1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file provides utilities to convert a loop into a loop with bottom test.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
43 #define DEBUG_TYPE "loop-rotate"
45 STATISTIC(NumRotated
, "Number of loops rotated");
48 /// A simple loop rotation transformation.
50 const unsigned MaxHeaderSize
;
52 const TargetTransformInfo
*TTI
;
56 const SimplifyQuery
&SQ
;
61 LoopRotate(unsigned MaxHeaderSize
, LoopInfo
*LI
,
62 const TargetTransformInfo
*TTI
, AssumptionCache
*AC
,
63 DominatorTree
*DT
, ScalarEvolution
*SE
, const SimplifyQuery
&SQ
,
64 bool RotationOnly
, bool IsUtilMode
)
65 : MaxHeaderSize(MaxHeaderSize
), LI(LI
), TTI(TTI
), AC(AC
), DT(DT
), SE(SE
),
66 SQ(SQ
), RotationOnly(RotationOnly
), IsUtilMode(IsUtilMode
) {}
67 bool processLoop(Loop
*L
);
70 bool rotateLoop(Loop
*L
, bool SimplifiedLatch
);
71 bool simplifyLoopLatch(Loop
*L
);
73 } // end anonymous namespace
75 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
76 /// old header into the preheader. If there were uses of the values produced by
77 /// these instruction that were outside of the loop, we have to insert PHI nodes
78 /// to merge the two values. Do this now.
79 static void RewriteUsesOfClonedInstructions(BasicBlock
*OrigHeader
,
80 BasicBlock
*OrigPreheader
,
81 ValueToValueMapTy
&ValueMap
,
82 SmallVectorImpl
<PHINode
*> *InsertedPHIs
) {
83 // Remove PHI node entries that are no longer live.
84 BasicBlock::iterator I
, E
= OrigHeader
->end();
85 for (I
= OrigHeader
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
86 PN
->removeIncomingValue(PN
->getBasicBlockIndex(OrigPreheader
));
88 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
90 SSAUpdater
SSA(InsertedPHIs
);
91 for (I
= OrigHeader
->begin(); I
!= E
; ++I
) {
92 Value
*OrigHeaderVal
= &*I
;
94 // If there are no uses of the value (e.g. because it returns void), there
95 // is nothing to rewrite.
96 if (OrigHeaderVal
->use_empty())
99 Value
*OrigPreHeaderVal
= ValueMap
.lookup(OrigHeaderVal
);
101 // The value now exits in two versions: the initial value in the preheader
102 // and the loop "next" value in the original header.
103 SSA
.Initialize(OrigHeaderVal
->getType(), OrigHeaderVal
->getName());
104 SSA
.AddAvailableValue(OrigHeader
, OrigHeaderVal
);
105 SSA
.AddAvailableValue(OrigPreheader
, OrigPreHeaderVal
);
107 // Visit each use of the OrigHeader instruction.
108 for (Value::use_iterator UI
= OrigHeaderVal
->use_begin(),
109 UE
= OrigHeaderVal
->use_end();
111 // Grab the use before incrementing the iterator.
114 // Increment the iterator before removing the use from the list.
117 // SSAUpdater can't handle a non-PHI use in the same block as an
118 // earlier def. We can easily handle those cases manually.
119 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
120 if (!isa
<PHINode
>(UserInst
)) {
121 BasicBlock
*UserBB
= UserInst
->getParent();
123 // The original users in the OrigHeader are already using the
124 // original definitions.
125 if (UserBB
== OrigHeader
)
128 // Users in the OrigPreHeader need to use the value to which the
129 // original definitions are mapped.
130 if (UserBB
== OrigPreheader
) {
131 U
= OrigPreHeaderVal
;
136 // Anything else can be handled by SSAUpdater.
140 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
142 SmallVector
<DbgValueInst
*, 1> DbgValues
;
143 llvm::findDbgValues(DbgValues
, OrigHeaderVal
);
144 for (auto &DbgValue
: DbgValues
) {
145 // The original users in the OrigHeader are already using the original
147 BasicBlock
*UserBB
= DbgValue
->getParent();
148 if (UserBB
== OrigHeader
)
151 // Users in the OrigPreHeader need to use the value to which the
152 // original definitions are mapped and anything else can be handled by
153 // the SSAUpdater. To avoid adding PHINodes, check if the value is
154 // available in UserBB, if not substitute undef.
156 if (UserBB
== OrigPreheader
)
157 NewVal
= OrigPreHeaderVal
;
158 else if (SSA
.HasValueForBlock(UserBB
))
159 NewVal
= SSA
.GetValueInMiddleOfBlock(UserBB
);
161 NewVal
= UndefValue::get(OrigHeaderVal
->getType());
162 DbgValue
->setOperand(0,
163 MetadataAsValue::get(OrigHeaderVal
->getContext(),
164 ValueAsMetadata::get(NewVal
)));
169 // Look for a phi which is only used outside the loop (via a LCSSA phi)
170 // in the exit from the header. This means that rotating the loop can
172 static bool shouldRotateLoopExitingLatch(Loop
*L
) {
173 BasicBlock
*Header
= L
->getHeader();
174 BasicBlock
*HeaderExit
= Header
->getTerminator()->getSuccessor(0);
175 if (L
->contains(HeaderExit
))
176 HeaderExit
= Header
->getTerminator()->getSuccessor(1);
178 for (auto &Phi
: Header
->phis()) {
179 // Look for uses of this phi in the loop/via exits other than the header.
180 if (llvm::any_of(Phi
.users(), [HeaderExit
](const User
*U
) {
181 return cast
<Instruction
>(U
)->getParent() != HeaderExit
;
190 /// Rotate loop LP. Return true if the loop is rotated.
192 /// \param SimplifiedLatch is true if the latch was just folded into the final
193 /// loop exit. In this case we may want to rotate even though the new latch is
194 /// now an exiting branch. This rotation would have happened had the latch not
195 /// been simplified. However, if SimplifiedLatch is false, then we avoid
196 /// rotating loops in which the latch exits to avoid excessive or endless
197 /// rotation. LoopRotate should be repeatable and converge to a canonical
198 /// form. This property is satisfied because simplifying the loop latch can only
199 /// happen once across multiple invocations of the LoopRotate pass.
200 bool LoopRotate::rotateLoop(Loop
*L
, bool SimplifiedLatch
) {
201 // If the loop has only one block then there is not much to rotate.
202 if (L
->getBlocks().size() == 1)
205 BasicBlock
*OrigHeader
= L
->getHeader();
206 BasicBlock
*OrigLatch
= L
->getLoopLatch();
208 BranchInst
*BI
= dyn_cast
<BranchInst
>(OrigHeader
->getTerminator());
209 if (!BI
|| BI
->isUnconditional())
212 // If the loop header is not one of the loop exiting blocks then
213 // either this loop is already rotated or it is not
214 // suitable for loop rotation transformations.
215 if (!L
->isLoopExiting(OrigHeader
))
218 // If the loop latch already contains a branch that leaves the loop then the
219 // loop is already rotated.
223 // Rotate if either the loop latch does *not* exit the loop, or if the loop
224 // latch was just simplified. Or if we think it will be profitable.
225 if (L
->isLoopExiting(OrigLatch
) && !SimplifiedLatch
&& IsUtilMode
== false &&
226 !shouldRotateLoopExitingLatch(L
))
229 // Check size of original header and reject loop if it is very big or we can't
230 // duplicate blocks inside it.
232 SmallPtrSet
<const Value
*, 32> EphValues
;
233 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
236 Metrics
.analyzeBasicBlock(OrigHeader
, *TTI
, EphValues
);
237 if (Metrics
.notDuplicatable
) {
239 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
240 << " instructions: ";
244 if (Metrics
.convergent
) {
245 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
250 if (Metrics
.NumInsts
> MaxHeaderSize
)
254 // Now, this loop is suitable for rotation.
255 BasicBlock
*OrigPreheader
= L
->getLoopPreheader();
257 // If the loop could not be converted to canonical form, it must have an
258 // indirectbr in it, just give up.
259 if (!OrigPreheader
|| !L
->hasDedicatedExits())
262 // Anything ScalarEvolution may know about this loop or the PHI nodes
263 // in its header will soon be invalidated. We should also invalidate
264 // all outer loops because insertion and deletion of blocks that happens
265 // during the rotation may violate invariants related to backedge taken
268 SE
->forgetTopmostLoop(L
);
270 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L
->dump());
272 // Find new Loop header. NewHeader is a Header's one and only successor
273 // that is inside loop. Header's other successor is outside the
274 // loop. Otherwise loop is not suitable for rotation.
275 BasicBlock
*Exit
= BI
->getSuccessor(0);
276 BasicBlock
*NewHeader
= BI
->getSuccessor(1);
277 if (L
->contains(Exit
))
278 std::swap(Exit
, NewHeader
);
279 assert(NewHeader
&& "Unable to determine new loop header");
280 assert(L
->contains(NewHeader
) && !L
->contains(Exit
) &&
281 "Unable to determine loop header and exit blocks");
283 // This code assumes that the new header has exactly one predecessor.
284 // Remove any single-entry PHI nodes in it.
285 assert(NewHeader
->getSinglePredecessor() &&
286 "New header doesn't have one pred!");
287 FoldSingleEntryPHINodes(NewHeader
);
289 // Begin by walking OrigHeader and populating ValueMap with an entry for
291 BasicBlock::iterator I
= OrigHeader
->begin(), E
= OrigHeader
->end();
292 ValueToValueMapTy ValueMap
;
294 // For PHI nodes, the value available in OldPreHeader is just the
295 // incoming value from OldPreHeader.
296 for (; PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
297 ValueMap
[PN
] = PN
->getIncomingValueForBlock(OrigPreheader
);
299 // For the rest of the instructions, either hoist to the OrigPreheader if
300 // possible or create a clone in the OldPreHeader if not.
301 TerminatorInst
*LoopEntryBranch
= OrigPreheader
->getTerminator();
303 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
304 using DbgIntrinsicHash
=
305 std::pair
<std::pair
<Value
*, DILocalVariable
*>, DIExpression
*>;
306 auto makeHash
= [](DbgInfoIntrinsic
*D
) -> DbgIntrinsicHash
{
307 return {{D
->getVariableLocation(), D
->getVariable()}, D
->getExpression()};
309 SmallDenseSet
<DbgIntrinsicHash
, 8> DbgIntrinsics
;
310 for (auto I
= std::next(OrigPreheader
->rbegin()), E
= OrigPreheader
->rend();
312 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(&*I
))
313 DbgIntrinsics
.insert(makeHash(DII
));
319 Instruction
*Inst
= &*I
++;
321 // If the instruction's operands are invariant and it doesn't read or write
322 // memory, then it is safe to hoist. Doing this doesn't change the order of
323 // execution in the preheader, but does prevent the instruction from
324 // executing in each iteration of the loop. This means it is safe to hoist
325 // something that might trap, but isn't safe to hoist something that reads
326 // memory (without proving that the loop doesn't write).
327 if (L
->hasLoopInvariantOperands(Inst
) && !Inst
->mayReadFromMemory() &&
328 !Inst
->mayWriteToMemory() && !isa
<TerminatorInst
>(Inst
) &&
329 !isa
<DbgInfoIntrinsic
>(Inst
) && !isa
<AllocaInst
>(Inst
)) {
330 Inst
->moveBefore(LoopEntryBranch
);
334 // Otherwise, create a duplicate of the instruction.
335 Instruction
*C
= Inst
->clone();
337 // Eagerly remap the operands of the instruction.
338 RemapInstruction(C
, ValueMap
,
339 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
341 // Avoid inserting the same intrinsic twice.
342 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(C
))
343 if (DbgIntrinsics
.count(makeHash(DII
))) {
348 // With the operands remapped, see if the instruction constant folds or is
349 // otherwise simplifyable. This commonly occurs because the entry from PHI
350 // nodes allows icmps and other instructions to fold.
351 Value
*V
= SimplifyInstruction(C
, SQ
);
352 if (V
&& LI
->replacementPreservesLCSSAForm(C
, V
)) {
353 // If so, then delete the temporary instruction and stick the folded value
356 if (!C
->mayHaveSideEffects()) {
364 // Otherwise, stick the new instruction into the new block!
365 C
->setName(Inst
->getName());
366 C
->insertBefore(LoopEntryBranch
);
368 if (auto *II
= dyn_cast
<IntrinsicInst
>(C
))
369 if (II
->getIntrinsicID() == Intrinsic::assume
)
370 AC
->registerAssumption(II
);
374 // Along with all the other instructions, we just cloned OrigHeader's
375 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
376 // successors by duplicating their incoming values for OrigHeader.
377 TerminatorInst
*TI
= OrigHeader
->getTerminator();
378 for (BasicBlock
*SuccBB
: TI
->successors())
379 for (BasicBlock::iterator BI
= SuccBB
->begin();
380 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
381 PN
->addIncoming(PN
->getIncomingValueForBlock(OrigHeader
), OrigPreheader
);
383 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
384 // OrigPreHeader's old terminator (the original branch into the loop), and
385 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
386 LoopEntryBranch
->eraseFromParent();
389 SmallVector
<PHINode
*, 2> InsertedPHIs
;
390 // If there were any uses of instructions in the duplicated block outside the
391 // loop, update them, inserting PHI nodes as required
392 RewriteUsesOfClonedInstructions(OrigHeader
, OrigPreheader
, ValueMap
,
395 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
396 // previously had debug metadata attached. This keeps the debug info
397 // up-to-date in the loop body.
398 if (!InsertedPHIs
.empty())
399 insertDebugValuesForPHIs(OrigHeader
, InsertedPHIs
);
401 // NewHeader is now the header of the loop.
402 L
->moveToHeader(NewHeader
);
403 assert(L
->getHeader() == NewHeader
&& "Latch block is our new header");
405 // Inform DT about changes to the CFG.
407 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
408 // the DT about the removed edge to the OrigHeader (that got removed).
409 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
410 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, Exit
});
411 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, NewHeader
});
412 Updates
.push_back({DominatorTree::Delete
, OrigPreheader
, OrigHeader
});
413 DT
->applyUpdates(Updates
);
416 // At this point, we've finished our major CFG changes. As part of cloning
417 // the loop into the preheader we've simplified instructions and the
418 // duplicated conditional branch may now be branching on a constant. If it is
419 // branching on a constant and if that constant means that we enter the loop,
420 // then we fold away the cond branch to an uncond branch. This simplifies the
421 // loop in cases important for nested loops, and it also means we don't have
422 // to split as many edges.
423 BranchInst
*PHBI
= cast
<BranchInst
>(OrigPreheader
->getTerminator());
424 assert(PHBI
->isConditional() && "Should be clone of BI condbr!");
425 if (!isa
<ConstantInt
>(PHBI
->getCondition()) ||
426 PHBI
->getSuccessor(cast
<ConstantInt
>(PHBI
->getCondition())->isZero()) !=
428 // The conditional branch can't be folded, handle the general case.
429 // Split edges as necessary to preserve LoopSimplify form.
431 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
432 // thus is not a preheader anymore.
433 // Split the edge to form a real preheader.
434 BasicBlock
*NewPH
= SplitCriticalEdge(
435 OrigPreheader
, NewHeader
,
436 CriticalEdgeSplittingOptions(DT
, LI
).setPreserveLCSSA());
437 NewPH
->setName(NewHeader
->getName() + ".lr.ph");
439 // Preserve canonical loop form, which means that 'Exit' should have only
440 // one predecessor. Note that Exit could be an exit block for multiple
441 // nested loops, causing both of the edges to now be critical and need to
443 SmallVector
<BasicBlock
*, 4> ExitPreds(pred_begin(Exit
), pred_end(Exit
));
444 bool SplitLatchEdge
= false;
445 for (BasicBlock
*ExitPred
: ExitPreds
) {
446 // We only need to split loop exit edges.
447 Loop
*PredLoop
= LI
->getLoopFor(ExitPred
);
448 if (!PredLoop
|| PredLoop
->contains(Exit
))
450 if (isa
<IndirectBrInst
>(ExitPred
->getTerminator()))
452 SplitLatchEdge
|= L
->getLoopLatch() == ExitPred
;
453 BasicBlock
*ExitSplit
= SplitCriticalEdge(
455 CriticalEdgeSplittingOptions(DT
, LI
).setPreserveLCSSA());
456 ExitSplit
->moveBefore(Exit
);
458 assert(SplitLatchEdge
&&
459 "Despite splitting all preds, failed to split latch exit?");
461 // We can fold the conditional branch in the preheader, this makes things
462 // simpler. The first step is to remove the extra edge to the Exit block.
463 Exit
->removePredecessor(OrigPreheader
, true /*preserve LCSSA*/);
464 BranchInst
*NewBI
= BranchInst::Create(NewHeader
, PHBI
);
465 NewBI
->setDebugLoc(PHBI
->getDebugLoc());
466 PHBI
->eraseFromParent();
468 // With our CFG finalized, update DomTree if it is available.
469 if (DT
) DT
->deleteEdge(OrigPreheader
, Exit
);
472 assert(L
->getLoopPreheader() && "Invalid loop preheader after loop rotation");
473 assert(L
->getLoopLatch() && "Invalid loop latch after loop rotation");
475 // Now that the CFG and DomTree are in a consistent state again, try to merge
476 // the OrigHeader block into OrigLatch. This will succeed if they are
477 // connected by an unconditional branch. This is just a cleanup so the
478 // emitted code isn't too gross in this common case.
479 MergeBlockIntoPredecessor(OrigHeader
, DT
, LI
);
481 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L
->dump());
487 /// Determine whether the instructions in this range may be safely and cheaply
488 /// speculated. This is not an important enough situation to develop complex
489 /// heuristics. We handle a single arithmetic instruction along with any type
491 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin
,
492 BasicBlock::iterator End
, Loop
*L
) {
493 bool seenIncrement
= false;
494 bool MultiExitLoop
= false;
496 if (!L
->getExitingBlock())
497 MultiExitLoop
= true;
499 for (BasicBlock::iterator I
= Begin
; I
!= End
; ++I
) {
501 if (!isSafeToSpeculativelyExecute(&*I
))
504 if (isa
<DbgInfoIntrinsic
>(I
))
507 switch (I
->getOpcode()) {
510 case Instruction::GetElementPtr
:
511 // GEPs are cheap if all indices are constant.
512 if (!cast
<GEPOperator
>(I
)->hasAllConstantIndices())
514 // fall-thru to increment case
516 case Instruction::Add
:
517 case Instruction::Sub
:
518 case Instruction::And
:
519 case Instruction::Or
:
520 case Instruction::Xor
:
521 case Instruction::Shl
:
522 case Instruction::LShr
:
523 case Instruction::AShr
: {
525 !isa
<Constant
>(I
->getOperand(0))
527 : !isa
<Constant
>(I
->getOperand(1)) ? I
->getOperand(1) : nullptr;
531 // If increment operand is used outside of the loop, this speculation
532 // could cause extra live range interference.
534 for (User
*UseI
: IVOpnd
->users()) {
535 auto *UserInst
= cast
<Instruction
>(UseI
);
536 if (!L
->contains(UserInst
))
543 seenIncrement
= true;
546 case Instruction::Trunc
:
547 case Instruction::ZExt
:
548 case Instruction::SExt
:
549 // ignore type conversions
556 /// Fold the loop tail into the loop exit by speculating the loop tail
557 /// instructions. Typically, this is a single post-increment. In the case of a
558 /// simple 2-block loop, hoisting the increment can be much better than
559 /// duplicating the entire loop header. In the case of loops with early exits,
560 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
561 /// canonical form so downstream passes can handle it.
563 /// I don't believe this invalidates SCEV.
564 bool LoopRotate::simplifyLoopLatch(Loop
*L
) {
565 BasicBlock
*Latch
= L
->getLoopLatch();
566 if (!Latch
|| Latch
->hasAddressTaken())
569 BranchInst
*Jmp
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
570 if (!Jmp
|| !Jmp
->isUnconditional())
573 BasicBlock
*LastExit
= Latch
->getSinglePredecessor();
574 if (!LastExit
|| !L
->isLoopExiting(LastExit
))
577 BranchInst
*BI
= dyn_cast
<BranchInst
>(LastExit
->getTerminator());
581 if (!shouldSpeculateInstrs(Latch
->begin(), Jmp
->getIterator(), L
))
584 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch
->getName() << " into "
585 << LastExit
->getName() << "\n");
587 // Hoist the instructions from Latch into LastExit.
588 LastExit
->getInstList().splice(BI
->getIterator(), Latch
->getInstList(),
589 Latch
->begin(), Jmp
->getIterator());
591 unsigned FallThruPath
= BI
->getSuccessor(0) == Latch
? 0 : 1;
592 BasicBlock
*Header
= Jmp
->getSuccessor(0);
593 assert(Header
== L
->getHeader() && "expected a backward branch");
595 // Remove Latch from the CFG so that LastExit becomes the new Latch.
596 BI
->setSuccessor(FallThruPath
, Header
);
597 Latch
->replaceSuccessorsPhiUsesWith(LastExit
);
598 Jmp
->eraseFromParent();
600 // Nuke the Latch block.
601 assert(Latch
->empty() && "unable to evacuate Latch");
602 LI
->removeBlock(Latch
);
604 DT
->eraseNode(Latch
);
605 Latch
->eraseFromParent();
609 /// Rotate \c L, and return true if any modification was made.
610 bool LoopRotate::processLoop(Loop
*L
) {
611 // Save the loop metadata.
612 MDNode
*LoopMD
= L
->getLoopID();
614 bool SimplifiedLatch
= false;
616 // Simplify the loop latch before attempting to rotate the header
617 // upward. Rotation may not be needed if the loop tail can be folded into the
620 SimplifiedLatch
= simplifyLoopLatch(L
);
622 bool MadeChange
= rotateLoop(L
, SimplifiedLatch
);
623 assert((!MadeChange
|| L
->isLoopExiting(L
->getLoopLatch())) &&
624 "Loop latch should be exiting after loop-rotate.");
626 // Restore the loop metadata.
627 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
628 if ((MadeChange
|| SimplifiedLatch
) && LoopMD
)
629 L
->setLoopID(LoopMD
);
631 return MadeChange
|| SimplifiedLatch
;
635 /// The utility to convert a loop into a loop with bottom test.
636 bool llvm::LoopRotation(Loop
*L
, LoopInfo
*LI
, const TargetTransformInfo
*TTI
,
637 AssumptionCache
*AC
, DominatorTree
*DT
,
638 ScalarEvolution
*SE
, const SimplifyQuery
&SQ
,
639 bool RotationOnly
= true,
640 unsigned Threshold
= unsigned(-1),
641 bool IsUtilMode
= true) {
642 LoopRotate
LR(Threshold
, LI
, TTI
, AC
, DT
, SE
, SQ
, RotationOnly
, IsUtilMode
);
644 return LR
.processLoop(L
);