1 //===- Local.cpp - Functions to perform local transformations -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform various local transformations to the
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
86 using namespace llvm::PatternMatch
;
88 #define DEBUG_TYPE "local"
90 STATISTIC(NumRemoved
, "Number of unreachable basic blocks removed");
92 //===----------------------------------------------------------------------===//
93 // Local constant propagation.
96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
97 /// constant value, convert it into an unconditional branch to the constant
98 /// destination. This is a nontrivial operation because the successors of this
99 /// basic block must have their PHI nodes updated.
100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
101 /// conditions and indirectbr addresses this might make dead if
102 /// DeleteDeadConditions is true.
103 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
, bool DeleteDeadConditions
,
104 const TargetLibraryInfo
*TLI
,
105 DeferredDominance
*DDT
) {
106 TerminatorInst
*T
= BB
->getTerminator();
107 IRBuilder
<> Builder(T
);
109 // Branch - See if we are conditional jumping on constant
110 if (auto *BI
= dyn_cast
<BranchInst
>(T
)) {
111 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
112 BasicBlock
*Dest1
= BI
->getSuccessor(0);
113 BasicBlock
*Dest2
= BI
->getSuccessor(1);
115 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
116 // Are we branching on constant?
117 // YES. Change to unconditional branch...
118 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
119 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
121 // Let the basic block know that we are letting go of it. Based on this,
122 // it will adjust it's PHI nodes.
123 OldDest
->removePredecessor(BB
);
125 // Replace the conditional branch with an unconditional one.
126 Builder
.CreateBr(Destination
);
127 BI
->eraseFromParent();
129 DDT
->deleteEdge(BB
, OldDest
);
133 if (Dest2
== Dest1
) { // Conditional branch to same location?
134 // This branch matches something like this:
135 // br bool %cond, label %Dest, label %Dest
136 // and changes it into: br label %Dest
138 // Let the basic block know that we are letting go of one copy of it.
139 assert(BI
->getParent() && "Terminator not inserted in block!");
140 Dest1
->removePredecessor(BI
->getParent());
142 // Replace the conditional branch with an unconditional one.
143 Builder
.CreateBr(Dest1
);
144 Value
*Cond
= BI
->getCondition();
145 BI
->eraseFromParent();
146 if (DeleteDeadConditions
)
147 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
153 if (auto *SI
= dyn_cast
<SwitchInst
>(T
)) {
154 // If we are switching on a constant, we can convert the switch to an
155 // unconditional branch.
156 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
157 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
158 BasicBlock
*TheOnlyDest
= DefaultDest
;
160 // If the default is unreachable, ignore it when searching for TheOnlyDest.
161 if (isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg()) &&
162 SI
->getNumCases() > 0) {
163 TheOnlyDest
= SI
->case_begin()->getCaseSuccessor();
166 // Figure out which case it goes to.
167 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
168 // Found case matching a constant operand?
169 if (i
->getCaseValue() == CI
) {
170 TheOnlyDest
= i
->getCaseSuccessor();
174 // Check to see if this branch is going to the same place as the default
175 // dest. If so, eliminate it as an explicit compare.
176 if (i
->getCaseSuccessor() == DefaultDest
) {
177 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
178 unsigned NCases
= SI
->getNumCases();
179 // Fold the case metadata into the default if there will be any branches
180 // left, unless the metadata doesn't match the switch.
181 if (NCases
> 1 && MD
&& MD
->getNumOperands() == 2 + NCases
) {
182 // Collect branch weights into a vector.
183 SmallVector
<uint32_t, 8> Weights
;
184 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
186 auto *CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
187 Weights
.push_back(CI
->getValue().getZExtValue());
189 // Merge weight of this case to the default weight.
190 unsigned idx
= i
->getCaseIndex();
191 Weights
[0] += Weights
[idx
+1];
192 // Remove weight for this case.
193 std::swap(Weights
[idx
+1], Weights
.back());
195 SI
->setMetadata(LLVMContext::MD_prof
,
196 MDBuilder(BB
->getContext()).
197 createBranchWeights(Weights
));
199 // Remove this entry.
200 BasicBlock
*ParentBB
= SI
->getParent();
201 DefaultDest
->removePredecessor(ParentBB
);
202 i
= SI
->removeCase(i
);
205 DDT
->deleteEdge(ParentBB
, DefaultDest
);
209 // Otherwise, check to see if the switch only branches to one destination.
210 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
212 if (i
->getCaseSuccessor() != TheOnlyDest
)
213 TheOnlyDest
= nullptr;
215 // Increment this iterator as we haven't removed the case.
219 if (CI
&& !TheOnlyDest
) {
220 // Branching on a constant, but not any of the cases, go to the default
222 TheOnlyDest
= SI
->getDefaultDest();
225 // If we found a single destination that we can fold the switch into, do so
228 // Insert the new branch.
229 Builder
.CreateBr(TheOnlyDest
);
230 BasicBlock
*BB
= SI
->getParent();
231 std::vector
<DominatorTree::UpdateType
> Updates
;
233 Updates
.reserve(SI
->getNumSuccessors() - 1);
235 // Remove entries from PHI nodes which we no longer branch to...
236 for (BasicBlock
*Succ
: SI
->successors()) {
237 // Found case matching a constant operand?
238 if (Succ
== TheOnlyDest
) {
239 TheOnlyDest
= nullptr; // Don't modify the first branch to TheOnlyDest
241 Succ
->removePredecessor(BB
);
243 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
247 // Delete the old switch.
248 Value
*Cond
= SI
->getCondition();
249 SI
->eraseFromParent();
250 if (DeleteDeadConditions
)
251 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
253 DDT
->applyUpdates(Updates
);
257 if (SI
->getNumCases() == 1) {
258 // Otherwise, we can fold this switch into a conditional branch
259 // instruction if it has only one non-default destination.
260 auto FirstCase
= *SI
->case_begin();
261 Value
*Cond
= Builder
.CreateICmpEQ(SI
->getCondition(),
262 FirstCase
.getCaseValue(), "cond");
264 // Insert the new branch.
265 BranchInst
*NewBr
= Builder
.CreateCondBr(Cond
,
266 FirstCase
.getCaseSuccessor(),
267 SI
->getDefaultDest());
268 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
269 if (MD
&& MD
->getNumOperands() == 3) {
270 ConstantInt
*SICase
=
271 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
273 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(1));
274 assert(SICase
&& SIDef
);
275 // The TrueWeight should be the weight for the single case of SI.
276 NewBr
->setMetadata(LLVMContext::MD_prof
,
277 MDBuilder(BB
->getContext()).
278 createBranchWeights(SICase
->getValue().getZExtValue(),
279 SIDef
->getValue().getZExtValue()));
282 // Update make.implicit metadata to the newly-created conditional branch.
283 MDNode
*MakeImplicitMD
= SI
->getMetadata(LLVMContext::MD_make_implicit
);
285 NewBr
->setMetadata(LLVMContext::MD_make_implicit
, MakeImplicitMD
);
287 // Delete the old switch.
288 SI
->eraseFromParent();
294 if (auto *IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
295 // indirectbr blockaddress(@F, @BB) -> br label @BB
297 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
298 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
299 std::vector
<DominatorTree::UpdateType
> Updates
;
301 Updates
.reserve(IBI
->getNumDestinations() - 1);
303 // Insert the new branch.
304 Builder
.CreateBr(TheOnlyDest
);
306 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
307 if (IBI
->getDestination(i
) == TheOnlyDest
) {
308 TheOnlyDest
= nullptr;
310 BasicBlock
*ParentBB
= IBI
->getParent();
311 BasicBlock
*DestBB
= IBI
->getDestination(i
);
312 DestBB
->removePredecessor(ParentBB
);
314 Updates
.push_back({DominatorTree::Delete
, ParentBB
, DestBB
});
317 Value
*Address
= IBI
->getAddress();
318 IBI
->eraseFromParent();
319 if (DeleteDeadConditions
)
320 RecursivelyDeleteTriviallyDeadInstructions(Address
, TLI
);
322 // If we didn't find our destination in the IBI successor list, then we
323 // have undefined behavior. Replace the unconditional branch with an
324 // 'unreachable' instruction.
326 BB
->getTerminator()->eraseFromParent();
327 new UnreachableInst(BB
->getContext(), BB
);
331 DDT
->applyUpdates(Updates
);
339 //===----------------------------------------------------------------------===//
340 // Local dead code elimination.
343 /// isInstructionTriviallyDead - Return true if the result produced by the
344 /// instruction is not used, and the instruction has no side effects.
346 bool llvm::isInstructionTriviallyDead(Instruction
*I
,
347 const TargetLibraryInfo
*TLI
) {
350 return wouldInstructionBeTriviallyDead(I
, TLI
);
353 bool llvm::wouldInstructionBeTriviallyDead(Instruction
*I
,
354 const TargetLibraryInfo
*TLI
) {
355 if (isa
<TerminatorInst
>(I
))
358 // We don't want the landingpad-like instructions removed by anything this
363 // We don't want debug info removed by anything this general, unless
364 // debug info is empty.
365 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
366 if (DDI
->getAddress())
370 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
375 if (DbgLabelInst
*DLI
= dyn_cast
<DbgLabelInst
>(I
)) {
381 if (!I
->mayHaveSideEffects())
384 // Special case intrinsics that "may have side effects" but can be deleted
386 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
387 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
388 if (II
->getIntrinsicID() == Intrinsic::stacksave
||
389 II
->getIntrinsicID() == Intrinsic::launder_invariant_group
)
392 // Lifetime intrinsics are dead when their right-hand is undef.
393 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
||
394 II
->getIntrinsicID() == Intrinsic::lifetime_end
)
395 return isa
<UndefValue
>(II
->getArgOperand(1));
397 // Assumptions are dead if their condition is trivially true. Guards on
398 // true are operationally no-ops. In the future we can consider more
399 // sophisticated tradeoffs for guards considering potential for check
400 // widening, but for now we keep things simple.
401 if (II
->getIntrinsicID() == Intrinsic::assume
||
402 II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
403 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
404 return !Cond
->isZero();
410 if (isAllocLikeFn(I
, TLI
))
413 if (CallInst
*CI
= isFreeCall(I
, TLI
))
414 if (Constant
*C
= dyn_cast
<Constant
>(CI
->getArgOperand(0)))
415 return C
->isNullValue() || isa
<UndefValue
>(C
);
417 if (CallSite CS
= CallSite(I
))
418 if (isMathLibCallNoop(CS
, TLI
))
424 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
425 /// trivially dead instruction, delete it. If that makes any of its operands
426 /// trivially dead, delete them too, recursively. Return true if any
427 /// instructions were deleted.
429 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value
*V
,
430 const TargetLibraryInfo
*TLI
) {
431 Instruction
*I
= dyn_cast
<Instruction
>(V
);
432 if (!I
|| !I
->use_empty() || !isInstructionTriviallyDead(I
, TLI
))
435 SmallVector
<Instruction
*, 16> DeadInsts
;
436 DeadInsts
.push_back(I
);
437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts
, TLI
);
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443 SmallVectorImpl
<Instruction
*> &DeadInsts
, const TargetLibraryInfo
*TLI
) {
444 // Process the dead instruction list until empty.
445 while (!DeadInsts
.empty()) {
446 Instruction
&I
= *DeadInsts
.pop_back_val();
447 assert(I
.use_empty() && "Instructions with uses are not dead.");
448 assert(isInstructionTriviallyDead(&I
, TLI
) &&
449 "Live instruction found in dead worklist!");
451 // Don't lose the debug info while deleting the instructions.
454 // Null out all of the instruction's operands to see if any operand becomes
456 for (Use
&OpU
: I
.operands()) {
457 Value
*OpV
= OpU
.get();
460 if (!OpV
->use_empty())
463 // If the operand is an instruction that became dead as we nulled out the
464 // operand, and if it is 'trivially' dead, delete it in a future loop
466 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
467 if (isInstructionTriviallyDead(OpI
, TLI
))
468 DeadInsts
.push_back(OpI
);
475 /// areAllUsesEqual - Check whether the uses of a value are all the same.
476 /// This is similar to Instruction::hasOneUse() except this will also return
477 /// true when there are no uses or multiple uses that all refer to the same
479 static bool areAllUsesEqual(Instruction
*I
) {
480 Value::user_iterator UI
= I
->user_begin();
481 Value::user_iterator UE
= I
->user_end();
486 for (++UI
; UI
!= UE
; ++UI
) {
493 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
494 /// dead PHI node, due to being a def-use chain of single-use nodes that
495 /// either forms a cycle or is terminated by a trivially dead instruction,
496 /// delete it. If that makes any of its operands trivially dead, delete them
497 /// too, recursively. Return true if a change was made.
498 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
,
499 const TargetLibraryInfo
*TLI
) {
500 SmallPtrSet
<Instruction
*, 4> Visited
;
501 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
502 I
= cast
<Instruction
>(*I
->user_begin())) {
504 return RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
506 // If we find an instruction more than once, we're on a cycle that
507 // won't prove fruitful.
508 if (!Visited
.insert(I
).second
) {
509 // Break the cycle and delete the instruction and its operands.
510 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
511 (void)RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
519 simplifyAndDCEInstruction(Instruction
*I
,
520 SmallSetVector
<Instruction
*, 16> &WorkList
,
521 const DataLayout
&DL
,
522 const TargetLibraryInfo
*TLI
) {
523 if (isInstructionTriviallyDead(I
, TLI
)) {
524 salvageDebugInfo(*I
);
526 // Null out all of the instruction's operands to see if any operand becomes
528 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
529 Value
*OpV
= I
->getOperand(i
);
530 I
->setOperand(i
, nullptr);
532 if (!OpV
->use_empty() || I
== OpV
)
535 // If the operand is an instruction that became dead as we nulled out the
536 // operand, and if it is 'trivially' dead, delete it in a future loop
538 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
539 if (isInstructionTriviallyDead(OpI
, TLI
))
540 WorkList
.insert(OpI
);
543 I
->eraseFromParent();
548 if (Value
*SimpleV
= SimplifyInstruction(I
, DL
)) {
549 // Add the users to the worklist. CAREFUL: an instruction can use itself,
550 // in the case of a phi node.
551 for (User
*U
: I
->users()) {
553 WorkList
.insert(cast
<Instruction
>(U
));
557 // Replace the instruction with its simplified value.
558 bool Changed
= false;
559 if (!I
->use_empty()) {
560 I
->replaceAllUsesWith(SimpleV
);
563 if (isInstructionTriviallyDead(I
, TLI
)) {
564 I
->eraseFromParent();
572 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
573 /// simplify any instructions in it and recursively delete dead instructions.
575 /// This returns true if it changed the code, note that it can delete
576 /// instructions in other blocks as well in this block.
577 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
,
578 const TargetLibraryInfo
*TLI
) {
579 bool MadeChange
= false;
580 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
583 // In debug builds, ensure that the terminator of the block is never replaced
584 // or deleted by these simplifications. The idea of simplification is that it
585 // cannot introduce new instructions, and there is no way to replace the
586 // terminator of a block without introducing a new instruction.
587 AssertingVH
<Instruction
> TerminatorVH(&BB
->back());
590 SmallSetVector
<Instruction
*, 16> WorkList
;
591 // Iterate over the original function, only adding insts to the worklist
592 // if they actually need to be revisited. This avoids having to pre-init
593 // the worklist with the entire function's worth of instructions.
594 for (BasicBlock::iterator BI
= BB
->begin(), E
= std::prev(BB
->end());
596 assert(!BI
->isTerminator());
597 Instruction
*I
= &*BI
;
600 // We're visiting this instruction now, so make sure it's not in the
601 // worklist from an earlier visit.
602 if (!WorkList
.count(I
))
603 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
606 while (!WorkList
.empty()) {
607 Instruction
*I
= WorkList
.pop_back_val();
608 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
613 //===----------------------------------------------------------------------===//
614 // Control Flow Graph Restructuring.
617 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
618 /// method is called when we're about to delete Pred as a predecessor of BB. If
619 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
621 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
622 /// nodes that collapse into identity values. For example, if we have:
623 /// x = phi(1, 0, 0, 0)
626 /// .. and delete the predecessor corresponding to the '1', this will attempt to
627 /// recursively fold the and to 0.
628 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
,
629 DeferredDominance
*DDT
) {
630 // This only adjusts blocks with PHI nodes.
631 if (!isa
<PHINode
>(BB
->begin()))
634 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
635 // them down. This will leave us with single entry phi nodes and other phis
636 // that can be removed.
637 BB
->removePredecessor(Pred
, true);
639 WeakTrackingVH PhiIt
= &BB
->front();
640 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
641 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
642 Value
*OldPhiIt
= PhiIt
;
644 if (!recursivelySimplifyInstruction(PN
))
647 // If recursive simplification ended up deleting the next PHI node we would
648 // iterate to, then our iterator is invalid, restart scanning from the top
650 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
653 DDT
->deleteEdge(Pred
, BB
);
656 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
657 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
658 /// between them, moving the instructions in the predecessor into DestBB and
659 /// deleting the predecessor block.
660 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
, DominatorTree
*DT
,
661 DeferredDominance
*DDT
) {
662 assert(!(DT
&& DDT
) && "Cannot call with both DT and DDT.");
664 // If BB has single-entry PHI nodes, fold them.
665 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
666 Value
*NewVal
= PN
->getIncomingValue(0);
667 // Replace self referencing PHI with undef, it must be dead.
668 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
669 PN
->replaceAllUsesWith(NewVal
);
670 PN
->eraseFromParent();
673 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
674 assert(PredBB
&& "Block doesn't have a single predecessor!");
676 bool ReplaceEntryBB
= false;
677 if (PredBB
== &DestBB
->getParent()->getEntryBlock())
678 ReplaceEntryBB
= true;
680 // Deferred DT update: Collect all the edges that enter PredBB. These
681 // dominator edges will be redirected to DestBB.
682 std::vector
<DominatorTree::UpdateType
> Updates
;
683 if (DDT
&& !ReplaceEntryBB
) {
684 Updates
.reserve(1 + (2 * pred_size(PredBB
)));
685 Updates
.push_back({DominatorTree::Delete
, PredBB
, DestBB
});
686 for (auto I
= pred_begin(PredBB
), E
= pred_end(PredBB
); I
!= E
; ++I
) {
687 Updates
.push_back({DominatorTree::Delete
, *I
, PredBB
});
688 // This predecessor of PredBB may already have DestBB as a successor.
689 if (llvm::find(successors(*I
), DestBB
) == succ_end(*I
))
690 Updates
.push_back({DominatorTree::Insert
, *I
, DestBB
});
694 // Zap anything that took the address of DestBB. Not doing this will give the
695 // address an invalid value.
696 if (DestBB
->hasAddressTaken()) {
697 BlockAddress
*BA
= BlockAddress::get(DestBB
);
698 Constant
*Replacement
=
699 ConstantInt::get(Type::getInt32Ty(BA
->getContext()), 1);
700 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
702 BA
->destroyConstant();
705 // Anything that branched to PredBB now branches to DestBB.
706 PredBB
->replaceAllUsesWith(DestBB
);
708 // Splice all the instructions from PredBB to DestBB.
709 PredBB
->getTerminator()->eraseFromParent();
710 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
712 // If the PredBB is the entry block of the function, move DestBB up to
713 // become the entry block after we erase PredBB.
715 DestBB
->moveAfter(PredBB
);
718 // For some irreducible CFG we end up having forward-unreachable blocks
719 // so check if getNode returns a valid node before updating the domtree.
720 if (DomTreeNode
*DTN
= DT
->getNode(PredBB
)) {
721 BasicBlock
*PredBBIDom
= DTN
->getIDom()->getBlock();
722 DT
->changeImmediateDominator(DestBB
, PredBBIDom
);
723 DT
->eraseNode(PredBB
);
728 DDT
->deleteBB(PredBB
); // Deferred deletion of BB.
730 // The entry block was removed and there is no external interface for the
731 // dominator tree to be notified of this change. In this corner-case we
732 // recalculate the entire tree.
733 DDT
->recalculate(*(DestBB
->getParent()));
735 DDT
->applyUpdates(Updates
);
737 PredBB
->eraseFromParent(); // Nuke BB.
741 /// CanMergeValues - Return true if we can choose one of these values to use
742 /// in place of the other. Note that we will always choose the non-undef
744 static bool CanMergeValues(Value
*First
, Value
*Second
) {
745 return First
== Second
|| isa
<UndefValue
>(First
) || isa
<UndefValue
>(Second
);
748 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
749 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
751 /// Assumption: Succ is the single successor for BB.
752 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
753 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
755 LLVM_DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
756 << Succ
->getName() << "\n");
757 // Shortcut, if there is only a single predecessor it must be BB and merging
759 if (Succ
->getSinglePredecessor()) return true;
761 // Make a list of the predecessors of BB
762 SmallPtrSet
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
764 // Look at all the phi nodes in Succ, to see if they present a conflict when
765 // merging these blocks
766 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
767 PHINode
*PN
= cast
<PHINode
>(I
);
769 // If the incoming value from BB is again a PHINode in
770 // BB which has the same incoming value for *PI as PN does, we can
771 // merge the phi nodes and then the blocks can still be merged
772 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
773 if (BBPN
&& BBPN
->getParent() == BB
) {
774 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
775 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
776 if (BBPreds
.count(IBB
) &&
777 !CanMergeValues(BBPN
->getIncomingValueForBlock(IBB
),
778 PN
->getIncomingValue(PI
))) {
780 << "Can't fold, phi node " << PN
->getName() << " in "
781 << Succ
->getName() << " is conflicting with "
782 << BBPN
->getName() << " with regard to common predecessor "
783 << IBB
->getName() << "\n");
788 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
789 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
790 // See if the incoming value for the common predecessor is equal to the
791 // one for BB, in which case this phi node will not prevent the merging
793 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
794 if (BBPreds
.count(IBB
) &&
795 !CanMergeValues(Val
, PN
->getIncomingValue(PI
))) {
796 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName()
797 << " in " << Succ
->getName()
798 << " is conflicting with regard to common "
799 << "predecessor " << IBB
->getName() << "\n");
809 using PredBlockVector
= SmallVector
<BasicBlock
*, 16>;
810 using IncomingValueMap
= DenseMap
<BasicBlock
*, Value
*>;
812 /// Determines the value to use as the phi node input for a block.
814 /// Select between \p OldVal any value that we know flows from \p BB
815 /// to a particular phi on the basis of which one (if either) is not
816 /// undef. Update IncomingValues based on the selected value.
818 /// \param OldVal The value we are considering selecting.
819 /// \param BB The block that the value flows in from.
820 /// \param IncomingValues A map from block-to-value for other phi inputs
821 /// that we have examined.
823 /// \returns the selected value.
824 static Value
*selectIncomingValueForBlock(Value
*OldVal
, BasicBlock
*BB
,
825 IncomingValueMap
&IncomingValues
) {
826 if (!isa
<UndefValue
>(OldVal
)) {
827 assert((!IncomingValues
.count(BB
) ||
828 IncomingValues
.find(BB
)->second
== OldVal
) &&
829 "Expected OldVal to match incoming value from BB!");
831 IncomingValues
.insert(std::make_pair(BB
, OldVal
));
835 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
836 if (It
!= IncomingValues
.end()) return It
->second
;
841 /// Create a map from block to value for the operands of a
844 /// Create a map from block to value for each non-undef value flowing
847 /// \param PN The phi we are collecting the map for.
848 /// \param IncomingValues [out] The map from block to value for this phi.
849 static void gatherIncomingValuesToPhi(PHINode
*PN
,
850 IncomingValueMap
&IncomingValues
) {
851 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
852 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
853 Value
*V
= PN
->getIncomingValue(i
);
855 if (!isa
<UndefValue
>(V
))
856 IncomingValues
.insert(std::make_pair(BB
, V
));
860 /// Replace the incoming undef values to a phi with the values
861 /// from a block-to-value map.
863 /// \param PN The phi we are replacing the undefs in.
864 /// \param IncomingValues A map from block to value.
865 static void replaceUndefValuesInPhi(PHINode
*PN
,
866 const IncomingValueMap
&IncomingValues
) {
867 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
868 Value
*V
= PN
->getIncomingValue(i
);
870 if (!isa
<UndefValue
>(V
)) continue;
872 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
873 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
874 if (It
== IncomingValues
.end()) continue;
876 PN
->setIncomingValue(i
, It
->second
);
880 /// Replace a value flowing from a block to a phi with
881 /// potentially multiple instances of that value flowing from the
882 /// block's predecessors to the phi.
884 /// \param BB The block with the value flowing into the phi.
885 /// \param BBPreds The predecessors of BB.
886 /// \param PN The phi that we are updating.
887 static void redirectValuesFromPredecessorsToPhi(BasicBlock
*BB
,
888 const PredBlockVector
&BBPreds
,
890 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
891 assert(OldVal
&& "No entry in PHI for Pred BB!");
893 IncomingValueMap IncomingValues
;
895 // We are merging two blocks - BB, and the block containing PN - and
896 // as a result we need to redirect edges from the predecessors of BB
897 // to go to the block containing PN, and update PN
898 // accordingly. Since we allow merging blocks in the case where the
899 // predecessor and successor blocks both share some predecessors,
900 // and where some of those common predecessors might have undef
901 // values flowing into PN, we want to rewrite those values to be
902 // consistent with the non-undef values.
904 gatherIncomingValuesToPhi(PN
, IncomingValues
);
906 // If this incoming value is one of the PHI nodes in BB, the new entries
907 // in the PHI node are the entries from the old PHI.
908 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
909 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
910 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
) {
911 // Note that, since we are merging phi nodes and BB and Succ might
912 // have common predecessors, we could end up with a phi node with
913 // identical incoming branches. This will be cleaned up later (and
914 // will trigger asserts if we try to clean it up now, without also
915 // simplifying the corresponding conditional branch).
916 BasicBlock
*PredBB
= OldValPN
->getIncomingBlock(i
);
917 Value
*PredVal
= OldValPN
->getIncomingValue(i
);
918 Value
*Selected
= selectIncomingValueForBlock(PredVal
, PredBB
,
921 // And add a new incoming value for this predecessor for the
922 // newly retargeted branch.
923 PN
->addIncoming(Selected
, PredBB
);
926 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
) {
927 // Update existing incoming values in PN for this
928 // predecessor of BB.
929 BasicBlock
*PredBB
= BBPreds
[i
];
930 Value
*Selected
= selectIncomingValueForBlock(OldVal
, PredBB
,
933 // And add a new incoming value for this predecessor for the
934 // newly retargeted branch.
935 PN
->addIncoming(Selected
, PredBB
);
939 replaceUndefValuesInPhi(PN
, IncomingValues
);
942 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
943 /// unconditional branch, and contains no instructions other than PHI nodes,
944 /// potential side-effect free intrinsics and the branch. If possible,
945 /// eliminate BB by rewriting all the predecessors to branch to the successor
946 /// block and return true. If we can't transform, return false.
947 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
948 DeferredDominance
*DDT
) {
949 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
950 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
952 // We can't eliminate infinite loops.
953 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
954 if (BB
== Succ
) return false;
956 // Check to see if merging these blocks would cause conflicts for any of the
957 // phi nodes in BB or Succ. If not, we can safely merge.
958 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
960 // Check for cases where Succ has multiple predecessors and a PHI node in BB
961 // has uses which will not disappear when the PHI nodes are merged. It is
962 // possible to handle such cases, but difficult: it requires checking whether
963 // BB dominates Succ, which is non-trivial to calculate in the case where
964 // Succ has multiple predecessors. Also, it requires checking whether
965 // constructing the necessary self-referential PHI node doesn't introduce any
966 // conflicts; this isn't too difficult, but the previous code for doing this
969 // Note that if this check finds a live use, BB dominates Succ, so BB is
970 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
971 // folding the branch isn't profitable in that case anyway.
972 if (!Succ
->getSinglePredecessor()) {
973 BasicBlock::iterator BBI
= BB
->begin();
974 while (isa
<PHINode
>(*BBI
)) {
975 for (Use
&U
: BBI
->uses()) {
976 if (PHINode
* PN
= dyn_cast
<PHINode
>(U
.getUser())) {
977 if (PN
->getIncomingBlock(U
) != BB
)
987 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
989 std::vector
<DominatorTree::UpdateType
> Updates
;
991 Updates
.reserve(1 + (2 * pred_size(BB
)));
992 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
993 // All predecessors of BB will be moved to Succ.
994 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
995 Updates
.push_back({DominatorTree::Delete
, *I
, BB
});
996 // This predecessor of BB may already have Succ as a successor.
997 if (llvm::find(successors(*I
), Succ
) == succ_end(*I
))
998 Updates
.push_back({DominatorTree::Insert
, *I
, Succ
});
1002 if (isa
<PHINode
>(Succ
->begin())) {
1003 // If there is more than one pred of succ, and there are PHI nodes in
1004 // the successor, then we need to add incoming edges for the PHI nodes
1006 const PredBlockVector
BBPreds(pred_begin(BB
), pred_end(BB
));
1008 // Loop over all of the PHI nodes in the successor of BB.
1009 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
1010 PHINode
*PN
= cast
<PHINode
>(I
);
1012 redirectValuesFromPredecessorsToPhi(BB
, BBPreds
, PN
);
1016 if (Succ
->getSinglePredecessor()) {
1017 // BB is the only predecessor of Succ, so Succ will end up with exactly
1018 // the same predecessors BB had.
1020 // Copy over any phi, debug or lifetime instruction.
1021 BB
->getTerminator()->eraseFromParent();
1022 Succ
->getInstList().splice(Succ
->getFirstNonPHI()->getIterator(),
1025 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
1026 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1027 assert(PN
->use_empty() && "There shouldn't be any uses here!");
1028 PN
->eraseFromParent();
1032 // If the unconditional branch we replaced contains llvm.loop metadata, we
1033 // add the metadata to the branch instructions in the predecessors.
1034 unsigned LoopMDKind
= BB
->getContext().getMDKindID("llvm.loop");
1035 Instruction
*TI
= BB
->getTerminator();
1037 if (MDNode
*LoopMD
= TI
->getMetadata(LoopMDKind
))
1038 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1039 BasicBlock
*Pred
= *PI
;
1040 Pred
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
1043 // Everything that jumped to BB now goes to Succ.
1044 BB
->replaceAllUsesWith(Succ
);
1045 if (!Succ
->hasName()) Succ
->takeName(BB
);
1048 DDT
->deleteBB(BB
); // Deferred deletion of the old basic block.
1049 DDT
->applyUpdates(Updates
);
1051 BB
->eraseFromParent(); // Delete the old basic block.
1056 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1057 /// nodes in this block. This doesn't try to be clever about PHI nodes
1058 /// which differ only in the order of the incoming values, but instcombine
1059 /// orders them so it usually won't matter.
1060 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
1061 // This implementation doesn't currently consider undef operands
1062 // specially. Theoretically, two phis which are identical except for
1063 // one having an undef where the other doesn't could be collapsed.
1065 struct PHIDenseMapInfo
{
1066 static PHINode
*getEmptyKey() {
1067 return DenseMapInfo
<PHINode
*>::getEmptyKey();
1070 static PHINode
*getTombstoneKey() {
1071 return DenseMapInfo
<PHINode
*>::getTombstoneKey();
1074 static unsigned getHashValue(PHINode
*PN
) {
1075 // Compute a hash value on the operands. Instcombine will likely have
1076 // sorted them, which helps expose duplicates, but we have to check all
1077 // the operands to be safe in case instcombine hasn't run.
1078 return static_cast<unsigned>(hash_combine(
1079 hash_combine_range(PN
->value_op_begin(), PN
->value_op_end()),
1080 hash_combine_range(PN
->block_begin(), PN
->block_end())));
1083 static bool isEqual(PHINode
*LHS
, PHINode
*RHS
) {
1084 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
1085 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1087 return LHS
->isIdenticalTo(RHS
);
1091 // Set of unique PHINodes.
1092 DenseSet
<PHINode
*, PHIDenseMapInfo
> PHISet
;
1094 // Examine each PHI.
1095 bool Changed
= false;
1096 for (auto I
= BB
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
++);) {
1097 auto Inserted
= PHISet
.insert(PN
);
1098 if (!Inserted
.second
) {
1099 // A duplicate. Replace this PHI with its duplicate.
1100 PN
->replaceAllUsesWith(*Inserted
.first
);
1101 PN
->eraseFromParent();
1104 // The RAUW can change PHIs that we already visited. Start over from the
1114 /// enforceKnownAlignment - If the specified pointer points to an object that
1115 /// we control, modify the object's alignment to PrefAlign. This isn't
1116 /// often possible though. If alignment is important, a more reliable approach
1117 /// is to simply align all global variables and allocation instructions to
1118 /// their preferred alignment from the beginning.
1119 static unsigned enforceKnownAlignment(Value
*V
, unsigned Align
,
1121 const DataLayout
&DL
) {
1122 assert(PrefAlign
> Align
);
1124 V
= V
->stripPointerCasts();
1126 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1127 // TODO: ideally, computeKnownBits ought to have used
1128 // AllocaInst::getAlignment() in its computation already, making
1129 // the below max redundant. But, as it turns out,
1130 // stripPointerCasts recurses through infinite layers of bitcasts,
1131 // while computeKnownBits is not allowed to traverse more than 6
1133 Align
= std::max(AI
->getAlignment(), Align
);
1134 if (PrefAlign
<= Align
)
1137 // If the preferred alignment is greater than the natural stack alignment
1138 // then don't round up. This avoids dynamic stack realignment.
1139 if (DL
.exceedsNaturalStackAlignment(PrefAlign
))
1141 AI
->setAlignment(PrefAlign
);
1145 if (auto *GO
= dyn_cast
<GlobalObject
>(V
)) {
1146 // TODO: as above, this shouldn't be necessary.
1147 Align
= std::max(GO
->getAlignment(), Align
);
1148 if (PrefAlign
<= Align
)
1151 // If there is a large requested alignment and we can, bump up the alignment
1152 // of the global. If the memory we set aside for the global may not be the
1153 // memory used by the final program then it is impossible for us to reliably
1154 // enforce the preferred alignment.
1155 if (!GO
->canIncreaseAlignment())
1158 GO
->setAlignment(PrefAlign
);
1165 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
1166 const DataLayout
&DL
,
1167 const Instruction
*CxtI
,
1168 AssumptionCache
*AC
,
1169 const DominatorTree
*DT
) {
1170 assert(V
->getType()->isPointerTy() &&
1171 "getOrEnforceKnownAlignment expects a pointer!");
1173 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, CxtI
, DT
);
1174 unsigned TrailZ
= Known
.countMinTrailingZeros();
1176 // Avoid trouble with ridiculously large TrailZ values, such as
1177 // those computed from a null pointer.
1178 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
1180 unsigned Align
= 1u << std::min(Known
.getBitWidth() - 1, TrailZ
);
1182 // LLVM doesn't support alignments larger than this currently.
1183 Align
= std::min(Align
, +Value::MaximumAlignment
);
1185 if (PrefAlign
> Align
)
1186 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
, DL
);
1188 // We don't need to make any adjustment.
1192 ///===---------------------------------------------------------------------===//
1193 /// Dbg Intrinsic utilities
1196 /// See if there is a dbg.value intrinsic for DIVar before I.
1197 static bool LdStHasDebugValue(DILocalVariable
*DIVar
, DIExpression
*DIExpr
,
1199 // Since we can't guarantee that the original dbg.declare instrinsic
1200 // is removed by LowerDbgDeclare(), we need to make sure that we are
1201 // not inserting the same dbg.value intrinsic over and over.
1202 BasicBlock::InstListType::iterator
PrevI(I
);
1203 if (PrevI
!= I
->getParent()->getInstList().begin()) {
1205 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(PrevI
))
1206 if (DVI
->getValue() == I
->getOperand(0) &&
1207 DVI
->getVariable() == DIVar
&&
1208 DVI
->getExpression() == DIExpr
)
1214 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1215 static bool PhiHasDebugValue(DILocalVariable
*DIVar
,
1216 DIExpression
*DIExpr
,
1218 // Since we can't guarantee that the original dbg.declare instrinsic
1219 // is removed by LowerDbgDeclare(), we need to make sure that we are
1220 // not inserting the same dbg.value intrinsic over and over.
1221 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1222 findDbgValues(DbgValues
, APN
);
1223 for (auto *DVI
: DbgValues
) {
1224 assert(DVI
->getValue() == APN
);
1225 if ((DVI
->getVariable() == DIVar
) && (DVI
->getExpression() == DIExpr
))
1231 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1232 /// (or fragment of the variable) described by \p DII.
1234 /// This is primarily intended as a helper for the different
1235 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1236 /// converted describes an alloca'd variable, so we need to use the
1237 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1238 /// identified as covering an n-bit fragment, if the store size of i1 is at
1240 static bool valueCoversEntireFragment(Type
*ValTy
, DbgInfoIntrinsic
*DII
) {
1241 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1242 uint64_t ValueSize
= DL
.getTypeAllocSizeInBits(ValTy
);
1243 if (auto FragmentSize
= DII
->getFragmentSizeInBits())
1244 return ValueSize
>= *FragmentSize
;
1245 // We can't always calculate the size of the DI variable (e.g. if it is a
1246 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1248 if (DII
->isAddressOfVariable())
1249 if (auto *AI
= dyn_cast_or_null
<AllocaInst
>(DII
->getVariableLocation()))
1250 if (auto FragmentSize
= AI
->getAllocationSizeInBits(DL
))
1251 return ValueSize
>= *FragmentSize
;
1252 // Could not determine size of variable. Conservatively return false.
1256 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1257 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1258 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic
*DII
,
1259 StoreInst
*SI
, DIBuilder
&Builder
) {
1260 assert(DII
->isAddressOfVariable());
1261 auto *DIVar
= DII
->getVariable();
1262 assert(DIVar
&& "Missing variable");
1263 auto *DIExpr
= DII
->getExpression();
1264 Value
*DV
= SI
->getOperand(0);
1266 if (!valueCoversEntireFragment(SI
->getValueOperand()->getType(), DII
)) {
1267 // FIXME: If storing to a part of the variable described by the dbg.declare,
1268 // then we want to insert a dbg.value for the corresponding fragment.
1269 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1271 // For now, when there is a store to parts of the variable (but we do not
1272 // know which part) we insert an dbg.value instrinsic to indicate that we
1273 // know nothing about the variable's content.
1274 DV
= UndefValue::get(DV
->getType());
1275 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1276 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1281 // If an argument is zero extended then use argument directly. The ZExt
1282 // may be zapped by an optimization pass in future.
1283 Argument
*ExtendedArg
= nullptr;
1284 if (ZExtInst
*ZExt
= dyn_cast
<ZExtInst
>(SI
->getOperand(0)))
1285 ExtendedArg
= dyn_cast
<Argument
>(ZExt
->getOperand(0));
1286 if (SExtInst
*SExt
= dyn_cast
<SExtInst
>(SI
->getOperand(0)))
1287 ExtendedArg
= dyn_cast
<Argument
>(SExt
->getOperand(0));
1289 // If this DII was already describing only a fragment of a variable, ensure
1290 // that fragment is appropriately narrowed here.
1291 // But if a fragment wasn't used, describe the value as the original
1292 // argument (rather than the zext or sext) so that it remains described even
1293 // if the sext/zext is optimized away. This widens the variable description,
1294 // leaving it up to the consumer to know how the smaller value may be
1295 // represented in a larger register.
1296 if (auto Fragment
= DIExpr
->getFragmentInfo()) {
1297 unsigned FragmentOffset
= Fragment
->OffsetInBits
;
1298 SmallVector
<uint64_t, 3> Ops(DIExpr
->elements_begin(),
1299 DIExpr
->elements_end() - 3);
1300 Ops
.push_back(dwarf::DW_OP_LLVM_fragment
);
1301 Ops
.push_back(FragmentOffset
);
1302 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1303 Ops
.push_back(DL
.getTypeSizeInBits(ExtendedArg
->getType()));
1304 DIExpr
= Builder
.createExpression(Ops
);
1308 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1309 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1313 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1314 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1315 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic
*DII
,
1316 LoadInst
*LI
, DIBuilder
&Builder
) {
1317 auto *DIVar
= DII
->getVariable();
1318 auto *DIExpr
= DII
->getExpression();
1319 assert(DIVar
&& "Missing variable");
1321 if (LdStHasDebugValue(DIVar
, DIExpr
, LI
))
1324 if (!valueCoversEntireFragment(LI
->getType(), DII
)) {
1325 // FIXME: If only referring to a part of the variable described by the
1326 // dbg.declare, then we want to insert a dbg.value for the corresponding
1328 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1333 // We are now tracking the loaded value instead of the address. In the
1334 // future if multi-location support is added to the IR, it might be
1335 // preferable to keep tracking both the loaded value and the original
1336 // address in case the alloca can not be elided.
1337 Instruction
*DbgValue
= Builder
.insertDbgValueIntrinsic(
1338 LI
, DIVar
, DIExpr
, DII
->getDebugLoc(), (Instruction
*)nullptr);
1339 DbgValue
->insertAfter(LI
);
1342 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1343 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1344 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic
*DII
,
1345 PHINode
*APN
, DIBuilder
&Builder
) {
1346 auto *DIVar
= DII
->getVariable();
1347 auto *DIExpr
= DII
->getExpression();
1348 assert(DIVar
&& "Missing variable");
1350 if (PhiHasDebugValue(DIVar
, DIExpr
, APN
))
1353 if (!valueCoversEntireFragment(APN
->getType(), DII
)) {
1354 // FIXME: If only referring to a part of the variable described by the
1355 // dbg.declare, then we want to insert a dbg.value for the corresponding
1357 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1362 BasicBlock
*BB
= APN
->getParent();
1363 auto InsertionPt
= BB
->getFirstInsertionPt();
1365 // The block may be a catchswitch block, which does not have a valid
1367 // FIXME: Insert dbg.value markers in the successors when appropriate.
1368 if (InsertionPt
!= BB
->end())
1369 Builder
.insertDbgValueIntrinsic(APN
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1373 /// Determine whether this alloca is either a VLA or an array.
1374 static bool isArray(AllocaInst
*AI
) {
1375 return AI
->isArrayAllocation() ||
1376 AI
->getType()->getElementType()->isArrayTy();
1379 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1380 /// of llvm.dbg.value intrinsics.
1381 bool llvm::LowerDbgDeclare(Function
&F
) {
1382 DIBuilder
DIB(*F
.getParent(), /*AllowUnresolved*/ false);
1383 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
1385 for (Instruction
&BI
: FI
)
1386 if (auto DDI
= dyn_cast
<DbgDeclareInst
>(&BI
))
1387 Dbgs
.push_back(DDI
);
1392 for (auto &I
: Dbgs
) {
1393 DbgDeclareInst
*DDI
= I
;
1394 AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress());
1395 // If this is an alloca for a scalar variable, insert a dbg.value
1396 // at each load and store to the alloca and erase the dbg.declare.
1397 // The dbg.values allow tracking a variable even if it is not
1398 // stored on the stack, while the dbg.declare can only describe
1399 // the stack slot (and at a lexical-scope granularity). Later
1400 // passes will attempt to elide the stack slot.
1401 if (!AI
|| isArray(AI
))
1404 // A volatile load/store means that the alloca can't be elided anyway.
1405 if (llvm::any_of(AI
->users(), [](User
*U
) -> bool {
1406 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
))
1407 return LI
->isVolatile();
1408 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
1409 return SI
->isVolatile();
1414 for (auto &AIUse
: AI
->uses()) {
1415 User
*U
= AIUse
.getUser();
1416 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1417 if (AIUse
.getOperandNo() == 1)
1418 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
1419 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1420 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
1421 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
1422 // This is a call by-value or some other instruction that
1423 // takes a pointer to the variable. Insert a *value*
1424 // intrinsic that describes the alloca.
1425 DIB
.insertDbgValueIntrinsic(AI
, DDI
->getVariable(),
1426 DDI
->getExpression(), DDI
->getDebugLoc(),
1430 DDI
->eraseFromParent();
1435 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1436 void llvm::insertDebugValuesForPHIs(BasicBlock
*BB
,
1437 SmallVectorImpl
<PHINode
*> &InsertedPHIs
) {
1438 assert(BB
&& "No BasicBlock to clone dbg.value(s) from.");
1439 if (InsertedPHIs
.size() == 0)
1442 // Map existing PHI nodes to their dbg.values.
1443 ValueToValueMapTy DbgValueMap
;
1444 for (auto &I
: *BB
) {
1445 if (auto DbgII
= dyn_cast
<DbgInfoIntrinsic
>(&I
)) {
1446 if (auto *Loc
= dyn_cast_or_null
<PHINode
>(DbgII
->getVariableLocation()))
1447 DbgValueMap
.insert({Loc
, DbgII
});
1450 if (DbgValueMap
.size() == 0)
1453 // Then iterate through the new PHIs and look to see if they use one of the
1454 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1455 // propagate the info through the new PHI.
1456 LLVMContext
&C
= BB
->getContext();
1457 for (auto PHI
: InsertedPHIs
) {
1458 BasicBlock
*Parent
= PHI
->getParent();
1459 // Avoid inserting an intrinsic into an EH block.
1460 if (Parent
->getFirstNonPHI()->isEHPad())
1462 auto PhiMAV
= MetadataAsValue::get(C
, ValueAsMetadata::get(PHI
));
1463 for (auto VI
: PHI
->operand_values()) {
1464 auto V
= DbgValueMap
.find(VI
);
1465 if (V
!= DbgValueMap
.end()) {
1466 auto *DbgII
= cast
<DbgInfoIntrinsic
>(V
->second
);
1467 Instruction
*NewDbgII
= DbgII
->clone();
1468 NewDbgII
->setOperand(0, PhiMAV
);
1469 auto InsertionPt
= Parent
->getFirstInsertionPt();
1470 assert(InsertionPt
!= Parent
->end() && "Ill-formed basic block");
1471 NewDbgII
->insertBefore(&*InsertionPt
);
1477 /// Finds all intrinsics declaring local variables as living in the memory that
1478 /// 'V' points to. This may include a mix of dbg.declare and
1479 /// dbg.addr intrinsics.
1480 TinyPtrVector
<DbgInfoIntrinsic
*> llvm::FindDbgAddrUses(Value
*V
) {
1481 // This function is hot. Check whether the value has any metadata to avoid a
1483 if (!V
->isUsedByMetadata())
1485 auto *L
= LocalAsMetadata::getIfExists(V
);
1488 auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
);
1492 TinyPtrVector
<DbgInfoIntrinsic
*> Declares
;
1493 for (User
*U
: MDV
->users()) {
1494 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(U
))
1495 if (DII
->isAddressOfVariable())
1496 Declares
.push_back(DII
);
1502 void llvm::findDbgValues(SmallVectorImpl
<DbgValueInst
*> &DbgValues
, Value
*V
) {
1503 // This function is hot. Check whether the value has any metadata to avoid a
1505 if (!V
->isUsedByMetadata())
1507 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1508 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1509 for (User
*U
: MDV
->users())
1510 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(U
))
1511 DbgValues
.push_back(DVI
);
1514 void llvm::findDbgUsers(SmallVectorImpl
<DbgInfoIntrinsic
*> &DbgUsers
,
1516 // This function is hot. Check whether the value has any metadata to avoid a
1518 if (!V
->isUsedByMetadata())
1520 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1521 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1522 for (User
*U
: MDV
->users())
1523 if (DbgInfoIntrinsic
*DII
= dyn_cast
<DbgInfoIntrinsic
>(U
))
1524 DbgUsers
.push_back(DII
);
1527 bool llvm::replaceDbgDeclare(Value
*Address
, Value
*NewAddress
,
1528 Instruction
*InsertBefore
, DIBuilder
&Builder
,
1529 bool DerefBefore
, int Offset
, bool DerefAfter
) {
1530 auto DbgAddrs
= FindDbgAddrUses(Address
);
1531 for (DbgInfoIntrinsic
*DII
: DbgAddrs
) {
1532 DebugLoc Loc
= DII
->getDebugLoc();
1533 auto *DIVar
= DII
->getVariable();
1534 auto *DIExpr
= DII
->getExpression();
1535 assert(DIVar
&& "Missing variable");
1536 DIExpr
= DIExpression::prepend(DIExpr
, DerefBefore
, Offset
, DerefAfter
);
1537 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1538 // llvm.dbg.declare.
1539 Builder
.insertDeclare(NewAddress
, DIVar
, DIExpr
, Loc
, InsertBefore
);
1540 if (DII
== InsertBefore
)
1541 InsertBefore
= InsertBefore
->getNextNode();
1542 DII
->eraseFromParent();
1544 return !DbgAddrs
.empty();
1547 bool llvm::replaceDbgDeclareForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1548 DIBuilder
&Builder
, bool DerefBefore
,
1549 int Offset
, bool DerefAfter
) {
1550 return replaceDbgDeclare(AI
, NewAllocaAddress
, AI
->getNextNode(), Builder
,
1551 DerefBefore
, Offset
, DerefAfter
);
1554 static void replaceOneDbgValueForAlloca(DbgValueInst
*DVI
, Value
*NewAddress
,
1555 DIBuilder
&Builder
, int Offset
) {
1556 DebugLoc Loc
= DVI
->getDebugLoc();
1557 auto *DIVar
= DVI
->getVariable();
1558 auto *DIExpr
= DVI
->getExpression();
1559 assert(DIVar
&& "Missing variable");
1561 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1562 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1564 if (!DIExpr
|| DIExpr
->getNumElements() < 1 ||
1565 DIExpr
->getElement(0) != dwarf::DW_OP_deref
)
1568 // Insert the offset immediately after the first deref.
1569 // We could just change the offset argument of dbg.value, but it's unsigned...
1571 SmallVector
<uint64_t, 4> Ops
;
1572 Ops
.push_back(dwarf::DW_OP_deref
);
1573 DIExpression::appendOffset(Ops
, Offset
);
1574 Ops
.append(DIExpr
->elements_begin() + 1, DIExpr
->elements_end());
1575 DIExpr
= Builder
.createExpression(Ops
);
1578 Builder
.insertDbgValueIntrinsic(NewAddress
, DIVar
, DIExpr
, Loc
, DVI
);
1579 DVI
->eraseFromParent();
1582 void llvm::replaceDbgValueForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1583 DIBuilder
&Builder
, int Offset
) {
1584 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
1585 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
1586 for (auto UI
= MDV
->use_begin(), UE
= MDV
->use_end(); UI
!= UE
;) {
1588 if (auto *DVI
= dyn_cast
<DbgValueInst
>(U
.getUser()))
1589 replaceOneDbgValueForAlloca(DVI
, NewAllocaAddress
, Builder
, Offset
);
1593 /// Wrap \p V in a ValueAsMetadata instance.
1594 static MetadataAsValue
*wrapValueInMetadata(LLVMContext
&C
, Value
*V
) {
1595 return MetadataAsValue::get(C
, ValueAsMetadata::get(V
));
1598 bool llvm::salvageDebugInfo(Instruction
&I
) {
1599 SmallVector
<DbgInfoIntrinsic
*, 1> DbgUsers
;
1600 findDbgUsers(DbgUsers
, &I
);
1601 if (DbgUsers
.empty())
1604 auto &M
= *I
.getModule();
1605 auto &DL
= M
.getDataLayout();
1606 auto &Ctx
= I
.getContext();
1607 auto wrapMD
= [&](Value
*V
) { return wrapValueInMetadata(Ctx
, V
); };
1609 auto doSalvage
= [&](DbgInfoIntrinsic
*DII
, SmallVectorImpl
<uint64_t> &Ops
) {
1610 auto *DIExpr
= DII
->getExpression();
1612 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1613 // are implicitly pointing out the value as a DWARF memory location
1615 bool WithStackValue
= isa
<DbgValueInst
>(DII
);
1616 DIExpr
= DIExpression::prependOpcodes(DIExpr
, Ops
, WithStackValue
);
1618 DII
->setOperand(0, wrapMD(I
.getOperand(0)));
1619 DII
->setOperand(2, MetadataAsValue::get(Ctx
, DIExpr
));
1620 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1623 auto applyOffset
= [&](DbgInfoIntrinsic
*DII
, uint64_t Offset
) {
1624 SmallVector
<uint64_t, 8> Ops
;
1625 DIExpression::appendOffset(Ops
, Offset
);
1626 doSalvage(DII
, Ops
);
1629 auto applyOps
= [&](DbgInfoIntrinsic
*DII
,
1630 std::initializer_list
<uint64_t> Opcodes
) {
1631 SmallVector
<uint64_t, 8> Ops(Opcodes
);
1632 doSalvage(DII
, Ops
);
1635 if (auto *CI
= dyn_cast
<CastInst
>(&I
)) {
1636 if (!CI
->isNoopCast(DL
))
1639 // No-op casts are irrelevant for debug info.
1640 MetadataAsValue
*CastSrc
= wrapMD(I
.getOperand(0));
1641 for (auto *DII
: DbgUsers
) {
1642 DII
->setOperand(0, CastSrc
);
1643 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1646 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1648 M
.getDataLayout().getIndexSizeInBits(GEP
->getPointerAddressSpace());
1649 // Rewrite a constant GEP into a DIExpression. Since we are performing
1650 // arithmetic to compute the variable's *value* in the DIExpression, we
1651 // need to mark the expression with a DW_OP_stack_value.
1652 APInt
Offset(BitWidth
, 0);
1653 if (GEP
->accumulateConstantOffset(M
.getDataLayout(), Offset
))
1654 for (auto *DII
: DbgUsers
)
1655 applyOffset(DII
, Offset
.getSExtValue());
1657 } else if (auto *BI
= dyn_cast
<BinaryOperator
>(&I
)) {
1658 // Rewrite binary operations with constant integer operands.
1659 auto *ConstInt
= dyn_cast
<ConstantInt
>(I
.getOperand(1));
1660 if (!ConstInt
|| ConstInt
->getBitWidth() > 64)
1663 uint64_t Val
= ConstInt
->getSExtValue();
1664 for (auto *DII
: DbgUsers
) {
1665 switch (BI
->getOpcode()) {
1666 case Instruction::Add
:
1667 applyOffset(DII
, Val
);
1669 case Instruction::Sub
:
1670 applyOffset(DII
, -int64_t(Val
));
1672 case Instruction::Mul
:
1673 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mul
});
1675 case Instruction::SDiv
:
1676 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_div
});
1678 case Instruction::SRem
:
1679 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mod
});
1681 case Instruction::Or
:
1682 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_or
});
1684 case Instruction::And
:
1685 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_and
});
1687 case Instruction::Xor
:
1688 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_xor
});
1690 case Instruction::Shl
:
1691 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shl
});
1693 case Instruction::LShr
:
1694 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shr
});
1696 case Instruction::AShr
:
1697 applyOps(DII
, {dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shra
});
1700 // TODO: Salvage constants from each kind of binop we know about.
1705 } else if (isa
<LoadInst
>(&I
)) {
1706 MetadataAsValue
*AddrMD
= wrapMD(I
.getOperand(0));
1707 for (auto *DII
: DbgUsers
) {
1708 // Rewrite the load into DW_OP_deref.
1709 auto *DIExpr
= DII
->getExpression();
1710 DIExpr
= DIExpression::prepend(DIExpr
, DIExpression::WithDeref
);
1711 DII
->setOperand(0, AddrMD
);
1712 DII
->setOperand(2, MetadataAsValue::get(Ctx
, DIExpr
));
1713 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1720 /// A replacement for a dbg.value expression.
1721 using DbgValReplacement
= Optional
<DIExpression
*>;
1723 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1724 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1725 /// changes are made.
1726 static bool rewriteDebugUsers(
1727 Instruction
&From
, Value
&To
, Instruction
&DomPoint
, DominatorTree
&DT
,
1728 function_ref
<DbgValReplacement(DbgInfoIntrinsic
&DII
)> RewriteExpr
) {
1729 // Find debug users of From.
1730 SmallVector
<DbgInfoIntrinsic
*, 1> Users
;
1731 findDbgUsers(Users
, &From
);
1735 // Prevent use-before-def of To.
1736 bool Changed
= false;
1737 SmallPtrSet
<DbgInfoIntrinsic
*, 1> DeleteOrSalvage
;
1738 if (isa
<Instruction
>(&To
)) {
1739 bool DomPointAfterFrom
= From
.getNextNonDebugInstruction() == &DomPoint
;
1741 for (auto *DII
: Users
) {
1742 // It's common to see a debug user between From and DomPoint. Move it
1743 // after DomPoint to preserve the variable update without any reordering.
1744 if (DomPointAfterFrom
&& DII
->getNextNonDebugInstruction() == &DomPoint
) {
1745 LLVM_DEBUG(dbgs() << "MOVE: " << *DII
<< '\n');
1746 DII
->moveAfter(&DomPoint
);
1749 // Users which otherwise aren't dominated by the replacement value must
1750 // be salvaged or deleted.
1751 } else if (!DT
.dominates(&DomPoint
, DII
)) {
1752 DeleteOrSalvage
.insert(DII
);
1757 // Update debug users without use-before-def risk.
1758 for (auto *DII
: Users
) {
1759 if (DeleteOrSalvage
.count(DII
))
1762 LLVMContext
&Ctx
= DII
->getContext();
1763 DbgValReplacement DVR
= RewriteExpr(*DII
);
1767 DII
->setOperand(0, wrapValueInMetadata(Ctx
, &To
));
1768 DII
->setOperand(2, MetadataAsValue::get(Ctx
, *DVR
));
1769 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII
<< '\n');
1773 if (!DeleteOrSalvage
.empty()) {
1774 // Try to salvage the remaining debug users.
1775 Changed
|= salvageDebugInfo(From
);
1777 // Delete the debug users which weren't salvaged.
1778 for (auto *DII
: DeleteOrSalvage
) {
1779 if (DII
->getVariableLocation() == &From
) {
1780 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII
<< '\n');
1781 DII
->eraseFromParent();
1790 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1791 /// losslessly preserve the bits and semantics of the value. This predicate is
1792 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1794 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1795 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1796 /// and also does not allow lossless pointer <-> integer conversions.
1797 static bool isBitCastSemanticsPreserving(const DataLayout
&DL
, Type
*FromTy
,
1799 // Trivially compatible types.
1803 // Handle compatible pointer <-> integer conversions.
1804 if (FromTy
->isIntOrPtrTy() && ToTy
->isIntOrPtrTy()) {
1805 bool SameSize
= DL
.getTypeSizeInBits(FromTy
) == DL
.getTypeSizeInBits(ToTy
);
1806 bool LosslessConversion
= !DL
.isNonIntegralPointerType(FromTy
) &&
1807 !DL
.isNonIntegralPointerType(ToTy
);
1808 return SameSize
&& LosslessConversion
;
1811 // TODO: This is not exhaustive.
1815 bool llvm::replaceAllDbgUsesWith(Instruction
&From
, Value
&To
,
1816 Instruction
&DomPoint
, DominatorTree
&DT
) {
1817 // Exit early if From has no debug users.
1818 if (!From
.isUsedByMetadata())
1821 assert(&From
!= &To
&& "Can't replace something with itself");
1823 Type
*FromTy
= From
.getType();
1824 Type
*ToTy
= To
.getType();
1826 auto Identity
= [&](DbgInfoIntrinsic
&DII
) -> DbgValReplacement
{
1827 return DII
.getExpression();
1830 // Handle no-op conversions.
1831 Module
&M
= *From
.getModule();
1832 const DataLayout
&DL
= M
.getDataLayout();
1833 if (isBitCastSemanticsPreserving(DL
, FromTy
, ToTy
))
1834 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1836 // Handle integer-to-integer widening and narrowing.
1837 // FIXME: Use DW_OP_convert when it's available everywhere.
1838 if (FromTy
->isIntegerTy() && ToTy
->isIntegerTy()) {
1839 uint64_t FromBits
= FromTy
->getPrimitiveSizeInBits();
1840 uint64_t ToBits
= ToTy
->getPrimitiveSizeInBits();
1841 assert(FromBits
!= ToBits
&& "Unexpected no-op conversion");
1843 // When the width of the result grows, assume that a debugger will only
1844 // access the low `FromBits` bits when inspecting the source variable.
1845 if (FromBits
< ToBits
)
1846 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1848 // The width of the result has shrunk. Use sign/zero extension to describe
1849 // the source variable's high bits.
1850 auto SignOrZeroExt
= [&](DbgInfoIntrinsic
&DII
) -> DbgValReplacement
{
1851 DILocalVariable
*Var
= DII
.getVariable();
1853 // Without knowing signedness, sign/zero extension isn't possible.
1854 auto Signedness
= Var
->getSignedness();
1858 bool Signed
= *Signedness
== DIBasicType::Signedness::Signed
;
1861 // In the unsigned case, assume that a debugger will initialize the
1862 // high bits to 0 and do a no-op conversion.
1863 return Identity(DII
);
1865 // In the signed case, the high bits are given by sign extension, i.e:
1866 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1867 // Calculate the high bits and OR them together with the low bits.
1868 SmallVector
<uint64_t, 8> Ops({dwarf::DW_OP_dup
, dwarf::DW_OP_constu
,
1869 (ToBits
- 1), dwarf::DW_OP_shr
,
1870 dwarf::DW_OP_lit0
, dwarf::DW_OP_not
,
1871 dwarf::DW_OP_mul
, dwarf::DW_OP_or
});
1872 return DIExpression::appendToStack(DII
.getExpression(), Ops
);
1875 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, SignOrZeroExt
);
1878 // TODO: Floating-point conversions, vectors.
1882 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock
*BB
) {
1883 unsigned NumDeadInst
= 0;
1884 // Delete the instructions backwards, as it has a reduced likelihood of
1885 // having to update as many def-use and use-def chains.
1886 Instruction
*EndInst
= BB
->getTerminator(); // Last not to be deleted.
1887 while (EndInst
!= &BB
->front()) {
1888 // Delete the next to last instruction.
1889 Instruction
*Inst
= &*--EndInst
->getIterator();
1890 if (!Inst
->use_empty() && !Inst
->getType()->isTokenTy())
1891 Inst
->replaceAllUsesWith(UndefValue::get(Inst
->getType()));
1892 if (Inst
->isEHPad() || Inst
->getType()->isTokenTy()) {
1896 if (!isa
<DbgInfoIntrinsic
>(Inst
))
1898 Inst
->eraseFromParent();
1903 unsigned llvm::changeToUnreachable(Instruction
*I
, bool UseLLVMTrap
,
1904 bool PreserveLCSSA
, DeferredDominance
*DDT
) {
1905 BasicBlock
*BB
= I
->getParent();
1906 std::vector
<DominatorTree::UpdateType
> Updates
;
1908 // Loop over all of the successors, removing BB's entry from any PHI
1911 Updates
.reserve(BB
->getTerminator()->getNumSuccessors());
1912 for (BasicBlock
*Successor
: successors(BB
)) {
1913 Successor
->removePredecessor(BB
, PreserveLCSSA
);
1915 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
1917 // Insert a call to llvm.trap right before this. This turns the undefined
1918 // behavior into a hard fail instead of falling through into random code.
1921 Intrinsic::getDeclaration(BB
->getParent()->getParent(), Intrinsic::trap
);
1922 CallInst
*CallTrap
= CallInst::Create(TrapFn
, "", I
);
1923 CallTrap
->setDebugLoc(I
->getDebugLoc());
1925 new UnreachableInst(I
->getContext(), I
);
1927 // All instructions after this are dead.
1928 unsigned NumInstrsRemoved
= 0;
1929 BasicBlock::iterator BBI
= I
->getIterator(), BBE
= BB
->end();
1930 while (BBI
!= BBE
) {
1931 if (!BBI
->use_empty())
1932 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
1933 BB
->getInstList().erase(BBI
++);
1937 DDT
->applyUpdates(Updates
);
1938 return NumInstrsRemoved
;
1941 /// changeToCall - Convert the specified invoke into a normal call.
1942 static void changeToCall(InvokeInst
*II
, DeferredDominance
*DDT
= nullptr) {
1943 SmallVector
<Value
*, 8> Args(II
->arg_begin(), II
->arg_end());
1944 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1945 II
->getOperandBundlesAsDefs(OpBundles
);
1946 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(), Args
, OpBundles
,
1948 NewCall
->takeName(II
);
1949 NewCall
->setCallingConv(II
->getCallingConv());
1950 NewCall
->setAttributes(II
->getAttributes());
1951 NewCall
->setDebugLoc(II
->getDebugLoc());
1952 II
->replaceAllUsesWith(NewCall
);
1954 // Follow the call by a branch to the normal destination.
1955 BasicBlock
*NormalDestBB
= II
->getNormalDest();
1956 BranchInst::Create(NormalDestBB
, II
);
1958 // Update PHI nodes in the unwind destination
1959 BasicBlock
*BB
= II
->getParent();
1960 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
1961 UnwindDestBB
->removePredecessor(BB
);
1962 II
->eraseFromParent();
1964 DDT
->deleteEdge(BB
, UnwindDestBB
);
1967 BasicBlock
*llvm::changeToInvokeAndSplitBasicBlock(CallInst
*CI
,
1968 BasicBlock
*UnwindEdge
) {
1969 BasicBlock
*BB
= CI
->getParent();
1971 // Convert this function call into an invoke instruction. First, split the
1974 BB
->splitBasicBlock(CI
->getIterator(), CI
->getName() + ".noexc");
1976 // Delete the unconditional branch inserted by splitBasicBlock
1977 BB
->getInstList().pop_back();
1979 // Create the new invoke instruction.
1980 SmallVector
<Value
*, 8> InvokeArgs(CI
->arg_begin(), CI
->arg_end());
1981 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1983 CI
->getOperandBundlesAsDefs(OpBundles
);
1985 // Note: we're round tripping operand bundles through memory here, and that
1986 // can potentially be avoided with a cleverer API design that we do not have
1989 InvokeInst
*II
= InvokeInst::Create(CI
->getCalledValue(), Split
, UnwindEdge
,
1990 InvokeArgs
, OpBundles
, CI
->getName(), BB
);
1991 II
->setDebugLoc(CI
->getDebugLoc());
1992 II
->setCallingConv(CI
->getCallingConv());
1993 II
->setAttributes(CI
->getAttributes());
1995 // Make sure that anything using the call now uses the invoke! This also
1996 // updates the CallGraph if present, because it uses a WeakTrackingVH.
1997 CI
->replaceAllUsesWith(II
);
1999 // Delete the original call
2000 Split
->getInstList().pop_front();
2004 static bool markAliveBlocks(Function
&F
,
2005 SmallPtrSetImpl
<BasicBlock
*> &Reachable
,
2006 DeferredDominance
*DDT
= nullptr) {
2007 SmallVector
<BasicBlock
*, 128> Worklist
;
2008 BasicBlock
*BB
= &F
.front();
2009 Worklist
.push_back(BB
);
2010 Reachable
.insert(BB
);
2011 bool Changed
= false;
2013 BB
= Worklist
.pop_back_val();
2015 // Do a quick scan of the basic block, turning any obviously unreachable
2016 // instructions into LLVM unreachable insts. The instruction combining pass
2017 // canonicalizes unreachable insts into stores to null or undef.
2018 for (Instruction
&I
: *BB
) {
2019 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
2020 Value
*Callee
= CI
->getCalledValue();
2021 // Handle intrinsic calls.
2022 if (Function
*F
= dyn_cast
<Function
>(Callee
)) {
2023 auto IntrinsicID
= F
->getIntrinsicID();
2024 // Assumptions that are known to be false are equivalent to
2025 // unreachable. Also, if the condition is undefined, then we make the
2026 // choice most beneficial to the optimizer, and choose that to also be
2028 if (IntrinsicID
== Intrinsic::assume
) {
2029 if (match(CI
->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2030 // Don't insert a call to llvm.trap right before the unreachable.
2031 changeToUnreachable(CI
, false, false, DDT
);
2035 } else if (IntrinsicID
== Intrinsic::experimental_guard
) {
2036 // A call to the guard intrinsic bails out of the current
2037 // compilation unit if the predicate passed to it is false. If the
2038 // predicate is a constant false, then we know the guard will bail
2039 // out of the current compile unconditionally, so all code following
2042 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2043 // guards to treat `undef` as `false` since a guard on `undef` can
2044 // still be useful for widening.
2045 if (match(CI
->getArgOperand(0), m_Zero()))
2046 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2047 changeToUnreachable(CI
->getNextNode(), /*UseLLVMTrap=*/false,
2053 } else if ((isa
<ConstantPointerNull
>(Callee
) &&
2054 !NullPointerIsDefined(CI
->getFunction())) ||
2055 isa
<UndefValue
>(Callee
)) {
2056 changeToUnreachable(CI
, /*UseLLVMTrap=*/false, false, DDT
);
2060 if (CI
->doesNotReturn()) {
2061 // If we found a call to a no-return function, insert an unreachable
2062 // instruction after it. Make sure there isn't *already* one there
2064 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2065 // Don't insert a call to llvm.trap right before the unreachable.
2066 changeToUnreachable(CI
->getNextNode(), false, false, DDT
);
2071 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2072 // Store to undef and store to null are undefined and used to signal
2073 // that they should be changed to unreachable by passes that can't
2076 // Don't touch volatile stores.
2077 if (SI
->isVolatile()) continue;
2079 Value
*Ptr
= SI
->getOperand(1);
2081 if (isa
<UndefValue
>(Ptr
) ||
2082 (isa
<ConstantPointerNull
>(Ptr
) &&
2083 !NullPointerIsDefined(SI
->getFunction(),
2084 SI
->getPointerAddressSpace()))) {
2085 changeToUnreachable(SI
, true, false, DDT
);
2092 TerminatorInst
*Terminator
= BB
->getTerminator();
2093 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
)) {
2094 // Turn invokes that call 'nounwind' functions into ordinary calls.
2095 Value
*Callee
= II
->getCalledValue();
2096 if ((isa
<ConstantPointerNull
>(Callee
) &&
2097 !NullPointerIsDefined(BB
->getParent())) ||
2098 isa
<UndefValue
>(Callee
)) {
2099 changeToUnreachable(II
, true, false, DDT
);
2101 } else if (II
->doesNotThrow() && canSimplifyInvokeNoUnwind(&F
)) {
2102 if (II
->use_empty() && II
->onlyReadsMemory()) {
2103 // jump to the normal destination branch.
2104 BasicBlock
*NormalDestBB
= II
->getNormalDest();
2105 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
2106 BranchInst::Create(NormalDestBB
, II
);
2107 UnwindDestBB
->removePredecessor(II
->getParent());
2108 II
->eraseFromParent();
2110 DDT
->deleteEdge(BB
, UnwindDestBB
);
2112 changeToCall(II
, DDT
);
2115 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Terminator
)) {
2116 // Remove catchpads which cannot be reached.
2117 struct CatchPadDenseMapInfo
{
2118 static CatchPadInst
*getEmptyKey() {
2119 return DenseMapInfo
<CatchPadInst
*>::getEmptyKey();
2122 static CatchPadInst
*getTombstoneKey() {
2123 return DenseMapInfo
<CatchPadInst
*>::getTombstoneKey();
2126 static unsigned getHashValue(CatchPadInst
*CatchPad
) {
2127 return static_cast<unsigned>(hash_combine_range(
2128 CatchPad
->value_op_begin(), CatchPad
->value_op_end()));
2131 static bool isEqual(CatchPadInst
*LHS
, CatchPadInst
*RHS
) {
2132 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
2133 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
2135 return LHS
->isIdenticalTo(RHS
);
2139 // Set of unique CatchPads.
2140 SmallDenseMap
<CatchPadInst
*, detail::DenseSetEmpty
, 4,
2141 CatchPadDenseMapInfo
, detail::DenseSetPair
<CatchPadInst
*>>
2143 detail::DenseSetEmpty Empty
;
2144 for (CatchSwitchInst::handler_iterator I
= CatchSwitch
->handler_begin(),
2145 E
= CatchSwitch
->handler_end();
2147 BasicBlock
*HandlerBB
= *I
;
2148 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBB
->getFirstNonPHI());
2149 if (!HandlerSet
.insert({CatchPad
, Empty
}).second
) {
2150 CatchSwitch
->removeHandler(I
);
2158 Changed
|= ConstantFoldTerminator(BB
, true, nullptr, DDT
);
2159 for (BasicBlock
*Successor
: successors(BB
))
2160 if (Reachable
.insert(Successor
).second
)
2161 Worklist
.push_back(Successor
);
2162 } while (!Worklist
.empty());
2166 void llvm::removeUnwindEdge(BasicBlock
*BB
, DeferredDominance
*DDT
) {
2167 TerminatorInst
*TI
= BB
->getTerminator();
2169 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
2170 changeToCall(II
, DDT
);
2174 TerminatorInst
*NewTI
;
2175 BasicBlock
*UnwindDest
;
2177 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
2178 NewTI
= CleanupReturnInst::Create(CRI
->getCleanupPad(), nullptr, CRI
);
2179 UnwindDest
= CRI
->getUnwindDest();
2180 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
2181 auto *NewCatchSwitch
= CatchSwitchInst::Create(
2182 CatchSwitch
->getParentPad(), nullptr, CatchSwitch
->getNumHandlers(),
2183 CatchSwitch
->getName(), CatchSwitch
);
2184 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
2185 NewCatchSwitch
->addHandler(PadBB
);
2187 NewTI
= NewCatchSwitch
;
2188 UnwindDest
= CatchSwitch
->getUnwindDest();
2190 llvm_unreachable("Could not find unwind successor");
2193 NewTI
->takeName(TI
);
2194 NewTI
->setDebugLoc(TI
->getDebugLoc());
2195 UnwindDest
->removePredecessor(BB
);
2196 TI
->replaceAllUsesWith(NewTI
);
2197 TI
->eraseFromParent();
2199 DDT
->deleteEdge(BB
, UnwindDest
);
2202 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2203 /// if they are in a dead cycle. Return true if a change was made, false
2204 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2205 /// after modifying the CFG.
2206 bool llvm::removeUnreachableBlocks(Function
&F
, LazyValueInfo
*LVI
,
2207 DeferredDominance
*DDT
) {
2208 SmallPtrSet
<BasicBlock
*, 16> Reachable
;
2209 bool Changed
= markAliveBlocks(F
, Reachable
, DDT
);
2211 // If there are unreachable blocks in the CFG...
2212 if (Reachable
.size() == F
.size())
2215 assert(Reachable
.size() < F
.size());
2216 NumRemoved
+= F
.size()-Reachable
.size();
2218 // Loop over all of the basic blocks that are not reachable, dropping all of
2219 // their internal references. Update DDT and LVI if available.
2220 std::vector
<DominatorTree::UpdateType
> Updates
;
2221 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
2223 if (Reachable
.count(BB
))
2225 for (BasicBlock
*Successor
: successors(BB
)) {
2226 if (Reachable
.count(Successor
))
2227 Successor
->removePredecessor(BB
);
2229 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
2232 LVI
->eraseBlock(BB
);
2233 BB
->dropAllReferences();
2236 for (Function::iterator I
= ++F
.begin(); I
!= F
.end();) {
2238 if (Reachable
.count(BB
)) {
2243 DDT
->deleteBB(BB
); // deferred deletion of BB.
2246 I
= F
.getBasicBlockList().erase(I
);
2251 DDT
->applyUpdates(Updates
);
2255 void llvm::combineMetadata(Instruction
*K
, const Instruction
*J
,
2256 ArrayRef
<unsigned> KnownIDs
) {
2257 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
2258 K
->dropUnknownNonDebugMetadata(KnownIDs
);
2259 K
->getAllMetadataOtherThanDebugLoc(Metadata
);
2260 for (const auto &MD
: Metadata
) {
2261 unsigned Kind
= MD
.first
;
2262 MDNode
*JMD
= J
->getMetadata(Kind
);
2263 MDNode
*KMD
= MD
.second
;
2267 K
->setMetadata(Kind
, nullptr); // Remove unknown metadata
2269 case LLVMContext::MD_dbg
:
2270 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2271 case LLVMContext::MD_tbaa
:
2272 K
->setMetadata(Kind
, MDNode::getMostGenericTBAA(JMD
, KMD
));
2274 case LLVMContext::MD_alias_scope
:
2275 K
->setMetadata(Kind
, MDNode::getMostGenericAliasScope(JMD
, KMD
));
2277 case LLVMContext::MD_noalias
:
2278 case LLVMContext::MD_mem_parallel_loop_access
:
2279 K
->setMetadata(Kind
, MDNode::intersect(JMD
, KMD
));
2281 case LLVMContext::MD_range
:
2282 K
->setMetadata(Kind
, MDNode::getMostGenericRange(JMD
, KMD
));
2284 case LLVMContext::MD_fpmath
:
2285 K
->setMetadata(Kind
, MDNode::getMostGenericFPMath(JMD
, KMD
));
2287 case LLVMContext::MD_invariant_load
:
2288 // Only set the !invariant.load if it is present in both instructions.
2289 K
->setMetadata(Kind
, JMD
);
2291 case LLVMContext::MD_nonnull
:
2292 // Only set the !nonnull if it is present in both instructions.
2293 K
->setMetadata(Kind
, JMD
);
2295 case LLVMContext::MD_invariant_group
:
2296 // Preserve !invariant.group in K.
2298 case LLVMContext::MD_align
:
2299 K
->setMetadata(Kind
,
2300 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2302 case LLVMContext::MD_dereferenceable
:
2303 case LLVMContext::MD_dereferenceable_or_null
:
2304 K
->setMetadata(Kind
,
2305 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2309 // Set !invariant.group from J if J has it. If both instructions have it
2310 // then we will just pick it from J - even when they are different.
2311 // Also make sure that K is load or store - f.e. combining bitcast with load
2312 // could produce bitcast with invariant.group metadata, which is invalid.
2313 // FIXME: we should try to preserve both invariant.group md if they are
2314 // different, but right now instruction can only have one invariant.group.
2315 if (auto *JMD
= J
->getMetadata(LLVMContext::MD_invariant_group
))
2316 if (isa
<LoadInst
>(K
) || isa
<StoreInst
>(K
))
2317 K
->setMetadata(LLVMContext::MD_invariant_group
, JMD
);
2320 void llvm::combineMetadataForCSE(Instruction
*K
, const Instruction
*J
) {
2321 unsigned KnownIDs
[] = {
2322 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2323 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2324 LLVMContext::MD_invariant_load
, LLVMContext::MD_nonnull
,
2325 LLVMContext::MD_invariant_group
, LLVMContext::MD_align
,
2326 LLVMContext::MD_dereferenceable
,
2327 LLVMContext::MD_dereferenceable_or_null
};
2328 combineMetadata(K
, J
, KnownIDs
);
2331 template <typename RootType
, typename DominatesFn
>
2332 static unsigned replaceDominatedUsesWith(Value
*From
, Value
*To
,
2333 const RootType
&Root
,
2334 const DominatesFn
&Dominates
) {
2335 assert(From
->getType() == To
->getType());
2338 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2341 if (!Dominates(Root
, U
))
2344 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From
->getName()
2345 << "' as " << *To
<< " in " << *U
<< "\n");
2351 unsigned llvm::replaceNonLocalUsesWith(Instruction
*From
, Value
*To
) {
2352 assert(From
->getType() == To
->getType());
2353 auto *BB
= From
->getParent();
2356 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2359 auto *I
= cast
<Instruction
>(U
.getUser());
2360 if (I
->getParent() == BB
)
2368 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2370 const BasicBlockEdge
&Root
) {
2371 auto Dominates
= [&DT
](const BasicBlockEdge
&Root
, const Use
&U
) {
2372 return DT
.dominates(Root
, U
);
2374 return ::replaceDominatedUsesWith(From
, To
, Root
, Dominates
);
2377 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2379 const BasicBlock
*BB
) {
2380 auto ProperlyDominates
= [&DT
](const BasicBlock
*BB
, const Use
&U
) {
2381 auto *I
= cast
<Instruction
>(U
.getUser())->getParent();
2382 return DT
.properlyDominates(BB
, I
);
2384 return ::replaceDominatedUsesWith(From
, To
, BB
, ProperlyDominates
);
2387 bool llvm::callsGCLeafFunction(ImmutableCallSite CS
,
2388 const TargetLibraryInfo
&TLI
) {
2389 // Check if the function is specifically marked as a gc leaf function.
2390 if (CS
.hasFnAttr("gc-leaf-function"))
2392 if (const Function
*F
= CS
.getCalledFunction()) {
2393 if (F
->hasFnAttribute("gc-leaf-function"))
2396 if (auto IID
= F
->getIntrinsicID())
2397 // Most LLVM intrinsics do not take safepoints.
2398 return IID
!= Intrinsic::experimental_gc_statepoint
&&
2399 IID
!= Intrinsic::experimental_deoptimize
;
2402 // Lib calls can be materialized by some passes, and won't be
2403 // marked as 'gc-leaf-function.' All available Libcalls are
2406 if (TLI
.getLibFunc(CS
, LF
)) {
2413 void llvm::copyNonnullMetadata(const LoadInst
&OldLI
, MDNode
*N
,
2415 auto *NewTy
= NewLI
.getType();
2417 // This only directly applies if the new type is also a pointer.
2418 if (NewTy
->isPointerTy()) {
2419 NewLI
.setMetadata(LLVMContext::MD_nonnull
, N
);
2423 // The only other translation we can do is to integral loads with !range
2425 if (!NewTy
->isIntegerTy())
2428 MDBuilder
MDB(NewLI
.getContext());
2429 const Value
*Ptr
= OldLI
.getPointerOperand();
2430 auto *ITy
= cast
<IntegerType
>(NewTy
);
2431 auto *NullInt
= ConstantExpr::getPtrToInt(
2432 ConstantPointerNull::get(cast
<PointerType
>(Ptr
->getType())), ITy
);
2433 auto *NonNullInt
= ConstantExpr::getAdd(NullInt
, ConstantInt::get(ITy
, 1));
2434 NewLI
.setMetadata(LLVMContext::MD_range
,
2435 MDB
.createRange(NonNullInt
, NullInt
));
2438 void llvm::copyRangeMetadata(const DataLayout
&DL
, const LoadInst
&OldLI
,
2439 MDNode
*N
, LoadInst
&NewLI
) {
2440 auto *NewTy
= NewLI
.getType();
2442 // Give up unless it is converted to a pointer where there is a single very
2443 // valuable mapping we can do reliably.
2444 // FIXME: It would be nice to propagate this in more ways, but the type
2445 // conversions make it hard.
2446 if (!NewTy
->isPointerTy())
2449 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(NewTy
);
2450 if (!getConstantRangeFromMetadata(*N
).contains(APInt(BitWidth
, 0))) {
2451 MDNode
*NN
= MDNode::get(OldLI
.getContext(), None
);
2452 NewLI
.setMetadata(LLVMContext::MD_nonnull
, NN
);
2458 /// A potential constituent of a bitreverse or bswap expression. See
2459 /// collectBitParts for a fuller explanation.
2461 BitPart(Value
*P
, unsigned BW
) : Provider(P
) {
2462 Provenance
.resize(BW
);
2465 /// The Value that this is a bitreverse/bswap of.
2468 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2469 /// in Provider becomes bit B in the result of this expression.
2470 SmallVector
<int8_t, 32> Provenance
; // int8_t means max size is i128.
2472 enum { Unset
= -1 };
2475 } // end anonymous namespace
2477 /// Analyze the specified subexpression and see if it is capable of providing
2478 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2479 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2480 /// the output of the expression came from a corresponding bit in some other
2481 /// value. This function is recursive, and the end result is a mapping of
2482 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2483 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2485 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2486 /// that the expression deposits the low byte of %X into the high byte of the
2487 /// result and that all other bits are zero. This expression is accepted and a
2488 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2491 /// To avoid revisiting values, the BitPart results are memoized into the
2492 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2493 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2494 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2495 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2496 /// type instead to provide the same functionality.
2498 /// Because we pass around references into \c BPS, we must use a container that
2499 /// does not invalidate internal references (std::map instead of DenseMap).
2500 static const Optional
<BitPart
> &
2501 collectBitParts(Value
*V
, bool MatchBSwaps
, bool MatchBitReversals
,
2502 std::map
<Value
*, Optional
<BitPart
>> &BPS
) {
2503 auto I
= BPS
.find(V
);
2507 auto &Result
= BPS
[V
] = None
;
2508 auto BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2510 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
2511 // If this is an or instruction, it may be an inner node of the bswap.
2512 if (I
->getOpcode() == Instruction::Or
) {
2513 auto &A
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2514 MatchBitReversals
, BPS
);
2515 auto &B
= collectBitParts(I
->getOperand(1), MatchBSwaps
,
2516 MatchBitReversals
, BPS
);
2520 // Try and merge the two together.
2521 if (!A
->Provider
|| A
->Provider
!= B
->Provider
)
2524 Result
= BitPart(A
->Provider
, BitWidth
);
2525 for (unsigned i
= 0; i
< A
->Provenance
.size(); ++i
) {
2526 if (A
->Provenance
[i
] != BitPart::Unset
&&
2527 B
->Provenance
[i
] != BitPart::Unset
&&
2528 A
->Provenance
[i
] != B
->Provenance
[i
])
2529 return Result
= None
;
2531 if (A
->Provenance
[i
] == BitPart::Unset
)
2532 Result
->Provenance
[i
] = B
->Provenance
[i
];
2534 Result
->Provenance
[i
] = A
->Provenance
[i
];
2540 // If this is a logical shift by a constant, recurse then shift the result.
2541 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
2543 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
2544 // Ensure the shift amount is defined.
2545 if (BitShift
> BitWidth
)
2548 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2549 MatchBitReversals
, BPS
);
2554 // Perform the "shift" on BitProvenance.
2555 auto &P
= Result
->Provenance
;
2556 if (I
->getOpcode() == Instruction::Shl
) {
2557 P
.erase(std::prev(P
.end(), BitShift
), P
.end());
2558 P
.insert(P
.begin(), BitShift
, BitPart::Unset
);
2560 P
.erase(P
.begin(), std::next(P
.begin(), BitShift
));
2561 P
.insert(P
.end(), BitShift
, BitPart::Unset
);
2567 // If this is a logical 'and' with a mask that clears bits, recurse then
2568 // unset the appropriate bits.
2569 if (I
->getOpcode() == Instruction::And
&&
2570 isa
<ConstantInt
>(I
->getOperand(1))) {
2571 APInt
Bit(I
->getType()->getPrimitiveSizeInBits(), 1);
2572 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
2574 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2576 unsigned NumMaskedBits
= AndMask
.countPopulation();
2577 if (!MatchBitReversals
&& NumMaskedBits
% 8 != 0)
2580 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2581 MatchBitReversals
, BPS
);
2586 for (unsigned i
= 0; i
< BitWidth
; ++i
, Bit
<<= 1)
2587 // If the AndMask is zero for this bit, clear the bit.
2588 if ((AndMask
& Bit
) == 0)
2589 Result
->Provenance
[i
] = BitPart::Unset
;
2593 // If this is a zext instruction zero extend the result.
2594 if (I
->getOpcode() == Instruction::ZExt
) {
2595 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2596 MatchBitReversals
, BPS
);
2600 Result
= BitPart(Res
->Provider
, BitWidth
);
2601 auto NarrowBitWidth
=
2602 cast
<IntegerType
>(cast
<ZExtInst
>(I
)->getSrcTy())->getBitWidth();
2603 for (unsigned i
= 0; i
< NarrowBitWidth
; ++i
)
2604 Result
->Provenance
[i
] = Res
->Provenance
[i
];
2605 for (unsigned i
= NarrowBitWidth
; i
< BitWidth
; ++i
)
2606 Result
->Provenance
[i
] = BitPart::Unset
;
2611 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2612 // the input value to the bswap/bitreverse.
2613 Result
= BitPart(V
, BitWidth
);
2614 for (unsigned i
= 0; i
< BitWidth
; ++i
)
2615 Result
->Provenance
[i
] = i
;
2619 static bool bitTransformIsCorrectForBSwap(unsigned From
, unsigned To
,
2620 unsigned BitWidth
) {
2621 if (From
% 8 != To
% 8)
2623 // Convert from bit indices to byte indices and check for a byte reversal.
2627 return From
== BitWidth
- To
- 1;
2630 static bool bitTransformIsCorrectForBitReverse(unsigned From
, unsigned To
,
2631 unsigned BitWidth
) {
2632 return From
== BitWidth
- To
- 1;
2635 bool llvm::recognizeBSwapOrBitReverseIdiom(
2636 Instruction
*I
, bool MatchBSwaps
, bool MatchBitReversals
,
2637 SmallVectorImpl
<Instruction
*> &InsertedInsts
) {
2638 if (Operator::getOpcode(I
) != Instruction::Or
)
2640 if (!MatchBSwaps
&& !MatchBitReversals
)
2642 IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
->getType());
2643 if (!ITy
|| ITy
->getBitWidth() > 128)
2644 return false; // Can't do vectors or integers > 128 bits.
2645 unsigned BW
= ITy
->getBitWidth();
2647 unsigned DemandedBW
= BW
;
2648 IntegerType
*DemandedTy
= ITy
;
2649 if (I
->hasOneUse()) {
2650 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(I
->user_back())) {
2651 DemandedTy
= cast
<IntegerType
>(Trunc
->getType());
2652 DemandedBW
= DemandedTy
->getBitWidth();
2656 // Try to find all the pieces corresponding to the bswap.
2657 std::map
<Value
*, Optional
<BitPart
>> BPS
;
2658 auto Res
= collectBitParts(I
, MatchBSwaps
, MatchBitReversals
, BPS
);
2661 auto &BitProvenance
= Res
->Provenance
;
2663 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2664 // only byteswap values with an even number of bytes.
2665 bool OKForBSwap
= DemandedBW
% 16 == 0, OKForBitReverse
= true;
2666 for (unsigned i
= 0; i
< DemandedBW
; ++i
) {
2668 bitTransformIsCorrectForBSwap(BitProvenance
[i
], i
, DemandedBW
);
2670 bitTransformIsCorrectForBitReverse(BitProvenance
[i
], i
, DemandedBW
);
2673 Intrinsic::ID Intrin
;
2674 if (OKForBSwap
&& MatchBSwaps
)
2675 Intrin
= Intrinsic::bswap
;
2676 else if (OKForBitReverse
&& MatchBitReversals
)
2677 Intrin
= Intrinsic::bitreverse
;
2681 if (ITy
!= DemandedTy
) {
2682 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, DemandedTy
);
2683 Value
*Provider
= Res
->Provider
;
2684 IntegerType
*ProviderTy
= cast
<IntegerType
>(Provider
->getType());
2685 // We may need to truncate the provider.
2686 if (DemandedTy
!= ProviderTy
) {
2687 auto *Trunc
= CastInst::Create(Instruction::Trunc
, Provider
, DemandedTy
,
2689 InsertedInsts
.push_back(Trunc
);
2692 auto *CI
= CallInst::Create(F
, Provider
, "rev", I
);
2693 InsertedInsts
.push_back(CI
);
2694 auto *ExtInst
= CastInst::Create(Instruction::ZExt
, CI
, ITy
, "zext", I
);
2695 InsertedInsts
.push_back(ExtInst
);
2699 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, ITy
);
2700 InsertedInsts
.push_back(CallInst::Create(F
, Res
->Provider
, "rev", I
));
2704 // CodeGen has special handling for some string functions that may replace
2705 // them with target-specific intrinsics. Since that'd skip our interceptors
2706 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2707 // we mark affected calls as NoBuiltin, which will disable optimization
2709 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2710 CallInst
*CI
, const TargetLibraryInfo
*TLI
) {
2711 Function
*F
= CI
->getCalledFunction();
2713 if (F
&& !F
->hasLocalLinkage() && F
->hasName() &&
2714 TLI
->getLibFunc(F
->getName(), Func
) && TLI
->hasOptimizedCodeGen(Func
) &&
2715 !F
->doesNotAccessMemory())
2716 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::NoBuiltin
);
2719 bool llvm::canReplaceOperandWithVariable(const Instruction
*I
, unsigned OpIdx
) {
2720 // We can't have a PHI with a metadata type.
2721 if (I
->getOperand(OpIdx
)->getType()->isMetadataTy())
2725 if (!isa
<Constant
>(I
->getOperand(OpIdx
)))
2728 switch (I
->getOpcode()) {
2731 case Instruction::Call
:
2732 case Instruction::Invoke
:
2733 // Can't handle inline asm. Skip it.
2734 if (isa
<InlineAsm
>(ImmutableCallSite(I
).getCalledValue()))
2736 // Many arithmetic intrinsics have no issue taking a
2737 // variable, however it's hard to distingish these from
2738 // specials such as @llvm.frameaddress that require a constant.
2739 if (isa
<IntrinsicInst
>(I
))
2742 // Constant bundle operands may need to retain their constant-ness for
2744 if (ImmutableCallSite(I
).isBundleOperand(OpIdx
))
2747 case Instruction::ShuffleVector
:
2748 // Shufflevector masks are constant.
2750 case Instruction::Switch
:
2751 case Instruction::ExtractValue
:
2752 // All operands apart from the first are constant.
2754 case Instruction::InsertValue
:
2755 // All operands apart from the first and the second are constant.
2757 case Instruction::Alloca
:
2758 // Static allocas (constant size in the entry block) are handled by
2759 // prologue/epilogue insertion so they're free anyway. We definitely don't
2760 // want to make them non-constant.
2761 return !cast
<AllocaInst
>(I
)->isStaticAlloca();
2762 case Instruction::GetElementPtr
:
2765 gep_type_iterator It
= gep_type_begin(I
);
2766 for (auto E
= std::next(It
, OpIdx
); It
!= E
; ++It
)