[ARM] MVE big endian bitcasts
[llvm-complete.git] / lib / Target / ARM / ARMLegalizerInfo.cpp
blob73a57b297ad6dac9c39eeae8bec58202c844764d
1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
13 #include "ARMLegalizerInfo.h"
14 #include "ARMCallLowering.h"
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/LowLevelType.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetOpcodes.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Type.h"
24 using namespace llvm;
25 using namespace LegalizeActions;
27 /// FIXME: The following static functions are SizeChangeStrategy functions
28 /// that are meant to temporarily mimic the behaviour of the old legalization
29 /// based on doubling/halving non-legal types as closely as possible. This is
30 /// not entirly possible as only legalizing the types that are exactly a power
31 /// of 2 times the size of the legal types would require specifying all those
32 /// sizes explicitly.
33 /// In practice, not specifying those isn't a problem, and the below functions
34 /// should disappear quickly as we add support for legalizing non-power-of-2
35 /// sized types further.
36 static void
37 addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
38 const LegalizerInfo::SizeAndActionsVec &v) {
39 for (unsigned i = 0; i < v.size(); ++i) {
40 result.push_back(v[i]);
41 if (i + 1 < v[i].first && i + 1 < v.size() &&
42 v[i + 1].first != v[i].first + 1)
43 result.push_back({v[i].first + 1, Unsupported});
47 static LegalizerInfo::SizeAndActionsVec
48 widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
49 assert(v.size() >= 1);
50 assert(v[0].first > 17);
51 LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported},
52 {8, WidenScalar},
53 {9, Unsupported},
54 {16, WidenScalar},
55 {17, Unsupported}};
56 addAndInterleaveWithUnsupported(result, v);
57 auto Largest = result.back().first;
58 result.push_back({Largest + 1, Unsupported});
59 return result;
62 static bool AEABI(const ARMSubtarget &ST) {
63 return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
66 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
67 using namespace TargetOpcode;
69 const LLT p0 = LLT::pointer(0, 32);
71 const LLT s1 = LLT::scalar(1);
72 const LLT s8 = LLT::scalar(8);
73 const LLT s16 = LLT::scalar(16);
74 const LLT s32 = LLT::scalar(32);
75 const LLT s64 = LLT::scalar(64);
77 if (ST.isThumb1Only()) {
78 // Thumb1 is not supported yet.
79 computeTables();
80 verify(*ST.getInstrInfo());
81 return;
84 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
85 .legalForCartesianProduct({s8, s16, s32}, {s1, s8, s16});
87 getActionDefinitionsBuilder({G_MUL, G_AND, G_OR, G_XOR})
88 .legalFor({s32})
89 .minScalar(0, s32);
91 if (ST.hasNEON())
92 getActionDefinitionsBuilder({G_ADD, G_SUB})
93 .legalFor({s32, s64})
94 .minScalar(0, s32);
95 else
96 getActionDefinitionsBuilder({G_ADD, G_SUB})
97 .legalFor({s32})
98 .minScalar(0, s32);
100 getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
101 .legalFor({{s32, s32}})
102 .minScalar(0, s32)
103 .clampScalar(1, s32, s32);
105 bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) ||
106 (ST.isThumb() && ST.hasDivideInThumbMode());
107 if (HasHWDivide)
108 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
109 .legalFor({s32})
110 .clampScalar(0, s32, s32);
111 else
112 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
113 .libcallFor({s32})
114 .clampScalar(0, s32, s32);
116 for (unsigned Op : {G_SREM, G_UREM}) {
117 setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
118 if (HasHWDivide)
119 setAction({Op, s32}, Lower);
120 else if (AEABI(ST))
121 setAction({Op, s32}, Custom);
122 else
123 setAction({Op, s32}, Libcall);
126 getActionDefinitionsBuilder(G_INTTOPTR)
127 .legalFor({{p0, s32}})
128 .minScalar(1, s32);
129 getActionDefinitionsBuilder(G_PTRTOINT)
130 .legalFor({{s32, p0}})
131 .minScalar(0, s32);
133 getActionDefinitionsBuilder(G_CONSTANT)
134 .legalFor({s32, p0})
135 .clampScalar(0, s32, s32);
137 getActionDefinitionsBuilder(G_ICMP)
138 .legalForCartesianProduct({s1}, {s32, p0})
139 .minScalar(1, s32);
141 getActionDefinitionsBuilder(G_SELECT)
142 .legalForCartesianProduct({s32, p0}, {s1})
143 .minScalar(0, s32);
145 // We're keeping these builders around because we'll want to add support for
146 // floating point to them.
147 auto &LoadStoreBuilder = getActionDefinitionsBuilder({G_LOAD, G_STORE})
148 .legalForTypesWithMemDesc({{s1, p0, 8, 8},
149 {s8, p0, 8, 8},
150 {s16, p0, 16, 8},
151 {s32, p0, 32, 8},
152 {p0, p0, 32, 8}})
153 .unsupportedIfMemSizeNotPow2();
155 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
156 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
158 auto &PhiBuilder =
159 getActionDefinitionsBuilder(G_PHI)
160 .legalFor({s32, p0})
161 .minScalar(0, s32);
163 getActionDefinitionsBuilder(G_GEP)
164 .legalFor({{p0, s32}})
165 .minScalar(1, s32);
167 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
169 if (!ST.useSoftFloat() && ST.hasVFP2Base()) {
170 getActionDefinitionsBuilder(
171 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
172 .legalFor({s32, s64});
174 LoadStoreBuilder
175 .legalForTypesWithMemDesc({{s64, p0, 64, 32}})
176 .maxScalar(0, s32);
177 PhiBuilder.legalFor({s64});
179 getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
180 {s32, s64});
182 getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
183 getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
185 getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
186 getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
188 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
189 .legalForCartesianProduct({s32}, {s32, s64});
190 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
191 .legalForCartesianProduct({s32, s64}, {s32});
192 } else {
193 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
194 .libcallFor({s32, s64});
196 LoadStoreBuilder.maxScalar(0, s32);
198 for (auto Ty : {s32, s64})
199 setAction({G_FNEG, Ty}, Lower);
201 getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
203 getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
204 {s32, s64});
206 if (AEABI(ST))
207 setFCmpLibcallsAEABI();
208 else
209 setFCmpLibcallsGNU();
211 getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
212 getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
214 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
215 .libcallForCartesianProduct({s32}, {s32, s64});
216 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
217 .libcallForCartesianProduct({s32, s64}, {s32});
220 if (!ST.useSoftFloat() && ST.hasVFP4Base())
221 getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
222 else
223 getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
225 getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
227 if (ST.hasV5TOps()) {
228 getActionDefinitionsBuilder(G_CTLZ)
229 .legalFor({s32, s32})
230 .clampScalar(1, s32, s32)
231 .clampScalar(0, s32, s32);
232 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
233 .lowerFor({s32, s32})
234 .clampScalar(1, s32, s32)
235 .clampScalar(0, s32, s32);
236 } else {
237 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
238 .libcallFor({s32, s32})
239 .clampScalar(1, s32, s32)
240 .clampScalar(0, s32, s32);
241 getActionDefinitionsBuilder(G_CTLZ)
242 .lowerFor({s32, s32})
243 .clampScalar(1, s32, s32)
244 .clampScalar(0, s32, s32);
247 computeTables();
248 verify(*ST.getInstrInfo());
251 void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
252 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
253 // default-initialized.
254 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
255 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
256 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
257 FCmp32Libcalls[CmpInst::FCMP_OGE] = {
258 {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
259 FCmp32Libcalls[CmpInst::FCMP_OGT] = {
260 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
261 FCmp32Libcalls[CmpInst::FCMP_OLE] = {
262 {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
263 FCmp32Libcalls[CmpInst::FCMP_OLT] = {
264 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
265 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
266 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
267 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
268 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
269 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
270 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
271 FCmp32Libcalls[CmpInst::FCMP_UNO] = {
272 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
273 FCmp32Libcalls[CmpInst::FCMP_ONE] = {
274 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
275 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
276 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
277 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
278 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
280 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
281 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
282 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
283 FCmp64Libcalls[CmpInst::FCMP_OGE] = {
284 {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
285 FCmp64Libcalls[CmpInst::FCMP_OGT] = {
286 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
287 FCmp64Libcalls[CmpInst::FCMP_OLE] = {
288 {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
289 FCmp64Libcalls[CmpInst::FCMP_OLT] = {
290 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
291 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
292 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
293 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
294 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
295 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
296 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
297 FCmp64Libcalls[CmpInst::FCMP_UNO] = {
298 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
299 FCmp64Libcalls[CmpInst::FCMP_ONE] = {
300 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
301 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
302 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
303 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
304 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
307 void ARMLegalizerInfo::setFCmpLibcallsGNU() {
308 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
309 // default-initialized.
310 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
311 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
312 FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
313 FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
314 FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
315 FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
316 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
317 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
318 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
319 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
320 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
321 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
322 FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
323 FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
324 {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
325 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
326 {RTLIB::UO_F32, CmpInst::ICMP_NE}};
328 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
329 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
330 FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
331 FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
332 FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
333 FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
334 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
335 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
336 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
337 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
338 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
339 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
340 FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
341 FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
342 {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
343 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
344 {RTLIB::UO_F64, CmpInst::ICMP_NE}};
347 ARMLegalizerInfo::FCmpLibcallsList
348 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
349 unsigned Size) const {
350 assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
351 if (Size == 32)
352 return FCmp32Libcalls[Predicate];
353 if (Size == 64)
354 return FCmp64Libcalls[Predicate];
355 llvm_unreachable("Unsupported size for FCmp predicate");
358 bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
359 MachineRegisterInfo &MRI,
360 MachineIRBuilder &MIRBuilder,
361 GISelChangeObserver &Observer) const {
362 using namespace TargetOpcode;
364 MIRBuilder.setInstr(MI);
365 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
367 switch (MI.getOpcode()) {
368 default:
369 return false;
370 case G_SREM:
371 case G_UREM: {
372 Register OriginalResult = MI.getOperand(0).getReg();
373 auto Size = MRI.getType(OriginalResult).getSizeInBits();
374 if (Size != 32)
375 return false;
377 auto Libcall =
378 MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
380 // Our divmod libcalls return a struct containing the quotient and the
381 // remainder. Create a new, unused register for the quotient and use the
382 // destination of the original instruction for the remainder.
383 Type *ArgTy = Type::getInt32Ty(Ctx);
384 StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
385 Register RetRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
386 OriginalResult};
387 auto Status = createLibcall(MIRBuilder, Libcall, {RetRegs, RetTy},
388 {{MI.getOperand(1).getReg(), ArgTy},
389 {MI.getOperand(2).getReg(), ArgTy}});
390 if (Status != LegalizerHelper::Legalized)
391 return false;
392 break;
394 case G_FCMP: {
395 assert(MRI.getType(MI.getOperand(2).getReg()) ==
396 MRI.getType(MI.getOperand(3).getReg()) &&
397 "Mismatched operands for G_FCMP");
398 auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
400 auto OriginalResult = MI.getOperand(0).getReg();
401 auto Predicate =
402 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
403 auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
405 if (Libcalls.empty()) {
406 assert((Predicate == CmpInst::FCMP_TRUE ||
407 Predicate == CmpInst::FCMP_FALSE) &&
408 "Predicate needs libcalls, but none specified");
409 MIRBuilder.buildConstant(OriginalResult,
410 Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
411 MI.eraseFromParent();
412 return true;
415 assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
416 auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
417 auto *RetTy = Type::getInt32Ty(Ctx);
419 SmallVector<Register, 2> Results;
420 for (auto Libcall : Libcalls) {
421 auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
422 auto Status =
423 createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
424 {{MI.getOperand(2).getReg(), ArgTy},
425 {MI.getOperand(3).getReg(), ArgTy}});
427 if (Status != LegalizerHelper::Legalized)
428 return false;
430 auto ProcessedResult =
431 Libcalls.size() == 1
432 ? OriginalResult
433 : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
435 // We have a result, but we need to transform it into a proper 1-bit 0 or
436 // 1, taking into account the different peculiarities of the values
437 // returned by the comparison functions.
438 CmpInst::Predicate ResultPred = Libcall.Predicate;
439 if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
440 // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
441 // to keep the types consistent.
442 MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
443 } else {
444 // We need to compare against 0.
445 assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
446 auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
447 MIRBuilder.buildConstant(Zero, 0);
448 MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
450 Results.push_back(ProcessedResult);
453 if (Results.size() != 1) {
454 assert(Results.size() == 2 && "Unexpected number of results");
455 MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
457 break;
459 case G_FCONSTANT: {
460 // Convert to integer constants, while preserving the binary representation.
461 auto AsInteger =
462 MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
463 MIRBuilder.buildConstant(MI.getOperand(0).getReg(),
464 *ConstantInt::get(Ctx, AsInteger));
465 break;
469 MI.eraseFromParent();
470 return true;