[ARM] MVE big endian bitcasts
[llvm-complete.git] / test / Transforms / SimpleLoopUnswitch / exponential-switch-unswitch.ll
blob312c741ae895f5ff0b1dd51787c187361df24d6a
2 ; Here we have 5-way unswitchable switch with each successor also having an unswitchable
3 ; exiting branch in it. If we start unswitching those branches we start duplicating the
4 ; whole switch. This can easily lead to exponential behavior w/o proper control.
5 ; On a real-life testcase there was 16-way switch and that took forever to compile w/o
6 ; a cost control.
9 ; When we use the stricted multiplier candidates formula (unscaled candidates == 0)
10 ; we should be getting just a single loop.
12 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
13 ; RUN:     -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=1 \
14 ; RUN:     -passes='loop(unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1
16 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
17 ; RUN:     -unswitch-num-initial-unscaled-candidates=0 -unswitch-siblings-toplevel-div=16 \
18 ; RUN:     -passes='loop(unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | FileCheck %s --check-prefixes=LOOP1
21 ; With relaxed candidates multiplier (unscaled candidates == 8) we should allow
22 ; some unswitches to happen until siblings multiplier starts kicking in:
24 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
25 ; RUN:     -unswitch-num-initial-unscaled-candidates=8 -unswitch-siblings-toplevel-div=1 \
26 ; RUN:     -passes='loop(unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \
27 ; RUN:     sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-RELAX
29 ; With relaxed candidates multiplier (unscaled candidates == 8) and with relaxed
30 ; siblings multiplier for top-level loops (toplevel-div == 8) we should get
31 ; considerably more copies of the loop (especially top-level ones).
33 ; RUN: opt < %s -enable-unswitch-cost-multiplier=true \
34 ; RUN:     -unswitch-num-initial-unscaled-candidates=8 -unswitch-siblings-toplevel-div=8 \
35 ; RUN:     -passes='loop(unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \
36 ; RUN:     sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-RELAX2
38 ; We get hundreds of copies of the loop when cost multiplier is disabled:
40 ; RUN: opt < %s -enable-unswitch-cost-multiplier=false \
41 ; RUN:     -passes='loop(unswitch<nontrivial>),print<loops>' -disable-output 2>&1 | \
42 ; RUN:     sort -b -k 1 | FileCheck %s --check-prefixes=LOOP-MAX
45 ; Single loop nest, not unswitched
46 ; LOOP1:     Loop at depth 1 containing:
47 ; LOOP1-NOT: Loop at depth 1 containing:
48 ; LOOP1:     Loop at depth 2 containing:
49 ; LOOP1-NOT: Loop at depth 2 containing:
51 ; Somewhat relaxed restrictions on candidates:
52 ; LOOP-RELAX-COUNT-5:     Loop at depth 1 containing:
53 ; LOOP-RELAX-NOT: Loop at depth 1 containing:
54 ; LOOP-RELAX-COUNT-32:     Loop at depth 2 containing:
55 ; LOOP-RELAX-NOT: Loop at depth 2 containing:
57 ; Even more relaxed restrictions on candidates and siblings.
58 ; LOOP-RELAX2-COUNT-11:     Loop at depth 1 containing:
59 ; LOOP-RELAX2-NOT: Loop at depth 1 containing:
60 ; LOOP-RELAX2-COUNT-40:     Loop at depth 2 containing:
61 ; LOOP-RELAX-NOT: Loop at depth 2 containing:
63 ; Unswitched as much as it could (with multiplier disabled).
64 ; LOOP-MAX-COUNT-56:     Loop at depth 1 containing:
65 ; LOOP-MAX-NOT: Loop at depth 1 containing:
66 ; LOOP-MAX-COUNT-111:     Loop at depth 2 containing:
67 ; LOOP-MAX-NOT: Loop at depth 2 containing:
69 define i32 @loop_switch(i32* %addr, i32 %c1, i32 %c2) {
70 entry:
71   %addr1 = getelementptr i32, i32* %addr, i64 0
72   %addr2 = getelementptr i32, i32* %addr, i64 1
73   %check0 = icmp eq i32 %c2, 0
74   %check1 = icmp eq i32 %c2, 31
75   %check2 = icmp eq i32 %c2, 32
76   %check3 = icmp eq i32 %c2, 33
77   %check4 = icmp eq i32 %c2, 34
78   br label %outer_loop
80 outer_loop:
81   %iv1 = phi i32 [0, %entry], [%iv1.next, %outer_latch]
82   %iv1.next = add i32 %iv1, 1
83   br label %inner_loop
84 inner_loop:
85   %iv2 = phi i32 [0, %outer_loop], [%iv2.next, %inner_latch]
86   %iv2.next = add i32 %iv2, 1
87   switch i32 %c1, label %inner_latch [
88     i32 0, label %case0
89     i32 1, label %case1
90     i32 2, label %case2
91     i32 3, label %case3
92     i32 4, label %case4
93   ]
95 case4:
96   br i1 %check4, label %exit, label %inner_latch
97 case3:
98   br i1 %check3, label %exit, label %inner_latch
99 case2:
100   br i1 %check2, label %exit, label %inner_latch
101 case1:
102   br i1 %check1, label %exit, label %inner_latch
103 case0:
104   br i1 %check0, label %exit, label %inner_latch
106 inner_latch:
107   store volatile i32 0, i32* %addr1
108   %test_inner = icmp slt i32 %iv2, 50
109   br i1 %test_inner, label %inner_loop, label %outer_latch
111 outer_latch:
112   store volatile i32 0, i32* %addr2
113   %test_outer = icmp slt i32 %iv1, 50
114   br i1 %test_outer, label %outer_loop, label %exit
116 exit:                                            ; preds = %bci_0
117   ret i32 1