453 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2454 << MatchTable::Comment("OldInsnID")
2455 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2456 << MatchTable::IntValue(Operand.getOpIdx())
2457 << MatchTable::Comment("SubRegIdx")
2458 << MatchTable::IntValue(SubReg->EnumValue)
2459 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2463 /// Adds a specific physical register to the instruction being built.
2464 /// This is typically useful for WZR/XZR on AArch64.
2465 class AddRegisterRenderer : public OperandRenderer {
2466 protected:
2467 unsigned InsnID;
2468 const Record *RegisterDef;
2470 public:
2471 AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
2472 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
2475 static bool classof(const OperandRenderer *R) {
2476 return R->getKind() == OR_Register;
2479 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2480 Table << MatchTable::Opcode("GIR_AddRegister")
2481 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2482 << MatchTable::NamedValue(
2483 (RegisterDef->getValue("Namespace")
2484 ? RegisterDef->getValueAsString("Namespace")
2485 : ""),
2486 RegisterDef->getName())
2487 << MatchTable::LineBreak;
2491 /// Adds a specific temporary virtual register to the instruction being built.
2492 /// This is used to chain instructions together when emitting multiple
2493 /// instructions.
2494 class TempRegRenderer : public OperandRenderer {
2495 protected:
2496 unsigned InsnID;
2497 unsigned TempRegID;
2498 bool IsDef;
2500 public:
2501 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
2502 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2503 IsDef(IsDef) {}
2505 static bool classof(const OperandRenderer *R) {
2506 return R->getKind() == OR_TempRegister;
2509 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2510 Table << MatchTable::Opcode("GIR_AddTempRegister")
2511 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2512 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2513 << MatchTable::Comment("TempRegFlags");
2514 if (IsDef)
2515 Table << MatchTable::NamedValue("RegState::Define");
2516 else
2517 Table << MatchTable::IntValue(0);
2518 Table << MatchTable::LineBreak;
2522 /// Adds a specific immediate to the instruction being built.
2523 class ImmRenderer : public OperandRenderer {
2524 protected:
2525 unsigned InsnID;
2526 int64_t Imm;
2528 public:
2529 ImmRenderer(unsigned InsnID, int64_t Imm)
2530 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2532 static bool classof(const OperandRenderer *R) {
2533 return R->getKind() == OR_Imm;
2536 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2537 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2538 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2539 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2543 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2544 /// matcher function.
2545 class RenderComplexPatternOperand : public OperandRenderer {
2546 private:
2547 unsigned InsnID;
2548 const Record &TheDef;
2549 /// The name of the operand.
2550 const StringRef SymbolicName;
2551 /// The renderer number. This must be unique within a rule since it's used to
2552 /// identify a temporary variable to hold the renderer function.
2553 unsigned RendererID;
2554 /// When provided, this is the suboperand of the ComplexPattern operand to
2555 /// render. Otherwise all the suboperands will be rendered.
2556 Optional<unsigned> SubOperand;
2558 unsigned getNumOperands() const {
2559 return TheDef.getValueAsDag("Operands")->getNumArgs();
2562 public:
2563 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2564 StringRef SymbolicName, unsigned RendererID,
2565 Optional<unsigned> SubOperand = None)
2566 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2567 SymbolicName(SymbolicName), RendererID(RendererID),
2568 SubOperand(SubOperand) {}
2570 static bool classof(const OperandRenderer *R) {
2571 return R->getKind() == OR_ComplexPattern;
2574 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2575 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2576 : "GIR_ComplexRenderer")
2577 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2578 << MatchTable::Comment("RendererID")
2579 << MatchTable::IntValue(RendererID);
2580 if (SubOperand.hasValue())
2581 Table << MatchTable::Comment("SubOperand")
2582 << MatchTable::IntValue(SubOperand.getValue());
2583 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2587 class CustomRenderer : public OperandRenderer {
2588 protected:
2589 unsigned InsnID;
2590 const Record &Renderer;
2591 /// The name of the operand.
2592 const std::string SymbolicName;
2594 public:
2595 CustomRenderer(unsigned InsnID, const Record &Renderer,
2596 StringRef SymbolicName)
2597 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2598 SymbolicName(SymbolicName) {}
2600 static bool classof(const OperandRenderer *R) {
2601 return R->getKind() == OR_Custom;
2604 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2605 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2606 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2607 Table << MatchTable::Opcode("GIR_CustomRenderer")
2608 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2609 << MatchTable::Comment("OldInsnID")
2610 << MatchTable::IntValue(OldInsnVarID)
2611 << MatchTable::Comment("Renderer")
2612 << MatchTable::NamedValue(
2613 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2614 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2618 /// An action taken when all Matcher predicates succeeded for a parent rule.
2620 /// Typical actions include:
2621 /// * Changing the opcode of an instruction.
2622 /// * Adding an operand to an instruction.
2623 class MatchAction {
2624 public:
2625 virtual ~MatchAction() {}
2627 /// Emit the MatchTable opcodes to implement the action.
2628 virtual void emitActionOpcodes(MatchTable &Table,
2629 RuleMatcher &Rule) const = 0;
2632 /// Generates a comment describing the matched rule being acted upon.
2633 class DebugCommentAction : public MatchAction {
2634 private:
2635 std::string S;
2637 public:
2638 DebugCommentAction(StringRef S) : S(S) {}
2640 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2641 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
2645 /// Generates code to build an instruction or mutate an existing instruction
2646 /// into the desired instruction when this is possible.
2647 class BuildMIAction : public MatchAction {
2648 private:
2649 unsigned InsnID;
2650 const CodeGenInstruction *I;
2651 InstructionMatcher *Matched;
2652 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
2654 /// True if the instruction can be built solely by mutating the opcode.
2655 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
2656 if (!Insn)
2657 return false;
2659 if (OperandRenderers.size() != Insn->getNumOperands())
2660 return false;
2662 for (const auto &Renderer : enumerate(OperandRenderers)) {
2663 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
2664 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
2665 if (Insn != &OM.getInstructionMatcher() ||
2666 OM.getOpIdx() != Renderer.index())
2667 return false;
2668 } else
2669 return false;
2672 return true;
2675 public:
2676 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
2677 : InsnID(InsnID), I(I), Matched(nullptr) {}
2679 unsigned getInsnID() const { return InsnID; }
2680 const CodeGenInstruction *getCGI() const { return I; }
2682 void chooseInsnToMutate(RuleMatcher &Rule) {
2683 for (auto *MutateCandidate : Rule.mutatable_insns()) {
2684 if (canMutate(Rule, MutateCandidate)) {
2685 // Take the first one we're offered that we're able to mutate.
2686 Rule.reserveInsnMatcherForMutation(MutateCandidate);
2687 Matched = MutateCandidate;
2688 return;
2693 template <class Kind, class... Args>
2694 Kind &addRenderer(Args&&... args) {
2695 OperandRenderers.emplace_back(
2696 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
2697 return *static_cast<Kind *>(OperandRenderers.back().get());
2700 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2701 if (Matched) {
2702 assert(canMutate(Rule, Matched) &&
2703 "Arranged to mutate an insn that isn't mutatable");
2705 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
2706 Table << MatchTable::Opcode("GIR_MutateOpcode")
2707 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2708 << MatchTable::Comment("RecycleInsnID")
2709 << MatchTable::IntValue(RecycleInsnID)
2710 << MatchTable::Comment("Opcode")
2711 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2712 << MatchTable::LineBreak;
2714 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
2715 for (auto Def : I->ImplicitDefs) {
2716 auto Namespace = Def->getValue("Namespace")
2717 ? Def->getValueAsString("Namespace")
2718 : "";
2719 Table << MatchTable::Opcode("GIR_AddImplicitDef")
2720 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2721 << MatchTable::NamedValue(Namespace, Def->getName())
2722 << MatchTable::LineBreak;
2724 for (auto Use : I->ImplicitUses) {
2725 auto Namespace = Use->getValue("Namespace")
2726 ? Use->getValueAsString("Namespace")
2727 : "";
2728 Table << MatchTable::Opcode("GIR_AddImplicitUse")
2729 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2730 << MatchTable::NamedValue(Namespace, Use->getName())
2731 << MatchTable::LineBreak;
2734 return;
2737 // TODO: Simple permutation looks like it could be almost as common as
2738 // mutation due to commutative operations.
2740 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2741 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
2742 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2743 << MatchTable::LineBreak;
2744 for (const auto &Renderer : OperandRenderers)
2745 Renderer->emitRenderOpcodes(Table, Rule);
2747 if (I->mayLoad || I->mayStore) {
2748 Table << MatchTable::Opcode("GIR_MergeMemOperands")
2749 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2750 << MatchTable::Comment("MergeInsnID's");
2751 // Emit the ID's for all the instructions that are matched by this rule.
2752 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2753 // some other means of having a memoperand. Also limit this to
2754 // emitted instructions that expect to have a memoperand too. For
2755 // example, (G_SEXT (G_LOAD x)) that results in separate load and
2756 // sign-extend instructions shouldn't put the memoperand on the
2757 // sign-extend since it has no effect there.
2758 std::vector<unsigned> MergeInsnIDs;
2759 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
2760 MergeInsnIDs.push_back(IDMatcherPair.second);
2761 llvm::sort(MergeInsnIDs);
2762 for (const auto &MergeInsnID : MergeInsnIDs)
2763 Table << MatchTable::IntValue(MergeInsnID);
2764 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2765 << MatchTable::LineBreak;
2768 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2769 // better for combines. Particularly when there are multiple match
2770 // roots.
2771 if (InsnID == 0)
2772 Table << MatchTable::Opcode("GIR_EraseFromParent")
2773 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2774 << MatchTable::LineBreak;
2778 /// Generates code to constrain the operands of an output instruction to the
2779 /// register classes specified by the definition of that instruction.
2780 class ConstrainOperandsToDefinitionAction : public MatchAction {
2781 unsigned InsnID;
2783 public:
2784 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
2786 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2787 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2788 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2789 << MatchTable::LineBreak;
2793 /// Generates code to constrain the specified operand of an output instruction
2794 /// to the specified register class.
2795 class ConstrainOperandToRegClassAction : public MatchAction {
2796 unsigned InsnID;
2797 unsigned OpIdx;
2798 const CodeGenRegisterClass &RC;
2800 public:
2801 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
2802 const CodeGenRegisterClass &RC)
2803 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
2805 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2806 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
2807 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2808 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
2809 << MatchTable::Comment("RC " + RC.getName())
2810 << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
2814 /// Generates code to create a temporary register which can be used to chain
2815 /// instructions together.
2816 class MakeTempRegisterAction : public MatchAction {
2817 private:
2818 LLTCodeGen Ty;
2819 unsigned TempRegID;
2821 public:
2822 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
2823 : Ty(Ty), TempRegID(TempRegID) {}
2825 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2826 Table << MatchTable::Opcode("GIR_MakeTempReg")
2827 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2828 << MatchTable::Comment("TypeID")
2829 << MatchTable::NamedValue(Ty.getCxxEnumValue())
2830 << MatchTable::LineBreak;
2834 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
2835 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
2836 MutatableInsns.insert(Matchers.back().get());
2837 return *Matchers.back();
2840 void RuleMatcher::addRequiredFeature(Record *Feature) {
2841 RequiredFeatures.push_back(Feature);
2844 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
2845 return RequiredFeatures;
2848 // Emplaces an action of the specified Kind at the end of the action list.
2850 // Returns a reference to the newly created action.
2852 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2853 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2854 // iterator.
2855 template <class Kind, class... Args>
2856 Kind &RuleMatcher::addAction(Args &&... args) {
2857 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
2858 return *static_cast<Kind *>(Actions.back().get());
2861 // Emplaces an action of the specified Kind before the given insertion point.
2863 // Returns an iterator pointing at the newly created instruction.
2865 // Like std::vector::insert(), may invalidate all iterators if the new size
2866 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2867 // insertion point onwards.
2868 template <class Kind, class... Args>
2869 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
2870 Args &&... args) {
2871 return Actions.emplace(InsertPt,
2872 std::make_unique<Kind>(std::forward<Args>(args)...));
2875 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
2876 unsigned NewInsnVarID = NextInsnVarID++;
2877 InsnVariableIDs[&Matcher] = NewInsnVarID;
2878 return NewInsnVarID;
2881 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
2882 const auto &I = InsnVariableIDs.find(&InsnMatcher);
2883 if (I != InsnVariableIDs.end())
2884 return I->second;
2885 llvm_unreachable("Matched Insn was not captured in a local variable");
2888 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
2889 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
2890 DefinedOperands[SymbolicName] = &OM;
2891 return;
2894 // If the operand is already defined, then we must ensure both references in
2895 // the matcher have the exact same node.
2896 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
2899 InstructionMatcher &
2900 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
2901 for (const auto &I : InsnVariableIDs)
2902 if (I.first->getSymbolicName() == SymbolicName)
2903 return *I.first;
2904 llvm_unreachable(
2905 ("Failed to lookup instruction " + SymbolicName).str().c_str());
2908 const OperandMatcher &
2909 RuleMatcher::getOperandMatcher(StringRef Name) const {
2910 const auto &I = DefinedOperands.find(Name);
2912 if (I == DefinedOperands.end())
2913 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
2915 return *I->second;
2918 void RuleMatcher::emit(MatchTable &Table) {
2919 if (Matchers.empty())
2920 llvm_unreachable("Unexpected empty matcher!");
2922 // The representation supports rules that require multiple roots such as:
2923 // %ptr(p0) = ...
2924 // %elt0(s32) = G_LOAD %ptr
2925 // %1(p0) = G_ADD %ptr, 4
2926 // %elt1(s32) = G_LOAD p0 %1
2927 // which could be usefully folded into:
2928 // %ptr(p0) = ...
2929 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2930 // on some targets but we don't need to make use of that yet.
2931 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
2933 unsigned LabelID = Table.allocateLabelID();
2934 Table << MatchTable::Opcode("GIM_Try", +1)
2935 << MatchTable::Comment("On fail goto")
2936 << MatchTable::JumpTarget(LabelID)
2937 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
2938 << MatchTable::LineBreak;
2940 if (!RequiredFeatures.empty()) {
2941 Table << MatchTable::Opcode("GIM_CheckFeatures")
2942 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
2943 << MatchTable::LineBreak;
2946 Matchers.front()->emitPredicateOpcodes(Table, *this);
2948 // We must also check if it's safe to fold the matched instructions.
2949 if (InsnVariableIDs.size() >= 2) {
2950 // Invert the map to create stable ordering (by var names)
2951 SmallVector<unsigned, 2> InsnIDs;
2952 for (const auto &Pair : InsnVariableIDs) {
2953 // Skip the root node since it isn't moving anywhere. Everything else is
2954 // sinking to meet it.
2955 if (Pair.first == Matchers.front().get())
2956 continue;
2958 InsnIDs.push_back(Pair.second);
2960 llvm::sort(InsnIDs);
2962 for (const auto &InsnID : InsnIDs) {
2963 // Reject the difficult cases until we have a more accurate check.
2964 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
2965 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2966 << MatchTable::LineBreak;
2968 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2969 // account for unsafe cases.
2971 // Example:
2972 // MI1--> %0 = ...
2973 // %1 = ... %0
2974 // MI0--> %2 = ... %0
2975 // It's not safe to erase MI1. We currently handle this by not
2976 // erasing %0 (even when it's dead).
2978 // Example:
2979 // MI1--> %0 = load volatile @a
2980 // %1 = load volatile @a
2981 // MI0--> %2 = ... %0
2982 // It's not safe to sink %0's def past %1. We currently handle
2983 // this by rejecting all loads.
2985 // Example:
2986 // MI1--> %0 = load @a
2987 // %1 = store @a
2988 // MI0--> %2 = ... %0
2989 // It's not safe to sink %0's def past %1. We currently handle
2990 // this by rejecting all loads.
2992 // Example:
2993 // G_CONDBR %cond, @BB1
2994 // BB0:
2995 // MI1--> %0 = load @a
2996 // G_BR @BB1
2997 // BB1:
2998 // MI0--> %2 = ... %0
2999 // It's not always safe to sink %0 across control flow. In this
3000 // case it may introduce a memory fault. We currentl handle this
3001 // by rejecting all loads.
3005 for (const auto &PM : EpilogueMatchers)
3006 PM->emitPredicateOpcodes(Table, *this);
3008 for (const auto &MA : Actions)
3009 MA->emitActionOpcodes(Table, *this);
3011 if (Table.isWithCoverage())
3012 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
3013 << MatchTable::LineBreak;
3014 else
3015 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
3016 << MatchTable::LineBreak;
3018 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
3019 << MatchTable::Label(LabelID);
3020 ++NumPatternEmitted;
3023 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
3024 // Rules involving more match roots have higher priority.
3025 if (Matchers.size() > B.Matchers.size())
3026 return true;
3027 if (Matchers.size() < B.Matchers.size())
3028 return false;
3030 for (const auto &Matcher : zip(Matchers, B.Matchers)) {
3031 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
3032 return true;
3033 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
3034 return false;
3037 return false;
3040 unsigned RuleMatcher::countRendererFns() const {
3041 return std::accumulate(
3042 Matchers.begin(), Matchers.end(), 0,
3043 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
3044 return A + Matcher->countRendererFns();
3048 bool OperandPredicateMatcher::isHigherPriorityThan(
3049 const OperandPredicateMatcher &B) const {
3050 // Generally speaking, an instruction is more important than an Int or a
3051 // LiteralInt because it can cover more nodes but theres an exception to
3052 // this. G_CONSTANT's are less important than either of those two because they
3053 // are more permissive.
3055 const InstructionOperandMatcher *AOM =
3056 dyn_cast<InstructionOperandMatcher>(this);
3057 const InstructionOperandMatcher *BOM =
3058 dyn_cast<InstructionOperandMatcher>(&B);
3059 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
3060 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
3062 if (AOM && BOM) {
3063 // The relative priorities between a G_CONSTANT and any other instruction
3064 // don't actually matter but this code is needed to ensure a strict weak
3065 // ordering. This is particularly important on Windows where the rules will
3066 // be incorrectly sorted without it.
3067 if (AIsConstantInsn != BIsConstantInsn)
3068 return AIsConstantInsn < BIsConstantInsn;
3069 return false;
3072 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
3073 return false;
3074 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
3075 return true;
3077 return Kind < B.Kind;
3080 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
3081 RuleMatcher &Rule) const {
3082 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
3083 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
3084 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
3086 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
3087 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
3088 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
3089 << MatchTable::Comment("OtherMI")
3090 << MatchTable::IntValue(OtherInsnVarID)
3091 << MatchTable::Comment("OtherOpIdx")
3092 << MatchTable::IntValue(OtherOM.getOpIdx())
3093 << MatchTable::LineBreak;
3096 //===- GlobalISelEmitter class --------------------------------------------===//
3098 class GlobalISelEmitter {
3099 public:
3100 explicit GlobalISelEmitter(RecordKeeper &RK);
3101 void run(raw_ostream &OS);
3103 private:
3104 const RecordKeeper &RK;
3105 const CodeGenDAGPatterns CGP;
3106 const CodeGenTarget &Target;
3107 CodeGenRegBank CGRegs;
3109 /// Keep track of the equivalence between SDNodes and Instruction by mapping
3110 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3111 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3112 /// This is defined using 'GINodeEquiv' in the target description.
3113 DenseMap<Record *, Record *> NodeEquivs;
3115 /// Keep track of the equivalence between ComplexPattern's and
3116 /// GIComplexOperandMatcher. Map entries are specified by subclassing
3117 /// GIComplexPatternEquiv.
3118 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
3120 /// Keep track of the equivalence between SDNodeXForm's and
3121 /// GICustomOperandRenderer. Map entries are specified by subclassing
3122 /// GISDNodeXFormEquiv.
3123 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
3125 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3126 /// This adds compatibility for RuleMatchers to use this for ordering rules.
3127 DenseMap<uint64_t, int> RuleMatcherScores;
3129 // Map of predicates to their subtarget features.
3130 SubtargetFeatureInfoMap SubtargetFeatures;
3132 // Rule coverage information.
3133 Optional<CodeGenCoverage> RuleCoverage;
3135 void gatherOpcodeValues();
3136 void gatherTypeIDValues();
3137 void gatherNodeEquivs();
3139 Record *findNodeEquiv(Record *N) const;
3140 const CodeGenInstruction *getEquivNode(Record &Equiv,
3141 const TreePatternNode *N) const;
3143 Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
3144 Expected<InstructionMatcher &>
3145 createAndImportSelDAGMatcher(RuleMatcher &Rule,
3146 InstructionMatcher &InsnMatcher,
3147 const TreePatternNode *Src, unsigned &TempOpIdx);
3148 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3149 unsigned &TempOpIdx) const;
3150 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3151 const TreePatternNode *SrcChild,
3152 bool OperandIsAPointer, unsigned OpIdx,
3153 unsigned &TempOpIdx);
3155 Expected<BuildMIAction &>
3156 createAndImportInstructionRenderer(RuleMatcher &M,
3157 const TreePatternNode *Dst);
3158 Expected<action_iterator> createAndImportSubInstructionRenderer(
3159 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3160 unsigned TempReg);
3161 Expected<action_iterator>
3162 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3163 const TreePatternNode *Dst);
3164 void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
3165 Expected<action_iterator>
3166 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3167 BuildMIAction &DstMIBuilder,
3168 const llvm::TreePatternNode *Dst);
3169 Expected<action_iterator>
3170 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3171 BuildMIAction &DstMIBuilder,
3172 TreePatternNode *DstChild);
3173 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3174 BuildMIAction &DstMIBuilder,
3175 DagInit *DefaultOps) const;
3176 Error
3177 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3178 const std::vector<Record *> &ImplicitDefs) const;
3180 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3181 StringRef TypeIdentifier, StringRef ArgType,
3182 StringRef ArgName, StringRef AdditionalDeclarations,
3183 std::function<bool(const Record *R)> Filter);
3184 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3185 StringRef ArgType,
3186 std::function<bool(const Record *R)> Filter);
3187 void emitMIPredicateFns(raw_ostream &OS);
3189 /// Analyze pattern \p P, returning a matcher for it if possible.
3190 /// Otherwise, return an Error explaining why we don't support it.
3191 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3193 void declareSubtargetFeature(Record *Predicate);
3195 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3196 bool WithCoverage);
3198 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
3199 /// CodeGenRegisterClass will support the CodeGenRegisterClass of
3200 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
3201 /// If no register class is found, return None.
3202 Optional<const CodeGenRegisterClass *>
3203 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
3204 TreePatternNode *SuperRegNode,
3205 TreePatternNode *SubRegIdxNode);
3207 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
3208 /// Return None if no such class exists.
3209 Optional<const CodeGenRegisterClass *>
3210 inferSuperRegisterClass(const TypeSetByHwMode &Ty,
3211 TreePatternNode *SubRegIdxNode);
3213 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
3214 Optional<const CodeGenRegisterClass *>
3215 getRegClassFromLeaf(TreePatternNode *Leaf);
3217 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
3218 /// otherwise.
3219 Optional<const CodeGenRegisterClass *>
3220 inferRegClassFromPattern(TreePatternNode *N);
3222 public:
3223 /// Takes a sequence of \p Rules and group them based on the predicates
3224 /// they share. \p MatcherStorage is used as a memory container
3225 /// for the group that are created as part of this process.
3227 /// What this optimization does looks like if GroupT = GroupMatcher:
3228 /// Output without optimization:
3229 /// \verbatim
3230 /// # R1
3231 /// # predicate A
3232 /// # predicate B
3233 /// ...
3234 /// # R2
3235 /// # predicate A // <-- effectively this is going to be checked twice.
3236 /// // Once in R1 and once in R2.
3237 /// # predicate C
3238 /// \endverbatim
3239 /// Output with optimization:
3240 /// \verbatim
3241 /// # Group1_2
3242 /// # predicate A // <-- Check is now shared.
3243 /// # R1
3244 /// # predicate B
3245 /// # R2
3246 /// # predicate C
3247 /// \endverbatim
3248 template <class GroupT>
3249 static std::vector<Matcher *> optimizeRules(
3250 ArrayRef<Matcher *> Rules,
3251 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3254 void GlobalISelEmitter::gatherOpcodeValues() {
3255 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3258 void GlobalISelEmitter::gatherTypeIDValues() {
3259 LLTOperandMatcher::initTypeIDValuesMap();
3262 void GlobalISelEmitter::gatherNodeEquivs() {
3263 assert(NodeEquivs.empty());
3264 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3265 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3267 assert(ComplexPatternEquivs.empty());
3268 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3269 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3270 if (!SelDAGEquiv)
3271 continue;
3272 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3275 assert(SDNodeXFormEquivs.empty());
3276 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3277 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3278 if (!SelDAGEquiv)
3279 continue;
3280 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3284 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3285 return NodeEquivs.lookup(N);
3288 const CodeGenInstruction *
3289 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3290 if (N->getNumChildren() >= 1) {
3291 // setcc operation maps to two different G_* instructions based on the type.
3292 if (!Equiv.isValueUnset("IfFloatingPoint") &&
3293 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
3294 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
3297 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3298 const TreePredicateFn &Predicate = Call.Fn;
3299 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3300 Predicate.isSignExtLoad())
3301 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3302 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3303 Predicate.isZeroExtLoad())
3304 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3307 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3310 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3311 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3312 CGRegs(RK, Target.getHwModes()) {}
3314 //===- Emitter ------------------------------------------------------------===//
3316 Error
3317 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3318 ArrayRef<Predicate> Predicates) {
3319 for (const Predicate &P : Predicates) {
3320 if (!P.Def || P.getCondString().empty())
3321 continue;
3322 declareSubtargetFeature(P.Def);
3323 M.addRequiredFeature(P.Def);
3326 return Error::success();
3329 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3330 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3331 const TreePatternNode *Src, unsigned &TempOpIdx) {
3332 Record *SrcGIEquivOrNull = nullptr;
3333 const CodeGenInstruction *SrcGIOrNull = nullptr;
3335 // Start with the defined operands (i.e., the results of the root operator).
3336 if (Src->getExtTypes().size() > 1)
3337 return failedImport("Src pattern has multiple results");
3339 if (Src->isLeaf()) {
3340 Init *SrcInit = Src->getLeafValue();
3341 if (isa<IntInit>(SrcInit)) {
3342 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3343 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3344 } else
3345 return failedImport(
3346 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3347 } else {
3348 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3349 if (!SrcGIEquivOrNull)
3350 return failedImport("Pattern operator lacks an equivalent Instruction" +
3351 explainOperator(Src->getOperator()));
3352 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3354 // The operators look good: match the opcode
3355 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3358 unsigned OpIdx = 0;
3359 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3360 // Results don't have a name unless they are the root node. The caller will
3361 // set the name if appropriate.
3362 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3363 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3364 return failedImport(toString(std::move(Error)) +
3365 " for result of Src pattern operator");
3368 for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
3369 const TreePredicateFn &Predicate = Call.Fn;
3370 if (Predicate.isAlwaysTrue())
3371 continue;
3373 if (Predicate.isImmediatePattern()) {
3374 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3375 continue;
3378 // An address space check is needed in all contexts if there is one.
3379 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3380 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
3381 SmallVector<unsigned, 4> ParsedAddrSpaces;
3383 for (Init *Val : AddrSpaces->getValues()) {
3384 IntInit *IntVal = dyn_cast<IntInit>(Val);
3385 if (!IntVal)
3386 return failedImport("Address space is not an integer");
3387 ParsedAddrSpaces.push_back(IntVal->getValue());
3390 if (!ParsedAddrSpaces.empty()) {
3391 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
3392 0, ParsedAddrSpaces);
3396 int64_t MinAlign = Predicate.getMinAlignment();
3397 if (MinAlign > 0)
3398 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
3401 // G_LOAD is used for both non-extending and any-extending loads.
3402 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3403 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3404 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3405 continue;
3407 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3408 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3409 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3410 continue;
3413 if (Predicate.isStore()) {
3414 if (Predicate.isTruncStore()) {
3415 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3416 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3417 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3418 continue;
3420 if (Predicate.isNonTruncStore()) {
3421 // We need to check the sizes match here otherwise we could incorrectly
3422 // match truncating stores with non-truncating ones.
3423 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3424 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3428 // No check required. We already did it by swapping the opcode.
3429 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3430 Predicate.isSignExtLoad())
3431 continue;
3433 // No check required. We already did it by swapping the opcode.
3434 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3435 Predicate.isZeroExtLoad())
3436 continue;
3438 // No check required. G_STORE by itself is a non-extending store.
3439 if (Predicate.isNonTruncStore())
3440 continue;
3442 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3443 if (Predicate.getMemoryVT() != nullptr) {
3444 Optional<LLTCodeGen> MemTyOrNone =
3445 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3447 if (!MemTyOrNone)
3448 return failedImport("MemVT could not be converted to LLT");
3450 // MMO's work in bytes so we must take care of unusual types like i1
3451 // don't round down.
3452 unsigned MemSizeInBits =
3453 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
3455 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
3456 0, MemSizeInBits / 8);
3457 continue;
3461 if (Predicate.isLoad() || Predicate.isStore()) {
3462 // No check required. A G_LOAD/G_STORE is an unindexed load.
3463 if (Predicate.isUnindexed())
3464 continue;
3467 if (Predicate.isAtomic()) {
3468 if (Predicate.isAtomicOrderingMonotonic()) {
3469 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3470 "Monotonic");
3471 continue;
3473 if (Predicate.isAtomicOrderingAcquire()) {
3474 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3475 continue;
3477 if (Predicate.isAtomicOrderingRelease()) {
3478 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3479 continue;
3481 if (Predicate.isAtomicOrderingAcquireRelease()) {
3482 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3483 "AcquireRelease");
3484 continue;
3486 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3487 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3488 "SequentiallyConsistent");
3489 continue;
3492 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3493 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3494 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3495 continue;
3497 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3498 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3499 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3500 continue;
3503 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3504 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3505 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3506 continue;
3508 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3509 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3510 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3511 continue;
3515 if (Predicate.hasGISelPredicateCode()) {
3516 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
3517 continue;
3520 return failedImport("Src pattern child has predicate (" +
3521 explainPredicates(Src) + ")");
3523 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
3524 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
3526 if (Src->isLeaf()) {
3527 Init *SrcInit = Src->getLeafValue();
3528 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
3529 OperandMatcher &OM =
3530 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
3531 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
3532 } else
3533 return failedImport(
3534 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3535 } else {
3536 assert(SrcGIOrNull &&
3537 "Expected to have already found an equivalent Instruction");
3538 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
3539 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
3540 // imm/fpimm still have operands but we don't need to do anything with it
3541 // here since we don't support ImmLeaf predicates yet. However, we still
3542 // need to note the hidden operand to get GIM_CheckNumOperands correct.
3543 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3544 return InsnMatcher;
3547 // Special case because the operand order is changed from setcc. The
3548 // predicate operand needs to be swapped from the last operand to the first
3549 // source.
3551 unsigned NumChildren = Src->getNumChildren();
3552 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
3554 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
3555 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
3556 if (SrcChild->isLeaf()) {
3557 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
3558 Record *CCDef = DI ? DI->getDef() : nullptr;
3559 if (!CCDef || !CCDef->isSubClassOf("CondCode"))
3560 return failedImport("Unable to handle CondCode");
3562 OperandMatcher &OM =
3563 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3564 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
3565 CCDef->getValueAsString("ICmpPredicate");
3567 if (!PredType.empty()) {
3568 OM.addPredicate<CmpPredicateOperandMatcher>(PredType);
3569 // Process the other 2 operands normally.
3570 --NumChildren;
3575 // Match the used operands (i.e. the children of the operator).
3576 bool IsIntrinsic =
3577 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
3578 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
3579 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
3580 if (IsIntrinsic && !II)
3581 return failedImport("Expected IntInit containing intrinsic ID)");
3583 for (unsigned i = 0; i != NumChildren; ++i) {
3584 TreePatternNode *SrcChild = Src->getChild(i);
3586 // SelectionDAG allows pointers to be represented with iN since it doesn't
3587 // distinguish between pointers and integers but they are different types in GlobalISel.
3588 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3589 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
3591 if (IsIntrinsic) {
3592 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3593 // following the defs is an intrinsic ID.
3594 if (i == 0) {
3595 OperandMatcher &OM =
3596 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3597 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
3598 continue;
3601 // We have to check intrinsics for llvm_anyptr_ty parameters.
3603 // Note that we have to look at the i-1th parameter, because we don't
3604 // have the intrinsic ID in the intrinsic's parameter list.
3605 OperandIsAPointer |= II->isParamAPointer(i - 1);
3608 if (auto Error =
3609 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
3610 OpIdx++, TempOpIdx))
3611 return std::move(Error);
3615 return InsnMatcher;
3618 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
3619 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
3620 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
3621 if (ComplexPattern == ComplexPatternEquivs.end())
3622 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
3623 ") not mapped to GlobalISel");
3625 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
3626 TempOpIdx++;
3627 return Error::success();
3630 Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
3631 InstructionMatcher &InsnMatcher,
3632 const TreePatternNode *SrcChild,
3633 bool OperandIsAPointer,
3634 unsigned OpIdx,
3635 unsigned &TempOpIdx) {
3636 OperandMatcher &OM =
3637 InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
3638 if (OM.isSameAsAnotherOperand())
3639 return Error::success();
3641 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
3642 if (ChildTypes.size() != 1)
3643 return failedImport("Src pattern child has multiple results");
3645 // Check MBB's before the type check since they are not a known type.
3646 if (!SrcChild->isLeaf()) {
3647 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
3648 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
3649 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3650 OM.addPredicate<MBBOperandMatcher>();
3651 return Error::success();
3656 if (auto Error =
3657 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
3658 return failedImport(toString(std::move(Error)) + " for Src operand (" +
3659 to_string(*SrcChild) + ")");
3661 // Check for nested instructions.
3662 if (!SrcChild->isLeaf()) {
3663 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
3664 // When a ComplexPattern is used as an operator, it should do the same
3665 // thing as when used as a leaf. However, the children of the operator
3666 // name the sub-operands that make up the complex operand and we must
3667 // prepare to reference them in the renderer too.
3668 unsigned RendererID = TempOpIdx;
3669 if (auto Error = importComplexPatternOperandMatcher(
3670 OM, SrcChild->getOperator(), TempOpIdx))
3671 return Error;
3673 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
3674 auto *SubOperand = SrcChild->getChild(i);
3675 if (!SubOperand->getName().empty()) {
3676 if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(),
3677 SrcChild->getOperator(),
3678 RendererID, i))
3679 return Error;
3683 return Error::success();
3686 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
3687 InsnMatcher.getRuleMatcher(), SrcChild->getName());
3688 if (!MaybeInsnOperand.hasValue()) {
3689 // This isn't strictly true. If the user were to provide exactly the same
3690 // matchers as the original operand then we could allow it. However, it's
3691 // simpler to not permit the redundant specification.
3692 return failedImport("Nested instruction cannot be the same as another operand");
3695 // Map the node to a gMIR instruction.
3696 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
3697 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
3698 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
3699 if (auto Error = InsnMatcherOrError.takeError())
3700 return Error;
3702 return Error::success();
3705 if (SrcChild->hasAnyPredicate())
3706 return failedImport("Src pattern child has unsupported predicate");
3708 // Check for constant immediates.
3709 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
3710 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
3711 return Error::success();
3714 // Check for def's like register classes or ComplexPattern's.
3715 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3716 auto *ChildRec = ChildDefInit->getDef();
3718 // Check for register classes.
3719 if (ChildRec->isSubClassOf("RegisterClass") ||
3720 ChildRec->isSubClassOf("RegisterOperand")) {
3721 OM.addPredicate<RegisterBankOperandMatcher>(
3722 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
3723 return Error::success();
3726 // Check for ValueType.
3727 if (ChildRec->isSubClassOf("ValueType")) {
3728 // We already added a type check as standard practice so this doesn't need
3729 // to do anything.
3730 return Error::success();
3733 // Check for ComplexPattern's.
3734 if (ChildRec->isSubClassOf("ComplexPattern"))
3735 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
3737 if (ChildRec->isSubClassOf("ImmLeaf")) {
3738 return failedImport(
3739 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3742 return failedImport(
3743 "Src pattern child def is an unsupported tablegen class");
3746 return failedImport("Src pattern child is an unsupported kind");
3749 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
3750 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
3751 TreePatternNode *DstChild) {
3753 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
3754 if (SubOperand.hasValue()) {
3755 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3756 *std::get<0>(*SubOperand), DstChild->getName(),
3757 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
3758 return InsertPt;
3761 if (!DstChild->isLeaf()) {
3763 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
3764 auto Child = DstChild->getChild(0);
3765 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
3766 if (I != SDNodeXFormEquivs.end()) {
3767 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
3768 return InsertPt;
3770 return failedImport("SDNodeXForm " + Child->getName() +
3771 " has no custom renderer");
3774 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3775 // inline, but in MI it's just another operand.
3776 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
3777 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
3778 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3779 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3780 return InsertPt;
3784 // Similarly, imm is an operator in TreePatternNode's view but must be
3785 // rendered as operands.
3786 // FIXME: The target should be able to choose sign-extended when appropriate
3787 // (e.g. on Mips).
3788 if (DstChild->getOperator()->getName() == "imm") {
3789 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
3790 return InsertPt;
3791 } else if (DstChild->getOperator()->getName() == "fpimm") {
3792 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
3793 DstChild->getName());
3794 return InsertPt;
3797 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
3798 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3799 if (ChildTypes.size() != 1)
3800 return failedImport("Dst pattern child has multiple results");
3802 Optional<LLTCodeGen> OpTyOrNone = None;
3803 if (ChildTypes.front().isMachineValueType())
3804 OpTyOrNone =
3805 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3806 if (!OpTyOrNone)
3807 return failedImport("Dst operand has an unsupported type");
3809 unsigned TempRegID = Rule.allocateTempRegID();
3810 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
3811 InsertPt, OpTyOrNone.getValue(), TempRegID);
3812 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3814 auto InsertPtOrError = createAndImportSubInstructionRenderer(
3815 ++InsertPt, Rule, DstChild, TempRegID);
3816 if (auto Error = InsertPtOrError.takeError())
3817 return std::move(Error);
3818 return InsertPtOrError.get();
3821 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
3824 // It could be a specific immediate in which case we should just check for
3825 // that immediate.
3826 if (const IntInit *ChildIntInit =
3827 dyn_cast<IntInit>(DstChild->getLeafValue())) {
3828 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
3829 return InsertPt;
3832 // Otherwise, we're looking for a bog-standard RegisterClass operand.
3833 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
3834 auto *ChildRec = ChildDefInit->getDef();
3836 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3837 if (ChildTypes.size() != 1)
3838 return failedImport("Dst pattern child has multiple results");
3840 Optional<LLTCodeGen> OpTyOrNone = None;
3841 if (ChildTypes.front().isMachineValueType())
3842 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3843 if (!OpTyOrNone)
3844 return failedImport("Dst operand has an unsupported type");
3846 if (ChildRec->isSubClassOf("Register")) {
3847 DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
3848 return InsertPt;
3851 if (ChildRec->isSubClassOf("RegisterClass") ||
3852 ChildRec->isSubClassOf("RegisterOperand") ||
3853 ChildRec->isSubClassOf("ValueType")) {
3854 if (ChildRec->isSubClassOf("RegisterOperand") &&
3855 !ChildRec->isValueUnset("GIZeroRegister")) {
3856 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
3857 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
3858 return InsertPt;
3861 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3862 return InsertPt;
3865 if (ChildRec->isSubClassOf("SubRegIndex")) {
3866 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
3867 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
3868 return InsertPt;
3871 if (ChildRec->isSubClassOf("ComplexPattern")) {
3872 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
3873 if (ComplexPattern == ComplexPatternEquivs.end())
3874 return failedImport(
3875 "SelectionDAG ComplexPattern not mapped to GlobalISel");
3877 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
3878 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3879 *ComplexPattern->second, DstChild->getName(),
3880 OM.getAllocatedTemporariesBaseID());
3881 return InsertPt;
3884 return failedImport(
3885 "Dst pattern child def is an unsupported tablegen class");
3888 return failedImport("Dst pattern child is an unsupported kind");
3891 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
3892 RuleMatcher &M, const TreePatternNode *Dst) {
3893 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
3894 if (auto Error = InsertPtOrError.takeError())
3895 return std::move(Error);
3897 action_iterator InsertPt = InsertPtOrError.get();
3898 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
3900 importExplicitDefRenderers(DstMIBuilder);
3902 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
3903 .takeError())
3904 return std::move(Error);
3906 return DstMIBuilder;
3909 Expected<action_iterator>
3910 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3911 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3912 unsigned TempRegID) {
3913 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
3915 // TODO: Assert there's exactly one result.
3917 if (auto Error = InsertPtOrError.takeError())
3918 return std::move(Error);
3920 BuildMIAction &DstMIBuilder =
3921 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
3923 // Assign the result to TempReg.
3924 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
3926 InsertPtOrError =
3927 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
3928 if (auto Error = InsertPtOrError.takeError())
3929 return std::move(Error);
3931 // We need to make sure that when we import an INSERT_SUBREG as a
3932 // subinstruction that it ends up being constrained to the correct super
3933 // register and subregister classes.
3934 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
3935 if (OpName == "INSERT_SUBREG") {
3936 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
3937 if (!SubClass)
3938 return failedImport(
3939 "Cannot infer register class from INSERT_SUBREG operand #1");
3940 Optional<const CodeGenRegisterClass *> SuperClass =
3941 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
3942 Dst->getChild(2));
3943 if (!SuperClass)
3944 return failedImport(
3945 "Cannot infer register class for INSERT_SUBREG operand #0");
3946 // The destination and the super register source of an INSERT_SUBREG must
3947 // be the same register class.
3948 M.insertAction<ConstrainOperandToRegClassAction>(
3949 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
3950 M.insertAction<ConstrainOperandToRegClassAction>(
3951 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
3952 M.insertAction<ConstrainOperandToRegClassAction>(
3953 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
3954 return InsertPtOrError.get();
3957 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
3958 // subinstruction.
3959 if (OpName == "SUBREG_TO_REG") {
3960 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
3961 if (!SubClass)
3962 return failedImport(
3963 "Cannot infer register class from SUBREG_TO_REG child #1");
3964 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
3965 Dst->getChild(2));
3966 if (!SuperClass)
3967 return failedImport(
3968 "Cannot infer register class for SUBREG_TO_REG operand #0");
3969 M.insertAction<ConstrainOperandToRegClassAction>(
3970 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
3971 M.insertAction<ConstrainOperandToRegClassAction>(
3972 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
3973 return InsertPtOrError.get();
3976 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
3977 DstMIBuilder.getInsnID());
3978 return InsertPtOrError.get();
3981 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
3982 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
3983 Record *DstOp = Dst->getOperator();
3984 if (!DstOp->isSubClassOf("Instruction")) {
3985 if (DstOp->isSubClassOf("ValueType"))
3986 return failedImport(
3987 "Pattern operator isn't an instruction (it's a ValueType)");
3988 return failedImport("Pattern operator isn't an instruction");
3990 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
3992 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3993 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3994 if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
3995 DstI = &Target.getInstruction(RK.getDef("COPY"));
3996 else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
3997 DstI = &Target.getInstruction(RK.getDef("COPY"));
3998 else if (DstI->TheDef->getName() == "REG_SEQUENCE")
3999 return failedImport("Unable to emit REG_SEQUENCE");
4001 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
4002 DstI);
4005 void GlobalISelEmitter::importExplicitDefRenderers(
4006 BuildMIAction &DstMIBuilder) {
4007 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4008 for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
4009 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
4010 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
4014 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
4015 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4016 const llvm::TreePatternNode *Dst) {
4017 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4018 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
4020 // EXTRACT_SUBREG needs to use a subregister COPY.
4021 if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
4022 if (!Dst->getChild(0)->isLeaf())
4023 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4025 if (DefInit *SubRegInit =
4026 dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
4027 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4028 if (!RCDef)
4029 return failedImport("EXTRACT_SUBREG child #0 could not "
4030 "be coerced to a register class");
4032 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
4033 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4035 const auto &SrcRCDstRCPair =
4036 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4037 if (SrcRCDstRCPair.hasValue()) {
4038 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4039 if (SrcRCDstRCPair->first != RC)
4040 return failedImport("EXTRACT_SUBREG requires an additional COPY");
4043 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
4044 SubIdx);
4045 return InsertPt;
4048 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4051 // Render the explicit uses.
4052 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
4053 unsigned ExpectedDstINumUses = Dst->getNumChildren();
4054 if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
4055 DstINumUses--; // Ignore the class constraint.
4056 ExpectedDstINumUses--;
4059 unsigned Child = 0;
4060 unsigned NumDefaultOps = 0;
4061 for (unsigned I = 0; I != DstINumUses; ++I) {
4062 const CGIOperandList::OperandInfo &DstIOperand =
4063 DstI->Operands[DstI->Operands.NumDefs + I];
4065 // If the operand has default values, introduce them now.
4066 // FIXME: Until we have a decent test case that dictates we should do
4067 // otherwise, we're going to assume that operands with default values cannot
4068 // be specified in the patterns. Therefore, adding them will not cause us to
4069 // end up with too many rendered operands.
4070 if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
4071 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
4072 if (auto Error = importDefaultOperandRenderers(
4073 InsertPt, M, DstMIBuilder, DefaultOps))
4074 return std::move(Error);
4075 ++NumDefaultOps;
4076 continue;
4079 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
4080 Dst->getChild(Child));
4081 if (auto Error = InsertPtOrError.takeError())
4082 return std::move(Error);
4083 InsertPt = InsertPtOrError.get();
4084 ++Child;
4087 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
4088 return failedImport("Expected " + llvm::to_string(DstINumUses) +
4089 " used operands but found " +
4090 llvm::to_string(ExpectedDstINumUses) +
4091 " explicit ones and " + llvm::to_string(NumDefaultOps) +
4092 " default ones");
4094 return InsertPt;
4097 Error GlobalISelEmitter::importDefaultOperandRenderers(
4098 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4099 DagInit *DefaultOps) const {
4100 for (const auto *DefaultOp : DefaultOps->getArgs()) {
4101 Optional<LLTCodeGen> OpTyOrNone = None;
4103 // Look through ValueType operators.
4104 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
4105 if (const DefInit *DefaultDagOperator =
4106 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
4107 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
4108 OpTyOrNone = MVTToLLT(getValueType(
4109 DefaultDagOperator->getDef()));
4110 DefaultOp = DefaultDagOp->getArg(0);
4115 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
4116 auto Def = DefaultDefOp->getDef();
4117 if (Def->getName() == "undef_tied_input") {
4118 unsigned TempRegID = M.allocateTempRegID();
4119 M.insertAction<MakeTempRegisterAction>(
4120 InsertPt, OpTyOrNone.getValue(), TempRegID);
4121 InsertPt = M.insertAction<BuildMIAction>(
4122 InsertPt, M.allocateOutputInsnID(),
4123 &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
4124 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
4125 InsertPt->get());
4126 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4127 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4128 } else {
4129 DstMIBuilder.addRenderer<AddRegisterRenderer>(Def);
4131 continue;
4134 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
4135 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
4136 continue;
4139 return failedImport("Could not add default op");
4142 return Error::success();
4145 Error GlobalISelEmitter::importImplicitDefRenderers(
4146 BuildMIAction &DstMIBuilder,
4147 const std::vector<Record *> &ImplicitDefs) const {
4148 if (!ImplicitDefs.empty())
4149 return failedImport("Pattern defines a physical register");
4150 return Error::success();
4153 Optional<const CodeGenRegisterClass *>
4154 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
4155 assert(Leaf && "Expected node?");
4156 assert(Leaf->isLeaf() && "Expected leaf?");
4157 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
4158 if (!RCRec)
4159 return None;
4160 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
4161 if (!RC)
4162 return None;
4163 return RC;
4166 Optional<const CodeGenRegisterClass *>
4167 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
4168 if (!N)
4169 return None;
4171 if (N->isLeaf())
4172 return getRegClassFromLeaf(N);
4174 // We don't have a leaf node, so we have to try and infer something. Check
4175 // that we have an instruction that we an infer something from.
4177 // Only handle things that produce a single type.
4178 if (N->getNumTypes() != 1)
4179 return None;
4180 Record *OpRec = N->getOperator();
4182 // We only want instructions.
4183 if (!OpRec->isSubClassOf("Instruction"))
4184 return None;
4186 // Don't want to try and infer things when there could potentially be more
4187 // than one candidate register class.
4188 auto &Inst = Target.getInstruction(OpRec);
4189 if (Inst.Operands.NumDefs > 1)
4190 return None;
4192 // Handle any special-case instructions which we can safely infer register
4193 // classes from.
4194 StringRef InstName = Inst.TheDef->getName();
4195 bool IsRegSequence = InstName == "REG_SEQUENCE";
4196 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
4197 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
4198 // has the desired register class as the first child.
4199 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
4200 if (!RCChild->isLeaf())
4201 return None;
4202 return getRegClassFromLeaf(RCChild);
4205 // Handle destination record types that we can safely infer a register class
4206 // from.
4207 const auto &DstIOperand = Inst.Operands[0];
4208 Record *DstIOpRec = DstIOperand.Rec;
4209 if (DstIOpRec->isSubClassOf("RegisterOperand")) {
4210 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
4211 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
4212 return &RC;
4215 if (DstIOpRec->isSubClassOf("RegisterClass")) {
4216 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
4217 return &RC;
4220 return None;
4223 Optional<const CodeGenRegisterClass *>
4224 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
4225 TreePatternNode *SubRegIdxNode) {
4226 assert(SubRegIdxNode && "Expected subregister index node!");
4227 // We need a ValueTypeByHwMode for getSuperRegForSubReg.
4228 if (!Ty.isValueTypeByHwMode(false))
4229 return None;
4230 if (!SubRegIdxNode->isLeaf())
4231 return None;
4232 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
4233 if (!SubRegInit)
4234 return None;
4235 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4237 // Use the information we found above to find a minimal register class which
4238 // supports the subregister and type we want.
4239 auto RC =
4240 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx);
4241 if (!RC)
4242 return None;
4243 return *RC;
4246 Optional<const CodeGenRegisterClass *>
4247 GlobalISelEmitter::inferSuperRegisterClassForNode(
4248 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
4249 TreePatternNode *SubRegIdxNode) {
4250 assert(SuperRegNode && "Expected super register node!");
4251 // Check if we already have a defined register class for the super register
4252 // node. If we do, then we should preserve that rather than inferring anything
4253 // from the subregister index node. We can assume that whoever wrote the
4254 // pattern in the first place made sure that the super register and
4255 // subregister are compatible.
4256 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
4257 inferRegClassFromPattern(SuperRegNode))
4258 return *SuperRegisterClass;
4259 return inferSuperRegisterClass(Ty, SubRegIdxNode);
4262 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
4263 // Keep track of the matchers and actions to emit.
4264 int Score = P.getPatternComplexity(CGP);
4265 RuleMatcher M(P.getSrcRecord()->getLoc());
4266 RuleMatcherScores[M.getRuleID()] = Score;
4267 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
4268 " => " +
4269 llvm::to_string(*P.getDstPattern()));
4271 if (auto Error = importRulePredicates(M, P.getPredicates()))
4272 return std::move(Error);
4274 // Next, analyze the pattern operators.
4275 TreePatternNode *Src = P.getSrcPattern();
4276 TreePatternNode *Dst = P.getDstPattern();
4278 // If the root of either pattern isn't a simple operator, ignore it.
4279 if (auto Err = isTrivialOperatorNode(Dst))
4280 return failedImport("Dst pattern root isn't a trivial operator (" +
4281 toString(std::move(Err)) + ")");
4282 if (auto Err = isTrivialOperatorNode(Src))
4283 return failedImport("Src pattern root isn't a trivial operator (" +
4284 toString(std::move(Err)) + ")");
4286 // The different predicates and matchers created during
4287 // addInstructionMatcher use the RuleMatcher M to set up their
4288 // instruction ID (InsnVarID) that are going to be used when
4289 // M is going to be emitted.
4290 // However, the code doing the emission still relies on the IDs
4291 // returned during that process by the RuleMatcher when issuing
4292 // the recordInsn opcodes.
4293 // Because of that:
4294 // 1. The order in which we created the predicates
4295 // and such must be the same as the order in which we emit them,
4296 // and
4297 // 2. We need to reset the generation of the IDs in M somewhere between
4298 // addInstructionMatcher and emit
4300 // FIXME: Long term, we don't want to have to rely on this implicit
4301 // naming being the same. One possible solution would be to have
4302 // explicit operator for operation capture and reference those.
4303 // The plus side is that it would expose opportunities to share
4304 // the capture accross rules. The downside is that it would
4305 // introduce a dependency between predicates (captures must happen
4306 // before their first use.)
4307 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
4308 unsigned TempOpIdx = 0;
4309 auto InsnMatcherOrError =
4310 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
4311 if (auto Error = InsnMatcherOrError.takeError())
4312 return std::move(Error);
4313 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
4315 if (Dst->isLeaf()) {
4316 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
4318 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
4319 if (RCDef) {
4320 // We need to replace the def and all its uses with the specified
4321 // operand. However, we must also insert COPY's wherever needed.
4322 // For now, emit a copy and let the register allocator clean up.
4323 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
4324 const auto &DstIOperand = DstI.Operands[0];
4326 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
4327 OM0.setSymbolicName(DstIOperand.Name);
4328 M.defineOperand(OM0.getSymbolicName(), OM0);
4329 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
4331 auto &DstMIBuilder =
4332 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
4333 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
4334 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
4335 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
4337 // We're done with this pattern! It's eligible for GISel emission; return
4338 // it.
4339 ++NumPatternImported;
4340 return std::move(M);
4343 return failedImport("Dst pattern root isn't a known leaf");
4346 // Start with the defined operands (i.e., the results of the root operator).
4347 Record *DstOp = Dst->getOperator();
4348 if (!DstOp->isSubClassOf("Instruction"))
4349 return failedImport("Pattern operator isn't an instruction");
4351 auto &DstI = Target.getInstruction(DstOp);
4352 StringRef DstIName = DstI.TheDef->getName();
4354 if (DstI.Operands.NumDefs != Src->getExtTypes().size())
4355 return failedImport("Src pattern results and dst MI defs are different (" +
4356 to_string(Src->getExtTypes().size()) + " def(s) vs " +
4357 to_string(DstI.Operands.NumDefs) + " def(s))");
4359 // The root of the match also has constraints on the register bank so that it
4360 // matches the result instruction.
4361 unsigned OpIdx = 0;
4362 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
4363 (void)VTy;
4365 const auto &DstIOperand = DstI.Operands[OpIdx];
4366 Record *DstIOpRec = DstIOperand.Rec;
4367 if (DstIName == "COPY_TO_REGCLASS") {
4368 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4370 if (DstIOpRec == nullptr)
4371 return failedImport(
4372 "COPY_TO_REGCLASS operand #1 isn't a register class");
4373 } else if (DstIName == "REG_SEQUENCE") {
4374 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4375 if (DstIOpRec == nullptr)
4376 return failedImport("REG_SEQUENCE operand #0 isn't a register class");
4377 } else if (DstIName == "EXTRACT_SUBREG") {
4378 if (!Dst->getChild(0)->isLeaf())
4379 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
4381 // We can assume that a subregister is in the same bank as it's super
4382 // register.
4383 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4385 if (DstIOpRec == nullptr)
4386 return failedImport("EXTRACT_SUBREG operand #0 isn't a register class");
4387 } else if (DstIName == "INSERT_SUBREG") {
4388 auto MaybeSuperClass = inferSuperRegisterClassForNode(
4389 VTy, Dst->getChild(0), Dst->getChild(2));
4390 if (!MaybeSuperClass)
4391 return failedImport(
4392 "Cannot infer register class for INSERT_SUBREG operand #0");
4393 // Move to the next pattern here, because the register class we found
4394 // doesn't necessarily have a record associated with it. So, we can't
4395 // set DstIOpRec using this.
4396 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4397 OM.setSymbolicName(DstIOperand.Name);
4398 M.defineOperand(OM.getSymbolicName(), OM);
4399 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
4400 ++OpIdx;
4401 continue;
4402 } else if (DstIName == "SUBREG_TO_REG") {
4403 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
4404 if (!MaybeRegClass)
4405 return failedImport(
4406 "Cannot infer register class for SUBREG_TO_REG operand #0");
4407 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4408 OM.setSymbolicName(DstIOperand.Name);
4409 M.defineOperand(OM.getSymbolicName(), OM);
4410 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
4411 ++OpIdx;
4412 continue;
4413 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
4414 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
4415 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
4416 return failedImport("Dst MI def isn't a register class" +
4417 to_string(*Dst));
4419 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4420 OM.setSymbolicName(DstIOperand.Name);
4421 M.defineOperand(OM.getSymbolicName(), OM);
4422 OM.addPredicate<RegisterBankOperandMatcher>(
4423 Target.getRegisterClass(DstIOpRec));
4424 ++OpIdx;
4427 auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
4428 if (auto Error = DstMIBuilderOrError.takeError())
4429 return std::move(Error);
4430 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
4432 // Render the implicit defs.
4433 // These are only added to the root of the result.
4434 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
4435 return std::move(Error);
4437 DstMIBuilder.chooseInsnToMutate(M);
4439 // Constrain the registers to classes. This is normally derived from the
4440 // emitted instruction but a few instructions require special handling.
4441 if (DstIName == "COPY_TO_REGCLASS") {
4442 // COPY_TO_REGCLASS does not provide operand constraints itself but the
4443 // result is constrained to the class given by the second child.
4444 Record *DstIOpRec =
4445 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4447 if (DstIOpRec == nullptr)
4448 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
4450 M.addAction<ConstrainOperandToRegClassAction>(
4451 0, 0, Target.getRegisterClass(DstIOpRec));
4453 // We're done with this pattern! It's eligible for GISel emission; return
4454 // it.
4455 ++NumPatternImported;
4456 return std::move(M);
4459 if (DstIName == "EXTRACT_SUBREG") {
4460 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4461 // instructions, the result register class is controlled by the
4462 // subregisters of the operand. As a result, we must constrain the result
4463 // class rather than check that it's already the right one.
4464 if (!Dst->getChild(0)->isLeaf())
4465 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4467 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4468 if (!SubRegInit)
4469 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4471 // Constrain the result to the same register bank as the operand.
4472 Record *DstIOpRec =
4473 getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4475 if (DstIOpRec == nullptr)
4476 return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
4478 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4479 CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
4481 // It would be nice to leave this constraint implicit but we're required
4482 // to pick a register class so constrain the result to a register class
4483 // that can hold the correct MVT.
4485 // FIXME: This may introduce an extra copy if the chosen class doesn't
4486 // actually contain the subregisters.
4487 assert(Src->getExtTypes().size() == 1 &&
4488 "Expected Src of EXTRACT_SUBREG to have one result type");
4490 const auto &SrcRCDstRCPair =
4491 SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4492 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4493 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
4494 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
4496 // We're done with this pattern! It's eligible for GISel emission; return
4497 // it.
4498 ++NumPatternImported;
4499 return std::move(M);
4502 if (DstIName == "INSERT_SUBREG") {
4503 assert(Src->getExtTypes().size() == 1 &&
4504 "Expected Src of INSERT_SUBREG to have one result type");
4505 // We need to constrain the destination, a super regsister source, and a
4506 // subregister source.
4507 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4508 if (!SubClass)
4509 return failedImport(
4510 "Cannot infer register class from INSERT_SUBREG operand #1");
4511 auto SuperClass = inferSuperRegisterClassForNode(
4512 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
4513 if (!SuperClass)
4514 return failedImport(
4515 "Cannot infer register class for INSERT_SUBREG operand #0");
4516 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
4517 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
4518 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
4519 ++NumPatternImported;
4520 return std::move(M);
4523 if (DstIName == "SUBREG_TO_REG") {
4524 // We need to constrain the destination and subregister source.
4525 assert(Src->getExtTypes().size() == 1 &&
4526 "Expected Src of SUBREG_TO_REG to have one result type");
4528 // Attempt to infer the subregister source from the first child. If it has
4529 // an explicitly given register class, we'll use that. Otherwise, we will
4530 // fail.
4531 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4532 if (!SubClass)
4533 return failedImport(
4534 "Cannot infer register class from SUBREG_TO_REG child #1");
4535 // We don't have a child to look at that might have a super register node.
4536 auto SuperClass =
4537 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
4538 if (!SuperClass)
4539 return failedImport(
4540 "Cannot infer register class for SUBREG_TO_REG operand #0");
4541 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
4542 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
4543 ++NumPatternImported;
4544 return std::move(M);
4547 M.addAction<ConstrainOperandsToDefinitionAction>(0);
4549 // We're done with this pattern! It's eligible for GISel emission; return it.
4550 ++NumPatternImported;
4551 return std::move(M);
4554 // Emit imm predicate table and an enum to reference them with.
4555 // The 'Predicate_' part of the name is redundant but eliminating it is more
4556 // trouble than it's worth.
4557 void GlobalISelEmitter::emitCxxPredicateFns(
4558 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
4559 StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
4560 std::function<bool(const Record *R)> Filter) {
4561 std::vector<const Record *> MatchedRecords;
4562 const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
4563 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
4564 [&](Record *Record) {
4565 return !Record->getValueAsString(CodeFieldName).empty() &&
4566 Filter(Record);
4569 if (!MatchedRecords.empty()) {
4570 OS << "// PatFrag predicates.\n"
4571 << "enum {\n";
4572 std::string EnumeratorSeparator =
4573 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
4574 for (const auto *Record : MatchedRecords) {
4575 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
4576 << EnumeratorSeparator;
4577 EnumeratorSeparator = ",\n";
4579 OS << "};\n";
4582 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
4583 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
4584 << ArgName << ") const {\n"
4585 << AdditionalDeclarations;
4586 if (!AdditionalDeclarations.empty())
4587 OS << "\n";
4588 if (!MatchedRecords.empty())
4589 OS << " switch (PredicateID) {\n";
4590 for (const auto *Record : MatchedRecords) {
4591 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
4592 << Record->getName() << ": {\n"
4593 << " " << Record->getValueAsString(CodeFieldName) << "\n"
4594 << " llvm_unreachable(\"" << CodeFieldName
4595 << " should have returned\");\n"
4596 << " return false;\n"
4597 << " }\n";
4599 if (!MatchedRecords.empty())
4600 OS << " }\n";
4601 OS << " llvm_unreachable(\"Unknown predicate\");\n"
4602 << " return false;\n"
4603 << "}\n";
4606 void GlobalISelEmitter::emitImmPredicateFns(
4607 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
4608 std::function<bool(const Record *R)> Filter) {
4609 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
4610 "Imm", "", Filter);
4613 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
4614 return emitCxxPredicateFns(
4615 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4616 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
4617 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4618 " (void)MRI;",
4619 [](const Record *R) { return true; });
4622 template <class GroupT>
4623 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
4624 ArrayRef<Matcher *> Rules,
4625 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
4627 std::vector<Matcher *> OptRules;
4628 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
4629 assert(CurrentGroup->empty() && "Newly created group isn't empty!");
4630 unsigned NumGroups = 0;
4632 auto ProcessCurrentGroup = [&]() {
4633 if (CurrentGroup->empty())
4634 // An empty group is good to be reused:
4635 return;
4637 // If the group isn't large enough to provide any benefit, move all the
4638 // added rules out of it and make sure to re-create the group to properly
4639 // re-initialize it:
4640 if (CurrentGroup->size() < 2)
4641 for (Matcher *M : CurrentGroup->matchers())
4642 OptRules.push_back(M);
4643 else {
4644 CurrentGroup->finalize();
4645 OptRules.push_back(CurrentGroup.get());
4646 MatcherStorage.emplace_back(std::move(CurrentGroup));
4647 ++NumGroups;
4649 CurrentGroup = std::make_unique<GroupT>();
4651 for (Matcher *Rule : Rules) {
4652 // Greedily add as many matchers as possible to the current group:
4653 if (CurrentGroup->addMatcher(*Rule))
4654 continue;
4656 ProcessCurrentGroup();
4657 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
4659 // Try to add the pending matcher to a newly created empty group:
4660 if (!CurrentGroup->addMatcher(*Rule))
4661 // If we couldn't add the matcher to an empty group, that group type
4662 // doesn't support that kind of matchers at all, so just skip it:
4663 OptRules.push_back(Rule);
4665 ProcessCurrentGroup();
4667 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
4668 assert(CurrentGroup->empty() && "The last group wasn't properly processed");
4669 return OptRules;
4672 MatchTable
4673 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
4674 bool Optimize, bool WithCoverage) {
4675 std::vector<Matcher *> InputRules;
4676 for (Matcher &Rule : Rules)
4677 InputRules.push_back(&Rule);
4679 if (!Optimize)
4680 return MatchTable::buildTable(InputRules, WithCoverage);
4682 unsigned CurrentOrdering = 0;
4683 StringMap<unsigned> OpcodeOrder;
4684 for (RuleMatcher &Rule : Rules) {
4685 const StringRef Opcode = Rule.getOpcode();
4686 assert(!Opcode.empty() && "Didn't expect an undefined opcode");
4687 if (OpcodeOrder.count(Opcode) == 0)
4688 OpcodeOrder[Opcode] = CurrentOrdering++;
4691 std::stable_sort(InputRules.begin(), InputRules.end(),
4692 [&OpcodeOrder](const Matcher *A, const Matcher *B) {
4693 auto *L = static_cast<const RuleMatcher *>(A);
4694 auto *R = static_cast<const RuleMatcher *>(B);
4695 return std::make_tuple(OpcodeOrder[L->getOpcode()],
4696 L->getNumOperands()) <
4697 std::make_tuple(OpcodeOrder[R->getOpcode()],
4698 R->getNumOperands());
4701 for (Matcher *Rule : InputRules)
4702 Rule->optimize();
4704 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
4705 std::vector<Matcher *> OptRules =
4706 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
4708 for (Matcher *Rule : OptRules)
4709 Rule->optimize();
4711 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
4713 return MatchTable::buildTable(OptRules, WithCoverage);
4716 void GroupMatcher::optimize() {
4717 // Make sure we only sort by a specific predicate within a range of rules that
4718 // all have that predicate checked against a specific value (not a wildcard):
4719 auto F = Matchers.begin();
4720 auto T = F;
4721 auto E = Matchers.end();
4722 while (T != E) {
4723 while (T != E) {
4724 auto *R = static_cast<RuleMatcher *>(*T);
4725 if (!R->getFirstConditionAsRootType().get().isValid())
4726 break;
4727 ++T;
4729 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
4730 auto *L = static_cast<RuleMatcher *>(A);
4731 auto *R = static_cast<RuleMatcher *>(B);
4732 return L->getFirstConditionAsRootType() <
4733 R->getFirstConditionAsRootType();
4735 if (T != E)
4736 F = ++T;
4738 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
4739 .swap(Matchers);
4740 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
4741 .swap(Matchers);
4744 void GlobalISelEmitter::run(raw_ostream &OS) {
4745 if (!UseCoverageFile.empty()) {
4746 RuleCoverage = CodeGenCoverage();
4747 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
4748 if (!RuleCoverageBufOrErr) {
4749 PrintWarning(SMLoc(), "Missing rule coverage data");
4750 RuleCoverage = None;
4751 } else {
4752 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
4753 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
4754 RuleCoverage = None;
4759 // Track the run-time opcode values
4760 gatherOpcodeValues();
4761 // Track the run-time LLT ID values
4762 gatherTypeIDValues();
4764 // Track the GINodeEquiv definitions.
4765 gatherNodeEquivs();
4767 emitSourceFileHeader(("Global Instruction Selector for the " +
4768 Target.getName() + " target").str(), OS);
4769 std::vector<RuleMatcher> Rules;
4770 // Look through the SelectionDAG patterns we found, possibly emitting some.
4771 for (const PatternToMatch &Pat : CGP.ptms()) {
4772 ++NumPatternTotal;
4774 auto MatcherOrErr = runOnPattern(Pat);
4776 // The pattern analysis can fail, indicating an unsupported pattern.
4777 // Report that if we've been asked to do so.
4778 if (auto Err = MatcherOrErr.takeError()) {
4779 if (WarnOnSkippedPatterns) {
4780 PrintWarning(Pat.getSrcRecord()->getLoc(),
4781 "Skipped pattern: " + toString(std::move(Err)));
4782 } else {
4783 consumeError(std::move(Err));
4785 ++NumPatternImportsSkipped;
4786 continue;
4789 if (RuleCoverage) {
4790 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
4791 ++NumPatternsTested;
4792 else
4793 PrintWarning(Pat.getSrcRecord()->getLoc(),
4794 "Pattern is not covered by a test");
4796 Rules.push_back(std::move(MatcherOrErr.get()));
4799 // Comparison function to order records by name.
4800 auto orderByName = [](const Record *A, const Record *B) {
4801 return A->getName() < B->getName();
4804 std::vector<Record *> ComplexPredicates =
4805 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
4806 llvm::sort(ComplexPredicates, orderByName);
4808 std::vector<Record *> CustomRendererFns =
4809 RK.getAllDerivedDefinitions("GICustomOperandRenderer");
4810 llvm::sort(CustomRendererFns, orderByName);
4812 unsigned MaxTemporaries = 0;
4813 for (const auto &Rule : Rules)
4814 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
4816 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
4817 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
4818 << ";\n"
4819 << "using PredicateBitset = "
4820 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
4821 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
4823 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
4824 << " mutable MatcherState State;\n"
4825 << " typedef "
4826 "ComplexRendererFns("
4827 << Target.getName()
4828 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
4830 << " typedef void(" << Target.getName()
4831 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
4832 "MachineInstr&) "
4833 "const;\n"
4834 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
4835 "CustomRendererFn> "
4836 "ISelInfo;\n";
4837 OS << " static " << Target.getName()
4838 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
4839 << " static " << Target.getName()
4840 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
4841 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
4842 "override;\n"
4843 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
4844 "const override;\n"
4845 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
4846 "&Imm) const override;\n"
4847 << " const int64_t *getMatchTable() const override;\n"
4848 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
4849 "const override;\n"
4850 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
4852 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
4853 << ", State(" << MaxTemporaries << "),\n"
4854 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
4855 << ", ComplexPredicateFns, CustomRenderers)\n"
4856 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
4858 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
4859 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
4860 OS);
4862 // Separate subtarget features by how often they must be recomputed.
4863 SubtargetFeatureInfoMap ModuleFeatures;
4864 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4865 std::inserter(ModuleFeatures, ModuleFeatures.end()),
4866 [](const SubtargetFeatureInfoMap::value_type &X) {
4867 return !X.second.mustRecomputePerFunction();
4869 SubtargetFeatureInfoMap FunctionFeatures;
4870 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4871 std::inserter(FunctionFeatures, FunctionFeatures.end()),
4872 [](const SubtargetFeatureInfoMap::value_type &X) {
4873 return X.second.mustRecomputePerFunction();
4876 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4877 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
4878 ModuleFeatures, OS);
4879 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4880 Target.getName(), "InstructionSelector",
4881 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
4882 "const MachineFunction *MF");
4884 // Emit a table containing the LLT objects needed by the matcher and an enum
4885 // for the matcher to reference them with.
4886 std::vector<LLTCodeGen> TypeObjects;
4887 for (const auto &Ty : KnownTypes)
4888 TypeObjects.push_back(Ty);
4889 llvm::sort(TypeObjects);
4890 OS << "// LLT Objects.\n"
4891 << "enum {\n";
4892 for (const auto &TypeObject : TypeObjects) {
4893 OS << " ";
4894 TypeObject.emitCxxEnumValue(OS);
4895 OS << ",\n";
4897 OS << "};\n";
4898 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
4899 << "const static LLT TypeObjects[] = {\n";
4900 for (const auto &TypeObject : TypeObjects) {
4901 OS << " ";
4902 TypeObject.emitCxxConstructorCall(OS);
4903 OS << ",\n";
4905 OS << "};\n\n";
4907 // Emit a table containing the PredicateBitsets objects needed by the matcher
4908 // and an enum for the matcher to reference them with.
4909 std::vector<std::vector<Record *>> FeatureBitsets;
4910 for (auto &Rule : Rules)
4911 FeatureBitsets.push_back(Rule.getRequiredFeatures());
4912 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
4913 const std::vector<Record *> &B) {
4914 if (A.size() < B.size())
4915 return true;
4916 if (A.size() > B.size())
4917 return false;
4918 for (const auto &Pair : zip(A, B)) {
4919 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
4920 return true;
4921 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
4922 return false;
4924 return false;
4926 FeatureBitsets.erase(
4927 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
4928 FeatureBitsets.end());
4929 OS << "// Feature bitsets.\n"
4930 << "enum {\n"
4931 << " GIFBS_Invalid,\n";
4932 for (const auto &FeatureBitset : FeatureBitsets) {
4933 if (FeatureBitset.empty())
4934 continue;
4935 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
4937 OS << "};\n"
4938 << "const static PredicateBitset FeatureBitsets[] {\n"
4939 << " {}, // GIFBS_Invalid\n";
4940 for (const auto &FeatureBitset : FeatureBitsets) {
4941 if (FeatureBitset.empty())
4942 continue;
4943 OS << " {";
4944 for (const auto &Feature : FeatureBitset) {
4945 const auto &I = SubtargetFeatures.find(Feature);
4946 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
4947 OS << I->second.getEnumBitName() << ", ";
4949 OS << "},\n";
4951 OS << "};\n\n";
4953 // Emit complex predicate table and an enum to reference them with.
4954 OS << "// ComplexPattern predicates.\n"
4955 << "enum {\n"
4956 << " GICP_Invalid,\n";
4957 for (const auto &Record : ComplexPredicates)
4958 OS << " GICP_" << Record->getName() << ",\n";
4959 OS << "};\n"
4960 << "// See constructor for table contents\n\n";
4962 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
4963 bool Unset;
4964 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
4965 !R->getValueAsBit("IsAPInt");
4967 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
4968 bool Unset;
4969 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
4971 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
4972 return R->getValueAsBit("IsAPInt");
4974 emitMIPredicateFns(OS);
4975 OS << "\n";
4977 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
4978 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
4979 << " nullptr, // GICP_Invalid\n";
4980 for (const auto &Record : ComplexPredicates)
4981 OS << " &" << Target.getName()
4982 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
4983 << ", // " << Record->getName() << "\n";
4984 OS << "};\n\n";
4986 OS << "// Custom renderers.\n"
4987 << "enum {\n"
4988 << " GICR_Invalid,\n";
4989 for (const auto &Record : CustomRendererFns)
4990 OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n";
4991 OS << "};\n";
4993 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
4994 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
4995 << " nullptr, // GICP_Invalid\n";
4996 for (const auto &Record : CustomRendererFns)
4997 OS << " &" << Target.getName()
4998 << "InstructionSelector::" << Record->getValueAsString("RendererFn")
4999 << ", // " << Record->getName() << "\n";
5000 OS << "};\n\n";
5002 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
5003 int ScoreA = RuleMatcherScores[A.getRuleID()];
5004 int ScoreB = RuleMatcherScores[B.getRuleID()];
5005 if (ScoreA > ScoreB)
5006 return true;
5007 if (ScoreB > ScoreA)
5008 return false;
5009 if (A.isHigherPriorityThan(B)) {
5010 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
5011 "and less important at "
5012 "the same time");
5013 return true;
5015 return false;
5018 OS << "bool " << Target.getName()
5019 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
5020 "&CoverageInfo) const {\n"
5021 << " MachineFunction &MF = *I.getParent()->getParent();\n"
5022 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5023 << " // FIXME: This should be computed on a per-function basis rather "
5024 "than per-insn.\n"
5025 << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
5026 "&MF);\n"
5027 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
5028 << " NewMIVector OutMIs;\n"
5029 << " State.MIs.clear();\n"
5030 << " State.MIs.push_back(&I);\n\n"
5031 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
5032 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
5033 << ", CoverageInfo)) {\n"
5034 << " return true;\n"
5035 << " }\n\n"
5036 << " return false;\n"
5037 << "}\n\n";
5039 const MatchTable Table =
5040 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
5041 OS << "const int64_t *" << Target.getName()
5042 << "InstructionSelector::getMatchTable() const {\n";
5043 Table.emitDeclaration(OS);
5044 OS << " return ";
5045 Table.emitUse(OS);
5046 OS << ";\n}\n";
5047 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
5049 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
5050 << "PredicateBitset AvailableModuleFeatures;\n"
5051 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
5052 << "PredicateBitset getAvailableFeatures() const {\n"
5053 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
5054 << "}\n"
5055 << "PredicateBitset\n"
5056 << "computeAvailableModuleFeatures(const " << Target.getName()
5057 << "Subtarget *Subtarget) const;\n"
5058 << "PredicateBitset\n"
5059 << "computeAvailableFunctionFeatures(const " << Target.getName()
5060 << "Subtarget *Subtarget,\n"
5061 << " const MachineFunction *MF) const;\n"
5062 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
5064 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
5065 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
5066 << "AvailableFunctionFeatures()\n"
5067 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
5070 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
5071 if (SubtargetFeatures.count(Predicate) == 0)
5072 SubtargetFeatures.emplace(
5073 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
5076 void RuleMatcher::optimize() {
5077 for (auto &Item : InsnVariableIDs) {
5078 InstructionMatcher &InsnMatcher = *Item.first;
5079 for (auto &OM : InsnMatcher.operands()) {
5080 // Complex Patterns are usually expensive and they relatively rarely fail
5081 // on their own: more often we end up throwing away all the work done by a
5082 // matching part of a complex pattern because some other part of the
5083 // enclosing pattern didn't match. All of this makes it beneficial to
5084 // delay complex patterns until the very end of the rule matching,
5085 // especially for targets having lots of complex patterns.
5086 for (auto &OP : OM->predicates())
5087 if (isa<ComplexPatternOperandMatcher>(OP))
5088 EpilogueMatchers.emplace_back(std::move(OP));
5089 OM->eraseNullPredicates();
5091 InsnMatcher.optimize();
5093 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
5094 const std::unique_ptr<PredicateMatcher> &R) {
5095 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
5096 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
5100 bool RuleMatcher::hasFirstCondition() const {
5101 if (insnmatchers_empty())
5102 return false;
5103 InstructionMatcher &Matcher = insnmatchers_front();
5104 if (!Matcher.predicates_empty())
5105 return true;
5106 for (auto &OM : Matcher.operands())
5107 for (auto &OP : OM->predicates())
5108 if (!isa<InstructionOperandMatcher>(OP))
5109 return true;
5110 return false;
5113 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
5114 assert(!insnmatchers_empty() &&
5115 "Trying to get a condition from an empty RuleMatcher");
5117 InstructionMatcher &Matcher = insnmatchers_front();
5118 if (!Matcher.predicates_empty())
5119 return **Matcher.predicates_begin();
5120 // If there is no more predicate on the instruction itself, look at its
5121 // operands.
5122 for (auto &OM : Matcher.operands())
5123 for (auto &OP : OM->predicates())
5124 if (!isa<InstructionOperandMatcher>(OP))
5125 return *OP;
5127 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
5128 "no conditions");
5131 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
5132 assert(!insnmatchers_empty() &&
5133 "Trying to pop a condition from an empty RuleMatcher");
5135 InstructionMatcher &Matcher = insnmatchers_front();
5136 if (!Matcher.predicates_empty())
5137 return Matcher.predicates_pop_front();
5138 // If there is no more predicate on the instruction itself, look at its
5139 // operands.
5140 for (auto &OM : Matcher.operands())
5141 for (auto &OP : OM->predicates())
5142 if (!isa<InstructionOperandMatcher>(OP)) {
5143 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
5144 OM->eraseNullPredicates();
5145 return Result;
5148 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
5149 "no conditions");
5152 bool GroupMatcher::candidateConditionMatches(
5153 const PredicateMatcher &Predicate) const {
5155 if (empty()) {
5156 // Sharing predicates for nested instructions is not supported yet as we
5157 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
5158 // only work on the original root instruction (InsnVarID == 0):
5159 if (Predicate.getInsnVarID() != 0)
5160 return false;
5161 // ... otherwise an empty group can handle any predicate with no specific
5162 // requirements:
5163 return true;
5166 const Matcher &Representative = **Matchers.begin();
5167 const auto &RepresentativeCondition = Representative.getFirstCondition();
5168 // ... if not empty, the group can only accomodate matchers with the exact
5169 // same first condition:
5170 return Predicate.isIdentical(RepresentativeCondition);
5173 bool GroupMatcher::addMatcher(Matcher &Candidate) {
5174 if (!Candidate.hasFirstCondition())
5175 return false;
5177 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
5178 if (!candidateConditionMatches(Predicate))
5179 return false;
5181 Matchers.push_back(&Candidate);
5182 return true;
5185 void GroupMatcher::finalize() {
5186 assert(Conditions.empty() && "Already finalized?");
5187 if (empty())
5188 return;
5190 Matcher &FirstRule = **Matchers.begin();
5191 for (;;) {
5192 // All the checks are expected to succeed during the first iteration:
5193 for (const auto &Rule : Matchers)
5194 if (!Rule->hasFirstCondition())
5195 return;
5196 const auto &FirstCondition = FirstRule.getFirstCondition();
5197 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
5198 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
5199 return;
5201 Conditions.push_back(FirstRule.popFirstCondition());
5202 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
5203 Matchers[I]->popFirstCondition();
5207 void GroupMatcher::emit(MatchTable &Table) {
5208 unsigned LabelID = ~0U;
5209 if (!Conditions.empty()) {
5210 LabelID = Table.allocateLabelID();
5211 Table << MatchTable::Opcode("GIM_Try", +1)
5212 << MatchTable::Comment("On fail goto")
5213 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
5215 for (auto &Condition : Conditions)
5216 Condition->emitPredicateOpcodes(
5217 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
5219 for (const auto &M : Matchers)
5220 M->emit(Table);
5222 // Exit the group
5223 if (!Conditions.empty())
5224 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
5225 << MatchTable::Label(LabelID);
5228 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
5229 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
5232 bool SwitchMatcher::candidateConditionMatches(
5233 const PredicateMatcher &Predicate) const {
5235 if (empty()) {
5236 // Sharing predicates for nested instructions is not supported yet as we
5237 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
5238 // only work on the original root instruction (InsnVarID == 0):
5239 if (Predicate.getInsnVarID() != 0)
5240 return false;
5241 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
5242 // could fail as not all the types of conditions are supported:
5243 if (!isSupportedPredicateType(Predicate))
5244 return false;
5245 // ... or the condition might not have a proper implementation of
5246 // getValue() / isIdenticalDownToValue() yet:
5247 if (!Predicate.hasValue())
5248 return false;
5249 // ... otherwise an empty Switch can accomodate the condition with no
5250 // further requirements:
5251 return true;
5254 const Matcher &CaseRepresentative = **Matchers.begin();
5255 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
5256 // Switch-cases must share the same kind of condition and path to the value it
5257 // checks:
5258 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
5259 return false;
5261 const auto Value = Predicate.getValue();
5262 // ... but be unique with respect to the actual value they check:
5263 return Values.count(Value) == 0;
5266 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
5267 if (!Candidate.hasFirstCondition())
5268 return false;
5270 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
5271 if (!candidateConditionMatches(Predicate))
5272 return false;
5273 const auto Value = Predicate.getValue();
5274 Values.insert(Value);
5276 Matchers.push_back(&Candidate);
5277 return true;
5280 void SwitchMatcher::finalize() {
5281 assert(Condition == nullptr && "Already finalized");
5282 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
5283 if (empty())
5284 return;
5286 std::stable_sort(Matchers.begin(), Matchers.end(),
5287 [](const Matcher *L, const Matcher *R) {
5288 return L->getFirstCondition().getValue() <
5289 R->getFirstCondition().getValue();
5291 Condition = Matchers[0]->popFirstCondition();
5292 for (unsigned I = 1, E = Values.size(); I < E; ++I)
5293 Matchers[I]->popFirstCondition();
5296 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
5297 MatchTable &Table) {
5298 assert(isSupportedPredicateType(P) && "Predicate type is not supported");
5300 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
5301 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
5302 << MatchTable::IntValue(Condition->getInsnVarID());
5303 return;
5305 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
5306 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
5307 << MatchTable::IntValue(Condition->getInsnVarID())
5308 << MatchTable::Comment("Op")
5309 << MatchTable::IntValue(Condition->getOpIdx());
5310 return;
5313 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
5314 "predicate type that is claimed to be supported");
5317 void SwitchMatcher::emit(MatchTable &Table) {
5318 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
5319 if (empty())
5320 return;
5321 assert(Condition != nullptr &&
5322 "Broken SwitchMatcher, hasn't been finalized?");
5324 std::vector<unsigned> LabelIDs(Values.size());
5325 std::generate(LabelIDs.begin(), LabelIDs.end(),
5326 [&Table]() { return Table.allocateLabelID(); });
5327 const unsigned Default = Table.allocateLabelID();
5329 const int64_t LowerBound = Values.begin()->getRawValue();
5330 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
5332 emitPredicateSpecificOpcodes(*Condition, Table);
5334 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
5335 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
5336 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
5338 int64_t J = LowerBound;
5339 auto VI = Values.begin();
5340 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
5341 auto V = *VI++;
5342 while (J++ < V.getRawValue())
5343 Table << MatchTable::IntValue(0);
5344 V.turnIntoComment();
5345 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
5347 Table << MatchTable::LineBreak;
5349 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
5350 Table << MatchTable::Label(LabelIDs[I]);
5351 Matchers[I]->emit(Table);
5352 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
5354 Table << MatchTable::Label(Default);
5357 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
5359 } // end anonymous namespace
5361 //===----------------------------------------------------------------------===//
5363 namespace llvm {
5364 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
5365 GlobalISelEmitter(RK).run(OS);
5367 } // End llvm namespace