[x86/SLH] Improve name and comments for the main hardening function.
[llvm-complete.git] / lib / Transforms / Utils / Local.cpp
bloba0e79b68e721b3dc3ab6bc8b5d4605da6471b68b
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
88 #define DEBUG_TYPE "local"
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
92 //===----------------------------------------------------------------------===//
93 // Local constant propagation.
96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
97 /// constant value, convert it into an unconditional branch to the constant
98 /// destination. This is a nontrivial operation because the successors of this
99 /// basic block must have their PHI nodes updated.
100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
101 /// conditions and indirectbr addresses this might make dead if
102 /// DeleteDeadConditions is true.
103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
104 const TargetLibraryInfo *TLI,
105 DeferredDominance *DDT) {
106 TerminatorInst *T = BB->getTerminator();
107 IRBuilder<> Builder(T);
109 // Branch - See if we are conditional jumping on constant
110 if (auto *BI = dyn_cast<BranchInst>(T)) {
111 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
112 BasicBlock *Dest1 = BI->getSuccessor(0);
113 BasicBlock *Dest2 = BI->getSuccessor(1);
115 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
116 // Are we branching on constant?
117 // YES. Change to unconditional branch...
118 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
119 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
121 // Let the basic block know that we are letting go of it. Based on this,
122 // it will adjust it's PHI nodes.
123 OldDest->removePredecessor(BB);
125 // Replace the conditional branch with an unconditional one.
126 Builder.CreateBr(Destination);
127 BI->eraseFromParent();
128 if (DDT)
129 DDT->deleteEdge(BB, OldDest);
130 return true;
133 if (Dest2 == Dest1) { // Conditional branch to same location?
134 // This branch matches something like this:
135 // br bool %cond, label %Dest, label %Dest
136 // and changes it into: br label %Dest
138 // Let the basic block know that we are letting go of one copy of it.
139 assert(BI->getParent() && "Terminator not inserted in block!");
140 Dest1->removePredecessor(BI->getParent());
142 // Replace the conditional branch with an unconditional one.
143 Builder.CreateBr(Dest1);
144 Value *Cond = BI->getCondition();
145 BI->eraseFromParent();
146 if (DeleteDeadConditions)
147 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
148 return true;
150 return false;
153 if (auto *SI = dyn_cast<SwitchInst>(T)) {
154 // If we are switching on a constant, we can convert the switch to an
155 // unconditional branch.
156 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
157 BasicBlock *DefaultDest = SI->getDefaultDest();
158 BasicBlock *TheOnlyDest = DefaultDest;
160 // If the default is unreachable, ignore it when searching for TheOnlyDest.
161 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
162 SI->getNumCases() > 0) {
163 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166 // Figure out which case it goes to.
167 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
168 // Found case matching a constant operand?
169 if (i->getCaseValue() == CI) {
170 TheOnlyDest = i->getCaseSuccessor();
171 break;
174 // Check to see if this branch is going to the same place as the default
175 // dest. If so, eliminate it as an explicit compare.
176 if (i->getCaseSuccessor() == DefaultDest) {
177 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
178 unsigned NCases = SI->getNumCases();
179 // Fold the case metadata into the default if there will be any branches
180 // left, unless the metadata doesn't match the switch.
181 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
182 // Collect branch weights into a vector.
183 SmallVector<uint32_t, 8> Weights;
184 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
185 ++MD_i) {
186 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
187 Weights.push_back(CI->getValue().getZExtValue());
189 // Merge weight of this case to the default weight.
190 unsigned idx = i->getCaseIndex();
191 Weights[0] += Weights[idx+1];
192 // Remove weight for this case.
193 std::swap(Weights[idx+1], Weights.back());
194 Weights.pop_back();
195 SI->setMetadata(LLVMContext::MD_prof,
196 MDBuilder(BB->getContext()).
197 createBranchWeights(Weights));
199 // Remove this entry.
200 BasicBlock *ParentBB = SI->getParent();
201 DefaultDest->removePredecessor(ParentBB);
202 i = SI->removeCase(i);
203 e = SI->case_end();
204 if (DDT)
205 DDT->deleteEdge(ParentBB, DefaultDest);
206 continue;
209 // Otherwise, check to see if the switch only branches to one destination.
210 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
211 // destinations.
212 if (i->getCaseSuccessor() != TheOnlyDest)
213 TheOnlyDest = nullptr;
215 // Increment this iterator as we haven't removed the case.
216 ++i;
219 if (CI && !TheOnlyDest) {
220 // Branching on a constant, but not any of the cases, go to the default
221 // successor.
222 TheOnlyDest = SI->getDefaultDest();
225 // If we found a single destination that we can fold the switch into, do so
226 // now.
227 if (TheOnlyDest) {
228 // Insert the new branch.
229 Builder.CreateBr(TheOnlyDest);
230 BasicBlock *BB = SI->getParent();
231 std::vector <DominatorTree::UpdateType> Updates;
232 if (DDT)
233 Updates.reserve(SI->getNumSuccessors() - 1);
235 // Remove entries from PHI nodes which we no longer branch to...
236 for (BasicBlock *Succ : SI->successors()) {
237 // Found case matching a constant operand?
238 if (Succ == TheOnlyDest) {
239 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
240 } else {
241 Succ->removePredecessor(BB);
242 if (DDT)
243 Updates.push_back({DominatorTree::Delete, BB, Succ});
247 // Delete the old switch.
248 Value *Cond = SI->getCondition();
249 SI->eraseFromParent();
250 if (DeleteDeadConditions)
251 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
252 if (DDT)
253 DDT->applyUpdates(Updates);
254 return true;
257 if (SI->getNumCases() == 1) {
258 // Otherwise, we can fold this switch into a conditional branch
259 // instruction if it has only one non-default destination.
260 auto FirstCase = *SI->case_begin();
261 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
262 FirstCase.getCaseValue(), "cond");
264 // Insert the new branch.
265 BranchInst *NewBr = Builder.CreateCondBr(Cond,
266 FirstCase.getCaseSuccessor(),
267 SI->getDefaultDest());
268 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
269 if (MD && MD->getNumOperands() == 3) {
270 ConstantInt *SICase =
271 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
272 ConstantInt *SIDef =
273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
274 assert(SICase && SIDef);
275 // The TrueWeight should be the weight for the single case of SI.
276 NewBr->setMetadata(LLVMContext::MD_prof,
277 MDBuilder(BB->getContext()).
278 createBranchWeights(SICase->getValue().getZExtValue(),
279 SIDef->getValue().getZExtValue()));
282 // Update make.implicit metadata to the newly-created conditional branch.
283 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
284 if (MakeImplicitMD)
285 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
287 // Delete the old switch.
288 SI->eraseFromParent();
289 return true;
291 return false;
294 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
295 // indirectbr blockaddress(@F, @BB) -> br label @BB
296 if (auto *BA =
297 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
298 BasicBlock *TheOnlyDest = BA->getBasicBlock();
299 std::vector <DominatorTree::UpdateType> Updates;
300 if (DDT)
301 Updates.reserve(IBI->getNumDestinations() - 1);
303 // Insert the new branch.
304 Builder.CreateBr(TheOnlyDest);
306 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
307 if (IBI->getDestination(i) == TheOnlyDest) {
308 TheOnlyDest = nullptr;
309 } else {
310 BasicBlock *ParentBB = IBI->getParent();
311 BasicBlock *DestBB = IBI->getDestination(i);
312 DestBB->removePredecessor(ParentBB);
313 if (DDT)
314 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317 Value *Address = IBI->getAddress();
318 IBI->eraseFromParent();
319 if (DeleteDeadConditions)
320 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
322 // If we didn't find our destination in the IBI successor list, then we
323 // have undefined behavior. Replace the unconditional branch with an
324 // 'unreachable' instruction.
325 if (TheOnlyDest) {
326 BB->getTerminator()->eraseFromParent();
327 new UnreachableInst(BB->getContext(), BB);
330 if (DDT)
331 DDT->applyUpdates(Updates);
332 return true;
336 return false;
339 //===----------------------------------------------------------------------===//
340 // Local dead code elimination.
343 /// isInstructionTriviallyDead - Return true if the result produced by the
344 /// instruction is not used, and the instruction has no side effects.
346 bool llvm::isInstructionTriviallyDead(Instruction *I,
347 const TargetLibraryInfo *TLI) {
348 if (!I->use_empty())
349 return false;
350 return wouldInstructionBeTriviallyDead(I, TLI);
353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
354 const TargetLibraryInfo *TLI) {
355 if (isa<TerminatorInst>(I))
356 return false;
358 // We don't want the landingpad-like instructions removed by anything this
359 // general.
360 if (I->isEHPad())
361 return false;
363 // We don't want debug info removed by anything this general, unless
364 // debug info is empty.
365 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
366 if (DDI->getAddress())
367 return false;
368 return true;
370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
371 if (DVI->getValue())
372 return false;
373 return true;
375 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
376 if (DLI->getLabel())
377 return false;
378 return true;
381 if (!I->mayHaveSideEffects())
382 return true;
384 // Special case intrinsics that "may have side effects" but can be deleted
385 // when dead.
386 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
387 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
388 if (II->getIntrinsicID() == Intrinsic::stacksave ||
389 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
390 return true;
392 // Lifetime intrinsics are dead when their right-hand is undef.
393 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
394 II->getIntrinsicID() == Intrinsic::lifetime_end)
395 return isa<UndefValue>(II->getArgOperand(1));
397 // Assumptions are dead if their condition is trivially true. Guards on
398 // true are operationally no-ops. In the future we can consider more
399 // sophisticated tradeoffs for guards considering potential for check
400 // widening, but for now we keep things simple.
401 if (II->getIntrinsicID() == Intrinsic::assume ||
402 II->getIntrinsicID() == Intrinsic::experimental_guard) {
403 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
404 return !Cond->isZero();
406 return false;
410 if (isAllocLikeFn(I, TLI))
411 return true;
413 if (CallInst *CI = isFreeCall(I, TLI))
414 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
415 return C->isNullValue() || isa<UndefValue>(C);
417 if (CallSite CS = CallSite(I))
418 if (isMathLibCallNoop(CS, TLI))
419 return true;
421 return false;
424 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
425 /// trivially dead instruction, delete it. If that makes any of its operands
426 /// trivially dead, delete them too, recursively. Return true if any
427 /// instructions were deleted.
428 bool
429 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
430 const TargetLibraryInfo *TLI) {
431 Instruction *I = dyn_cast<Instruction>(V);
432 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
433 return false;
435 SmallVector<Instruction*, 16> DeadInsts;
436 DeadInsts.push_back(I);
437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
439 return true;
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI) {
444 // Process the dead instruction list until empty.
445 while (!DeadInsts.empty()) {
446 Instruction &I = *DeadInsts.pop_back_val();
447 assert(I.use_empty() && "Instructions with uses are not dead.");
448 assert(isInstructionTriviallyDead(&I, TLI) &&
449 "Live instruction found in dead worklist!");
451 // Don't lose the debug info while deleting the instructions.
452 salvageDebugInfo(I);
454 // Null out all of the instruction's operands to see if any operand becomes
455 // dead as we go.
456 for (Use &OpU : I.operands()) {
457 Value *OpV = OpU.get();
458 OpU.set(nullptr);
460 if (!OpV->use_empty())
461 continue;
463 // If the operand is an instruction that became dead as we nulled out the
464 // operand, and if it is 'trivially' dead, delete it in a future loop
465 // iteration.
466 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
467 if (isInstructionTriviallyDead(OpI, TLI))
468 DeadInsts.push_back(OpI);
471 I.eraseFromParent();
475 /// areAllUsesEqual - Check whether the uses of a value are all the same.
476 /// This is similar to Instruction::hasOneUse() except this will also return
477 /// true when there are no uses or multiple uses that all refer to the same
478 /// value.
479 static bool areAllUsesEqual(Instruction *I) {
480 Value::user_iterator UI = I->user_begin();
481 Value::user_iterator UE = I->user_end();
482 if (UI == UE)
483 return true;
485 User *TheUse = *UI;
486 for (++UI; UI != UE; ++UI) {
487 if (*UI != TheUse)
488 return false;
490 return true;
493 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
494 /// dead PHI node, due to being a def-use chain of single-use nodes that
495 /// either forms a cycle or is terminated by a trivially dead instruction,
496 /// delete it. If that makes any of its operands trivially dead, delete them
497 /// too, recursively. Return true if a change was made.
498 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
499 const TargetLibraryInfo *TLI) {
500 SmallPtrSet<Instruction*, 4> Visited;
501 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
502 I = cast<Instruction>(*I->user_begin())) {
503 if (I->use_empty())
504 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
506 // If we find an instruction more than once, we're on a cycle that
507 // won't prove fruitful.
508 if (!Visited.insert(I).second) {
509 // Break the cycle and delete the instruction and its operands.
510 I->replaceAllUsesWith(UndefValue::get(I->getType()));
511 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
512 return true;
515 return false;
518 static bool
519 simplifyAndDCEInstruction(Instruction *I,
520 SmallSetVector<Instruction *, 16> &WorkList,
521 const DataLayout &DL,
522 const TargetLibraryInfo *TLI) {
523 if (isInstructionTriviallyDead(I, TLI)) {
524 salvageDebugInfo(*I);
526 // Null out all of the instruction's operands to see if any operand becomes
527 // dead as we go.
528 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
529 Value *OpV = I->getOperand(i);
530 I->setOperand(i, nullptr);
532 if (!OpV->use_empty() || I == OpV)
533 continue;
535 // If the operand is an instruction that became dead as we nulled out the
536 // operand, and if it is 'trivially' dead, delete it in a future loop
537 // iteration.
538 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
539 if (isInstructionTriviallyDead(OpI, TLI))
540 WorkList.insert(OpI);
543 I->eraseFromParent();
545 return true;
548 if (Value *SimpleV = SimplifyInstruction(I, DL)) {
549 // Add the users to the worklist. CAREFUL: an instruction can use itself,
550 // in the case of a phi node.
551 for (User *U : I->users()) {
552 if (U != I) {
553 WorkList.insert(cast<Instruction>(U));
557 // Replace the instruction with its simplified value.
558 bool Changed = false;
559 if (!I->use_empty()) {
560 I->replaceAllUsesWith(SimpleV);
561 Changed = true;
563 if (isInstructionTriviallyDead(I, TLI)) {
564 I->eraseFromParent();
565 Changed = true;
567 return Changed;
569 return false;
572 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
573 /// simplify any instructions in it and recursively delete dead instructions.
575 /// This returns true if it changed the code, note that it can delete
576 /// instructions in other blocks as well in this block.
577 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
578 const TargetLibraryInfo *TLI) {
579 bool MadeChange = false;
580 const DataLayout &DL = BB->getModule()->getDataLayout();
582 #ifndef NDEBUG
583 // In debug builds, ensure that the terminator of the block is never replaced
584 // or deleted by these simplifications. The idea of simplification is that it
585 // cannot introduce new instructions, and there is no way to replace the
586 // terminator of a block without introducing a new instruction.
587 AssertingVH<Instruction> TerminatorVH(&BB->back());
588 #endif
590 SmallSetVector<Instruction *, 16> WorkList;
591 // Iterate over the original function, only adding insts to the worklist
592 // if they actually need to be revisited. This avoids having to pre-init
593 // the worklist with the entire function's worth of instructions.
594 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
595 BI != E;) {
596 assert(!BI->isTerminator());
597 Instruction *I = &*BI;
598 ++BI;
600 // We're visiting this instruction now, so make sure it's not in the
601 // worklist from an earlier visit.
602 if (!WorkList.count(I))
603 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
606 while (!WorkList.empty()) {
607 Instruction *I = WorkList.pop_back_val();
608 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
610 return MadeChange;
613 //===----------------------------------------------------------------------===//
614 // Control Flow Graph Restructuring.
617 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
618 /// method is called when we're about to delete Pred as a predecessor of BB. If
619 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
621 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
622 /// nodes that collapse into identity values. For example, if we have:
623 /// x = phi(1, 0, 0, 0)
624 /// y = and x, z
626 /// .. and delete the predecessor corresponding to the '1', this will attempt to
627 /// recursively fold the and to 0.
628 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
629 DeferredDominance *DDT) {
630 // This only adjusts blocks with PHI nodes.
631 if (!isa<PHINode>(BB->begin()))
632 return;
634 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
635 // them down. This will leave us with single entry phi nodes and other phis
636 // that can be removed.
637 BB->removePredecessor(Pred, true);
639 WeakTrackingVH PhiIt = &BB->front();
640 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
641 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
642 Value *OldPhiIt = PhiIt;
644 if (!recursivelySimplifyInstruction(PN))
645 continue;
647 // If recursive simplification ended up deleting the next PHI node we would
648 // iterate to, then our iterator is invalid, restart scanning from the top
649 // of the block.
650 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
652 if (DDT)
653 DDT->deleteEdge(Pred, BB);
656 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
657 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
658 /// between them, moving the instructions in the predecessor into DestBB and
659 /// deleting the predecessor block.
660 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT,
661 DeferredDominance *DDT) {
662 assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
664 // If BB has single-entry PHI nodes, fold them.
665 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
666 Value *NewVal = PN->getIncomingValue(0);
667 // Replace self referencing PHI with undef, it must be dead.
668 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
669 PN->replaceAllUsesWith(NewVal);
670 PN->eraseFromParent();
673 BasicBlock *PredBB = DestBB->getSinglePredecessor();
674 assert(PredBB && "Block doesn't have a single predecessor!");
676 bool ReplaceEntryBB = false;
677 if (PredBB == &DestBB->getParent()->getEntryBlock())
678 ReplaceEntryBB = true;
680 // Deferred DT update: Collect all the edges that enter PredBB. These
681 // dominator edges will be redirected to DestBB.
682 std::vector <DominatorTree::UpdateType> Updates;
683 if (DDT && !ReplaceEntryBB) {
684 Updates.reserve(1 + (2 * pred_size(PredBB)));
685 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
686 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
687 Updates.push_back({DominatorTree::Delete, *I, PredBB});
688 // This predecessor of PredBB may already have DestBB as a successor.
689 if (llvm::find(successors(*I), DestBB) == succ_end(*I))
690 Updates.push_back({DominatorTree::Insert, *I, DestBB});
694 // Zap anything that took the address of DestBB. Not doing this will give the
695 // address an invalid value.
696 if (DestBB->hasAddressTaken()) {
697 BlockAddress *BA = BlockAddress::get(DestBB);
698 Constant *Replacement =
699 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
700 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
701 BA->getType()));
702 BA->destroyConstant();
705 // Anything that branched to PredBB now branches to DestBB.
706 PredBB->replaceAllUsesWith(DestBB);
708 // Splice all the instructions from PredBB to DestBB.
709 PredBB->getTerminator()->eraseFromParent();
710 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
712 // If the PredBB is the entry block of the function, move DestBB up to
713 // become the entry block after we erase PredBB.
714 if (ReplaceEntryBB)
715 DestBB->moveAfter(PredBB);
717 if (DT) {
718 // For some irreducible CFG we end up having forward-unreachable blocks
719 // so check if getNode returns a valid node before updating the domtree.
720 if (DomTreeNode *DTN = DT->getNode(PredBB)) {
721 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
722 DT->changeImmediateDominator(DestBB, PredBBIDom);
723 DT->eraseNode(PredBB);
727 if (DDT) {
728 DDT->deleteBB(PredBB); // Deferred deletion of BB.
729 if (ReplaceEntryBB)
730 // The entry block was removed and there is no external interface for the
731 // dominator tree to be notified of this change. In this corner-case we
732 // recalculate the entire tree.
733 DDT->recalculate(*(DestBB->getParent()));
734 else
735 DDT->applyUpdates(Updates);
736 } else {
737 PredBB->eraseFromParent(); // Nuke BB.
741 /// CanMergeValues - Return true if we can choose one of these values to use
742 /// in place of the other. Note that we will always choose the non-undef
743 /// value to keep.
744 static bool CanMergeValues(Value *First, Value *Second) {
745 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
748 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
749 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
751 /// Assumption: Succ is the single successor for BB.
752 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
753 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
755 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
756 << Succ->getName() << "\n");
757 // Shortcut, if there is only a single predecessor it must be BB and merging
758 // is always safe
759 if (Succ->getSinglePredecessor()) return true;
761 // Make a list of the predecessors of BB
762 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
764 // Look at all the phi nodes in Succ, to see if they present a conflict when
765 // merging these blocks
766 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
767 PHINode *PN = cast<PHINode>(I);
769 // If the incoming value from BB is again a PHINode in
770 // BB which has the same incoming value for *PI as PN does, we can
771 // merge the phi nodes and then the blocks can still be merged
772 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
773 if (BBPN && BBPN->getParent() == BB) {
774 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
775 BasicBlock *IBB = PN->getIncomingBlock(PI);
776 if (BBPreds.count(IBB) &&
777 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
778 PN->getIncomingValue(PI))) {
779 LLVM_DEBUG(dbgs()
780 << "Can't fold, phi node " << PN->getName() << " in "
781 << Succ->getName() << " is conflicting with "
782 << BBPN->getName() << " with regard to common predecessor "
783 << IBB->getName() << "\n");
784 return false;
787 } else {
788 Value* Val = PN->getIncomingValueForBlock(BB);
789 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
790 // See if the incoming value for the common predecessor is equal to the
791 // one for BB, in which case this phi node will not prevent the merging
792 // of the block.
793 BasicBlock *IBB = PN->getIncomingBlock(PI);
794 if (BBPreds.count(IBB) &&
795 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
796 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
797 << " in " << Succ->getName()
798 << " is conflicting with regard to common "
799 << "predecessor " << IBB->getName() << "\n");
800 return false;
806 return true;
809 using PredBlockVector = SmallVector<BasicBlock *, 16>;
810 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
812 /// Determines the value to use as the phi node input for a block.
814 /// Select between \p OldVal any value that we know flows from \p BB
815 /// to a particular phi on the basis of which one (if either) is not
816 /// undef. Update IncomingValues based on the selected value.
818 /// \param OldVal The value we are considering selecting.
819 /// \param BB The block that the value flows in from.
820 /// \param IncomingValues A map from block-to-value for other phi inputs
821 /// that we have examined.
823 /// \returns the selected value.
824 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
825 IncomingValueMap &IncomingValues) {
826 if (!isa<UndefValue>(OldVal)) {
827 assert((!IncomingValues.count(BB) ||
828 IncomingValues.find(BB)->second == OldVal) &&
829 "Expected OldVal to match incoming value from BB!");
831 IncomingValues.insert(std::make_pair(BB, OldVal));
832 return OldVal;
835 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
836 if (It != IncomingValues.end()) return It->second;
838 return OldVal;
841 /// Create a map from block to value for the operands of a
842 /// given phi.
844 /// Create a map from block to value for each non-undef value flowing
845 /// into \p PN.
847 /// \param PN The phi we are collecting the map for.
848 /// \param IncomingValues [out] The map from block to value for this phi.
849 static void gatherIncomingValuesToPhi(PHINode *PN,
850 IncomingValueMap &IncomingValues) {
851 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
852 BasicBlock *BB = PN->getIncomingBlock(i);
853 Value *V = PN->getIncomingValue(i);
855 if (!isa<UndefValue>(V))
856 IncomingValues.insert(std::make_pair(BB, V));
860 /// Replace the incoming undef values to a phi with the values
861 /// from a block-to-value map.
863 /// \param PN The phi we are replacing the undefs in.
864 /// \param IncomingValues A map from block to value.
865 static void replaceUndefValuesInPhi(PHINode *PN,
866 const IncomingValueMap &IncomingValues) {
867 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
868 Value *V = PN->getIncomingValue(i);
870 if (!isa<UndefValue>(V)) continue;
872 BasicBlock *BB = PN->getIncomingBlock(i);
873 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
874 if (It == IncomingValues.end()) continue;
876 PN->setIncomingValue(i, It->second);
880 /// Replace a value flowing from a block to a phi with
881 /// potentially multiple instances of that value flowing from the
882 /// block's predecessors to the phi.
884 /// \param BB The block with the value flowing into the phi.
885 /// \param BBPreds The predecessors of BB.
886 /// \param PN The phi that we are updating.
887 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
888 const PredBlockVector &BBPreds,
889 PHINode *PN) {
890 Value *OldVal = PN->removeIncomingValue(BB, false);
891 assert(OldVal && "No entry in PHI for Pred BB!");
893 IncomingValueMap IncomingValues;
895 // We are merging two blocks - BB, and the block containing PN - and
896 // as a result we need to redirect edges from the predecessors of BB
897 // to go to the block containing PN, and update PN
898 // accordingly. Since we allow merging blocks in the case where the
899 // predecessor and successor blocks both share some predecessors,
900 // and where some of those common predecessors might have undef
901 // values flowing into PN, we want to rewrite those values to be
902 // consistent with the non-undef values.
904 gatherIncomingValuesToPhi(PN, IncomingValues);
906 // If this incoming value is one of the PHI nodes in BB, the new entries
907 // in the PHI node are the entries from the old PHI.
908 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
909 PHINode *OldValPN = cast<PHINode>(OldVal);
910 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
911 // Note that, since we are merging phi nodes and BB and Succ might
912 // have common predecessors, we could end up with a phi node with
913 // identical incoming branches. This will be cleaned up later (and
914 // will trigger asserts if we try to clean it up now, without also
915 // simplifying the corresponding conditional branch).
916 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
917 Value *PredVal = OldValPN->getIncomingValue(i);
918 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
919 IncomingValues);
921 // And add a new incoming value for this predecessor for the
922 // newly retargeted branch.
923 PN->addIncoming(Selected, PredBB);
925 } else {
926 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
927 // Update existing incoming values in PN for this
928 // predecessor of BB.
929 BasicBlock *PredBB = BBPreds[i];
930 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
931 IncomingValues);
933 // And add a new incoming value for this predecessor for the
934 // newly retargeted branch.
935 PN->addIncoming(Selected, PredBB);
939 replaceUndefValuesInPhi(PN, IncomingValues);
942 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
943 /// unconditional branch, and contains no instructions other than PHI nodes,
944 /// potential side-effect free intrinsics and the branch. If possible,
945 /// eliminate BB by rewriting all the predecessors to branch to the successor
946 /// block and return true. If we can't transform, return false.
947 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
948 DeferredDominance *DDT) {
949 assert(BB != &BB->getParent()->getEntryBlock() &&
950 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
952 // We can't eliminate infinite loops.
953 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
954 if (BB == Succ) return false;
956 // Check to see if merging these blocks would cause conflicts for any of the
957 // phi nodes in BB or Succ. If not, we can safely merge.
958 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
960 // Check for cases where Succ has multiple predecessors and a PHI node in BB
961 // has uses which will not disappear when the PHI nodes are merged. It is
962 // possible to handle such cases, but difficult: it requires checking whether
963 // BB dominates Succ, which is non-trivial to calculate in the case where
964 // Succ has multiple predecessors. Also, it requires checking whether
965 // constructing the necessary self-referential PHI node doesn't introduce any
966 // conflicts; this isn't too difficult, but the previous code for doing this
967 // was incorrect.
969 // Note that if this check finds a live use, BB dominates Succ, so BB is
970 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
971 // folding the branch isn't profitable in that case anyway.
972 if (!Succ->getSinglePredecessor()) {
973 BasicBlock::iterator BBI = BB->begin();
974 while (isa<PHINode>(*BBI)) {
975 for (Use &U : BBI->uses()) {
976 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
977 if (PN->getIncomingBlock(U) != BB)
978 return false;
979 } else {
980 return false;
983 ++BBI;
987 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
989 std::vector<DominatorTree::UpdateType> Updates;
990 if (DDT) {
991 Updates.reserve(1 + (2 * pred_size(BB)));
992 Updates.push_back({DominatorTree::Delete, BB, Succ});
993 // All predecessors of BB will be moved to Succ.
994 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
995 Updates.push_back({DominatorTree::Delete, *I, BB});
996 // This predecessor of BB may already have Succ as a successor.
997 if (llvm::find(successors(*I), Succ) == succ_end(*I))
998 Updates.push_back({DominatorTree::Insert, *I, Succ});
1002 if (isa<PHINode>(Succ->begin())) {
1003 // If there is more than one pred of succ, and there are PHI nodes in
1004 // the successor, then we need to add incoming edges for the PHI nodes
1006 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1008 // Loop over all of the PHI nodes in the successor of BB.
1009 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1010 PHINode *PN = cast<PHINode>(I);
1012 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1016 if (Succ->getSinglePredecessor()) {
1017 // BB is the only predecessor of Succ, so Succ will end up with exactly
1018 // the same predecessors BB had.
1020 // Copy over any phi, debug or lifetime instruction.
1021 BB->getTerminator()->eraseFromParent();
1022 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1023 BB->getInstList());
1024 } else {
1025 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1026 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1027 assert(PN->use_empty() && "There shouldn't be any uses here!");
1028 PN->eraseFromParent();
1032 // If the unconditional branch we replaced contains llvm.loop metadata, we
1033 // add the metadata to the branch instructions in the predecessors.
1034 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1035 Instruction *TI = BB->getTerminator();
1036 if (TI)
1037 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1038 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1039 BasicBlock *Pred = *PI;
1040 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1043 // Everything that jumped to BB now goes to Succ.
1044 BB->replaceAllUsesWith(Succ);
1045 if (!Succ->hasName()) Succ->takeName(BB);
1047 if (DDT) {
1048 DDT->deleteBB(BB); // Deferred deletion of the old basic block.
1049 DDT->applyUpdates(Updates);
1050 } else {
1051 BB->eraseFromParent(); // Delete the old basic block.
1053 return true;
1056 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1057 /// nodes in this block. This doesn't try to be clever about PHI nodes
1058 /// which differ only in the order of the incoming values, but instcombine
1059 /// orders them so it usually won't matter.
1060 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1061 // This implementation doesn't currently consider undef operands
1062 // specially. Theoretically, two phis which are identical except for
1063 // one having an undef where the other doesn't could be collapsed.
1065 struct PHIDenseMapInfo {
1066 static PHINode *getEmptyKey() {
1067 return DenseMapInfo<PHINode *>::getEmptyKey();
1070 static PHINode *getTombstoneKey() {
1071 return DenseMapInfo<PHINode *>::getTombstoneKey();
1074 static unsigned getHashValue(PHINode *PN) {
1075 // Compute a hash value on the operands. Instcombine will likely have
1076 // sorted them, which helps expose duplicates, but we have to check all
1077 // the operands to be safe in case instcombine hasn't run.
1078 return static_cast<unsigned>(hash_combine(
1079 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1080 hash_combine_range(PN->block_begin(), PN->block_end())));
1083 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1084 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1085 RHS == getEmptyKey() || RHS == getTombstoneKey())
1086 return LHS == RHS;
1087 return LHS->isIdenticalTo(RHS);
1091 // Set of unique PHINodes.
1092 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1094 // Examine each PHI.
1095 bool Changed = false;
1096 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1097 auto Inserted = PHISet.insert(PN);
1098 if (!Inserted.second) {
1099 // A duplicate. Replace this PHI with its duplicate.
1100 PN->replaceAllUsesWith(*Inserted.first);
1101 PN->eraseFromParent();
1102 Changed = true;
1104 // The RAUW can change PHIs that we already visited. Start over from the
1105 // beginning.
1106 PHISet.clear();
1107 I = BB->begin();
1111 return Changed;
1114 /// enforceKnownAlignment - If the specified pointer points to an object that
1115 /// we control, modify the object's alignment to PrefAlign. This isn't
1116 /// often possible though. If alignment is important, a more reliable approach
1117 /// is to simply align all global variables and allocation instructions to
1118 /// their preferred alignment from the beginning.
1119 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1120 unsigned PrefAlign,
1121 const DataLayout &DL) {
1122 assert(PrefAlign > Align);
1124 V = V->stripPointerCasts();
1126 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1127 // TODO: ideally, computeKnownBits ought to have used
1128 // AllocaInst::getAlignment() in its computation already, making
1129 // the below max redundant. But, as it turns out,
1130 // stripPointerCasts recurses through infinite layers of bitcasts,
1131 // while computeKnownBits is not allowed to traverse more than 6
1132 // levels.
1133 Align = std::max(AI->getAlignment(), Align);
1134 if (PrefAlign <= Align)
1135 return Align;
1137 // If the preferred alignment is greater than the natural stack alignment
1138 // then don't round up. This avoids dynamic stack realignment.
1139 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1140 return Align;
1141 AI->setAlignment(PrefAlign);
1142 return PrefAlign;
1145 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1146 // TODO: as above, this shouldn't be necessary.
1147 Align = std::max(GO->getAlignment(), Align);
1148 if (PrefAlign <= Align)
1149 return Align;
1151 // If there is a large requested alignment and we can, bump up the alignment
1152 // of the global. If the memory we set aside for the global may not be the
1153 // memory used by the final program then it is impossible for us to reliably
1154 // enforce the preferred alignment.
1155 if (!GO->canIncreaseAlignment())
1156 return Align;
1158 GO->setAlignment(PrefAlign);
1159 return PrefAlign;
1162 return Align;
1165 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1166 const DataLayout &DL,
1167 const Instruction *CxtI,
1168 AssumptionCache *AC,
1169 const DominatorTree *DT) {
1170 assert(V->getType()->isPointerTy() &&
1171 "getOrEnforceKnownAlignment expects a pointer!");
1173 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1174 unsigned TrailZ = Known.countMinTrailingZeros();
1176 // Avoid trouble with ridiculously large TrailZ values, such as
1177 // those computed from a null pointer.
1178 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1180 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1182 // LLVM doesn't support alignments larger than this currently.
1183 Align = std::min(Align, +Value::MaximumAlignment);
1185 if (PrefAlign > Align)
1186 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1188 // We don't need to make any adjustment.
1189 return Align;
1192 ///===---------------------------------------------------------------------===//
1193 /// Dbg Intrinsic utilities
1196 /// See if there is a dbg.value intrinsic for DIVar before I.
1197 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1198 Instruction *I) {
1199 // Since we can't guarantee that the original dbg.declare instrinsic
1200 // is removed by LowerDbgDeclare(), we need to make sure that we are
1201 // not inserting the same dbg.value intrinsic over and over.
1202 BasicBlock::InstListType::iterator PrevI(I);
1203 if (PrevI != I->getParent()->getInstList().begin()) {
1204 --PrevI;
1205 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1206 if (DVI->getValue() == I->getOperand(0) &&
1207 DVI->getVariable() == DIVar &&
1208 DVI->getExpression() == DIExpr)
1209 return true;
1211 return false;
1214 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1215 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1216 DIExpression *DIExpr,
1217 PHINode *APN) {
1218 // Since we can't guarantee that the original dbg.declare instrinsic
1219 // is removed by LowerDbgDeclare(), we need to make sure that we are
1220 // not inserting the same dbg.value intrinsic over and over.
1221 SmallVector<DbgValueInst *, 1> DbgValues;
1222 findDbgValues(DbgValues, APN);
1223 for (auto *DVI : DbgValues) {
1224 assert(DVI->getValue() == APN);
1225 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1226 return true;
1228 return false;
1231 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1232 /// (or fragment of the variable) described by \p DII.
1234 /// This is primarily intended as a helper for the different
1235 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1236 /// converted describes an alloca'd variable, so we need to use the
1237 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1238 /// identified as covering an n-bit fragment, if the store size of i1 is at
1239 /// least n bits.
1240 static bool valueCoversEntireFragment(Type *ValTy, DbgInfoIntrinsic *DII) {
1241 const DataLayout &DL = DII->getModule()->getDataLayout();
1242 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1243 if (auto FragmentSize = DII->getFragmentSizeInBits())
1244 return ValueSize >= *FragmentSize;
1245 // We can't always calculate the size of the DI variable (e.g. if it is a
1246 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1247 // intead.
1248 if (DII->isAddressOfVariable())
1249 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1250 if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1251 return ValueSize >= *FragmentSize;
1252 // Could not determine size of variable. Conservatively return false.
1253 return false;
1256 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1257 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1258 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1259 StoreInst *SI, DIBuilder &Builder) {
1260 assert(DII->isAddressOfVariable());
1261 auto *DIVar = DII->getVariable();
1262 assert(DIVar && "Missing variable");
1263 auto *DIExpr = DII->getExpression();
1264 Value *DV = SI->getOperand(0);
1266 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1267 // FIXME: If storing to a part of the variable described by the dbg.declare,
1268 // then we want to insert a dbg.value for the corresponding fragment.
1269 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1270 << *DII << '\n');
1271 // For now, when there is a store to parts of the variable (but we do not
1272 // know which part) we insert an dbg.value instrinsic to indicate that we
1273 // know nothing about the variable's content.
1274 DV = UndefValue::get(DV->getType());
1275 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1276 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1277 SI);
1278 return;
1281 // If an argument is zero extended then use argument directly. The ZExt
1282 // may be zapped by an optimization pass in future.
1283 Argument *ExtendedArg = nullptr;
1284 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1285 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1286 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1287 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1288 if (ExtendedArg) {
1289 // If this DII was already describing only a fragment of a variable, ensure
1290 // that fragment is appropriately narrowed here.
1291 // But if a fragment wasn't used, describe the value as the original
1292 // argument (rather than the zext or sext) so that it remains described even
1293 // if the sext/zext is optimized away. This widens the variable description,
1294 // leaving it up to the consumer to know how the smaller value may be
1295 // represented in a larger register.
1296 if (auto Fragment = DIExpr->getFragmentInfo()) {
1297 unsigned FragmentOffset = Fragment->OffsetInBits;
1298 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1299 DIExpr->elements_end() - 3);
1300 Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1301 Ops.push_back(FragmentOffset);
1302 const DataLayout &DL = DII->getModule()->getDataLayout();
1303 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1304 DIExpr = Builder.createExpression(Ops);
1306 DV = ExtendedArg;
1308 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1309 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1310 SI);
1313 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1314 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1315 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1316 LoadInst *LI, DIBuilder &Builder) {
1317 auto *DIVar = DII->getVariable();
1318 auto *DIExpr = DII->getExpression();
1319 assert(DIVar && "Missing variable");
1321 if (LdStHasDebugValue(DIVar, DIExpr, LI))
1322 return;
1324 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1325 // FIXME: If only referring to a part of the variable described by the
1326 // dbg.declare, then we want to insert a dbg.value for the corresponding
1327 // fragment.
1328 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1329 << *DII << '\n');
1330 return;
1333 // We are now tracking the loaded value instead of the address. In the
1334 // future if multi-location support is added to the IR, it might be
1335 // preferable to keep tracking both the loaded value and the original
1336 // address in case the alloca can not be elided.
1337 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1338 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1339 DbgValue->insertAfter(LI);
1342 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1343 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1344 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1345 PHINode *APN, DIBuilder &Builder) {
1346 auto *DIVar = DII->getVariable();
1347 auto *DIExpr = DII->getExpression();
1348 assert(DIVar && "Missing variable");
1350 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1351 return;
1353 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1354 // FIXME: If only referring to a part of the variable described by the
1355 // dbg.declare, then we want to insert a dbg.value for the corresponding
1356 // fragment.
1357 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1358 << *DII << '\n');
1359 return;
1362 BasicBlock *BB = APN->getParent();
1363 auto InsertionPt = BB->getFirstInsertionPt();
1365 // The block may be a catchswitch block, which does not have a valid
1366 // insertion point.
1367 // FIXME: Insert dbg.value markers in the successors when appropriate.
1368 if (InsertionPt != BB->end())
1369 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1370 &*InsertionPt);
1373 /// Determine whether this alloca is either a VLA or an array.
1374 static bool isArray(AllocaInst *AI) {
1375 return AI->isArrayAllocation() ||
1376 AI->getType()->getElementType()->isArrayTy();
1379 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1380 /// of llvm.dbg.value intrinsics.
1381 bool llvm::LowerDbgDeclare(Function &F) {
1382 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1383 SmallVector<DbgDeclareInst *, 4> Dbgs;
1384 for (auto &FI : F)
1385 for (Instruction &BI : FI)
1386 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1387 Dbgs.push_back(DDI);
1389 if (Dbgs.empty())
1390 return false;
1392 for (auto &I : Dbgs) {
1393 DbgDeclareInst *DDI = I;
1394 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1395 // If this is an alloca for a scalar variable, insert a dbg.value
1396 // at each load and store to the alloca and erase the dbg.declare.
1397 // The dbg.values allow tracking a variable even if it is not
1398 // stored on the stack, while the dbg.declare can only describe
1399 // the stack slot (and at a lexical-scope granularity). Later
1400 // passes will attempt to elide the stack slot.
1401 if (!AI || isArray(AI))
1402 continue;
1404 // A volatile load/store means that the alloca can't be elided anyway.
1405 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1406 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1407 return LI->isVolatile();
1408 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1409 return SI->isVolatile();
1410 return false;
1412 continue;
1414 for (auto &AIUse : AI->uses()) {
1415 User *U = AIUse.getUser();
1416 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1417 if (AIUse.getOperandNo() == 1)
1418 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1419 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1420 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1421 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1422 // This is a call by-value or some other instruction that
1423 // takes a pointer to the variable. Insert a *value*
1424 // intrinsic that describes the alloca.
1425 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1426 DDI->getExpression(), DDI->getDebugLoc(),
1427 CI);
1430 DDI->eraseFromParent();
1432 return true;
1435 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1436 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1437 SmallVectorImpl<PHINode *> &InsertedPHIs) {
1438 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1439 if (InsertedPHIs.size() == 0)
1440 return;
1442 // Map existing PHI nodes to their dbg.values.
1443 ValueToValueMapTy DbgValueMap;
1444 for (auto &I : *BB) {
1445 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
1446 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1447 DbgValueMap.insert({Loc, DbgII});
1450 if (DbgValueMap.size() == 0)
1451 return;
1453 // Then iterate through the new PHIs and look to see if they use one of the
1454 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1455 // propagate the info through the new PHI.
1456 LLVMContext &C = BB->getContext();
1457 for (auto PHI : InsertedPHIs) {
1458 BasicBlock *Parent = PHI->getParent();
1459 // Avoid inserting an intrinsic into an EH block.
1460 if (Parent->getFirstNonPHI()->isEHPad())
1461 continue;
1462 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1463 for (auto VI : PHI->operand_values()) {
1464 auto V = DbgValueMap.find(VI);
1465 if (V != DbgValueMap.end()) {
1466 auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
1467 Instruction *NewDbgII = DbgII->clone();
1468 NewDbgII->setOperand(0, PhiMAV);
1469 auto InsertionPt = Parent->getFirstInsertionPt();
1470 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1471 NewDbgII->insertBefore(&*InsertionPt);
1477 /// Finds all intrinsics declaring local variables as living in the memory that
1478 /// 'V' points to. This may include a mix of dbg.declare and
1479 /// dbg.addr intrinsics.
1480 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1481 // This function is hot. Check whether the value has any metadata to avoid a
1482 // DenseMap lookup.
1483 if (!V->isUsedByMetadata())
1484 return {};
1485 auto *L = LocalAsMetadata::getIfExists(V);
1486 if (!L)
1487 return {};
1488 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1489 if (!MDV)
1490 return {};
1492 TinyPtrVector<DbgInfoIntrinsic *> Declares;
1493 for (User *U : MDV->users()) {
1494 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1495 if (DII->isAddressOfVariable())
1496 Declares.push_back(DII);
1499 return Declares;
1502 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1503 // This function is hot. Check whether the value has any metadata to avoid a
1504 // DenseMap lookup.
1505 if (!V->isUsedByMetadata())
1506 return;
1507 if (auto *L = LocalAsMetadata::getIfExists(V))
1508 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1509 for (User *U : MDV->users())
1510 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1511 DbgValues.push_back(DVI);
1514 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1515 Value *V) {
1516 // This function is hot. Check whether the value has any metadata to avoid a
1517 // DenseMap lookup.
1518 if (!V->isUsedByMetadata())
1519 return;
1520 if (auto *L = LocalAsMetadata::getIfExists(V))
1521 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1522 for (User *U : MDV->users())
1523 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1524 DbgUsers.push_back(DII);
1527 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1528 Instruction *InsertBefore, DIBuilder &Builder,
1529 bool DerefBefore, int Offset, bool DerefAfter) {
1530 auto DbgAddrs = FindDbgAddrUses(Address);
1531 for (DbgInfoIntrinsic *DII : DbgAddrs) {
1532 DebugLoc Loc = DII->getDebugLoc();
1533 auto *DIVar = DII->getVariable();
1534 auto *DIExpr = DII->getExpression();
1535 assert(DIVar && "Missing variable");
1536 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1537 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1538 // llvm.dbg.declare.
1539 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1540 if (DII == InsertBefore)
1541 InsertBefore = InsertBefore->getNextNode();
1542 DII->eraseFromParent();
1544 return !DbgAddrs.empty();
1547 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1548 DIBuilder &Builder, bool DerefBefore,
1549 int Offset, bool DerefAfter) {
1550 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1551 DerefBefore, Offset, DerefAfter);
1554 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1555 DIBuilder &Builder, int Offset) {
1556 DebugLoc Loc = DVI->getDebugLoc();
1557 auto *DIVar = DVI->getVariable();
1558 auto *DIExpr = DVI->getExpression();
1559 assert(DIVar && "Missing variable");
1561 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1562 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1563 // it and give up.
1564 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1565 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1566 return;
1568 // Insert the offset immediately after the first deref.
1569 // We could just change the offset argument of dbg.value, but it's unsigned...
1570 if (Offset) {
1571 SmallVector<uint64_t, 4> Ops;
1572 Ops.push_back(dwarf::DW_OP_deref);
1573 DIExpression::appendOffset(Ops, Offset);
1574 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1575 DIExpr = Builder.createExpression(Ops);
1578 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1579 DVI->eraseFromParent();
1582 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1583 DIBuilder &Builder, int Offset) {
1584 if (auto *L = LocalAsMetadata::getIfExists(AI))
1585 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1586 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1587 Use &U = *UI++;
1588 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1589 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1593 /// Wrap \p V in a ValueAsMetadata instance.
1594 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1595 return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1598 bool llvm::salvageDebugInfo(Instruction &I) {
1599 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1600 findDbgUsers(DbgUsers, &I);
1601 if (DbgUsers.empty())
1602 return false;
1604 auto &M = *I.getModule();
1605 auto &DL = M.getDataLayout();
1606 auto &Ctx = I.getContext();
1607 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1609 auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1610 auto *DIExpr = DII->getExpression();
1611 if (!Ops.empty()) {
1612 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1613 // are implicitly pointing out the value as a DWARF memory location
1614 // description.
1615 bool WithStackValue = isa<DbgValueInst>(DII);
1616 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1618 DII->setOperand(0, wrapMD(I.getOperand(0)));
1619 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1620 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1623 auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1624 SmallVector<uint64_t, 8> Ops;
1625 DIExpression::appendOffset(Ops, Offset);
1626 doSalvage(DII, Ops);
1629 auto applyOps = [&](DbgInfoIntrinsic *DII,
1630 std::initializer_list<uint64_t> Opcodes) {
1631 SmallVector<uint64_t, 8> Ops(Opcodes);
1632 doSalvage(DII, Ops);
1635 if (auto *CI = dyn_cast<CastInst>(&I)) {
1636 if (!CI->isNoopCast(DL))
1637 return false;
1639 // No-op casts are irrelevant for debug info.
1640 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1641 for (auto *DII : DbgUsers) {
1642 DII->setOperand(0, CastSrc);
1643 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1645 return true;
1646 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1647 unsigned BitWidth =
1648 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1649 // Rewrite a constant GEP into a DIExpression. Since we are performing
1650 // arithmetic to compute the variable's *value* in the DIExpression, we
1651 // need to mark the expression with a DW_OP_stack_value.
1652 APInt Offset(BitWidth, 0);
1653 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1654 for (auto *DII : DbgUsers)
1655 applyOffset(DII, Offset.getSExtValue());
1656 return true;
1657 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1658 // Rewrite binary operations with constant integer operands.
1659 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1660 if (!ConstInt || ConstInt->getBitWidth() > 64)
1661 return false;
1663 uint64_t Val = ConstInt->getSExtValue();
1664 for (auto *DII : DbgUsers) {
1665 switch (BI->getOpcode()) {
1666 case Instruction::Add:
1667 applyOffset(DII, Val);
1668 break;
1669 case Instruction::Sub:
1670 applyOffset(DII, -int64_t(Val));
1671 break;
1672 case Instruction::Mul:
1673 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1674 break;
1675 case Instruction::SDiv:
1676 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1677 break;
1678 case Instruction::SRem:
1679 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1680 break;
1681 case Instruction::Or:
1682 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1683 break;
1684 case Instruction::And:
1685 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1686 break;
1687 case Instruction::Xor:
1688 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1689 break;
1690 case Instruction::Shl:
1691 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1692 break;
1693 case Instruction::LShr:
1694 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1695 break;
1696 case Instruction::AShr:
1697 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1698 break;
1699 default:
1700 // TODO: Salvage constants from each kind of binop we know about.
1701 return false;
1704 return true;
1705 } else if (isa<LoadInst>(&I)) {
1706 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1707 for (auto *DII : DbgUsers) {
1708 // Rewrite the load into DW_OP_deref.
1709 auto *DIExpr = DII->getExpression();
1710 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1711 DII->setOperand(0, AddrMD);
1712 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1713 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1715 return true;
1717 return false;
1720 /// A replacement for a dbg.value expression.
1721 using DbgValReplacement = Optional<DIExpression *>;
1723 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1724 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1725 /// changes are made.
1726 static bool rewriteDebugUsers(
1727 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1728 function_ref<DbgValReplacement(DbgInfoIntrinsic &DII)> RewriteExpr) {
1729 // Find debug users of From.
1730 SmallVector<DbgInfoIntrinsic *, 1> Users;
1731 findDbgUsers(Users, &From);
1732 if (Users.empty())
1733 return false;
1735 // Prevent use-before-def of To.
1736 bool Changed = false;
1737 SmallPtrSet<DbgInfoIntrinsic *, 1> DeleteOrSalvage;
1738 if (isa<Instruction>(&To)) {
1739 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1741 for (auto *DII : Users) {
1742 // It's common to see a debug user between From and DomPoint. Move it
1743 // after DomPoint to preserve the variable update without any reordering.
1744 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1745 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
1746 DII->moveAfter(&DomPoint);
1747 Changed = true;
1749 // Users which otherwise aren't dominated by the replacement value must
1750 // be salvaged or deleted.
1751 } else if (!DT.dominates(&DomPoint, DII)) {
1752 DeleteOrSalvage.insert(DII);
1757 // Update debug users without use-before-def risk.
1758 for (auto *DII : Users) {
1759 if (DeleteOrSalvage.count(DII))
1760 continue;
1762 LLVMContext &Ctx = DII->getContext();
1763 DbgValReplacement DVR = RewriteExpr(*DII);
1764 if (!DVR)
1765 continue;
1767 DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1768 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1769 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
1770 Changed = true;
1773 if (!DeleteOrSalvage.empty()) {
1774 // Try to salvage the remaining debug users.
1775 Changed |= salvageDebugInfo(From);
1777 // Delete the debug users which weren't salvaged.
1778 for (auto *DII : DeleteOrSalvage) {
1779 if (DII->getVariableLocation() == &From) {
1780 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n');
1781 DII->eraseFromParent();
1782 Changed = true;
1787 return Changed;
1790 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1791 /// losslessly preserve the bits and semantics of the value. This predicate is
1792 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1794 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1795 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1796 /// and also does not allow lossless pointer <-> integer conversions.
1797 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1798 Type *ToTy) {
1799 // Trivially compatible types.
1800 if (FromTy == ToTy)
1801 return true;
1803 // Handle compatible pointer <-> integer conversions.
1804 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1805 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1806 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1807 !DL.isNonIntegralPointerType(ToTy);
1808 return SameSize && LosslessConversion;
1811 // TODO: This is not exhaustive.
1812 return false;
1815 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1816 Instruction &DomPoint, DominatorTree &DT) {
1817 // Exit early if From has no debug users.
1818 if (!From.isUsedByMetadata())
1819 return false;
1821 assert(&From != &To && "Can't replace something with itself");
1823 Type *FromTy = From.getType();
1824 Type *ToTy = To.getType();
1826 auto Identity = [&](DbgInfoIntrinsic &DII) -> DbgValReplacement {
1827 return DII.getExpression();
1830 // Handle no-op conversions.
1831 Module &M = *From.getModule();
1832 const DataLayout &DL = M.getDataLayout();
1833 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1834 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1836 // Handle integer-to-integer widening and narrowing.
1837 // FIXME: Use DW_OP_convert when it's available everywhere.
1838 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1839 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1840 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1841 assert(FromBits != ToBits && "Unexpected no-op conversion");
1843 // When the width of the result grows, assume that a debugger will only
1844 // access the low `FromBits` bits when inspecting the source variable.
1845 if (FromBits < ToBits)
1846 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1848 // The width of the result has shrunk. Use sign/zero extension to describe
1849 // the source variable's high bits.
1850 auto SignOrZeroExt = [&](DbgInfoIntrinsic &DII) -> DbgValReplacement {
1851 DILocalVariable *Var = DII.getVariable();
1853 // Without knowing signedness, sign/zero extension isn't possible.
1854 auto Signedness = Var->getSignedness();
1855 if (!Signedness)
1856 return None;
1858 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1860 if (!Signed) {
1861 // In the unsigned case, assume that a debugger will initialize the
1862 // high bits to 0 and do a no-op conversion.
1863 return Identity(DII);
1864 } else {
1865 // In the signed case, the high bits are given by sign extension, i.e:
1866 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1867 // Calculate the high bits and OR them together with the low bits.
1868 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1869 (ToBits - 1), dwarf::DW_OP_shr,
1870 dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1871 dwarf::DW_OP_mul, dwarf::DW_OP_or});
1872 return DIExpression::appendToStack(DII.getExpression(), Ops);
1875 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1878 // TODO: Floating-point conversions, vectors.
1879 return false;
1882 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1883 unsigned NumDeadInst = 0;
1884 // Delete the instructions backwards, as it has a reduced likelihood of
1885 // having to update as many def-use and use-def chains.
1886 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1887 while (EndInst != &BB->front()) {
1888 // Delete the next to last instruction.
1889 Instruction *Inst = &*--EndInst->getIterator();
1890 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1891 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1892 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1893 EndInst = Inst;
1894 continue;
1896 if (!isa<DbgInfoIntrinsic>(Inst))
1897 ++NumDeadInst;
1898 Inst->eraseFromParent();
1900 return NumDeadInst;
1903 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1904 bool PreserveLCSSA, DeferredDominance *DDT) {
1905 BasicBlock *BB = I->getParent();
1906 std::vector <DominatorTree::UpdateType> Updates;
1908 // Loop over all of the successors, removing BB's entry from any PHI
1909 // nodes.
1910 if (DDT)
1911 Updates.reserve(BB->getTerminator()->getNumSuccessors());
1912 for (BasicBlock *Successor : successors(BB)) {
1913 Successor->removePredecessor(BB, PreserveLCSSA);
1914 if (DDT)
1915 Updates.push_back({DominatorTree::Delete, BB, Successor});
1917 // Insert a call to llvm.trap right before this. This turns the undefined
1918 // behavior into a hard fail instead of falling through into random code.
1919 if (UseLLVMTrap) {
1920 Function *TrapFn =
1921 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1922 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1923 CallTrap->setDebugLoc(I->getDebugLoc());
1925 new UnreachableInst(I->getContext(), I);
1927 // All instructions after this are dead.
1928 unsigned NumInstrsRemoved = 0;
1929 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1930 while (BBI != BBE) {
1931 if (!BBI->use_empty())
1932 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1933 BB->getInstList().erase(BBI++);
1934 ++NumInstrsRemoved;
1936 if (DDT)
1937 DDT->applyUpdates(Updates);
1938 return NumInstrsRemoved;
1941 /// changeToCall - Convert the specified invoke into a normal call.
1942 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) {
1943 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1944 SmallVector<OperandBundleDef, 1> OpBundles;
1945 II->getOperandBundlesAsDefs(OpBundles);
1946 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1947 "", II);
1948 NewCall->takeName(II);
1949 NewCall->setCallingConv(II->getCallingConv());
1950 NewCall->setAttributes(II->getAttributes());
1951 NewCall->setDebugLoc(II->getDebugLoc());
1952 II->replaceAllUsesWith(NewCall);
1954 // Follow the call by a branch to the normal destination.
1955 BasicBlock *NormalDestBB = II->getNormalDest();
1956 BranchInst::Create(NormalDestBB, II);
1958 // Update PHI nodes in the unwind destination
1959 BasicBlock *BB = II->getParent();
1960 BasicBlock *UnwindDestBB = II->getUnwindDest();
1961 UnwindDestBB->removePredecessor(BB);
1962 II->eraseFromParent();
1963 if (DDT)
1964 DDT->deleteEdge(BB, UnwindDestBB);
1967 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1968 BasicBlock *UnwindEdge) {
1969 BasicBlock *BB = CI->getParent();
1971 // Convert this function call into an invoke instruction. First, split the
1972 // basic block.
1973 BasicBlock *Split =
1974 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1976 // Delete the unconditional branch inserted by splitBasicBlock
1977 BB->getInstList().pop_back();
1979 // Create the new invoke instruction.
1980 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1981 SmallVector<OperandBundleDef, 1> OpBundles;
1983 CI->getOperandBundlesAsDefs(OpBundles);
1985 // Note: we're round tripping operand bundles through memory here, and that
1986 // can potentially be avoided with a cleverer API design that we do not have
1987 // as of this time.
1989 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1990 InvokeArgs, OpBundles, CI->getName(), BB);
1991 II->setDebugLoc(CI->getDebugLoc());
1992 II->setCallingConv(CI->getCallingConv());
1993 II->setAttributes(CI->getAttributes());
1995 // Make sure that anything using the call now uses the invoke! This also
1996 // updates the CallGraph if present, because it uses a WeakTrackingVH.
1997 CI->replaceAllUsesWith(II);
1999 // Delete the original call
2000 Split->getInstList().pop_front();
2001 return Split;
2004 static bool markAliveBlocks(Function &F,
2005 SmallPtrSetImpl<BasicBlock*> &Reachable,
2006 DeferredDominance *DDT = nullptr) {
2007 SmallVector<BasicBlock*, 128> Worklist;
2008 BasicBlock *BB = &F.front();
2009 Worklist.push_back(BB);
2010 Reachable.insert(BB);
2011 bool Changed = false;
2012 do {
2013 BB = Worklist.pop_back_val();
2015 // Do a quick scan of the basic block, turning any obviously unreachable
2016 // instructions into LLVM unreachable insts. The instruction combining pass
2017 // canonicalizes unreachable insts into stores to null or undef.
2018 for (Instruction &I : *BB) {
2019 if (auto *CI = dyn_cast<CallInst>(&I)) {
2020 Value *Callee = CI->getCalledValue();
2021 // Handle intrinsic calls.
2022 if (Function *F = dyn_cast<Function>(Callee)) {
2023 auto IntrinsicID = F->getIntrinsicID();
2024 // Assumptions that are known to be false are equivalent to
2025 // unreachable. Also, if the condition is undefined, then we make the
2026 // choice most beneficial to the optimizer, and choose that to also be
2027 // unreachable.
2028 if (IntrinsicID == Intrinsic::assume) {
2029 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2030 // Don't insert a call to llvm.trap right before the unreachable.
2031 changeToUnreachable(CI, false, false, DDT);
2032 Changed = true;
2033 break;
2035 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2036 // A call to the guard intrinsic bails out of the current
2037 // compilation unit if the predicate passed to it is false. If the
2038 // predicate is a constant false, then we know the guard will bail
2039 // out of the current compile unconditionally, so all code following
2040 // it is dead.
2042 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2043 // guards to treat `undef` as `false` since a guard on `undef` can
2044 // still be useful for widening.
2045 if (match(CI->getArgOperand(0), m_Zero()))
2046 if (!isa<UnreachableInst>(CI->getNextNode())) {
2047 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2048 false, DDT);
2049 Changed = true;
2050 break;
2053 } else if ((isa<ConstantPointerNull>(Callee) &&
2054 !NullPointerIsDefined(CI->getFunction())) ||
2055 isa<UndefValue>(Callee)) {
2056 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT);
2057 Changed = true;
2058 break;
2060 if (CI->doesNotReturn()) {
2061 // If we found a call to a no-return function, insert an unreachable
2062 // instruction after it. Make sure there isn't *already* one there
2063 // though.
2064 if (!isa<UnreachableInst>(CI->getNextNode())) {
2065 // Don't insert a call to llvm.trap right before the unreachable.
2066 changeToUnreachable(CI->getNextNode(), false, false, DDT);
2067 Changed = true;
2069 break;
2071 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2072 // Store to undef and store to null are undefined and used to signal
2073 // that they should be changed to unreachable by passes that can't
2074 // modify the CFG.
2076 // Don't touch volatile stores.
2077 if (SI->isVolatile()) continue;
2079 Value *Ptr = SI->getOperand(1);
2081 if (isa<UndefValue>(Ptr) ||
2082 (isa<ConstantPointerNull>(Ptr) &&
2083 !NullPointerIsDefined(SI->getFunction(),
2084 SI->getPointerAddressSpace()))) {
2085 changeToUnreachable(SI, true, false, DDT);
2086 Changed = true;
2087 break;
2092 TerminatorInst *Terminator = BB->getTerminator();
2093 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2094 // Turn invokes that call 'nounwind' functions into ordinary calls.
2095 Value *Callee = II->getCalledValue();
2096 if ((isa<ConstantPointerNull>(Callee) &&
2097 !NullPointerIsDefined(BB->getParent())) ||
2098 isa<UndefValue>(Callee)) {
2099 changeToUnreachable(II, true, false, DDT);
2100 Changed = true;
2101 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2102 if (II->use_empty() && II->onlyReadsMemory()) {
2103 // jump to the normal destination branch.
2104 BasicBlock *NormalDestBB = II->getNormalDest();
2105 BasicBlock *UnwindDestBB = II->getUnwindDest();
2106 BranchInst::Create(NormalDestBB, II);
2107 UnwindDestBB->removePredecessor(II->getParent());
2108 II->eraseFromParent();
2109 if (DDT)
2110 DDT->deleteEdge(BB, UnwindDestBB);
2111 } else
2112 changeToCall(II, DDT);
2113 Changed = true;
2115 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2116 // Remove catchpads which cannot be reached.
2117 struct CatchPadDenseMapInfo {
2118 static CatchPadInst *getEmptyKey() {
2119 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2122 static CatchPadInst *getTombstoneKey() {
2123 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2126 static unsigned getHashValue(CatchPadInst *CatchPad) {
2127 return static_cast<unsigned>(hash_combine_range(
2128 CatchPad->value_op_begin(), CatchPad->value_op_end()));
2131 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2132 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2133 RHS == getEmptyKey() || RHS == getTombstoneKey())
2134 return LHS == RHS;
2135 return LHS->isIdenticalTo(RHS);
2139 // Set of unique CatchPads.
2140 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2141 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2142 HandlerSet;
2143 detail::DenseSetEmpty Empty;
2144 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2145 E = CatchSwitch->handler_end();
2146 I != E; ++I) {
2147 BasicBlock *HandlerBB = *I;
2148 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2149 if (!HandlerSet.insert({CatchPad, Empty}).second) {
2150 CatchSwitch->removeHandler(I);
2151 --I;
2152 --E;
2153 Changed = true;
2158 Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT);
2159 for (BasicBlock *Successor : successors(BB))
2160 if (Reachable.insert(Successor).second)
2161 Worklist.push_back(Successor);
2162 } while (!Worklist.empty());
2163 return Changed;
2166 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) {
2167 TerminatorInst *TI = BB->getTerminator();
2169 if (auto *II = dyn_cast<InvokeInst>(TI)) {
2170 changeToCall(II, DDT);
2171 return;
2174 TerminatorInst *NewTI;
2175 BasicBlock *UnwindDest;
2177 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2178 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2179 UnwindDest = CRI->getUnwindDest();
2180 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2181 auto *NewCatchSwitch = CatchSwitchInst::Create(
2182 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2183 CatchSwitch->getName(), CatchSwitch);
2184 for (BasicBlock *PadBB : CatchSwitch->handlers())
2185 NewCatchSwitch->addHandler(PadBB);
2187 NewTI = NewCatchSwitch;
2188 UnwindDest = CatchSwitch->getUnwindDest();
2189 } else {
2190 llvm_unreachable("Could not find unwind successor");
2193 NewTI->takeName(TI);
2194 NewTI->setDebugLoc(TI->getDebugLoc());
2195 UnwindDest->removePredecessor(BB);
2196 TI->replaceAllUsesWith(NewTI);
2197 TI->eraseFromParent();
2198 if (DDT)
2199 DDT->deleteEdge(BB, UnwindDest);
2202 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2203 /// if they are in a dead cycle. Return true if a change was made, false
2204 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2205 /// after modifying the CFG.
2206 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2207 DeferredDominance *DDT) {
2208 SmallPtrSet<BasicBlock*, 16> Reachable;
2209 bool Changed = markAliveBlocks(F, Reachable, DDT);
2211 // If there are unreachable blocks in the CFG...
2212 if (Reachable.size() == F.size())
2213 return Changed;
2215 assert(Reachable.size() < F.size());
2216 NumRemoved += F.size()-Reachable.size();
2218 // Loop over all of the basic blocks that are not reachable, dropping all of
2219 // their internal references. Update DDT and LVI if available.
2220 std::vector <DominatorTree::UpdateType> Updates;
2221 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2222 auto *BB = &*I;
2223 if (Reachable.count(BB))
2224 continue;
2225 for (BasicBlock *Successor : successors(BB)) {
2226 if (Reachable.count(Successor))
2227 Successor->removePredecessor(BB);
2228 if (DDT)
2229 Updates.push_back({DominatorTree::Delete, BB, Successor});
2231 if (LVI)
2232 LVI->eraseBlock(BB);
2233 BB->dropAllReferences();
2236 for (Function::iterator I = ++F.begin(); I != F.end();) {
2237 auto *BB = &*I;
2238 if (Reachable.count(BB)) {
2239 ++I;
2240 continue;
2242 if (DDT) {
2243 DDT->deleteBB(BB); // deferred deletion of BB.
2244 ++I;
2245 } else {
2246 I = F.getBasicBlockList().erase(I);
2250 if (DDT)
2251 DDT->applyUpdates(Updates);
2252 return true;
2255 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2256 ArrayRef<unsigned> KnownIDs) {
2257 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2258 K->dropUnknownNonDebugMetadata(KnownIDs);
2259 K->getAllMetadataOtherThanDebugLoc(Metadata);
2260 for (const auto &MD : Metadata) {
2261 unsigned Kind = MD.first;
2262 MDNode *JMD = J->getMetadata(Kind);
2263 MDNode *KMD = MD.second;
2265 switch (Kind) {
2266 default:
2267 K->setMetadata(Kind, nullptr); // Remove unknown metadata
2268 break;
2269 case LLVMContext::MD_dbg:
2270 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2271 case LLVMContext::MD_tbaa:
2272 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2273 break;
2274 case LLVMContext::MD_alias_scope:
2275 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2276 break;
2277 case LLVMContext::MD_noalias:
2278 case LLVMContext::MD_mem_parallel_loop_access:
2279 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2280 break;
2281 case LLVMContext::MD_range:
2282 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2283 break;
2284 case LLVMContext::MD_fpmath:
2285 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2286 break;
2287 case LLVMContext::MD_invariant_load:
2288 // Only set the !invariant.load if it is present in both instructions.
2289 K->setMetadata(Kind, JMD);
2290 break;
2291 case LLVMContext::MD_nonnull:
2292 // Only set the !nonnull if it is present in both instructions.
2293 K->setMetadata(Kind, JMD);
2294 break;
2295 case LLVMContext::MD_invariant_group:
2296 // Preserve !invariant.group in K.
2297 break;
2298 case LLVMContext::MD_align:
2299 K->setMetadata(Kind,
2300 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2301 break;
2302 case LLVMContext::MD_dereferenceable:
2303 case LLVMContext::MD_dereferenceable_or_null:
2304 K->setMetadata(Kind,
2305 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2306 break;
2309 // Set !invariant.group from J if J has it. If both instructions have it
2310 // then we will just pick it from J - even when they are different.
2311 // Also make sure that K is load or store - f.e. combining bitcast with load
2312 // could produce bitcast with invariant.group metadata, which is invalid.
2313 // FIXME: we should try to preserve both invariant.group md if they are
2314 // different, but right now instruction can only have one invariant.group.
2315 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2316 if (isa<LoadInst>(K) || isa<StoreInst>(K))
2317 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2320 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
2321 unsigned KnownIDs[] = {
2322 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2323 LLVMContext::MD_noalias, LLVMContext::MD_range,
2324 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
2325 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2326 LLVMContext::MD_dereferenceable,
2327 LLVMContext::MD_dereferenceable_or_null};
2328 combineMetadata(K, J, KnownIDs);
2331 template <typename RootType, typename DominatesFn>
2332 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2333 const RootType &Root,
2334 const DominatesFn &Dominates) {
2335 assert(From->getType() == To->getType());
2337 unsigned Count = 0;
2338 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2339 UI != UE;) {
2340 Use &U = *UI++;
2341 if (!Dominates(Root, U))
2342 continue;
2343 U.set(To);
2344 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2345 << "' as " << *To << " in " << *U << "\n");
2346 ++Count;
2348 return Count;
2351 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2352 assert(From->getType() == To->getType());
2353 auto *BB = From->getParent();
2354 unsigned Count = 0;
2356 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2357 UI != UE;) {
2358 Use &U = *UI++;
2359 auto *I = cast<Instruction>(U.getUser());
2360 if (I->getParent() == BB)
2361 continue;
2362 U.set(To);
2363 ++Count;
2365 return Count;
2368 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2369 DominatorTree &DT,
2370 const BasicBlockEdge &Root) {
2371 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2372 return DT.dominates(Root, U);
2374 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2377 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2378 DominatorTree &DT,
2379 const BasicBlock *BB) {
2380 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2381 auto *I = cast<Instruction>(U.getUser())->getParent();
2382 return DT.properlyDominates(BB, I);
2384 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2387 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2388 const TargetLibraryInfo &TLI) {
2389 // Check if the function is specifically marked as a gc leaf function.
2390 if (CS.hasFnAttr("gc-leaf-function"))
2391 return true;
2392 if (const Function *F = CS.getCalledFunction()) {
2393 if (F->hasFnAttribute("gc-leaf-function"))
2394 return true;
2396 if (auto IID = F->getIntrinsicID())
2397 // Most LLVM intrinsics do not take safepoints.
2398 return IID != Intrinsic::experimental_gc_statepoint &&
2399 IID != Intrinsic::experimental_deoptimize;
2402 // Lib calls can be materialized by some passes, and won't be
2403 // marked as 'gc-leaf-function.' All available Libcalls are
2404 // GC-leaf.
2405 LibFunc LF;
2406 if (TLI.getLibFunc(CS, LF)) {
2407 return TLI.has(LF);
2410 return false;
2413 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2414 LoadInst &NewLI) {
2415 auto *NewTy = NewLI.getType();
2417 // This only directly applies if the new type is also a pointer.
2418 if (NewTy->isPointerTy()) {
2419 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2420 return;
2423 // The only other translation we can do is to integral loads with !range
2424 // metadata.
2425 if (!NewTy->isIntegerTy())
2426 return;
2428 MDBuilder MDB(NewLI.getContext());
2429 const Value *Ptr = OldLI.getPointerOperand();
2430 auto *ITy = cast<IntegerType>(NewTy);
2431 auto *NullInt = ConstantExpr::getPtrToInt(
2432 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2433 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2434 NewLI.setMetadata(LLVMContext::MD_range,
2435 MDB.createRange(NonNullInt, NullInt));
2438 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2439 MDNode *N, LoadInst &NewLI) {
2440 auto *NewTy = NewLI.getType();
2442 // Give up unless it is converted to a pointer where there is a single very
2443 // valuable mapping we can do reliably.
2444 // FIXME: It would be nice to propagate this in more ways, but the type
2445 // conversions make it hard.
2446 if (!NewTy->isPointerTy())
2447 return;
2449 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2450 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2451 MDNode *NN = MDNode::get(OldLI.getContext(), None);
2452 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2456 namespace {
2458 /// A potential constituent of a bitreverse or bswap expression. See
2459 /// collectBitParts for a fuller explanation.
2460 struct BitPart {
2461 BitPart(Value *P, unsigned BW) : Provider(P) {
2462 Provenance.resize(BW);
2465 /// The Value that this is a bitreverse/bswap of.
2466 Value *Provider;
2468 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2469 /// in Provider becomes bit B in the result of this expression.
2470 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2472 enum { Unset = -1 };
2475 } // end anonymous namespace
2477 /// Analyze the specified subexpression and see if it is capable of providing
2478 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2479 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2480 /// the output of the expression came from a corresponding bit in some other
2481 /// value. This function is recursive, and the end result is a mapping of
2482 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2483 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2485 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2486 /// that the expression deposits the low byte of %X into the high byte of the
2487 /// result and that all other bits are zero. This expression is accepted and a
2488 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2489 /// [0-7].
2491 /// To avoid revisiting values, the BitPart results are memoized into the
2492 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2493 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2494 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2495 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2496 /// type instead to provide the same functionality.
2498 /// Because we pass around references into \c BPS, we must use a container that
2499 /// does not invalidate internal references (std::map instead of DenseMap).
2500 static const Optional<BitPart> &
2501 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2502 std::map<Value *, Optional<BitPart>> &BPS) {
2503 auto I = BPS.find(V);
2504 if (I != BPS.end())
2505 return I->second;
2507 auto &Result = BPS[V] = None;
2508 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2510 if (Instruction *I = dyn_cast<Instruction>(V)) {
2511 // If this is an or instruction, it may be an inner node of the bswap.
2512 if (I->getOpcode() == Instruction::Or) {
2513 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2514 MatchBitReversals, BPS);
2515 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2516 MatchBitReversals, BPS);
2517 if (!A || !B)
2518 return Result;
2520 // Try and merge the two together.
2521 if (!A->Provider || A->Provider != B->Provider)
2522 return Result;
2524 Result = BitPart(A->Provider, BitWidth);
2525 for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2526 if (A->Provenance[i] != BitPart::Unset &&
2527 B->Provenance[i] != BitPart::Unset &&
2528 A->Provenance[i] != B->Provenance[i])
2529 return Result = None;
2531 if (A->Provenance[i] == BitPart::Unset)
2532 Result->Provenance[i] = B->Provenance[i];
2533 else
2534 Result->Provenance[i] = A->Provenance[i];
2537 return Result;
2540 // If this is a logical shift by a constant, recurse then shift the result.
2541 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2542 unsigned BitShift =
2543 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2544 // Ensure the shift amount is defined.
2545 if (BitShift > BitWidth)
2546 return Result;
2548 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2549 MatchBitReversals, BPS);
2550 if (!Res)
2551 return Result;
2552 Result = Res;
2554 // Perform the "shift" on BitProvenance.
2555 auto &P = Result->Provenance;
2556 if (I->getOpcode() == Instruction::Shl) {
2557 P.erase(std::prev(P.end(), BitShift), P.end());
2558 P.insert(P.begin(), BitShift, BitPart::Unset);
2559 } else {
2560 P.erase(P.begin(), std::next(P.begin(), BitShift));
2561 P.insert(P.end(), BitShift, BitPart::Unset);
2564 return Result;
2567 // If this is a logical 'and' with a mask that clears bits, recurse then
2568 // unset the appropriate bits.
2569 if (I->getOpcode() == Instruction::And &&
2570 isa<ConstantInt>(I->getOperand(1))) {
2571 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2572 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2574 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2575 // early exit.
2576 unsigned NumMaskedBits = AndMask.countPopulation();
2577 if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2578 return Result;
2580 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2581 MatchBitReversals, BPS);
2582 if (!Res)
2583 return Result;
2584 Result = Res;
2586 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2587 // If the AndMask is zero for this bit, clear the bit.
2588 if ((AndMask & Bit) == 0)
2589 Result->Provenance[i] = BitPart::Unset;
2590 return Result;
2593 // If this is a zext instruction zero extend the result.
2594 if (I->getOpcode() == Instruction::ZExt) {
2595 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2596 MatchBitReversals, BPS);
2597 if (!Res)
2598 return Result;
2600 Result = BitPart(Res->Provider, BitWidth);
2601 auto NarrowBitWidth =
2602 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2603 for (unsigned i = 0; i < NarrowBitWidth; ++i)
2604 Result->Provenance[i] = Res->Provenance[i];
2605 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2606 Result->Provenance[i] = BitPart::Unset;
2607 return Result;
2611 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2612 // the input value to the bswap/bitreverse.
2613 Result = BitPart(V, BitWidth);
2614 for (unsigned i = 0; i < BitWidth; ++i)
2615 Result->Provenance[i] = i;
2616 return Result;
2619 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2620 unsigned BitWidth) {
2621 if (From % 8 != To % 8)
2622 return false;
2623 // Convert from bit indices to byte indices and check for a byte reversal.
2624 From >>= 3;
2625 To >>= 3;
2626 BitWidth >>= 3;
2627 return From == BitWidth - To - 1;
2630 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2631 unsigned BitWidth) {
2632 return From == BitWidth - To - 1;
2635 bool llvm::recognizeBSwapOrBitReverseIdiom(
2636 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2637 SmallVectorImpl<Instruction *> &InsertedInsts) {
2638 if (Operator::getOpcode(I) != Instruction::Or)
2639 return false;
2640 if (!MatchBSwaps && !MatchBitReversals)
2641 return false;
2642 IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2643 if (!ITy || ITy->getBitWidth() > 128)
2644 return false; // Can't do vectors or integers > 128 bits.
2645 unsigned BW = ITy->getBitWidth();
2647 unsigned DemandedBW = BW;
2648 IntegerType *DemandedTy = ITy;
2649 if (I->hasOneUse()) {
2650 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2651 DemandedTy = cast<IntegerType>(Trunc->getType());
2652 DemandedBW = DemandedTy->getBitWidth();
2656 // Try to find all the pieces corresponding to the bswap.
2657 std::map<Value *, Optional<BitPart>> BPS;
2658 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2659 if (!Res)
2660 return false;
2661 auto &BitProvenance = Res->Provenance;
2663 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2664 // only byteswap values with an even number of bytes.
2665 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2666 for (unsigned i = 0; i < DemandedBW; ++i) {
2667 OKForBSwap &=
2668 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2669 OKForBitReverse &=
2670 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2673 Intrinsic::ID Intrin;
2674 if (OKForBSwap && MatchBSwaps)
2675 Intrin = Intrinsic::bswap;
2676 else if (OKForBitReverse && MatchBitReversals)
2677 Intrin = Intrinsic::bitreverse;
2678 else
2679 return false;
2681 if (ITy != DemandedTy) {
2682 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2683 Value *Provider = Res->Provider;
2684 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2685 // We may need to truncate the provider.
2686 if (DemandedTy != ProviderTy) {
2687 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2688 "trunc", I);
2689 InsertedInsts.push_back(Trunc);
2690 Provider = Trunc;
2692 auto *CI = CallInst::Create(F, Provider, "rev", I);
2693 InsertedInsts.push_back(CI);
2694 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2695 InsertedInsts.push_back(ExtInst);
2696 return true;
2699 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2700 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2701 return true;
2704 // CodeGen has special handling for some string functions that may replace
2705 // them with target-specific intrinsics. Since that'd skip our interceptors
2706 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2707 // we mark affected calls as NoBuiltin, which will disable optimization
2708 // in CodeGen.
2709 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2710 CallInst *CI, const TargetLibraryInfo *TLI) {
2711 Function *F = CI->getCalledFunction();
2712 LibFunc Func;
2713 if (F && !F->hasLocalLinkage() && F->hasName() &&
2714 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2715 !F->doesNotAccessMemory())
2716 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2719 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2720 // We can't have a PHI with a metadata type.
2721 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2722 return false;
2724 // Early exit.
2725 if (!isa<Constant>(I->getOperand(OpIdx)))
2726 return true;
2728 switch (I->getOpcode()) {
2729 default:
2730 return true;
2731 case Instruction::Call:
2732 case Instruction::Invoke:
2733 // Can't handle inline asm. Skip it.
2734 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2735 return false;
2736 // Many arithmetic intrinsics have no issue taking a
2737 // variable, however it's hard to distingish these from
2738 // specials such as @llvm.frameaddress that require a constant.
2739 if (isa<IntrinsicInst>(I))
2740 return false;
2742 // Constant bundle operands may need to retain their constant-ness for
2743 // correctness.
2744 if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2745 return false;
2746 return true;
2747 case Instruction::ShuffleVector:
2748 // Shufflevector masks are constant.
2749 return OpIdx != 2;
2750 case Instruction::Switch:
2751 case Instruction::ExtractValue:
2752 // All operands apart from the first are constant.
2753 return OpIdx == 0;
2754 case Instruction::InsertValue:
2755 // All operands apart from the first and the second are constant.
2756 return OpIdx < 2;
2757 case Instruction::Alloca:
2758 // Static allocas (constant size in the entry block) are handled by
2759 // prologue/epilogue insertion so they're free anyway. We definitely don't
2760 // want to make them non-constant.
2761 return !cast<AllocaInst>(I)->isStaticAlloca();
2762 case Instruction::GetElementPtr:
2763 if (OpIdx == 0)
2764 return true;
2765 gep_type_iterator It = gep_type_begin(I);
2766 for (auto E = std::next(It, OpIdx); It != E; ++It)
2767 if (It.isStruct())
2768 return false;
2769 return true;