1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // It contains the tablegen backend that emits the decoder functions for
10 // targets with fixed length instruction set.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/CachedHashString.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/MC/MCFixedLenDisassembler.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/TableGen/Error.h"
33 #include "llvm/TableGen/Record.h"
47 #define DEBUG_TYPE "decoder-emitter"
51 STATISTIC(NumEncodings
, "Number of encodings considered");
52 STATISTIC(NumEncodingsLackingDisasm
, "Number of encodings without disassembler info");
53 STATISTIC(NumInstructions
, "Number of instructions considered");
54 STATISTIC(NumEncodingsSupported
, "Number of encodings supported");
55 STATISTIC(NumEncodingsOmitted
, "Number of encodings omitted");
57 struct EncodingField
{
58 unsigned Base
, Width
, Offset
;
59 EncodingField(unsigned B
, unsigned W
, unsigned O
)
60 : Base(B
), Width(W
), Offset(O
) { }
64 std::vector
<EncodingField
> Fields
;
66 bool HasCompleteDecoder
;
69 OperandInfo(std::string D
, bool HCD
)
70 : Decoder(std::move(D
)), HasCompleteDecoder(HCD
), InitValue(0) {}
72 void addField(unsigned Base
, unsigned Width
, unsigned Offset
) {
73 Fields
.push_back(EncodingField(Base
, Width
, Offset
));
76 unsigned numFields() const { return Fields
.size(); }
78 typedef std::vector
<EncodingField
>::const_iterator const_iterator
;
80 const_iterator
begin() const { return Fields
.begin(); }
81 const_iterator
end() const { return Fields
.end(); }
84 typedef std::vector
<uint8_t> DecoderTable
;
85 typedef uint32_t DecoderFixup
;
86 typedef std::vector
<DecoderFixup
> FixupList
;
87 typedef std::vector
<FixupList
> FixupScopeList
;
88 typedef SmallSetVector
<CachedHashString
, 16> PredicateSet
;
89 typedef SmallSetVector
<CachedHashString
, 16> DecoderSet
;
90 struct DecoderTableInfo
{
92 FixupScopeList FixupStack
;
93 PredicateSet Predicates
;
97 struct EncodingAndInst
{
98 const Record
*EncodingDef
;
99 const CodeGenInstruction
*Inst
;
101 EncodingAndInst(const Record
*EncodingDef
, const CodeGenInstruction
*Inst
)
102 : EncodingDef(EncodingDef
), Inst(Inst
) {}
105 struct EncodingIDAndOpcode
{
109 EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
110 EncodingIDAndOpcode(unsigned EncodingID
, unsigned Opcode
)
111 : EncodingID(EncodingID
), Opcode(Opcode
) {}
114 raw_ostream
&operator<<(raw_ostream
&OS
, const EncodingAndInst
&Value
) {
115 if (Value
.EncodingDef
!= Value
.Inst
->TheDef
)
116 OS
<< Value
.EncodingDef
->getName() << ":";
117 OS
<< Value
.Inst
->TheDef
->getName();
121 class FixedLenDecoderEmitter
{
123 std::vector
<EncodingAndInst
> NumberedEncodings
;
126 // Defaults preserved here for documentation, even though they aren't
127 // strictly necessary given the way that this is currently being called.
128 FixedLenDecoderEmitter(RecordKeeper
&R
, std::string PredicateNamespace
,
129 std::string GPrefix
= "if (",
130 std::string GPostfix
= " == MCDisassembler::Fail)",
131 std::string ROK
= "MCDisassembler::Success",
132 std::string RFail
= "MCDisassembler::Fail",
134 : RK(R
), Target(R
), PredicateNamespace(std::move(PredicateNamespace
)),
135 GuardPrefix(std::move(GPrefix
)), GuardPostfix(std::move(GPostfix
)),
136 ReturnOK(std::move(ROK
)), ReturnFail(std::move(RFail
)),
137 Locals(std::move(L
)) {}
139 // Emit the decoder state machine table.
140 void emitTable(formatted_raw_ostream
&o
, DecoderTable
&Table
,
141 unsigned Indentation
, unsigned BitWidth
,
142 StringRef Namespace
) const;
143 void emitPredicateFunction(formatted_raw_ostream
&OS
,
144 PredicateSet
&Predicates
,
145 unsigned Indentation
) const;
146 void emitDecoderFunction(formatted_raw_ostream
&OS
,
147 DecoderSet
&Decoders
,
148 unsigned Indentation
) const;
150 // run - Output the code emitter
151 void run(raw_ostream
&o
);
154 CodeGenTarget Target
;
157 std::string PredicateNamespace
;
158 std::string GuardPrefix
, GuardPostfix
;
159 std::string ReturnOK
, ReturnFail
;
163 } // end anonymous namespace
165 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
168 // BIT_UNFILTERED is used as the init value for a filter position. It is used
169 // only for filter processings.
174 BIT_UNFILTERED
// unfiltered
177 static bool ValueSet(bit_value_t V
) {
178 return (V
== BIT_TRUE
|| V
== BIT_FALSE
);
181 static bool ValueNotSet(bit_value_t V
) {
182 return (V
== BIT_UNSET
);
185 static int Value(bit_value_t V
) {
186 return ValueNotSet(V
) ? -1 : (V
== BIT_FALSE
? 0 : 1);
189 static bit_value_t
bitFromBits(const BitsInit
&bits
, unsigned index
) {
190 if (BitInit
*bit
= dyn_cast
<BitInit
>(bits
.getBit(index
)))
191 return bit
->getValue() ? BIT_TRUE
: BIT_FALSE
;
193 // The bit is uninitialized.
197 // Prints the bit value for each position.
198 static void dumpBits(raw_ostream
&o
, const BitsInit
&bits
) {
199 for (unsigned index
= bits
.getNumBits(); index
> 0; --index
) {
200 switch (bitFromBits(bits
, index
- 1)) {
211 llvm_unreachable("unexpected return value from bitFromBits");
216 static BitsInit
&getBitsField(const Record
&def
, StringRef str
) {
217 BitsInit
*bits
= def
.getValueAsBitsInit(str
);
221 // Representation of the instruction to work on.
222 typedef std::vector
<bit_value_t
> insn_t
;
228 /// Filter - Filter works with FilterChooser to produce the decoding tree for
231 /// It is useful to think of a Filter as governing the switch stmts of the
232 /// decoding tree in a certain level. Each case stmt delegates to an inferior
233 /// FilterChooser to decide what further decoding logic to employ, or in another
234 /// words, what other remaining bits to look at. The FilterChooser eventually
235 /// chooses a best Filter to do its job.
237 /// This recursive scheme ends when the number of Opcodes assigned to the
238 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
239 /// the Filter/FilterChooser combo does not know how to distinguish among the
240 /// Opcodes assigned.
242 /// An example of a conflict is
245 /// 111101000.00........00010000....
246 /// 111101000.00........0001........
247 /// 1111010...00........0001........
248 /// 1111010...00....................
249 /// 1111010.........................
250 /// 1111............................
251 /// ................................
252 /// VST4q8a 111101000_00________00010000____
253 /// VST4q8b 111101000_00________00010000____
255 /// The Debug output shows the path that the decoding tree follows to reach the
256 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
257 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
259 /// The encoding info in the .td files does not specify this meta information,
260 /// which could have been used by the decoder to resolve the conflict. The
261 /// decoder could try to decode the even/odd register numbering and assign to
262 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
263 /// version and return the Opcode since the two have the same Asm format string.
266 const FilterChooser
*Owner
;// points to the FilterChooser who owns this filter
267 unsigned StartBit
; // the starting bit position
268 unsigned NumBits
; // number of bits to filter
269 bool Mixed
; // a mixed region contains both set and unset bits
271 // Map of well-known segment value to the set of uid's with that value.
272 std::map
<uint64_t, std::vector
<EncodingIDAndOpcode
>>
273 FilteredInstructions
;
275 // Set of uid's with non-constant segment values.
276 std::vector
<EncodingIDAndOpcode
> VariableInstructions
;
278 // Map of well-known segment value to its delegate.
279 std::map
<unsigned, std::unique_ptr
<const FilterChooser
>> FilterChooserMap
;
281 // Number of instructions which fall under FilteredInstructions category.
282 unsigned NumFiltered
;
284 // Keeps track of the last opcode in the filtered bucket.
285 EncodingIDAndOpcode LastOpcFiltered
;
289 Filter(FilterChooser
&owner
, unsigned startBit
, unsigned numBits
, bool mixed
);
293 unsigned getNumFiltered() const { return NumFiltered
; }
295 EncodingIDAndOpcode
getSingletonOpc() const {
296 assert(NumFiltered
== 1);
297 return LastOpcFiltered
;
300 // Return the filter chooser for the group of instructions without constant
302 const FilterChooser
&getVariableFC() const {
303 assert(NumFiltered
== 1);
304 assert(FilterChooserMap
.size() == 1);
305 return *(FilterChooserMap
.find((unsigned)-1)->second
);
308 // Divides the decoding task into sub tasks and delegates them to the
309 // inferior FilterChooser's.
311 // A special case arises when there's only one entry in the filtered
312 // instructions. In order to unambiguously decode the singleton, we need to
313 // match the remaining undecoded encoding bits against the singleton.
316 // Emit table entries to decode instructions given a segment or segments of
318 void emitTableEntry(DecoderTableInfo
&TableInfo
) const;
320 // Returns the number of fanout produced by the filter. More fanout implies
321 // the filter distinguishes more categories of instructions.
322 unsigned usefulness() const;
323 }; // end class Filter
325 } // end anonymous namespace
327 // These are states of our finite state machines used in FilterChooser's
328 // filterProcessor() which produces the filter candidates to use.
337 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
338 /// in order to perform the decoding of instructions at the current level.
340 /// Decoding proceeds from the top down. Based on the well-known encoding bits
341 /// of instructions available, FilterChooser builds up the possible Filters that
342 /// can further the task of decoding by distinguishing among the remaining
343 /// candidate instructions.
345 /// Once a filter has been chosen, it is called upon to divide the decoding task
346 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
349 /// It is useful to think of a Filter as governing the switch stmts of the
350 /// decoding tree. And each case is delegated to an inferior FilterChooser to
351 /// decide what further remaining bits to look at.
354 class FilterChooser
{
358 // Vector of codegen instructions to choose our filter.
359 ArrayRef
<EncodingAndInst
> AllInstructions
;
361 // Vector of uid's for this filter chooser to work on.
362 // The first member of the pair is the opcode id being decoded, the second is
363 // the opcode id that should be emitted.
364 const std::vector
<EncodingIDAndOpcode
> &Opcodes
;
366 // Lookup table for the operand decoding of instructions.
367 const std::map
<unsigned, std::vector
<OperandInfo
>> &Operands
;
369 // Vector of candidate filters.
370 std::vector
<Filter
> Filters
;
372 // Array of bit values passed down from our parent.
373 // Set to all BIT_UNFILTERED's for Parent == NULL.
374 std::vector
<bit_value_t
> FilterBitValues
;
376 // Links to the FilterChooser above us in the decoding tree.
377 const FilterChooser
*Parent
;
379 // Index of the best filter from Filters.
382 // Width of instructions
386 const FixedLenDecoderEmitter
*Emitter
;
389 FilterChooser(ArrayRef
<EncodingAndInst
> Insts
,
390 const std::vector
<EncodingIDAndOpcode
> &IDs
,
391 const std::map
<unsigned, std::vector
<OperandInfo
>> &Ops
,
392 unsigned BW
, const FixedLenDecoderEmitter
*E
)
393 : AllInstructions(Insts
), Opcodes(IDs
), Operands(Ops
),
394 FilterBitValues(BW
, BIT_UNFILTERED
), Parent(nullptr), BestIndex(-1),
395 BitWidth(BW
), Emitter(E
) {
399 FilterChooser(ArrayRef
<EncodingAndInst
> Insts
,
400 const std::vector
<EncodingIDAndOpcode
> &IDs
,
401 const std::map
<unsigned, std::vector
<OperandInfo
>> &Ops
,
402 const std::vector
<bit_value_t
> &ParentFilterBitValues
,
403 const FilterChooser
&parent
)
404 : AllInstructions(Insts
), Opcodes(IDs
), Operands(Ops
),
405 FilterBitValues(ParentFilterBitValues
), Parent(&parent
), BestIndex(-1),
406 BitWidth(parent
.BitWidth
), Emitter(parent
.Emitter
) {
410 FilterChooser(const FilterChooser
&) = delete;
411 void operator=(const FilterChooser
&) = delete;
413 unsigned getBitWidth() const { return BitWidth
; }
416 // Populates the insn given the uid.
417 void insnWithID(insn_t
&Insn
, unsigned Opcode
) const {
418 BitsInit
&Bits
= getBitsField(*AllInstructions
[Opcode
].EncodingDef
, "Inst");
420 // We may have a SoftFail bitmask, which specifies a mask where an encoding
421 // may differ from the value in "Inst" and yet still be valid, but the
422 // disassembler should return SoftFail instead of Success.
424 // This is used for marking UNPREDICTABLE instructions in the ARM world.
426 AllInstructions
[Opcode
].EncodingDef
->getValueAsBitsInit("SoftFail");
428 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
429 if (SFBits
&& bitFromBits(*SFBits
, i
) == BIT_TRUE
)
430 Insn
.push_back(BIT_UNSET
);
432 Insn
.push_back(bitFromBits(Bits
, i
));
436 // Emit the name of the encoding/instruction pair.
437 void emitNameWithID(raw_ostream
&OS
, unsigned Opcode
) const {
438 const Record
*EncodingDef
= AllInstructions
[Opcode
].EncodingDef
;
439 const Record
*InstDef
= AllInstructions
[Opcode
].Inst
->TheDef
;
440 if (EncodingDef
!= InstDef
)
441 OS
<< EncodingDef
->getName() << ":";
442 OS
<< InstDef
->getName();
445 // Populates the field of the insn given the start position and the number of
446 // consecutive bits to scan for.
448 // Returns false if there exists any uninitialized bit value in the range.
449 // Returns true, otherwise.
450 bool fieldFromInsn(uint64_t &Field
, insn_t
&Insn
, unsigned StartBit
,
451 unsigned NumBits
) const;
453 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
454 /// filter array as a series of chars.
455 void dumpFilterArray(raw_ostream
&o
,
456 const std::vector
<bit_value_t
> & filter
) const;
458 /// dumpStack - dumpStack traverses the filter chooser chain and calls
459 /// dumpFilterArray on each filter chooser up to the top level one.
460 void dumpStack(raw_ostream
&o
, const char *prefix
) const;
462 Filter
&bestFilter() {
463 assert(BestIndex
!= -1 && "BestIndex not set");
464 return Filters
[BestIndex
];
467 bool PositionFiltered(unsigned i
) const {
468 return ValueSet(FilterBitValues
[i
]);
471 // Calculates the island(s) needed to decode the instruction.
472 // This returns a lit of undecoded bits of an instructions, for example,
473 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
474 // decoded bits in order to verify that the instruction matches the Opcode.
475 unsigned getIslands(std::vector
<unsigned> &StartBits
,
476 std::vector
<unsigned> &EndBits
,
477 std::vector
<uint64_t> &FieldVals
,
478 const insn_t
&Insn
) const;
480 // Emits code to check the Predicates member of an instruction are true.
481 // Returns true if predicate matches were emitted, false otherwise.
482 bool emitPredicateMatch(raw_ostream
&o
, unsigned &Indentation
,
485 bool doesOpcodeNeedPredicate(unsigned Opc
) const;
486 unsigned getPredicateIndex(DecoderTableInfo
&TableInfo
, StringRef P
) const;
487 void emitPredicateTableEntry(DecoderTableInfo
&TableInfo
,
490 void emitSoftFailTableEntry(DecoderTableInfo
&TableInfo
,
493 // Emits table entries to decode the singleton.
494 void emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
495 EncodingIDAndOpcode Opc
) const;
497 // Emits code to decode the singleton, and then to decode the rest.
498 void emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
499 const Filter
&Best
) const;
501 void emitBinaryParser(raw_ostream
&o
, unsigned &Indentation
,
502 const OperandInfo
&OpInfo
,
503 bool &OpHasCompleteDecoder
) const;
505 void emitDecoder(raw_ostream
&OS
, unsigned Indentation
, unsigned Opc
,
506 bool &HasCompleteDecoder
) const;
507 unsigned getDecoderIndex(DecoderSet
&Decoders
, unsigned Opc
,
508 bool &HasCompleteDecoder
) const;
510 // Assign a single filter and run with it.
511 void runSingleFilter(unsigned startBit
, unsigned numBit
, bool mixed
);
513 // reportRegion is a helper function for filterProcessor to mark a region as
514 // eligible for use as a filter region.
515 void reportRegion(bitAttr_t RA
, unsigned StartBit
, unsigned BitIndex
,
518 // FilterProcessor scans the well-known encoding bits of the instructions and
519 // builds up a list of candidate filters. It chooses the best filter and
520 // recursively descends down the decoding tree.
521 bool filterProcessor(bool AllowMixed
, bool Greedy
= true);
523 // Decides on the best configuration of filter(s) to use in order to decode
524 // the instructions. A conflict of instructions may occur, in which case we
525 // dump the conflict set to the standard error.
529 // emitTableEntries - Emit state machine entries to decode our share of
531 void emitTableEntries(DecoderTableInfo
&TableInfo
) const;
534 } // end anonymous namespace
536 ///////////////////////////
538 // Filter Implementation //
540 ///////////////////////////
542 Filter::Filter(Filter
&&f
)
543 : Owner(f
.Owner
), StartBit(f
.StartBit
), NumBits(f
.NumBits
), Mixed(f
.Mixed
),
544 FilteredInstructions(std::move(f
.FilteredInstructions
)),
545 VariableInstructions(std::move(f
.VariableInstructions
)),
546 FilterChooserMap(std::move(f
.FilterChooserMap
)), NumFiltered(f
.NumFiltered
),
547 LastOpcFiltered(f
.LastOpcFiltered
) {
550 Filter::Filter(FilterChooser
&owner
, unsigned startBit
, unsigned numBits
,
552 : Owner(&owner
), StartBit(startBit
), NumBits(numBits
), Mixed(mixed
) {
553 assert(StartBit
+ NumBits
- 1 < Owner
->BitWidth
);
556 LastOpcFiltered
= {0, 0};
558 for (unsigned i
= 0, e
= Owner
->Opcodes
.size(); i
!= e
; ++i
) {
561 // Populates the insn given the uid.
562 Owner
->insnWithID(Insn
, Owner
->Opcodes
[i
].EncodingID
);
565 // Scans the segment for possibly well-specified encoding bits.
566 bool ok
= Owner
->fieldFromInsn(Field
, Insn
, StartBit
, NumBits
);
569 // The encoding bits are well-known. Lets add the uid of the
570 // instruction into the bucket keyed off the constant field value.
571 LastOpcFiltered
= Owner
->Opcodes
[i
];
572 FilteredInstructions
[Field
].push_back(LastOpcFiltered
);
575 // Some of the encoding bit(s) are unspecified. This contributes to
576 // one additional member of "Variable" instructions.
577 VariableInstructions
.push_back(Owner
->Opcodes
[i
]);
581 assert((FilteredInstructions
.size() + VariableInstructions
.size() > 0)
582 && "Filter returns no instruction categories");
585 // Divides the decoding task into sub tasks and delegates them to the
586 // inferior FilterChooser's.
588 // A special case arises when there's only one entry in the filtered
589 // instructions. In order to unambiguously decode the singleton, we need to
590 // match the remaining undecoded encoding bits against the singleton.
591 void Filter::recurse() {
592 // Starts by inheriting our parent filter chooser's filter bit values.
593 std::vector
<bit_value_t
> BitValueArray(Owner
->FilterBitValues
);
595 if (!VariableInstructions
.empty()) {
596 // Conservatively marks each segment position as BIT_UNSET.
597 for (unsigned bitIndex
= 0; bitIndex
< NumBits
; ++bitIndex
)
598 BitValueArray
[StartBit
+ bitIndex
] = BIT_UNSET
;
600 // Delegates to an inferior filter chooser for further processing on this
601 // group of instructions whose segment values are variable.
602 FilterChooserMap
.insert(
603 std::make_pair(-1U, llvm::make_unique
<FilterChooser
>(
604 Owner
->AllInstructions
, VariableInstructions
,
605 Owner
->Operands
, BitValueArray
, *Owner
)));
608 // No need to recurse for a singleton filtered instruction.
609 // See also Filter::emit*().
610 if (getNumFiltered() == 1) {
611 assert(FilterChooserMap
.size() == 1);
615 // Otherwise, create sub choosers.
616 for (const auto &Inst
: FilteredInstructions
) {
618 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
619 for (unsigned bitIndex
= 0; bitIndex
< NumBits
; ++bitIndex
) {
620 if (Inst
.first
& (1ULL << bitIndex
))
621 BitValueArray
[StartBit
+ bitIndex
] = BIT_TRUE
;
623 BitValueArray
[StartBit
+ bitIndex
] = BIT_FALSE
;
626 // Delegates to an inferior filter chooser for further processing on this
627 // category of instructions.
628 FilterChooserMap
.insert(std::make_pair(
629 Inst
.first
, llvm::make_unique
<FilterChooser
>(
630 Owner
->AllInstructions
, Inst
.second
,
631 Owner
->Operands
, BitValueArray
, *Owner
)));
635 static void resolveTableFixups(DecoderTable
&Table
, const FixupList
&Fixups
,
637 // Any NumToSkip fixups in the current scope can resolve to the
639 for (FixupList::const_reverse_iterator I
= Fixups
.rbegin(),
642 // Calculate the distance from the byte following the fixup entry byte
643 // to the destination. The Target is calculated from after the 16-bit
644 // NumToSkip entry itself, so subtract two from the displacement here
645 // to account for that.
646 uint32_t FixupIdx
= *I
;
647 uint32_t Delta
= DestIdx
- FixupIdx
- 3;
648 // Our NumToSkip entries are 24-bits. Make sure our table isn't too
650 assert(Delta
< (1u << 24));
651 Table
[FixupIdx
] = (uint8_t)Delta
;
652 Table
[FixupIdx
+ 1] = (uint8_t)(Delta
>> 8);
653 Table
[FixupIdx
+ 2] = (uint8_t)(Delta
>> 16);
657 // Emit table entries to decode instructions given a segment or segments
659 void Filter::emitTableEntry(DecoderTableInfo
&TableInfo
) const {
660 TableInfo
.Table
.push_back(MCD::OPC_ExtractField
);
661 TableInfo
.Table
.push_back(StartBit
);
662 TableInfo
.Table
.push_back(NumBits
);
664 // A new filter entry begins a new scope for fixup resolution.
665 TableInfo
.FixupStack
.emplace_back();
667 DecoderTable
&Table
= TableInfo
.Table
;
669 size_t PrevFilter
= 0;
670 bool HasFallthrough
= false;
671 for (auto &Filter
: FilterChooserMap
) {
672 // Field value -1 implies a non-empty set of variable instructions.
673 // See also recurse().
674 if (Filter
.first
== (unsigned)-1) {
675 HasFallthrough
= true;
677 // Each scope should always have at least one filter value to check
679 assert(PrevFilter
!= 0 && "empty filter set!");
680 FixupList
&CurScope
= TableInfo
.FixupStack
.back();
681 // Resolve any NumToSkip fixups in the current scope.
682 resolveTableFixups(Table
, CurScope
, Table
.size());
684 PrevFilter
= 0; // Don't re-process the filter's fallthrough.
686 Table
.push_back(MCD::OPC_FilterValue
);
687 // Encode and emit the value to filter against.
689 unsigned Len
= encodeULEB128(Filter
.first
, Buffer
);
690 Table
.insert(Table
.end(), Buffer
, Buffer
+ Len
);
691 // Reserve space for the NumToSkip entry. We'll backpatch the value
693 PrevFilter
= Table
.size();
699 // We arrive at a category of instructions with the same segment value.
700 // Now delegate to the sub filter chooser for further decodings.
701 // The case may fallthrough, which happens if the remaining well-known
702 // encoding bits do not match exactly.
703 Filter
.second
->emitTableEntries(TableInfo
);
705 // Now that we've emitted the body of the handler, update the NumToSkip
706 // of the filter itself to be able to skip forward when false. Subtract
707 // two as to account for the width of the NumToSkip field itself.
709 uint32_t NumToSkip
= Table
.size() - PrevFilter
- 3;
710 assert(NumToSkip
< (1u << 24) && "disassembler decoding table too large!");
711 Table
[PrevFilter
] = (uint8_t)NumToSkip
;
712 Table
[PrevFilter
+ 1] = (uint8_t)(NumToSkip
>> 8);
713 Table
[PrevFilter
+ 2] = (uint8_t)(NumToSkip
>> 16);
717 // Any remaining unresolved fixups bubble up to the parent fixup scope.
718 assert(TableInfo
.FixupStack
.size() > 1 && "fixup stack underflow!");
719 FixupScopeList::iterator Source
= TableInfo
.FixupStack
.end() - 1;
720 FixupScopeList::iterator Dest
= Source
- 1;
721 Dest
->insert(Dest
->end(), Source
->begin(), Source
->end());
722 TableInfo
.FixupStack
.pop_back();
724 // If there is no fallthrough, then the final filter should get fixed
725 // up according to the enclosing scope rather than the current position.
727 TableInfo
.FixupStack
.back().push_back(PrevFilter
);
730 // Returns the number of fanout produced by the filter. More fanout implies
731 // the filter distinguishes more categories of instructions.
732 unsigned Filter::usefulness() const {
733 if (!VariableInstructions
.empty())
734 return FilteredInstructions
.size();
736 return FilteredInstructions
.size() + 1;
739 //////////////////////////////////
741 // Filterchooser Implementation //
743 //////////////////////////////////
745 // Emit the decoder state machine table.
746 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream
&OS
,
748 unsigned Indentation
,
750 StringRef Namespace
) const {
751 OS
.indent(Indentation
) << "static const uint8_t DecoderTable" << Namespace
752 << BitWidth
<< "[] = {\n";
756 // FIXME: We may be able to use the NumToSkip values to recover
757 // appropriate indentation levels.
758 DecoderTable::const_iterator I
= Table
.begin();
759 DecoderTable::const_iterator E
= Table
.end();
761 assert (I
< E
&& "incomplete decode table entry!");
763 uint64_t Pos
= I
- Table
.begin();
764 OS
<< "/* " << Pos
<< " */";
769 PrintFatalError("invalid decode table opcode");
770 case MCD::OPC_ExtractField
: {
772 unsigned Start
= *I
++;
774 OS
.indent(Indentation
) << "MCD::OPC_ExtractField, " << Start
<< ", "
775 << Len
<< ", // Inst{";
777 OS
<< (Start
+ Len
- 1) << "-";
778 OS
<< Start
<< "} ...\n";
781 case MCD::OPC_FilterValue
: {
783 OS
.indent(Indentation
) << "MCD::OPC_FilterValue, ";
784 // The filter value is ULEB128 encoded.
786 OS
<< (unsigned)*I
++ << ", ";
787 OS
<< (unsigned)*I
++ << ", ";
789 // 24-bit numtoskip value.
791 uint32_t NumToSkip
= Byte
;
792 OS
<< (unsigned)Byte
<< ", ";
794 OS
<< (unsigned)Byte
<< ", ";
795 NumToSkip
|= Byte
<< 8;
797 OS
<< utostr(Byte
) << ", ";
798 NumToSkip
|= Byte
<< 16;
799 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
802 case MCD::OPC_CheckField
: {
804 unsigned Start
= *I
++;
806 OS
.indent(Indentation
) << "MCD::OPC_CheckField, " << Start
<< ", "
807 << Len
<< ", ";// << Val << ", " << NumToSkip << ",\n";
808 // ULEB128 encoded field value.
809 for (; *I
>= 128; ++I
)
810 OS
<< (unsigned)*I
<< ", ";
811 OS
<< (unsigned)*I
++ << ", ";
812 // 24-bit numtoskip value.
814 uint32_t NumToSkip
= Byte
;
815 OS
<< (unsigned)Byte
<< ", ";
817 OS
<< (unsigned)Byte
<< ", ";
818 NumToSkip
|= Byte
<< 8;
820 OS
<< utostr(Byte
) << ", ";
821 NumToSkip
|= Byte
<< 16;
822 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
825 case MCD::OPC_CheckPredicate
: {
827 OS
.indent(Indentation
) << "MCD::OPC_CheckPredicate, ";
828 for (; *I
>= 128; ++I
)
829 OS
<< (unsigned)*I
<< ", ";
830 OS
<< (unsigned)*I
++ << ", ";
832 // 24-bit numtoskip value.
834 uint32_t NumToSkip
= Byte
;
835 OS
<< (unsigned)Byte
<< ", ";
837 OS
<< (unsigned)Byte
<< ", ";
838 NumToSkip
|= Byte
<< 8;
840 OS
<< utostr(Byte
) << ", ";
841 NumToSkip
|= Byte
<< 16;
842 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
845 case MCD::OPC_Decode
:
846 case MCD::OPC_TryDecode
: {
847 bool IsTry
= *I
== MCD::OPC_TryDecode
;
849 // Extract the ULEB128 encoded Opcode to a buffer.
850 uint8_t Buffer
[16], *p
= Buffer
;
851 while ((*p
++ = *I
++) >= 128)
852 assert((p
- Buffer
) <= (ptrdiff_t)sizeof(Buffer
)
853 && "ULEB128 value too large!");
854 // Decode the Opcode value.
855 unsigned Opc
= decodeULEB128(Buffer
);
856 OS
.indent(Indentation
) << "MCD::OPC_" << (IsTry
? "Try" : "")
858 for (p
= Buffer
; *p
>= 128; ++p
)
859 OS
<< (unsigned)*p
<< ", ";
860 OS
<< (unsigned)*p
<< ", ";
863 for (; *I
>= 128; ++I
)
864 OS
<< (unsigned)*I
<< ", ";
865 OS
<< (unsigned)*I
++ << ", ";
868 OS
<< "// Opcode: " << NumberedEncodings
[Opc
] << "\n";
872 // Fallthrough for OPC_TryDecode.
874 // 24-bit numtoskip value.
876 uint32_t NumToSkip
= Byte
;
877 OS
<< (unsigned)Byte
<< ", ";
879 OS
<< (unsigned)Byte
<< ", ";
880 NumToSkip
|= Byte
<< 8;
882 OS
<< utostr(Byte
) << ", ";
883 NumToSkip
|= Byte
<< 16;
885 OS
<< "// Opcode: " << NumberedEncodings
[Opc
]
886 << ", skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
889 case MCD::OPC_SoftFail
: {
891 OS
.indent(Indentation
) << "MCD::OPC_SoftFail";
896 OS
<< ", " << (unsigned)*I
;
897 Value
+= (*I
& 0x7f) << Shift
;
899 } while (*I
++ >= 128);
909 OS
<< ", " << (unsigned)*I
;
910 Value
+= (*I
& 0x7f) << Shift
;
912 } while (*I
++ >= 128);
921 case MCD::OPC_Fail
: {
923 OS
.indent(Indentation
) << "MCD::OPC_Fail,\n";
928 OS
.indent(Indentation
) << "0\n";
932 OS
.indent(Indentation
) << "};\n\n";
935 void FixedLenDecoderEmitter::
936 emitPredicateFunction(formatted_raw_ostream
&OS
, PredicateSet
&Predicates
,
937 unsigned Indentation
) const {
938 // The predicate function is just a big switch statement based on the
939 // input predicate index.
940 OS
.indent(Indentation
) << "static bool checkDecoderPredicate(unsigned Idx, "
941 << "const FeatureBitset& Bits) {\n";
943 if (!Predicates
.empty()) {
944 OS
.indent(Indentation
) << "switch (Idx) {\n";
945 OS
.indent(Indentation
) << "default: llvm_unreachable(\"Invalid index!\");\n";
947 for (const auto &Predicate
: Predicates
) {
948 OS
.indent(Indentation
) << "case " << Index
++ << ":\n";
949 OS
.indent(Indentation
+2) << "return (" << Predicate
<< ");\n";
951 OS
.indent(Indentation
) << "}\n";
953 // No case statement to emit
954 OS
.indent(Indentation
) << "llvm_unreachable(\"Invalid index!\");\n";
957 OS
.indent(Indentation
) << "}\n\n";
960 void FixedLenDecoderEmitter::
961 emitDecoderFunction(formatted_raw_ostream
&OS
, DecoderSet
&Decoders
,
962 unsigned Indentation
) const {
963 // The decoder function is just a big switch statement based on the
964 // input decoder index.
965 OS
.indent(Indentation
) << "template<typename InsnType>\n";
966 OS
.indent(Indentation
) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
967 << " unsigned Idx, InsnType insn, MCInst &MI,\n";
968 OS
.indent(Indentation
) << " uint64_t "
969 << "Address, const void *Decoder, bool &DecodeComplete) {\n";
971 OS
.indent(Indentation
) << "DecodeComplete = true;\n";
972 OS
.indent(Indentation
) << "InsnType tmp;\n";
973 OS
.indent(Indentation
) << "switch (Idx) {\n";
974 OS
.indent(Indentation
) << "default: llvm_unreachable(\"Invalid index!\");\n";
976 for (const auto &Decoder
: Decoders
) {
977 OS
.indent(Indentation
) << "case " << Index
++ << ":\n";
979 OS
.indent(Indentation
+2) << "return S;\n";
981 OS
.indent(Indentation
) << "}\n";
983 OS
.indent(Indentation
) << "}\n\n";
986 // Populates the field of the insn given the start position and the number of
987 // consecutive bits to scan for.
989 // Returns false if and on the first uninitialized bit value encountered.
990 // Returns true, otherwise.
991 bool FilterChooser::fieldFromInsn(uint64_t &Field
, insn_t
&Insn
,
992 unsigned StartBit
, unsigned NumBits
) const {
995 for (unsigned i
= 0; i
< NumBits
; ++i
) {
996 if (Insn
[StartBit
+ i
] == BIT_UNSET
)
999 if (Insn
[StartBit
+ i
] == BIT_TRUE
)
1000 Field
= Field
| (1ULL << i
);
1006 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1007 /// filter array as a series of chars.
1008 void FilterChooser::dumpFilterArray(raw_ostream
&o
,
1009 const std::vector
<bit_value_t
> &filter
) const {
1010 for (unsigned bitIndex
= BitWidth
; bitIndex
> 0; bitIndex
--) {
1011 switch (filter
[bitIndex
- 1]) {
1012 case BIT_UNFILTERED
:
1028 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1029 /// dumpFilterArray on each filter chooser up to the top level one.
1030 void FilterChooser::dumpStack(raw_ostream
&o
, const char *prefix
) const {
1031 const FilterChooser
*current
= this;
1035 dumpFilterArray(o
, current
->FilterBitValues
);
1037 current
= current
->Parent
;
1041 // Calculates the island(s) needed to decode the instruction.
1042 // This returns a list of undecoded bits of an instructions, for example,
1043 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1044 // decoded bits in order to verify that the instruction matches the Opcode.
1045 unsigned FilterChooser::getIslands(std::vector
<unsigned> &StartBits
,
1046 std::vector
<unsigned> &EndBits
,
1047 std::vector
<uint64_t> &FieldVals
,
1048 const insn_t
&Insn
) const {
1049 unsigned Num
, BitNo
;
1052 uint64_t FieldVal
= 0;
1055 // 1: Water (the bit value does not affect decoding)
1056 // 2: Island (well-known bit value needed for decoding)
1060 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
1061 Val
= Value(Insn
[i
]);
1062 bool Filtered
= PositionFiltered(i
);
1064 default: llvm_unreachable("Unreachable code!");
1067 if (Filtered
|| Val
== -1)
1068 State
= 1; // Still in Water
1070 State
= 2; // Into the Island
1072 StartBits
.push_back(i
);
1077 if (Filtered
|| Val
== -1) {
1078 State
= 1; // Into the Water
1079 EndBits
.push_back(i
- 1);
1080 FieldVals
.push_back(FieldVal
);
1083 State
= 2; // Still in Island
1085 FieldVal
= FieldVal
| Val
<< BitNo
;
1090 // If we are still in Island after the loop, do some housekeeping.
1092 EndBits
.push_back(BitWidth
- 1);
1093 FieldVals
.push_back(FieldVal
);
1097 assert(StartBits
.size() == Num
&& EndBits
.size() == Num
&&
1098 FieldVals
.size() == Num
);
1102 void FilterChooser::emitBinaryParser(raw_ostream
&o
, unsigned &Indentation
,
1103 const OperandInfo
&OpInfo
,
1104 bool &OpHasCompleteDecoder
) const {
1105 const std::string
&Decoder
= OpInfo
.Decoder
;
1107 if (OpInfo
.numFields() != 1 || OpInfo
.InitValue
!= 0) {
1108 o
.indent(Indentation
) << "tmp = 0x";
1109 o
.write_hex(OpInfo
.InitValue
);
1113 for (const EncodingField
&EF
: OpInfo
) {
1114 o
.indent(Indentation
) << "tmp ";
1115 if (OpInfo
.numFields() != 1 || OpInfo
.InitValue
!= 0) o
<< '|';
1116 o
<< "= fieldFromInstruction"
1117 << "(insn, " << EF
.Base
<< ", " << EF
.Width
<< ')';
1118 if (OpInfo
.numFields() != 1 || EF
.Offset
!= 0)
1119 o
<< " << " << EF
.Offset
;
1123 if (Decoder
!= "") {
1124 OpHasCompleteDecoder
= OpInfo
.HasCompleteDecoder
;
1125 o
.indent(Indentation
) << Emitter
->GuardPrefix
<< Decoder
1126 << "(MI, tmp, Address, Decoder)"
1127 << Emitter
->GuardPostfix
1128 << " { " << (OpHasCompleteDecoder
? "" : "DecodeComplete = false; ")
1129 << "return MCDisassembler::Fail; }\n";
1131 OpHasCompleteDecoder
= true;
1132 o
.indent(Indentation
) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1136 void FilterChooser::emitDecoder(raw_ostream
&OS
, unsigned Indentation
,
1137 unsigned Opc
, bool &HasCompleteDecoder
) const {
1138 HasCompleteDecoder
= true;
1140 for (const auto &Op
: Operands
.find(Opc
)->second
) {
1141 // If a custom instruction decoder was specified, use that.
1142 if (Op
.numFields() == 0 && !Op
.Decoder
.empty()) {
1143 HasCompleteDecoder
= Op
.HasCompleteDecoder
;
1144 OS
.indent(Indentation
) << Emitter
->GuardPrefix
<< Op
.Decoder
1145 << "(MI, insn, Address, Decoder)"
1146 << Emitter
->GuardPostfix
1147 << " { " << (HasCompleteDecoder
? "" : "DecodeComplete = false; ")
1148 << "return MCDisassembler::Fail; }\n";
1152 bool OpHasCompleteDecoder
;
1153 emitBinaryParser(OS
, Indentation
, Op
, OpHasCompleteDecoder
);
1154 if (!OpHasCompleteDecoder
)
1155 HasCompleteDecoder
= false;
1159 unsigned FilterChooser::getDecoderIndex(DecoderSet
&Decoders
,
1161 bool &HasCompleteDecoder
) const {
1162 // Build up the predicate string.
1163 SmallString
<256> Decoder
;
1164 // FIXME: emitDecoder() function can take a buffer directly rather than
1166 raw_svector_ostream
S(Decoder
);
1168 emitDecoder(S
, I
, Opc
, HasCompleteDecoder
);
1170 // Using the full decoder string as the key value here is a bit
1171 // heavyweight, but is effective. If the string comparisons become a
1172 // performance concern, we can implement a mangling of the predicate
1173 // data easily enough with a map back to the actual string. That's
1174 // overkill for now, though.
1176 // Make sure the predicate is in the table.
1177 Decoders
.insert(CachedHashString(Decoder
));
1178 // Now figure out the index for when we write out the table.
1179 DecoderSet::const_iterator P
= find(Decoders
, Decoder
.str());
1180 return (unsigned)(P
- Decoders
.begin());
1183 static void emitSinglePredicateMatch(raw_ostream
&o
, StringRef str
,
1184 const std::string
&PredicateNamespace
) {
1186 o
<< "!Bits[" << PredicateNamespace
<< "::"
1187 << str
.slice(1,str
.size()) << "]";
1189 o
<< "Bits[" << PredicateNamespace
<< "::" << str
<< "]";
1192 bool FilterChooser::emitPredicateMatch(raw_ostream
&o
, unsigned &Indentation
,
1193 unsigned Opc
) const {
1194 ListInit
*Predicates
=
1195 AllInstructions
[Opc
].EncodingDef
->getValueAsListInit("Predicates");
1196 bool IsFirstEmission
= true;
1197 for (unsigned i
= 0; i
< Predicates
->size(); ++i
) {
1198 Record
*Pred
= Predicates
->getElementAsRecord(i
);
1199 if (!Pred
->getValue("AssemblerMatcherPredicate"))
1202 StringRef P
= Pred
->getValueAsString("AssemblerCondString");
1207 if (!IsFirstEmission
)
1210 std::pair
<StringRef
, StringRef
> pairs
= P
.split(',');
1211 while (!pairs
.second
.empty()) {
1212 emitSinglePredicateMatch(o
, pairs
.first
, Emitter
->PredicateNamespace
);
1214 pairs
= pairs
.second
.split(',');
1216 emitSinglePredicateMatch(o
, pairs
.first
, Emitter
->PredicateNamespace
);
1217 IsFirstEmission
= false;
1219 return !Predicates
->empty();
1222 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc
) const {
1223 ListInit
*Predicates
=
1224 AllInstructions
[Opc
].EncodingDef
->getValueAsListInit("Predicates");
1225 for (unsigned i
= 0; i
< Predicates
->size(); ++i
) {
1226 Record
*Pred
= Predicates
->getElementAsRecord(i
);
1227 if (!Pred
->getValue("AssemblerMatcherPredicate"))
1230 StringRef P
= Pred
->getValueAsString("AssemblerCondString");
1240 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo
&TableInfo
,
1241 StringRef Predicate
) const {
1242 // Using the full predicate string as the key value here is a bit
1243 // heavyweight, but is effective. If the string comparisons become a
1244 // performance concern, we can implement a mangling of the predicate
1245 // data easily enough with a map back to the actual string. That's
1246 // overkill for now, though.
1248 // Make sure the predicate is in the table.
1249 TableInfo
.Predicates
.insert(CachedHashString(Predicate
));
1250 // Now figure out the index for when we write out the table.
1251 PredicateSet::const_iterator P
= find(TableInfo
.Predicates
, Predicate
);
1252 return (unsigned)(P
- TableInfo
.Predicates
.begin());
1255 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo
&TableInfo
,
1256 unsigned Opc
) const {
1257 if (!doesOpcodeNeedPredicate(Opc
))
1260 // Build up the predicate string.
1261 SmallString
<256> Predicate
;
1262 // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1264 raw_svector_ostream
PS(Predicate
);
1266 emitPredicateMatch(PS
, I
, Opc
);
1268 // Figure out the index into the predicate table for the predicate just
1270 unsigned PIdx
= getPredicateIndex(TableInfo
, PS
.str());
1271 SmallString
<16> PBytes
;
1272 raw_svector_ostream
S(PBytes
);
1273 encodeULEB128(PIdx
, S
);
1275 TableInfo
.Table
.push_back(MCD::OPC_CheckPredicate
);
1277 for (unsigned i
= 0, e
= PBytes
.size(); i
!= e
; ++i
)
1278 TableInfo
.Table
.push_back(PBytes
[i
]);
1279 // Push location for NumToSkip backpatching.
1280 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1281 TableInfo
.Table
.push_back(0);
1282 TableInfo
.Table
.push_back(0);
1283 TableInfo
.Table
.push_back(0);
1286 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo
&TableInfo
,
1287 unsigned Opc
) const {
1289 AllInstructions
[Opc
].EncodingDef
->getValueAsBitsInit("SoftFail");
1290 if (!SFBits
) return;
1291 BitsInit
*InstBits
=
1292 AllInstructions
[Opc
].EncodingDef
->getValueAsBitsInit("Inst");
1294 APInt
PositiveMask(BitWidth
, 0ULL);
1295 APInt
NegativeMask(BitWidth
, 0ULL);
1296 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
1297 bit_value_t B
= bitFromBits(*SFBits
, i
);
1298 bit_value_t IB
= bitFromBits(*InstBits
, i
);
1300 if (B
!= BIT_TRUE
) continue;
1304 // The bit is meant to be false, so emit a check to see if it is true.
1305 PositiveMask
.setBit(i
);
1308 // The bit is meant to be true, so emit a check to see if it is false.
1309 NegativeMask
.setBit(i
);
1312 // The bit is not set; this must be an error!
1313 errs() << "SoftFail Conflict: bit SoftFail{" << i
<< "} in "
1314 << AllInstructions
[Opc
] << " is set but Inst{" << i
1316 << " - You can only mark a bit as SoftFail if it is fully defined"
1317 << " (1/0 - not '?') in Inst\n";
1322 bool NeedPositiveMask
= PositiveMask
.getBoolValue();
1323 bool NeedNegativeMask
= NegativeMask
.getBoolValue();
1325 if (!NeedPositiveMask
&& !NeedNegativeMask
)
1328 TableInfo
.Table
.push_back(MCD::OPC_SoftFail
);
1330 SmallString
<16> MaskBytes
;
1331 raw_svector_ostream
S(MaskBytes
);
1332 if (NeedPositiveMask
) {
1333 encodeULEB128(PositiveMask
.getZExtValue(), S
);
1334 for (unsigned i
= 0, e
= MaskBytes
.size(); i
!= e
; ++i
)
1335 TableInfo
.Table
.push_back(MaskBytes
[i
]);
1337 TableInfo
.Table
.push_back(0);
1338 if (NeedNegativeMask
) {
1340 encodeULEB128(NegativeMask
.getZExtValue(), S
);
1341 for (unsigned i
= 0, e
= MaskBytes
.size(); i
!= e
; ++i
)
1342 TableInfo
.Table
.push_back(MaskBytes
[i
]);
1344 TableInfo
.Table
.push_back(0);
1347 // Emits table entries to decode the singleton.
1348 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
1349 EncodingIDAndOpcode Opc
) const {
1350 std::vector
<unsigned> StartBits
;
1351 std::vector
<unsigned> EndBits
;
1352 std::vector
<uint64_t> FieldVals
;
1354 insnWithID(Insn
, Opc
.EncodingID
);
1356 // Look for islands of undecoded bits of the singleton.
1357 getIslands(StartBits
, EndBits
, FieldVals
, Insn
);
1359 unsigned Size
= StartBits
.size();
1361 // Emit the predicate table entry if one is needed.
1362 emitPredicateTableEntry(TableInfo
, Opc
.EncodingID
);
1364 // Check any additional encoding fields needed.
1365 for (unsigned I
= Size
; I
!= 0; --I
) {
1366 unsigned NumBits
= EndBits
[I
-1] - StartBits
[I
-1] + 1;
1367 TableInfo
.Table
.push_back(MCD::OPC_CheckField
);
1368 TableInfo
.Table
.push_back(StartBits
[I
-1]);
1369 TableInfo
.Table
.push_back(NumBits
);
1370 uint8_t Buffer
[16], *p
;
1371 encodeULEB128(FieldVals
[I
-1], Buffer
);
1372 for (p
= Buffer
; *p
>= 128 ; ++p
)
1373 TableInfo
.Table
.push_back(*p
);
1374 TableInfo
.Table
.push_back(*p
);
1375 // Push location for NumToSkip backpatching.
1376 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1377 // The fixup is always 24-bits, so go ahead and allocate the space
1378 // in the table so all our relative position calculations work OK even
1379 // before we fully resolve the real value here.
1380 TableInfo
.Table
.push_back(0);
1381 TableInfo
.Table
.push_back(0);
1382 TableInfo
.Table
.push_back(0);
1385 // Check for soft failure of the match.
1386 emitSoftFailTableEntry(TableInfo
, Opc
.EncodingID
);
1388 bool HasCompleteDecoder
;
1390 getDecoderIndex(TableInfo
.Decoders
, Opc
.EncodingID
, HasCompleteDecoder
);
1392 // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1393 // whether the instruction decoder is complete or not. If it is complete
1394 // then it handles all possible values of remaining variable/unfiltered bits
1395 // and for any value can determine if the bitpattern is a valid instruction
1396 // or not. This means OPC_Decode will be the final step in the decoding
1397 // process. If it is not complete, then the Fail return code from the
1398 // decoder method indicates that additional processing should be done to see
1399 // if there is any other instruction that also matches the bitpattern and
1401 TableInfo
.Table
.push_back(HasCompleteDecoder
? MCD::OPC_Decode
:
1402 MCD::OPC_TryDecode
);
1403 NumEncodingsSupported
++;
1404 uint8_t Buffer
[16], *p
;
1405 encodeULEB128(Opc
.Opcode
, Buffer
);
1406 for (p
= Buffer
; *p
>= 128 ; ++p
)
1407 TableInfo
.Table
.push_back(*p
);
1408 TableInfo
.Table
.push_back(*p
);
1410 SmallString
<16> Bytes
;
1411 raw_svector_ostream
S(Bytes
);
1412 encodeULEB128(DIdx
, S
);
1415 for (unsigned i
= 0, e
= Bytes
.size(); i
!= e
; ++i
)
1416 TableInfo
.Table
.push_back(Bytes
[i
]);
1418 if (!HasCompleteDecoder
) {
1419 // Push location for NumToSkip backpatching.
1420 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1421 // Allocate the space for the fixup.
1422 TableInfo
.Table
.push_back(0);
1423 TableInfo
.Table
.push_back(0);
1424 TableInfo
.Table
.push_back(0);
1428 // Emits table entries to decode the singleton, and then to decode the rest.
1429 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
1430 const Filter
&Best
) const {
1431 EncodingIDAndOpcode Opc
= Best
.getSingletonOpc();
1433 // complex singletons need predicate checks from the first singleton
1434 // to refer forward to the variable filterchooser that follows.
1435 TableInfo
.FixupStack
.emplace_back();
1437 emitSingletonTableEntry(TableInfo
, Opc
);
1439 resolveTableFixups(TableInfo
.Table
, TableInfo
.FixupStack
.back(),
1440 TableInfo
.Table
.size());
1441 TableInfo
.FixupStack
.pop_back();
1443 Best
.getVariableFC().emitTableEntries(TableInfo
);
1446 // Assign a single filter and run with it. Top level API client can initialize
1447 // with a single filter to start the filtering process.
1448 void FilterChooser::runSingleFilter(unsigned startBit
, unsigned numBit
,
1451 Filters
.emplace_back(*this, startBit
, numBit
, true);
1452 BestIndex
= 0; // Sole Filter instance to choose from.
1453 bestFilter().recurse();
1456 // reportRegion is a helper function for filterProcessor to mark a region as
1457 // eligible for use as a filter region.
1458 void FilterChooser::reportRegion(bitAttr_t RA
, unsigned StartBit
,
1459 unsigned BitIndex
, bool AllowMixed
) {
1460 if (RA
== ATTR_MIXED
&& AllowMixed
)
1461 Filters
.emplace_back(*this, StartBit
, BitIndex
- StartBit
, true);
1462 else if (RA
== ATTR_ALL_SET
&& !AllowMixed
)
1463 Filters
.emplace_back(*this, StartBit
, BitIndex
- StartBit
, false);
1466 // FilterProcessor scans the well-known encoding bits of the instructions and
1467 // builds up a list of candidate filters. It chooses the best filter and
1468 // recursively descends down the decoding tree.
1469 bool FilterChooser::filterProcessor(bool AllowMixed
, bool Greedy
) {
1472 unsigned numInstructions
= Opcodes
.size();
1474 assert(numInstructions
&& "Filter created with no instructions");
1476 // No further filtering is necessary.
1477 if (numInstructions
== 1)
1480 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1481 // instructions is 3.
1482 if (AllowMixed
&& !Greedy
) {
1483 assert(numInstructions
== 3);
1485 for (unsigned i
= 0; i
< Opcodes
.size(); ++i
) {
1486 std::vector
<unsigned> StartBits
;
1487 std::vector
<unsigned> EndBits
;
1488 std::vector
<uint64_t> FieldVals
;
1491 insnWithID(Insn
, Opcodes
[i
].EncodingID
);
1493 // Look for islands of undecoded bits of any instruction.
1494 if (getIslands(StartBits
, EndBits
, FieldVals
, Insn
) > 0) {
1495 // Found an instruction with island(s). Now just assign a filter.
1496 runSingleFilter(StartBits
[0], EndBits
[0] - StartBits
[0] + 1, true);
1504 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1505 // The automaton consumes the corresponding bit from each
1508 // Input symbols: 0, 1, and _ (unset).
1509 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1510 // Initial state: NONE.
1512 // (NONE) ------- [01] -> (ALL_SET)
1513 // (NONE) ------- _ ----> (ALL_UNSET)
1514 // (ALL_SET) ---- [01] -> (ALL_SET)
1515 // (ALL_SET) ---- _ ----> (MIXED)
1516 // (ALL_UNSET) -- [01] -> (MIXED)
1517 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1518 // (MIXED) ------ . ----> (MIXED)
1519 // (FILTERED)---- . ----> (FILTERED)
1521 std::vector
<bitAttr_t
> bitAttrs
;
1523 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1524 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1525 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
)
1526 if (FilterBitValues
[BitIndex
] == BIT_TRUE
||
1527 FilterBitValues
[BitIndex
] == BIT_FALSE
)
1528 bitAttrs
.push_back(ATTR_FILTERED
);
1530 bitAttrs
.push_back(ATTR_NONE
);
1532 for (unsigned InsnIndex
= 0; InsnIndex
< numInstructions
; ++InsnIndex
) {
1535 insnWithID(insn
, Opcodes
[InsnIndex
].EncodingID
);
1537 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
) {
1538 switch (bitAttrs
[BitIndex
]) {
1540 if (insn
[BitIndex
] == BIT_UNSET
)
1541 bitAttrs
[BitIndex
] = ATTR_ALL_UNSET
;
1543 bitAttrs
[BitIndex
] = ATTR_ALL_SET
;
1546 if (insn
[BitIndex
] == BIT_UNSET
)
1547 bitAttrs
[BitIndex
] = ATTR_MIXED
;
1549 case ATTR_ALL_UNSET
:
1550 if (insn
[BitIndex
] != BIT_UNSET
)
1551 bitAttrs
[BitIndex
] = ATTR_MIXED
;
1560 // The regionAttr automaton consumes the bitAttrs automatons' state,
1561 // lowest-to-highest.
1563 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1564 // States: NONE, ALL_SET, MIXED
1565 // Initial state: NONE
1567 // (NONE) ----- F --> (NONE)
1568 // (NONE) ----- S --> (ALL_SET) ; and set region start
1569 // (NONE) ----- U --> (NONE)
1570 // (NONE) ----- M --> (MIXED) ; and set region start
1571 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1572 // (ALL_SET) -- S --> (ALL_SET)
1573 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1574 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1575 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1576 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1577 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1578 // (MIXED) ---- M --> (MIXED)
1580 bitAttr_t RA
= ATTR_NONE
;
1581 unsigned StartBit
= 0;
1583 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
) {
1584 bitAttr_t bitAttr
= bitAttrs
[BitIndex
];
1586 assert(bitAttr
!= ATTR_NONE
&& "Bit without attributes");
1594 StartBit
= BitIndex
;
1597 case ATTR_ALL_UNSET
:
1600 StartBit
= BitIndex
;
1604 llvm_unreachable("Unexpected bitAttr!");
1610 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1615 case ATTR_ALL_UNSET
:
1616 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1620 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1621 StartBit
= BitIndex
;
1625 llvm_unreachable("Unexpected bitAttr!");
1631 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1632 StartBit
= BitIndex
;
1636 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1637 StartBit
= BitIndex
;
1640 case ATTR_ALL_UNSET
:
1641 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1647 llvm_unreachable("Unexpected bitAttr!");
1650 case ATTR_ALL_UNSET
:
1651 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1653 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1657 // At the end, if we're still in ALL_SET or MIXED states, report a region
1664 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1666 case ATTR_ALL_UNSET
:
1669 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1673 // We have finished with the filter processings. Now it's time to choose
1674 // the best performing filter.
1676 bool AllUseless
= true;
1677 unsigned BestScore
= 0;
1679 for (unsigned i
= 0, e
= Filters
.size(); i
!= e
; ++i
) {
1680 unsigned Usefulness
= Filters
[i
].usefulness();
1685 if (Usefulness
> BestScore
) {
1687 BestScore
= Usefulness
;
1692 bestFilter().recurse();
1695 } // end of FilterChooser::filterProcessor(bool)
1697 // Decides on the best configuration of filter(s) to use in order to decode
1698 // the instructions. A conflict of instructions may occur, in which case we
1699 // dump the conflict set to the standard error.
1700 void FilterChooser::doFilter() {
1701 unsigned Num
= Opcodes
.size();
1702 assert(Num
&& "FilterChooser created with no instructions");
1704 // Try regions of consecutive known bit values first.
1705 if (filterProcessor(false))
1708 // Then regions of mixed bits (both known and unitialized bit values allowed).
1709 if (filterProcessor(true))
1712 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1713 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1714 // well-known encoding pattern. In such case, we backtrack and scan for the
1715 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1716 if (Num
== 3 && filterProcessor(true, false))
1719 // If we come to here, the instruction decoding has failed.
1720 // Set the BestIndex to -1 to indicate so.
1724 // emitTableEntries - Emit state machine entries to decode our share of
1726 void FilterChooser::emitTableEntries(DecoderTableInfo
&TableInfo
) const {
1727 if (Opcodes
.size() == 1) {
1728 // There is only one instruction in the set, which is great!
1729 // Call emitSingletonDecoder() to see whether there are any remaining
1731 emitSingletonTableEntry(TableInfo
, Opcodes
[0]);
1735 // Choose the best filter to do the decodings!
1736 if (BestIndex
!= -1) {
1737 const Filter
&Best
= Filters
[BestIndex
];
1738 if (Best
.getNumFiltered() == 1)
1739 emitSingletonTableEntry(TableInfo
, Best
);
1741 Best
.emitTableEntry(TableInfo
);
1745 // We don't know how to decode these instructions! Dump the
1746 // conflict set and bail.
1748 // Print out useful conflict information for postmortem analysis.
1749 errs() << "Decoding Conflict:\n";
1751 dumpStack(errs(), "\t\t");
1753 for (unsigned i
= 0; i
< Opcodes
.size(); ++i
) {
1755 emitNameWithID(errs(), Opcodes
[i
].EncodingID
);
1759 getBitsField(*AllInstructions
[Opcodes
[i
].EncodingID
].EncodingDef
, "Inst"));
1764 static std::string
findOperandDecoderMethod(TypedInit
*TI
) {
1765 std::string Decoder
;
1767 Record
*Record
= cast
<DefInit
>(TI
)->getDef();
1769 RecordVal
*DecoderString
= Record
->getValue("DecoderMethod");
1770 StringInit
*String
= DecoderString
?
1771 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1773 Decoder
= String
->getValue();
1774 if (!Decoder
.empty())
1778 if (Record
->isSubClassOf("RegisterOperand"))
1779 Record
= Record
->getValueAsDef("RegClass");
1781 if (Record
->isSubClassOf("RegisterClass")) {
1782 Decoder
= "Decode" + Record
->getName().str() + "RegisterClass";
1783 } else if (Record
->isSubClassOf("PointerLikeRegClass")) {
1784 Decoder
= "DecodePointerLikeRegClass" +
1785 utostr(Record
->getValueAsInt("RegClassKind"));
1792 populateInstruction(CodeGenTarget
&Target
, const Record
&EncodingDef
,
1793 const CodeGenInstruction
&CGI
, unsigned Opc
,
1794 std::map
<unsigned, std::vector
<OperandInfo
>> &Operands
) {
1795 const Record
&Def
= *CGI
.TheDef
;
1796 // If all the bit positions are not specified; do not decode this instruction.
1797 // We are bound to fail! For proper disassembly, the well-known encoding bits
1798 // of the instruction must be fully specified.
1800 BitsInit
&Bits
= getBitsField(EncodingDef
, "Inst");
1801 if (Bits
.allInComplete()) return false;
1803 std::vector
<OperandInfo
> InsnOperands
;
1805 // If the instruction has specified a custom decoding hook, use that instead
1806 // of trying to auto-generate the decoder.
1807 StringRef InstDecoder
= EncodingDef
.getValueAsString("DecoderMethod");
1808 if (InstDecoder
!= "") {
1809 bool HasCompleteInstDecoder
= EncodingDef
.getValueAsBit("hasCompleteDecoder");
1810 InsnOperands
.push_back(OperandInfo(InstDecoder
, HasCompleteInstDecoder
));
1811 Operands
[Opc
] = InsnOperands
;
1815 // Generate a description of the operand of the instruction that we know
1816 // how to decode automatically.
1817 // FIXME: We'll need to have a way to manually override this as needed.
1819 // Gather the outputs/inputs of the instruction, so we can find their
1820 // positions in the encoding. This assumes for now that they appear in the
1821 // MCInst in the order that they're listed.
1822 std::vector
<std::pair
<Init
*, StringRef
>> InOutOperands
;
1823 DagInit
*Out
= Def
.getValueAsDag("OutOperandList");
1824 DagInit
*In
= Def
.getValueAsDag("InOperandList");
1825 for (unsigned i
= 0; i
< Out
->getNumArgs(); ++i
)
1826 InOutOperands
.push_back(std::make_pair(Out
->getArg(i
),
1827 Out
->getArgNameStr(i
)));
1828 for (unsigned i
= 0; i
< In
->getNumArgs(); ++i
)
1829 InOutOperands
.push_back(std::make_pair(In
->getArg(i
),
1830 In
->getArgNameStr(i
)));
1832 // Search for tied operands, so that we can correctly instantiate
1833 // operands that are not explicitly represented in the encoding.
1834 std::map
<std::string
, std::string
> TiedNames
;
1835 for (unsigned i
= 0; i
< CGI
.Operands
.size(); ++i
) {
1836 int tiedTo
= CGI
.Operands
[i
].getTiedRegister();
1838 std::pair
<unsigned, unsigned> SO
=
1839 CGI
.Operands
.getSubOperandNumber(tiedTo
);
1840 TiedNames
[InOutOperands
[i
].second
] = InOutOperands
[SO
.first
].second
;
1841 TiedNames
[InOutOperands
[SO
.first
].second
] = InOutOperands
[i
].second
;
1845 std::map
<std::string
, std::vector
<OperandInfo
>> NumberedInsnOperands
;
1846 std::set
<std::string
> NumberedInsnOperandsNoTie
;
1847 if (Target
.getInstructionSet()->
1848 getValueAsBit("decodePositionallyEncodedOperands")) {
1849 const std::vector
<RecordVal
> &Vals
= Def
.getValues();
1850 unsigned NumberedOp
= 0;
1852 std::set
<unsigned> NamedOpIndices
;
1853 if (Target
.getInstructionSet()->
1854 getValueAsBit("noNamedPositionallyEncodedOperands"))
1855 // Collect the set of operand indices that might correspond to named
1856 // operand, and skip these when assigning operands based on position.
1857 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
1859 if (!CGI
.Operands
.hasOperandNamed(Vals
[i
].getName(), OpIdx
))
1862 NamedOpIndices
.insert(OpIdx
);
1865 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
1866 // Ignore fixed fields in the record, we're looking for values like:
1867 // bits<5> RST = { ?, ?, ?, ?, ? };
1868 if (Vals
[i
].getPrefix() || Vals
[i
].getValue()->isComplete())
1871 // Determine if Vals[i] actually contributes to the Inst encoding.
1873 for (; bi
< Bits
.getNumBits(); ++bi
) {
1874 VarInit
*Var
= nullptr;
1875 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1877 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1879 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
1881 if (Var
&& Var
->getName() == Vals
[i
].getName())
1885 if (bi
== Bits
.getNumBits())
1888 // Skip variables that correspond to explicitly-named operands.
1890 if (CGI
.Operands
.hasOperandNamed(Vals
[i
].getName(), OpIdx
))
1893 // Get the bit range for this operand:
1894 unsigned bitStart
= bi
++, bitWidth
= 1;
1895 for (; bi
< Bits
.getNumBits(); ++bi
) {
1896 VarInit
*Var
= nullptr;
1897 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1899 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1901 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
1906 if (Var
->getName() != Vals
[i
].getName())
1912 unsigned NumberOps
= CGI
.Operands
.size();
1913 while (NumberedOp
< NumberOps
&&
1914 (CGI
.Operands
.isFlatOperandNotEmitted(NumberedOp
) ||
1915 (!NamedOpIndices
.empty() && NamedOpIndices
.count(
1916 CGI
.Operands
.getSubOperandNumber(NumberedOp
).first
))))
1919 OpIdx
= NumberedOp
++;
1921 // OpIdx now holds the ordered operand number of Vals[i].
1922 std::pair
<unsigned, unsigned> SO
=
1923 CGI
.Operands
.getSubOperandNumber(OpIdx
);
1924 const std::string
&Name
= CGI
.Operands
[SO
.first
].Name
;
1926 LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def
.getName()
1927 << ": " << Name
<< "(" << SO
.first
<< ", " << SO
.second
1928 << ") => " << Vals
[i
].getName() << "\n");
1930 std::string Decoder
;
1931 Record
*TypeRecord
= CGI
.Operands
[SO
.first
].Rec
;
1933 RecordVal
*DecoderString
= TypeRecord
->getValue("DecoderMethod");
1934 StringInit
*String
= DecoderString
?
1935 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1936 if (String
&& String
->getValue() != "")
1937 Decoder
= String
->getValue();
1939 if (Decoder
== "" &&
1940 CGI
.Operands
[SO
.first
].MIOperandInfo
&&
1941 CGI
.Operands
[SO
.first
].MIOperandInfo
->getNumArgs()) {
1942 Init
*Arg
= CGI
.Operands
[SO
.first
].MIOperandInfo
->
1944 if (DefInit
*DI
= cast
<DefInit
>(Arg
))
1945 TypeRecord
= DI
->getDef();
1949 if (TypeRecord
->isSubClassOf("RegisterOperand"))
1950 TypeRecord
= TypeRecord
->getValueAsDef("RegClass");
1951 if (TypeRecord
->isSubClassOf("RegisterClass")) {
1952 Decoder
= "Decode" + TypeRecord
->getName().str() + "RegisterClass";
1954 } else if (TypeRecord
->isSubClassOf("PointerLikeRegClass")) {
1955 Decoder
= "DecodePointerLikeRegClass" +
1956 utostr(TypeRecord
->getValueAsInt("RegClassKind"));
1960 DecoderString
= TypeRecord
->getValue("DecoderMethod");
1961 String
= DecoderString
?
1962 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1963 if (!isReg
&& String
&& String
->getValue() != "")
1964 Decoder
= String
->getValue();
1966 RecordVal
*HasCompleteDecoderVal
=
1967 TypeRecord
->getValue("hasCompleteDecoder");
1968 BitInit
*HasCompleteDecoderBit
= HasCompleteDecoderVal
?
1969 dyn_cast
<BitInit
>(HasCompleteDecoderVal
->getValue()) : nullptr;
1970 bool HasCompleteDecoder
= HasCompleteDecoderBit
?
1971 HasCompleteDecoderBit
->getValue() : true;
1973 OperandInfo
OpInfo(Decoder
, HasCompleteDecoder
);
1974 OpInfo
.addField(bitStart
, bitWidth
, 0);
1976 NumberedInsnOperands
[Name
].push_back(OpInfo
);
1978 // FIXME: For complex operands with custom decoders we can't handle tied
1979 // sub-operands automatically. Skip those here and assume that this is
1980 // fixed up elsewhere.
1981 if (CGI
.Operands
[SO
.first
].MIOperandInfo
&&
1982 CGI
.Operands
[SO
.first
].MIOperandInfo
->getNumArgs() > 1 &&
1983 String
&& String
->getValue() != "")
1984 NumberedInsnOperandsNoTie
.insert(Name
);
1988 // For each operand, see if we can figure out where it is encoded.
1989 for (const auto &Op
: InOutOperands
) {
1990 if (!NumberedInsnOperands
[Op
.second
].empty()) {
1991 InsnOperands
.insert(InsnOperands
.end(),
1992 NumberedInsnOperands
[Op
.second
].begin(),
1993 NumberedInsnOperands
[Op
.second
].end());
1996 if (!NumberedInsnOperands
[TiedNames
[Op
.second
]].empty()) {
1997 if (!NumberedInsnOperandsNoTie
.count(TiedNames
[Op
.second
])) {
1998 // Figure out to which (sub)operand we're tied.
1999 unsigned i
= CGI
.Operands
.getOperandNamed(TiedNames
[Op
.second
]);
2000 int tiedTo
= CGI
.Operands
[i
].getTiedRegister();
2002 i
= CGI
.Operands
.getOperandNamed(Op
.second
);
2003 tiedTo
= CGI
.Operands
[i
].getTiedRegister();
2007 std::pair
<unsigned, unsigned> SO
=
2008 CGI
.Operands
.getSubOperandNumber(tiedTo
);
2010 InsnOperands
.push_back(NumberedInsnOperands
[TiedNames
[Op
.second
]]
2017 TypedInit
*TI
= cast
<TypedInit
>(Op
.first
);
2019 // At this point, we can locate the decoder field, but we need to know how
2020 // to interpret it. As a first step, require the target to provide
2021 // callbacks for decoding register classes.
2022 std::string Decoder
= findOperandDecoderMethod(TI
);
2023 Record
*TypeRecord
= cast
<DefInit
>(TI
)->getDef();
2025 RecordVal
*HasCompleteDecoderVal
=
2026 TypeRecord
->getValue("hasCompleteDecoder");
2027 BitInit
*HasCompleteDecoderBit
= HasCompleteDecoderVal
?
2028 dyn_cast
<BitInit
>(HasCompleteDecoderVal
->getValue()) : nullptr;
2029 bool HasCompleteDecoder
= HasCompleteDecoderBit
?
2030 HasCompleteDecoderBit
->getValue() : true;
2032 OperandInfo
OpInfo(Decoder
, HasCompleteDecoder
);
2034 // Some bits of the operand may be required to be 1 depending on the
2035 // instruction's encoding. Collect those bits.
2036 if (const RecordVal
*EncodedValue
= EncodingDef
.getValue(Op
.second
))
2037 if (const BitsInit
*OpBits
= dyn_cast
<BitsInit
>(EncodedValue
->getValue()))
2038 for (unsigned I
= 0; I
< OpBits
->getNumBits(); ++I
)
2039 if (const BitInit
*OpBit
= dyn_cast
<BitInit
>(OpBits
->getBit(I
)))
2040 if (OpBit
->getValue())
2041 OpInfo
.InitValue
|= 1ULL << I
;
2043 unsigned Base
= ~0U;
2045 unsigned Offset
= 0;
2047 for (unsigned bi
= 0; bi
< Bits
.getNumBits(); ++bi
) {
2048 VarInit
*Var
= nullptr;
2049 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
2051 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
2053 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
2057 OpInfo
.addField(Base
, Width
, Offset
);
2065 if (Var
->getName() != Op
.second
&&
2066 Var
->getName() != TiedNames
[Op
.second
]) {
2068 OpInfo
.addField(Base
, Width
, Offset
);
2079 Offset
= BI
? BI
->getBitNum() : 0;
2080 } else if (BI
&& BI
->getBitNum() != Offset
+ Width
) {
2081 OpInfo
.addField(Base
, Width
, Offset
);
2084 Offset
= BI
->getBitNum();
2091 OpInfo
.addField(Base
, Width
, Offset
);
2093 if (OpInfo
.numFields() > 0)
2094 InsnOperands
.push_back(OpInfo
);
2097 Operands
[Opc
] = InsnOperands
;
2101 // Dumps the instruction encoding bits.
2102 dumpBits(errs(), Bits
);
2106 // Dumps the list of operand info.
2107 for (unsigned i
= 0, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
2108 const CGIOperandList::OperandInfo
&Info
= CGI
.Operands
[i
];
2109 const std::string
&OperandName
= Info
.Name
;
2110 const Record
&OperandDef
= *Info
.Rec
;
2112 errs() << "\t" << OperandName
<< " (" << OperandDef
.getName() << ")\n";
2120 // emitFieldFromInstruction - Emit the templated helper function
2121 // fieldFromInstruction().
2122 // On Windows we make sure that this function is not inlined when
2123 // using the VS compiler. It has a bug which causes the function
2124 // to be optimized out in some circustances. See llvm.org/pr38292
2125 static void emitFieldFromInstruction(formatted_raw_ostream
&OS
) {
2126 OS
<< "// Helper functions for extracting fields from encoded instructions.\n"
2127 << "// InsnType must either be integral or an APInt-like object that "
2129 << "// * Have a static const max_size_in_bits equal to the number of bits "
2132 << "// * be default-constructible and copy-constructible\n"
2133 << "// * be constructible from a uint64_t\n"
2134 << "// * be constructible from an APInt (this can be private)\n"
2135 << "// * Support getBitsSet(loBit, hiBit)\n"
2136 << "// * be convertible to uint64_t\n"
2137 << "// * Support the ~, &, ==, !=, and |= operators with other objects of "
2139 << "// * Support shift (<<, >>) with signed and unsigned integers on the "
2141 << "// * Support put (<<) to raw_ostream&\n"
2142 << "template<typename InsnType>\n"
2143 << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2144 << "__declspec(noinline)\n"
2146 << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2148 << " unsigned numBits, "
2149 "std::true_type) {\n"
2150 << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2151 "extractions!\");\n"
2152 << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2153 << " \"Instruction field out of bounds!\");\n"
2154 << " InsnType fieldMask;\n"
2155 << " if (numBits == sizeof(InsnType) * 8)\n"
2156 << " fieldMask = (InsnType)(-1LL);\n"
2158 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2159 << " return (insn & fieldMask) >> startBit;\n"
2162 << "template<typename InsnType>\n"
2163 << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2165 << " unsigned numBits, "
2166 "std::false_type) {\n"
2167 << " assert(startBit + numBits <= InsnType::max_size_in_bits && "
2168 "\"Instruction field out of bounds!\");\n"
2169 << " InsnType fieldMask = InsnType::getBitsSet(0, numBits);\n"
2170 << " return (insn >> startBit) & fieldMask;\n"
2173 << "template<typename InsnType>\n"
2174 << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2176 << " unsigned numBits) {\n"
2177 << " return fieldFromInstruction(insn, startBit, numBits, "
2178 "std::is_integral<InsnType>());\n"
2182 // emitDecodeInstruction - Emit the templated helper function
2183 // decodeInstruction().
2184 static void emitDecodeInstruction(formatted_raw_ostream
&OS
) {
2185 OS
<< "template<typename InsnType>\n"
2186 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2188 << " InsnType insn, uint64_t "
2190 << " const void *DisAsm,\n"
2191 << " const MCSubtargetInfo &STI) {\n"
2192 << " const FeatureBitset& Bits = STI.getFeatureBits();\n"
2194 << " const uint8_t *Ptr = DecodeTable;\n"
2195 << " InsnType CurFieldValue = 0;\n"
2196 << " DecodeStatus S = MCDisassembler::Success;\n"
2197 << " while (true) {\n"
2198 << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2199 << " switch (*Ptr) {\n"
2201 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2202 << " return MCDisassembler::Fail;\n"
2203 << " case MCD::OPC_ExtractField: {\n"
2204 << " unsigned Start = *++Ptr;\n"
2205 << " unsigned Len = *++Ptr;\n"
2207 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2208 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2210 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2213 << " case MCD::OPC_FilterValue: {\n"
2214 << " // Decode the field value.\n"
2215 << " unsigned Len;\n"
2216 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2218 << " // NumToSkip is a plain 24-bit integer.\n"
2219 << " unsigned NumToSkip = *Ptr++;\n"
2220 << " NumToSkip |= (*Ptr++) << 8;\n"
2221 << " NumToSkip |= (*Ptr++) << 16;\n"
2223 << " // Perform the filter operation.\n"
2224 << " if (Val != CurFieldValue)\n"
2225 << " Ptr += NumToSkip;\n"
2226 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2227 "\", \" << NumToSkip\n"
2228 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2230 << " << \" continuing at \" << (Ptr - DecodeTable) << "
2235 << " case MCD::OPC_CheckField: {\n"
2236 << " unsigned Start = *++Ptr;\n"
2237 << " unsigned Len = *++Ptr;\n"
2238 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2239 << " // Decode the field value.\n"
2240 << " InsnType ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2242 << " // NumToSkip is a plain 24-bit integer.\n"
2243 << " unsigned NumToSkip = *Ptr++;\n"
2244 << " NumToSkip |= (*Ptr++) << 8;\n"
2245 << " NumToSkip |= (*Ptr++) << 16;\n"
2247 << " // If the actual and expected values don't match, skip.\n"
2248 << " if (ExpectedValue != FieldValue)\n"
2249 << " Ptr += NumToSkip;\n"
2250 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2252 << " << Len << \", \" << ExpectedValue << \", \" << "
2254 << " << \"): FieldValue = \" << FieldValue << \", "
2255 "ExpectedValue = \"\n"
2256 << " << ExpectedValue << \": \"\n"
2257 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2261 << " case MCD::OPC_CheckPredicate: {\n"
2262 << " unsigned Len;\n"
2263 << " // Decode the Predicate Index value.\n"
2264 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2266 << " // NumToSkip is a plain 24-bit integer.\n"
2267 << " unsigned NumToSkip = *Ptr++;\n"
2268 << " NumToSkip |= (*Ptr++) << 8;\n"
2269 << " NumToSkip |= (*Ptr++) << 16;\n"
2270 << " // Check the predicate.\n"
2272 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2273 << " Ptr += NumToSkip;\n"
2275 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2277 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2281 << " case MCD::OPC_Decode: {\n"
2282 << " unsigned Len;\n"
2283 << " // Decode the Opcode value.\n"
2284 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2286 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2290 << " MI.setOpcode(Opc);\n"
2291 << " bool DecodeComplete;\n"
2292 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2293 "DecodeComplete);\n"
2294 << " assert(DecodeComplete);\n"
2296 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2297 << " << \", using decoder \" << DecodeIdx << \": \"\n"
2298 << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2299 "\"FAIL\") << \"\\n\");\n"
2302 << " case MCD::OPC_TryDecode: {\n"
2303 << " unsigned Len;\n"
2304 << " // Decode the Opcode value.\n"
2305 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2307 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2309 << " // NumToSkip is a plain 24-bit integer.\n"
2310 << " unsigned NumToSkip = *Ptr++;\n"
2311 << " NumToSkip |= (*Ptr++) << 8;\n"
2312 << " NumToSkip |= (*Ptr++) << 16;\n"
2314 << " // Perform the decode operation.\n"
2315 << " MCInst TmpMI;\n"
2316 << " TmpMI.setOpcode(Opc);\n"
2317 << " bool DecodeComplete;\n"
2318 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2319 "DecodeComplete);\n"
2320 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2322 << " << \", using decoder \" << DecodeIdx << \": \");\n"
2324 << " if (DecodeComplete) {\n"
2325 << " // Decoding complete.\n"
2326 << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2327 "\"FAIL\") << \"\\n\");\n"
2331 << " assert(S == MCDisassembler::Fail);\n"
2332 << " // If the decoding was incomplete, skip.\n"
2333 << " Ptr += NumToSkip;\n"
2334 << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2335 "DecodeTable) << \"\\n\");\n"
2336 << " // Reset decode status. This also drops a SoftFail status "
2338 << " // set before the decode attempt.\n"
2339 << " S = MCDisassembler::Success;\n"
2343 << " case MCD::OPC_SoftFail: {\n"
2344 << " // Decode the mask values.\n"
2345 << " unsigned Len;\n"
2346 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2348 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2350 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2352 << " S = MCDisassembler::SoftFail;\n"
2353 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2354 "\"FAIL\\n\":\"PASS\\n\"));\n"
2357 << " case MCD::OPC_Fail: {\n"
2358 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2359 << " return MCDisassembler::Fail;\n"
2363 << " llvm_unreachable(\"bogosity detected in disassembler state "
2368 // Emits disassembler code for instruction decoding.
2369 void FixedLenDecoderEmitter::run(raw_ostream
&o
) {
2370 formatted_raw_ostream
OS(o
);
2371 OS
<< "#include \"llvm/MC/MCInst.h\"\n";
2372 OS
<< "#include \"llvm/Support/Debug.h\"\n";
2373 OS
<< "#include \"llvm/Support/DataTypes.h\"\n";
2374 OS
<< "#include \"llvm/Support/LEB128.h\"\n";
2375 OS
<< "#include \"llvm/Support/raw_ostream.h\"\n";
2376 OS
<< "#include <assert.h>\n";
2378 OS
<< "namespace llvm {\n\n";
2380 emitFieldFromInstruction(OS
);
2382 Target
.reverseBitsForLittleEndianEncoding();
2384 // Parameterize the decoders based on namespace and instruction width.
2385 const auto &NumberedInstructions
= Target
.getInstructionsByEnumValue();
2386 NumberedEncodings
.reserve(NumberedInstructions
.size());
2387 DenseMap
<Record
*, unsigned> IndexOfInstruction
;
2388 for (const auto &NumberedInstruction
: NumberedInstructions
) {
2389 IndexOfInstruction
[NumberedInstruction
->TheDef
] = NumberedEncodings
.size();
2390 NumberedEncodings
.emplace_back(NumberedInstruction
->TheDef
, NumberedInstruction
);
2392 for (const auto &NumberedAlias
: RK
.getAllDerivedDefinitions("AdditionalEncoding"))
2393 NumberedEncodings
.emplace_back(
2395 &Target
.getInstruction(NumberedAlias
->getValueAsDef("AliasOf")));
2397 std::map
<std::pair
<std::string
, unsigned>, std::vector
<EncodingIDAndOpcode
>>
2399 std::map
<unsigned, std::vector
<OperandInfo
>> Operands
;
2401 for (unsigned i
= 0; i
< NumberedEncodings
.size(); ++i
) {
2402 const Record
*EncodingDef
= NumberedEncodings
[i
].EncodingDef
;
2403 const CodeGenInstruction
*Inst
= NumberedEncodings
[i
].Inst
;
2404 const Record
*Def
= Inst
->TheDef
;
2405 unsigned Size
= EncodingDef
->getValueAsInt("Size");
2406 if (Def
->getValueAsString("Namespace") == "TargetOpcode" ||
2407 Def
->getValueAsBit("isPseudo") ||
2408 Def
->getValueAsBit("isAsmParserOnly") ||
2409 Def
->getValueAsBit("isCodeGenOnly")) {
2410 NumEncodingsLackingDisasm
++;
2414 if (i
< NumberedInstructions
.size())
2418 StringRef DecoderNamespace
= EncodingDef
->getValueAsString("DecoderNamespace");
2421 if (populateInstruction(Target
, *EncodingDef
, *Inst
, i
, Operands
)) {
2422 OpcMap
[std::make_pair(DecoderNamespace
, Size
)].emplace_back(i
, IndexOfInstruction
.find(Def
)->second
);
2424 NumEncodingsOmitted
++;
2428 DecoderTableInfo TableInfo
;
2429 for (const auto &Opc
: OpcMap
) {
2430 // Emit the decoder for this namespace+width combination.
2431 ArrayRef
<EncodingAndInst
> NumberedEncodingsRef(
2432 NumberedEncodings
.data(), NumberedEncodings
.size());
2433 FilterChooser
FC(NumberedEncodingsRef
, Opc
.second
, Operands
,
2434 8 * Opc
.first
.second
, this);
2436 // The decode table is cleared for each top level decoder function. The
2437 // predicates and decoders themselves, however, are shared across all
2438 // decoders to give more opportunities for uniqueing.
2439 TableInfo
.Table
.clear();
2440 TableInfo
.FixupStack
.clear();
2441 TableInfo
.Table
.reserve(16384);
2442 TableInfo
.FixupStack
.emplace_back();
2443 FC
.emitTableEntries(TableInfo
);
2444 // Any NumToSkip fixups in the top level scope can resolve to the
2445 // OPC_Fail at the end of the table.
2446 assert(TableInfo
.FixupStack
.size() == 1 && "fixup stack phasing error!");
2447 // Resolve any NumToSkip fixups in the current scope.
2448 resolveTableFixups(TableInfo
.Table
, TableInfo
.FixupStack
.back(),
2449 TableInfo
.Table
.size());
2450 TableInfo
.FixupStack
.clear();
2452 TableInfo
.Table
.push_back(MCD::OPC_Fail
);
2454 // Print the table to the output stream.
2455 emitTable(OS
, TableInfo
.Table
, 0, FC
.getBitWidth(), Opc
.first
.first
);
2459 // Emit the predicate function.
2460 emitPredicateFunction(OS
, TableInfo
.Predicates
, 0);
2462 // Emit the decoder function.
2463 emitDecoderFunction(OS
, TableInfo
.Decoders
, 0);
2465 // Emit the main entry point for the decoder, decodeInstruction().
2466 emitDecodeInstruction(OS
);
2468 OS
<< "\n} // End llvm namespace\n";
2473 void EmitFixedLenDecoder(RecordKeeper
&RK
, raw_ostream
&OS
,
2474 const std::string
&PredicateNamespace
,
2475 const std::string
&GPrefix
,
2476 const std::string
&GPostfix
, const std::string
&ROK
,
2477 const std::string
&RFail
, const std::string
&L
) {
2478 FixedLenDecoderEmitter(RK
, PredicateNamespace
, GPrefix
, GPostfix
,
2479 ROK
, RFail
, L
).run(OS
);
2482 } // end namespace llvm