[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Analysis / Loads.cpp
blob43cfe3d7cba19bbdfee21a8654a10dc9c2858979
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/IR/Statepoint.h"
25 using namespace llvm;
27 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
28 const DataLayout &DL) {
29 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
31 if (!BaseAlign) {
32 Type *Ty = Base->getType()->getPointerElementType();
33 if (!Ty->isSized())
34 return false;
35 BaseAlign = DL.getABITypeAlignment(Ty);
38 APInt Alignment(Offset.getBitWidth(), Align);
40 assert(Alignment.isPowerOf2() && "must be a power of 2!");
41 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
44 /// Test if V is always a pointer to allocated and suitably aligned memory for
45 /// a simple load or store.
46 static bool isDereferenceableAndAlignedPointer(
47 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
48 const Instruction *CtxI, const DominatorTree *DT,
49 SmallPtrSetImpl<const Value *> &Visited) {
50 // Already visited? Bail out, we've likely hit unreachable code.
51 if (!Visited.insert(V).second)
52 return false;
54 // Note that it is not safe to speculate into a malloc'd region because
55 // malloc may return null.
57 // bitcast instructions are no-ops as far as dereferenceability is concerned.
58 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
59 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
60 DL, CtxI, DT, Visited);
62 bool CheckForNonNull = false;
63 APInt KnownDerefBytes(Size.getBitWidth(),
64 V->getPointerDereferenceableBytes(DL, CheckForNonNull));
65 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
66 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
67 // As we recursed through GEPs to get here, we've incrementally checked
68 // that each step advanced by a multiple of the alignment. If our base is
69 // properly aligned, then the original offset accessed must also be.
70 Type *Ty = V->getType();
71 assert(Ty->isSized() && "must be sized");
72 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
73 return isAligned(V, Offset, Align, DL);
76 // For GEPs, determine if the indexing lands within the allocated object.
77 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
78 const Value *Base = GEP->getPointerOperand();
80 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
81 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
82 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
83 return false;
85 // If the base pointer is dereferenceable for Offset+Size bytes, then the
86 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
87 // pointer is aligned to Align bytes, and the Offset is divisible by Align
88 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
89 // aligned to Align bytes.
91 // Offset and Size may have different bit widths if we have visited an
92 // addrspacecast, so we can't do arithmetic directly on the APInt values.
93 return isDereferenceableAndAlignedPointer(
94 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
95 DL, CtxI, DT, Visited);
98 // For gc.relocate, look through relocations
99 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
100 return isDereferenceableAndAlignedPointer(
101 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
103 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
104 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
105 DL, CtxI, DT, Visited);
107 if (const auto *Call = dyn_cast<CallBase>(V))
108 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
109 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
110 Visited);
112 // If we don't know, assume the worst.
113 return false;
116 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
117 const APInt &Size,
118 const DataLayout &DL,
119 const Instruction *CtxI,
120 const DominatorTree *DT) {
121 SmallPtrSet<const Value *, 32> Visited;
122 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
123 Visited);
126 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
127 unsigned Align,
128 const DataLayout &DL,
129 const Instruction *CtxI,
130 const DominatorTree *DT) {
131 // When dereferenceability information is provided by a dereferenceable
132 // attribute, we know exactly how many bytes are dereferenceable. If we can
133 // determine the exact offset to the attributed variable, we can use that
134 // information here.
136 // Require ABI alignment for loads without alignment specification
137 if (Align == 0)
138 Align = DL.getABITypeAlignment(Ty);
140 if (!Ty->isSized())
141 return false;
143 SmallPtrSet<const Value *, 32> Visited;
144 return ::isDereferenceableAndAlignedPointer(
145 V, Align,
146 APInt(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)),
147 DL, CtxI, DT, Visited);
150 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
151 const DataLayout &DL,
152 const Instruction *CtxI,
153 const DominatorTree *DT) {
154 return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT);
157 /// Test if A and B will obviously have the same value.
159 /// This includes recognizing that %t0 and %t1 will have the same
160 /// value in code like this:
161 /// \code
162 /// %t0 = getelementptr \@a, 0, 3
163 /// store i32 0, i32* %t0
164 /// %t1 = getelementptr \@a, 0, 3
165 /// %t2 = load i32* %t1
166 /// \endcode
168 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
169 // Test if the values are trivially equivalent.
170 if (A == B)
171 return true;
173 // Test if the values come from identical arithmetic instructions.
174 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
175 // this function is only used when one address use dominates the
176 // other, which means that they'll always either have the same
177 // value or one of them will have an undefined value.
178 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
179 isa<GetElementPtrInst>(A))
180 if (const Instruction *BI = dyn_cast<Instruction>(B))
181 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
182 return true;
184 // Otherwise they may not be equivalent.
185 return false;
188 /// Check if executing a load of this pointer value cannot trap.
190 /// If DT and ScanFrom are specified this method performs context-sensitive
191 /// analysis and returns true if it is safe to load immediately before ScanFrom.
193 /// If it is not obviously safe to load from the specified pointer, we do
194 /// a quick local scan of the basic block containing \c ScanFrom, to determine
195 /// if the address is already accessed.
197 /// This uses the pointee type to determine how many bytes need to be safe to
198 /// load from the pointer.
199 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size,
200 const DataLayout &DL,
201 Instruction *ScanFrom,
202 const DominatorTree *DT) {
203 // Zero alignment means that the load has the ABI alignment for the target
204 if (Align == 0)
205 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
206 assert(isPowerOf2_32(Align));
208 // If DT is not specified we can't make context-sensitive query
209 const Instruction* CtxI = DT ? ScanFrom : nullptr;
210 if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT))
211 return true;
213 int64_t ByteOffset = 0;
214 Value *Base = V;
215 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
217 if (ByteOffset < 0) // out of bounds
218 return false;
220 Type *BaseType = nullptr;
221 unsigned BaseAlign = 0;
222 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
223 // An alloca is safe to load from as load as it is suitably aligned.
224 BaseType = AI->getAllocatedType();
225 BaseAlign = AI->getAlignment();
226 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
227 // Global variables are not necessarily safe to load from if they are
228 // interposed arbitrarily. Their size may change or they may be weak and
229 // require a test to determine if they were in fact provided.
230 if (!GV->isInterposable()) {
231 BaseType = GV->getType()->getElementType();
232 BaseAlign = GV->getAlignment();
236 PointerType *AddrTy = cast<PointerType>(V->getType());
237 uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
239 // If we found a base allocated type from either an alloca or global variable,
240 // try to see if we are definitively within the allocated region. We need to
241 // know the size of the base type and the loaded type to do anything in this
242 // case.
243 if (BaseType && BaseType->isSized()) {
244 if (BaseAlign == 0)
245 BaseAlign = DL.getPrefTypeAlignment(BaseType);
247 if (Align <= BaseAlign) {
248 // Check if the load is within the bounds of the underlying object.
249 if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
250 ((ByteOffset % Align) == 0))
251 return true;
255 if (!ScanFrom)
256 return false;
258 // Otherwise, be a little bit aggressive by scanning the local block where we
259 // want to check to see if the pointer is already being loaded or stored
260 // from/to. If so, the previous load or store would have already trapped,
261 // so there is no harm doing an extra load (also, CSE will later eliminate
262 // the load entirely).
263 BasicBlock::iterator BBI = ScanFrom->getIterator(),
264 E = ScanFrom->getParent()->begin();
266 // We can at least always strip pointer casts even though we can't use the
267 // base here.
268 V = V->stripPointerCasts();
270 while (BBI != E) {
271 --BBI;
273 // If we see a free or a call which may write to memory (i.e. which might do
274 // a free) the pointer could be marked invalid.
275 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
276 !isa<DbgInfoIntrinsic>(BBI))
277 return false;
279 Value *AccessedPtr;
280 unsigned AccessedAlign;
281 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
282 // Ignore volatile loads. The execution of a volatile load cannot
283 // be used to prove an address is backed by regular memory; it can,
284 // for example, point to an MMIO register.
285 if (LI->isVolatile())
286 continue;
287 AccessedPtr = LI->getPointerOperand();
288 AccessedAlign = LI->getAlignment();
289 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
290 // Ignore volatile stores (see comment for loads).
291 if (SI->isVolatile())
292 continue;
293 AccessedPtr = SI->getPointerOperand();
294 AccessedAlign = SI->getAlignment();
295 } else
296 continue;
298 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
299 if (AccessedAlign == 0)
300 AccessedAlign = DL.getABITypeAlignment(AccessedTy);
301 if (AccessedAlign < Align)
302 continue;
304 // Handle trivial cases.
305 if (AccessedPtr == V)
306 return true;
308 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
309 LoadSize <= DL.getTypeStoreSize(AccessedTy))
310 return true;
312 return false;
315 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align,
316 const DataLayout &DL,
317 Instruction *ScanFrom,
318 const DominatorTree *DT) {
319 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
320 return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT);
323 /// DefMaxInstsToScan - the default number of maximum instructions
324 /// to scan in the block, used by FindAvailableLoadedValue().
325 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
326 /// threading in part by eliminating partially redundant loads.
327 /// At that point, the value of MaxInstsToScan was already set to '6'
328 /// without documented explanation.
329 cl::opt<unsigned>
330 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
331 cl::desc("Use this to specify the default maximum number of instructions "
332 "to scan backward from a given instruction, when searching for "
333 "available loaded value"));
335 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
336 BasicBlock *ScanBB,
337 BasicBlock::iterator &ScanFrom,
338 unsigned MaxInstsToScan,
339 AliasAnalysis *AA, bool *IsLoad,
340 unsigned *NumScanedInst) {
341 // Don't CSE load that is volatile or anything stronger than unordered.
342 if (!Load->isUnordered())
343 return nullptr;
345 return FindAvailablePtrLoadStore(
346 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
347 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
350 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
351 bool AtLeastAtomic, BasicBlock *ScanBB,
352 BasicBlock::iterator &ScanFrom,
353 unsigned MaxInstsToScan,
354 AliasAnalysis *AA, bool *IsLoadCSE,
355 unsigned *NumScanedInst) {
356 if (MaxInstsToScan == 0)
357 MaxInstsToScan = ~0U;
359 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
361 // Try to get the store size for the type.
362 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
364 Value *StrippedPtr = Ptr->stripPointerCasts();
366 while (ScanFrom != ScanBB->begin()) {
367 // We must ignore debug info directives when counting (otherwise they
368 // would affect codegen).
369 Instruction *Inst = &*--ScanFrom;
370 if (isa<DbgInfoIntrinsic>(Inst))
371 continue;
373 // Restore ScanFrom to expected value in case next test succeeds
374 ScanFrom++;
376 if (NumScanedInst)
377 ++(*NumScanedInst);
379 // Don't scan huge blocks.
380 if (MaxInstsToScan-- == 0)
381 return nullptr;
383 --ScanFrom;
384 // If this is a load of Ptr, the loaded value is available.
385 // (This is true even if the load is volatile or atomic, although
386 // those cases are unlikely.)
387 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
388 if (AreEquivalentAddressValues(
389 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
390 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
392 // We can value forward from an atomic to a non-atomic, but not the
393 // other way around.
394 if (LI->isAtomic() < AtLeastAtomic)
395 return nullptr;
397 if (IsLoadCSE)
398 *IsLoadCSE = true;
399 return LI;
402 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
403 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
404 // If this is a store through Ptr, the value is available!
405 // (This is true even if the store is volatile or atomic, although
406 // those cases are unlikely.)
407 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
408 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
409 AccessTy, DL)) {
411 // We can value forward from an atomic to a non-atomic, but not the
412 // other way around.
413 if (SI->isAtomic() < AtLeastAtomic)
414 return nullptr;
416 if (IsLoadCSE)
417 *IsLoadCSE = false;
418 return SI->getOperand(0);
421 // If both StrippedPtr and StorePtr reach all the way to an alloca or
422 // global and they are different, ignore the store. This is a trivial form
423 // of alias analysis that is important for reg2mem'd code.
424 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
425 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
426 StrippedPtr != StorePtr)
427 continue;
429 // If we have alias analysis and it says the store won't modify the loaded
430 // value, ignore the store.
431 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
432 continue;
434 // Otherwise the store that may or may not alias the pointer, bail out.
435 ++ScanFrom;
436 return nullptr;
439 // If this is some other instruction that may clobber Ptr, bail out.
440 if (Inst->mayWriteToMemory()) {
441 // If alias analysis claims that it really won't modify the load,
442 // ignore it.
443 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
444 continue;
446 // May modify the pointer, bail out.
447 ++ScanFrom;
448 return nullptr;
452 // Got to the start of the block, we didn't find it, but are done for this
453 // block.
454 return nullptr;