[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Analysis / ScalarEvolution.cpp
blob9511670109a46c16766753cf5d8ff952a9dcfe5a
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
136 using namespace llvm;
138 #define DEBUG_TYPE "scalar-evolution"
140 STATISTIC(NumArrayLenItCounts,
141 "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143 "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145 "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147 "Number of loops with trip counts computed by force");
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151 cl::desc("Maximum number of iterations SCEV will "
152 "symbolically execute a constant "
153 "derived loop"),
154 cl::init(100));
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158 "verify-scev", cl::Hidden,
159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161 VerifySCEVMap("verify-scev-maps", cl::Hidden,
162 cl::desc("Verify no dangling value in ScalarEvolution's "
163 "ExprValueMap (slow)"));
165 static cl::opt<bool> VerifyIR(
166 "scev-verify-ir", cl::Hidden,
167 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
168 cl::init(false));
170 static cl::opt<unsigned> MulOpsInlineThreshold(
171 "scev-mulops-inline-threshold", cl::Hidden,
172 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
173 cl::init(32));
175 static cl::opt<unsigned> AddOpsInlineThreshold(
176 "scev-addops-inline-threshold", cl::Hidden,
177 cl::desc("Threshold for inlining addition operands into a SCEV"),
178 cl::init(500));
180 static cl::opt<unsigned> MaxSCEVCompareDepth(
181 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
182 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
183 cl::init(32));
185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
186 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
188 cl::init(2));
190 static cl::opt<unsigned> MaxValueCompareDepth(
191 "scalar-evolution-max-value-compare-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive value complexity comparisons"),
193 cl::init(2));
195 static cl::opt<unsigned>
196 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive arithmetics"),
198 cl::init(32));
200 static cl::opt<unsigned> MaxConstantEvolvingDepth(
201 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
202 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
204 static cl::opt<unsigned>
205 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
206 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
207 cl::init(8));
209 static cl::opt<unsigned>
210 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
211 cl::desc("Max coefficients in AddRec during evolving"),
212 cl::init(8));
214 static cl::opt<unsigned>
215 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
216 cl::desc("Size of the expression which is considered huge"),
217 cl::init(4096));
219 //===----------------------------------------------------------------------===//
220 // SCEV class definitions
221 //===----------------------------------------------------------------------===//
223 //===----------------------------------------------------------------------===//
224 // Implementation of the SCEV class.
227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
228 LLVM_DUMP_METHOD void SCEV::dump() const {
229 print(dbgs());
230 dbgs() << '\n';
232 #endif
234 void SCEV::print(raw_ostream &OS) const {
235 switch (static_cast<SCEVTypes>(getSCEVType())) {
236 case scConstant:
237 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
238 return;
239 case scTruncate: {
240 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
241 const SCEV *Op = Trunc->getOperand();
242 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
243 << *Trunc->getType() << ")";
244 return;
246 case scZeroExtend: {
247 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
248 const SCEV *Op = ZExt->getOperand();
249 OS << "(zext " << *Op->getType() << " " << *Op << " to "
250 << *ZExt->getType() << ")";
251 return;
253 case scSignExtend: {
254 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
255 const SCEV *Op = SExt->getOperand();
256 OS << "(sext " << *Op->getType() << " " << *Op << " to "
257 << *SExt->getType() << ")";
258 return;
260 case scAddRecExpr: {
261 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
262 OS << "{" << *AR->getOperand(0);
263 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
264 OS << ",+," << *AR->getOperand(i);
265 OS << "}<";
266 if (AR->hasNoUnsignedWrap())
267 OS << "nuw><";
268 if (AR->hasNoSignedWrap())
269 OS << "nsw><";
270 if (AR->hasNoSelfWrap() &&
271 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
272 OS << "nw><";
273 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
274 OS << ">";
275 return;
277 case scAddExpr:
278 case scMulExpr:
279 case scUMaxExpr:
280 case scSMaxExpr:
281 case scUMinExpr:
282 case scSMinExpr: {
283 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
284 const char *OpStr = nullptr;
285 switch (NAry->getSCEVType()) {
286 case scAddExpr: OpStr = " + "; break;
287 case scMulExpr: OpStr = " * "; break;
288 case scUMaxExpr: OpStr = " umax "; break;
289 case scSMaxExpr: OpStr = " smax "; break;
290 case scUMinExpr:
291 OpStr = " umin ";
292 break;
293 case scSMinExpr:
294 OpStr = " smin ";
295 break;
297 OS << "(";
298 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
299 I != E; ++I) {
300 OS << **I;
301 if (std::next(I) != E)
302 OS << OpStr;
304 OS << ")";
305 switch (NAry->getSCEVType()) {
306 case scAddExpr:
307 case scMulExpr:
308 if (NAry->hasNoUnsignedWrap())
309 OS << "<nuw>";
310 if (NAry->hasNoSignedWrap())
311 OS << "<nsw>";
313 return;
315 case scUDivExpr: {
316 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
317 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
318 return;
320 case scUnknown: {
321 const SCEVUnknown *U = cast<SCEVUnknown>(this);
322 Type *AllocTy;
323 if (U->isSizeOf(AllocTy)) {
324 OS << "sizeof(" << *AllocTy << ")";
325 return;
327 if (U->isAlignOf(AllocTy)) {
328 OS << "alignof(" << *AllocTy << ")";
329 return;
332 Type *CTy;
333 Constant *FieldNo;
334 if (U->isOffsetOf(CTy, FieldNo)) {
335 OS << "offsetof(" << *CTy << ", ";
336 FieldNo->printAsOperand(OS, false);
337 OS << ")";
338 return;
341 // Otherwise just print it normally.
342 U->getValue()->printAsOperand(OS, false);
343 return;
345 case scCouldNotCompute:
346 OS << "***COULDNOTCOMPUTE***";
347 return;
349 llvm_unreachable("Unknown SCEV kind!");
352 Type *SCEV::getType() const {
353 switch (static_cast<SCEVTypes>(getSCEVType())) {
354 case scConstant:
355 return cast<SCEVConstant>(this)->getType();
356 case scTruncate:
357 case scZeroExtend:
358 case scSignExtend:
359 return cast<SCEVCastExpr>(this)->getType();
360 case scAddRecExpr:
361 case scMulExpr:
362 case scUMaxExpr:
363 case scSMaxExpr:
364 case scUMinExpr:
365 case scSMinExpr:
366 return cast<SCEVNAryExpr>(this)->getType();
367 case scAddExpr:
368 return cast<SCEVAddExpr>(this)->getType();
369 case scUDivExpr:
370 return cast<SCEVUDivExpr>(this)->getType();
371 case scUnknown:
372 return cast<SCEVUnknown>(this)->getType();
373 case scCouldNotCompute:
374 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
376 llvm_unreachable("Unknown SCEV kind!");
379 bool SCEV::isZero() const {
380 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
381 return SC->getValue()->isZero();
382 return false;
385 bool SCEV::isOne() const {
386 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
387 return SC->getValue()->isOne();
388 return false;
391 bool SCEV::isAllOnesValue() const {
392 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
393 return SC->getValue()->isMinusOne();
394 return false;
397 bool SCEV::isNonConstantNegative() const {
398 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
399 if (!Mul) return false;
401 // If there is a constant factor, it will be first.
402 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
403 if (!SC) return false;
405 // Return true if the value is negative, this matches things like (-42 * V).
406 return SC->getAPInt().isNegative();
409 SCEVCouldNotCompute::SCEVCouldNotCompute() :
410 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
412 bool SCEVCouldNotCompute::classof(const SCEV *S) {
413 return S->getSCEVType() == scCouldNotCompute;
416 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
417 FoldingSetNodeID ID;
418 ID.AddInteger(scConstant);
419 ID.AddPointer(V);
420 void *IP = nullptr;
421 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
422 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
423 UniqueSCEVs.InsertNode(S, IP);
424 return S;
427 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
428 return getConstant(ConstantInt::get(getContext(), Val));
431 const SCEV *
432 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
433 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
434 return getConstant(ConstantInt::get(ITy, V, isSigned));
437 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
438 unsigned SCEVTy, const SCEV *op, Type *ty)
439 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
441 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
442 const SCEV *op, Type *ty)
443 : SCEVCastExpr(ID, scTruncate, op, ty) {
444 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
445 "Cannot truncate non-integer value!");
448 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
449 const SCEV *op, Type *ty)
450 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
451 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
452 "Cannot zero extend non-integer value!");
455 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
456 const SCEV *op, Type *ty)
457 : SCEVCastExpr(ID, scSignExtend, op, ty) {
458 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
459 "Cannot sign extend non-integer value!");
462 void SCEVUnknown::deleted() {
463 // Clear this SCEVUnknown from various maps.
464 SE->forgetMemoizedResults(this);
466 // Remove this SCEVUnknown from the uniquing map.
467 SE->UniqueSCEVs.RemoveNode(this);
469 // Release the value.
470 setValPtr(nullptr);
473 void SCEVUnknown::allUsesReplacedWith(Value *New) {
474 // Remove this SCEVUnknown from the uniquing map.
475 SE->UniqueSCEVs.RemoveNode(this);
477 // Update this SCEVUnknown to point to the new value. This is needed
478 // because there may still be outstanding SCEVs which still point to
479 // this SCEVUnknown.
480 setValPtr(New);
483 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
484 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
485 if (VCE->getOpcode() == Instruction::PtrToInt)
486 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
487 if (CE->getOpcode() == Instruction::GetElementPtr &&
488 CE->getOperand(0)->isNullValue() &&
489 CE->getNumOperands() == 2)
490 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
491 if (CI->isOne()) {
492 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
493 ->getElementType();
494 return true;
497 return false;
500 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
501 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
502 if (VCE->getOpcode() == Instruction::PtrToInt)
503 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
504 if (CE->getOpcode() == Instruction::GetElementPtr &&
505 CE->getOperand(0)->isNullValue()) {
506 Type *Ty =
507 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
508 if (StructType *STy = dyn_cast<StructType>(Ty))
509 if (!STy->isPacked() &&
510 CE->getNumOperands() == 3 &&
511 CE->getOperand(1)->isNullValue()) {
512 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
513 if (CI->isOne() &&
514 STy->getNumElements() == 2 &&
515 STy->getElementType(0)->isIntegerTy(1)) {
516 AllocTy = STy->getElementType(1);
517 return true;
522 return false;
525 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527 if (VCE->getOpcode() == Instruction::PtrToInt)
528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529 if (CE->getOpcode() == Instruction::GetElementPtr &&
530 CE->getNumOperands() == 3 &&
531 CE->getOperand(0)->isNullValue() &&
532 CE->getOperand(1)->isNullValue()) {
533 Type *Ty =
534 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
535 // Ignore vector types here so that ScalarEvolutionExpander doesn't
536 // emit getelementptrs that index into vectors.
537 if (Ty->isStructTy() || Ty->isArrayTy()) {
538 CTy = Ty;
539 FieldNo = CE->getOperand(2);
540 return true;
544 return false;
547 //===----------------------------------------------------------------------===//
548 // SCEV Utilities
549 //===----------------------------------------------------------------------===//
551 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
552 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
553 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
554 /// have been previously deemed to be "equally complex" by this routine. It is
555 /// intended to avoid exponential time complexity in cases like:
557 /// %a = f(%x, %y)
558 /// %b = f(%a, %a)
559 /// %c = f(%b, %b)
561 /// %d = f(%x, %y)
562 /// %e = f(%d, %d)
563 /// %f = f(%e, %e)
565 /// CompareValueComplexity(%f, %c)
567 /// Since we do not continue running this routine on expression trees once we
568 /// have seen unequal values, there is no need to track them in the cache.
569 static int
570 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
571 const LoopInfo *const LI, Value *LV, Value *RV,
572 unsigned Depth) {
573 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
574 return 0;
576 // Order pointer values after integer values. This helps SCEVExpander form
577 // GEPs.
578 bool LIsPointer = LV->getType()->isPointerTy(),
579 RIsPointer = RV->getType()->isPointerTy();
580 if (LIsPointer != RIsPointer)
581 return (int)LIsPointer - (int)RIsPointer;
583 // Compare getValueID values.
584 unsigned LID = LV->getValueID(), RID = RV->getValueID();
585 if (LID != RID)
586 return (int)LID - (int)RID;
588 // Sort arguments by their position.
589 if (const auto *LA = dyn_cast<Argument>(LV)) {
590 const auto *RA = cast<Argument>(RV);
591 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
592 return (int)LArgNo - (int)RArgNo;
595 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
596 const auto *RGV = cast<GlobalValue>(RV);
598 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
599 auto LT = GV->getLinkage();
600 return !(GlobalValue::isPrivateLinkage(LT) ||
601 GlobalValue::isInternalLinkage(LT));
604 // Use the names to distinguish the two values, but only if the
605 // names are semantically important.
606 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
607 return LGV->getName().compare(RGV->getName());
610 // For instructions, compare their loop depth, and their operand count. This
611 // is pretty loose.
612 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
613 const auto *RInst = cast<Instruction>(RV);
615 // Compare loop depths.
616 const BasicBlock *LParent = LInst->getParent(),
617 *RParent = RInst->getParent();
618 if (LParent != RParent) {
619 unsigned LDepth = LI->getLoopDepth(LParent),
620 RDepth = LI->getLoopDepth(RParent);
621 if (LDepth != RDepth)
622 return (int)LDepth - (int)RDepth;
625 // Compare the number of operands.
626 unsigned LNumOps = LInst->getNumOperands(),
627 RNumOps = RInst->getNumOperands();
628 if (LNumOps != RNumOps)
629 return (int)LNumOps - (int)RNumOps;
631 for (unsigned Idx : seq(0u, LNumOps)) {
632 int Result =
633 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
634 RInst->getOperand(Idx), Depth + 1);
635 if (Result != 0)
636 return Result;
640 EqCacheValue.unionSets(LV, RV);
641 return 0;
644 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
645 // than RHS, respectively. A three-way result allows recursive comparisons to be
646 // more efficient.
647 static int CompareSCEVComplexity(
648 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
649 EquivalenceClasses<const Value *> &EqCacheValue,
650 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
651 DominatorTree &DT, unsigned Depth = 0) {
652 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
653 if (LHS == RHS)
654 return 0;
656 // Primarily, sort the SCEVs by their getSCEVType().
657 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
658 if (LType != RType)
659 return (int)LType - (int)RType;
661 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
662 return 0;
663 // Aside from the getSCEVType() ordering, the particular ordering
664 // isn't very important except that it's beneficial to be consistent,
665 // so that (a + b) and (b + a) don't end up as different expressions.
666 switch (static_cast<SCEVTypes>(LType)) {
667 case scUnknown: {
668 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
669 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
671 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
672 RU->getValue(), Depth + 1);
673 if (X == 0)
674 EqCacheSCEV.unionSets(LHS, RHS);
675 return X;
678 case scConstant: {
679 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
680 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
682 // Compare constant values.
683 const APInt &LA = LC->getAPInt();
684 const APInt &RA = RC->getAPInt();
685 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
686 if (LBitWidth != RBitWidth)
687 return (int)LBitWidth - (int)RBitWidth;
688 return LA.ult(RA) ? -1 : 1;
691 case scAddRecExpr: {
692 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
693 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
695 // There is always a dominance between two recs that are used by one SCEV,
696 // so we can safely sort recs by loop header dominance. We require such
697 // order in getAddExpr.
698 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
699 if (LLoop != RLoop) {
700 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
701 assert(LHead != RHead && "Two loops share the same header?");
702 if (DT.dominates(LHead, RHead))
703 return 1;
704 else
705 assert(DT.dominates(RHead, LHead) &&
706 "No dominance between recurrences used by one SCEV?");
707 return -1;
710 // Addrec complexity grows with operand count.
711 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
712 if (LNumOps != RNumOps)
713 return (int)LNumOps - (int)RNumOps;
715 // Lexicographically compare.
716 for (unsigned i = 0; i != LNumOps; ++i) {
717 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
718 LA->getOperand(i), RA->getOperand(i), DT,
719 Depth + 1);
720 if (X != 0)
721 return X;
723 EqCacheSCEV.unionSets(LHS, RHS);
724 return 0;
727 case scAddExpr:
728 case scMulExpr:
729 case scSMaxExpr:
730 case scUMaxExpr:
731 case scSMinExpr:
732 case scUMinExpr: {
733 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
734 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
736 // Lexicographically compare n-ary expressions.
737 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
738 if (LNumOps != RNumOps)
739 return (int)LNumOps - (int)RNumOps;
741 for (unsigned i = 0; i != LNumOps; ++i) {
742 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
743 LC->getOperand(i), RC->getOperand(i), DT,
744 Depth + 1);
745 if (X != 0)
746 return X;
748 EqCacheSCEV.unionSets(LHS, RHS);
749 return 0;
752 case scUDivExpr: {
753 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
754 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
756 // Lexicographically compare udiv expressions.
757 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
758 RC->getLHS(), DT, Depth + 1);
759 if (X != 0)
760 return X;
761 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
762 RC->getRHS(), DT, Depth + 1);
763 if (X == 0)
764 EqCacheSCEV.unionSets(LHS, RHS);
765 return X;
768 case scTruncate:
769 case scZeroExtend:
770 case scSignExtend: {
771 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
772 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
774 // Compare cast expressions by operand.
775 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
776 LC->getOperand(), RC->getOperand(), DT,
777 Depth + 1);
778 if (X == 0)
779 EqCacheSCEV.unionSets(LHS, RHS);
780 return X;
783 case scCouldNotCompute:
784 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
786 llvm_unreachable("Unknown SCEV kind!");
789 /// Given a list of SCEV objects, order them by their complexity, and group
790 /// objects of the same complexity together by value. When this routine is
791 /// finished, we know that any duplicates in the vector are consecutive and that
792 /// complexity is monotonically increasing.
794 /// Note that we go take special precautions to ensure that we get deterministic
795 /// results from this routine. In other words, we don't want the results of
796 /// this to depend on where the addresses of various SCEV objects happened to
797 /// land in memory.
798 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
799 LoopInfo *LI, DominatorTree &DT) {
800 if (Ops.size() < 2) return; // Noop
802 EquivalenceClasses<const SCEV *> EqCacheSCEV;
803 EquivalenceClasses<const Value *> EqCacheValue;
804 if (Ops.size() == 2) {
805 // This is the common case, which also happens to be trivially simple.
806 // Special case it.
807 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
808 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
809 std::swap(LHS, RHS);
810 return;
813 // Do the rough sort by complexity.
814 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
815 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
819 // Now that we are sorted by complexity, group elements of the same
820 // complexity. Note that this is, at worst, N^2, but the vector is likely to
821 // be extremely short in practice. Note that we take this approach because we
822 // do not want to depend on the addresses of the objects we are grouping.
823 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
824 const SCEV *S = Ops[i];
825 unsigned Complexity = S->getSCEVType();
827 // If there are any objects of the same complexity and same value as this
828 // one, group them.
829 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
830 if (Ops[j] == S) { // Found a duplicate.
831 // Move it to immediately after i'th element.
832 std::swap(Ops[i+1], Ops[j]);
833 ++i; // no need to rescan it.
834 if (i == e-2) return; // Done!
840 // Returns the size of the SCEV S.
841 static inline int sizeOfSCEV(const SCEV *S) {
842 struct FindSCEVSize {
843 int Size = 0;
845 FindSCEVSize() = default;
847 bool follow(const SCEV *S) {
848 ++Size;
849 // Keep looking at all operands of S.
850 return true;
853 bool isDone() const {
854 return false;
858 FindSCEVSize F;
859 SCEVTraversal<FindSCEVSize> ST(F);
860 ST.visitAll(S);
861 return F.Size;
864 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
865 /// nodes.
866 static bool isHugeExpression(const SCEV *S) {
867 return S->getExpressionSize() >= HugeExprThreshold;
870 /// Returns true of \p Ops contains a huge SCEV (see definition above).
871 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
872 return any_of(Ops, isHugeExpression);
875 namespace {
877 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
878 public:
879 // Computes the Quotient and Remainder of the division of Numerator by
880 // Denominator.
881 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
882 const SCEV *Denominator, const SCEV **Quotient,
883 const SCEV **Remainder) {
884 assert(Numerator && Denominator && "Uninitialized SCEV");
886 SCEVDivision D(SE, Numerator, Denominator);
888 // Check for the trivial case here to avoid having to check for it in the
889 // rest of the code.
890 if (Numerator == Denominator) {
891 *Quotient = D.One;
892 *Remainder = D.Zero;
893 return;
896 if (Numerator->isZero()) {
897 *Quotient = D.Zero;
898 *Remainder = D.Zero;
899 return;
902 // A simple case when N/1. The quotient is N.
903 if (Denominator->isOne()) {
904 *Quotient = Numerator;
905 *Remainder = D.Zero;
906 return;
909 // Split the Denominator when it is a product.
910 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
911 const SCEV *Q, *R;
912 *Quotient = Numerator;
913 for (const SCEV *Op : T->operands()) {
914 divide(SE, *Quotient, Op, &Q, &R);
915 *Quotient = Q;
917 // Bail out when the Numerator is not divisible by one of the terms of
918 // the Denominator.
919 if (!R->isZero()) {
920 *Quotient = D.Zero;
921 *Remainder = Numerator;
922 return;
925 *Remainder = D.Zero;
926 return;
929 D.visit(Numerator);
930 *Quotient = D.Quotient;
931 *Remainder = D.Remainder;
934 // Except in the trivial case described above, we do not know how to divide
935 // Expr by Denominator for the following functions with empty implementation.
936 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
937 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
938 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
939 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
940 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
941 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
942 void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
943 void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
944 void visitUnknown(const SCEVUnknown *Numerator) {}
945 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
947 void visitConstant(const SCEVConstant *Numerator) {
948 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
949 APInt NumeratorVal = Numerator->getAPInt();
950 APInt DenominatorVal = D->getAPInt();
951 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
952 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
954 if (NumeratorBW > DenominatorBW)
955 DenominatorVal = DenominatorVal.sext(NumeratorBW);
956 else if (NumeratorBW < DenominatorBW)
957 NumeratorVal = NumeratorVal.sext(DenominatorBW);
959 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
960 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
961 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
962 Quotient = SE.getConstant(QuotientVal);
963 Remainder = SE.getConstant(RemainderVal);
964 return;
968 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
969 const SCEV *StartQ, *StartR, *StepQ, *StepR;
970 if (!Numerator->isAffine())
971 return cannotDivide(Numerator);
972 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
973 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
974 // Bail out if the types do not match.
975 Type *Ty = Denominator->getType();
976 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
977 Ty != StepQ->getType() || Ty != StepR->getType())
978 return cannotDivide(Numerator);
979 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
980 Numerator->getNoWrapFlags());
981 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
982 Numerator->getNoWrapFlags());
985 void visitAddExpr(const SCEVAddExpr *Numerator) {
986 SmallVector<const SCEV *, 2> Qs, Rs;
987 Type *Ty = Denominator->getType();
989 for (const SCEV *Op : Numerator->operands()) {
990 const SCEV *Q, *R;
991 divide(SE, Op, Denominator, &Q, &R);
993 // Bail out if types do not match.
994 if (Ty != Q->getType() || Ty != R->getType())
995 return cannotDivide(Numerator);
997 Qs.push_back(Q);
998 Rs.push_back(R);
1001 if (Qs.size() == 1) {
1002 Quotient = Qs[0];
1003 Remainder = Rs[0];
1004 return;
1007 Quotient = SE.getAddExpr(Qs);
1008 Remainder = SE.getAddExpr(Rs);
1011 void visitMulExpr(const SCEVMulExpr *Numerator) {
1012 SmallVector<const SCEV *, 2> Qs;
1013 Type *Ty = Denominator->getType();
1015 bool FoundDenominatorTerm = false;
1016 for (const SCEV *Op : Numerator->operands()) {
1017 // Bail out if types do not match.
1018 if (Ty != Op->getType())
1019 return cannotDivide(Numerator);
1021 if (FoundDenominatorTerm) {
1022 Qs.push_back(Op);
1023 continue;
1026 // Check whether Denominator divides one of the product operands.
1027 const SCEV *Q, *R;
1028 divide(SE, Op, Denominator, &Q, &R);
1029 if (!R->isZero()) {
1030 Qs.push_back(Op);
1031 continue;
1034 // Bail out if types do not match.
1035 if (Ty != Q->getType())
1036 return cannotDivide(Numerator);
1038 FoundDenominatorTerm = true;
1039 Qs.push_back(Q);
1042 if (FoundDenominatorTerm) {
1043 Remainder = Zero;
1044 if (Qs.size() == 1)
1045 Quotient = Qs[0];
1046 else
1047 Quotient = SE.getMulExpr(Qs);
1048 return;
1051 if (!isa<SCEVUnknown>(Denominator))
1052 return cannotDivide(Numerator);
1054 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1055 ValueToValueMap RewriteMap;
1056 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1057 cast<SCEVConstant>(Zero)->getValue();
1058 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1060 if (Remainder->isZero()) {
1061 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1062 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1063 cast<SCEVConstant>(One)->getValue();
1064 Quotient =
1065 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1066 return;
1069 // Quotient is (Numerator - Remainder) divided by Denominator.
1070 const SCEV *Q, *R;
1071 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1072 // This SCEV does not seem to simplify: fail the division here.
1073 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1074 return cannotDivide(Numerator);
1075 divide(SE, Diff, Denominator, &Q, &R);
1076 if (R != Zero)
1077 return cannotDivide(Numerator);
1078 Quotient = Q;
1081 private:
1082 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1083 const SCEV *Denominator)
1084 : SE(S), Denominator(Denominator) {
1085 Zero = SE.getZero(Denominator->getType());
1086 One = SE.getOne(Denominator->getType());
1088 // We generally do not know how to divide Expr by Denominator. We
1089 // initialize the division to a "cannot divide" state to simplify the rest
1090 // of the code.
1091 cannotDivide(Numerator);
1094 // Convenience function for giving up on the division. We set the quotient to
1095 // be equal to zero and the remainder to be equal to the numerator.
1096 void cannotDivide(const SCEV *Numerator) {
1097 Quotient = Zero;
1098 Remainder = Numerator;
1101 ScalarEvolution &SE;
1102 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1105 } // end anonymous namespace
1107 //===----------------------------------------------------------------------===//
1108 // Simple SCEV method implementations
1109 //===----------------------------------------------------------------------===//
1111 /// Compute BC(It, K). The result has width W. Assume, K > 0.
1112 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1113 ScalarEvolution &SE,
1114 Type *ResultTy) {
1115 // Handle the simplest case efficiently.
1116 if (K == 1)
1117 return SE.getTruncateOrZeroExtend(It, ResultTy);
1119 // We are using the following formula for BC(It, K):
1121 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1123 // Suppose, W is the bitwidth of the return value. We must be prepared for
1124 // overflow. Hence, we must assure that the result of our computation is
1125 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1126 // safe in modular arithmetic.
1128 // However, this code doesn't use exactly that formula; the formula it uses
1129 // is something like the following, where T is the number of factors of 2 in
1130 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1131 // exponentiation:
1133 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1135 // This formula is trivially equivalent to the previous formula. However,
1136 // this formula can be implemented much more efficiently. The trick is that
1137 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1138 // arithmetic. To do exact division in modular arithmetic, all we have
1139 // to do is multiply by the inverse. Therefore, this step can be done at
1140 // width W.
1142 // The next issue is how to safely do the division by 2^T. The way this
1143 // is done is by doing the multiplication step at a width of at least W + T
1144 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1145 // when we perform the division by 2^T (which is equivalent to a right shift
1146 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1147 // truncated out after the division by 2^T.
1149 // In comparison to just directly using the first formula, this technique
1150 // is much more efficient; using the first formula requires W * K bits,
1151 // but this formula less than W + K bits. Also, the first formula requires
1152 // a division step, whereas this formula only requires multiplies and shifts.
1154 // It doesn't matter whether the subtraction step is done in the calculation
1155 // width or the input iteration count's width; if the subtraction overflows,
1156 // the result must be zero anyway. We prefer here to do it in the width of
1157 // the induction variable because it helps a lot for certain cases; CodeGen
1158 // isn't smart enough to ignore the overflow, which leads to much less
1159 // efficient code if the width of the subtraction is wider than the native
1160 // register width.
1162 // (It's possible to not widen at all by pulling out factors of 2 before
1163 // the multiplication; for example, K=2 can be calculated as
1164 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1165 // extra arithmetic, so it's not an obvious win, and it gets
1166 // much more complicated for K > 3.)
1168 // Protection from insane SCEVs; this bound is conservative,
1169 // but it probably doesn't matter.
1170 if (K > 1000)
1171 return SE.getCouldNotCompute();
1173 unsigned W = SE.getTypeSizeInBits(ResultTy);
1175 // Calculate K! / 2^T and T; we divide out the factors of two before
1176 // multiplying for calculating K! / 2^T to avoid overflow.
1177 // Other overflow doesn't matter because we only care about the bottom
1178 // W bits of the result.
1179 APInt OddFactorial(W, 1);
1180 unsigned T = 1;
1181 for (unsigned i = 3; i <= K; ++i) {
1182 APInt Mult(W, i);
1183 unsigned TwoFactors = Mult.countTrailingZeros();
1184 T += TwoFactors;
1185 Mult.lshrInPlace(TwoFactors);
1186 OddFactorial *= Mult;
1189 // We need at least W + T bits for the multiplication step
1190 unsigned CalculationBits = W + T;
1192 // Calculate 2^T, at width T+W.
1193 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1195 // Calculate the multiplicative inverse of K! / 2^T;
1196 // this multiplication factor will perform the exact division by
1197 // K! / 2^T.
1198 APInt Mod = APInt::getSignedMinValue(W+1);
1199 APInt MultiplyFactor = OddFactorial.zext(W+1);
1200 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1201 MultiplyFactor = MultiplyFactor.trunc(W);
1203 // Calculate the product, at width T+W
1204 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1205 CalculationBits);
1206 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1207 for (unsigned i = 1; i != K; ++i) {
1208 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1209 Dividend = SE.getMulExpr(Dividend,
1210 SE.getTruncateOrZeroExtend(S, CalculationTy));
1213 // Divide by 2^T
1214 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1216 // Truncate the result, and divide by K! / 2^T.
1218 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1219 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1222 /// Return the value of this chain of recurrences at the specified iteration
1223 /// number. We can evaluate this recurrence by multiplying each element in the
1224 /// chain by the binomial coefficient corresponding to it. In other words, we
1225 /// can evaluate {A,+,B,+,C,+,D} as:
1227 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1229 /// where BC(It, k) stands for binomial coefficient.
1230 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1231 ScalarEvolution &SE) const {
1232 const SCEV *Result = getStart();
1233 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1234 // The computation is correct in the face of overflow provided that the
1235 // multiplication is performed _after_ the evaluation of the binomial
1236 // coefficient.
1237 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1238 if (isa<SCEVCouldNotCompute>(Coeff))
1239 return Coeff;
1241 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1243 return Result;
1246 //===----------------------------------------------------------------------===//
1247 // SCEV Expression folder implementations
1248 //===----------------------------------------------------------------------===//
1250 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1251 unsigned Depth) {
1252 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1253 "This is not a truncating conversion!");
1254 assert(isSCEVable(Ty) &&
1255 "This is not a conversion to a SCEVable type!");
1256 Ty = getEffectiveSCEVType(Ty);
1258 FoldingSetNodeID ID;
1259 ID.AddInteger(scTruncate);
1260 ID.AddPointer(Op);
1261 ID.AddPointer(Ty);
1262 void *IP = nullptr;
1263 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1265 // Fold if the operand is constant.
1266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1267 return getConstant(
1268 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1270 // trunc(trunc(x)) --> trunc(x)
1271 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1272 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1274 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1275 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1276 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1278 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1279 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1280 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1282 if (Depth > MaxCastDepth) {
1283 SCEV *S =
1284 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1285 UniqueSCEVs.InsertNode(S, IP);
1286 addToLoopUseLists(S);
1287 return S;
1290 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1291 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1292 // if after transforming we have at most one truncate, not counting truncates
1293 // that replace other casts.
1294 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1295 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1296 SmallVector<const SCEV *, 4> Operands;
1297 unsigned numTruncs = 0;
1298 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1299 ++i) {
1300 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1301 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1302 numTruncs++;
1303 Operands.push_back(S);
1305 if (numTruncs < 2) {
1306 if (isa<SCEVAddExpr>(Op))
1307 return getAddExpr(Operands);
1308 else if (isa<SCEVMulExpr>(Op))
1309 return getMulExpr(Operands);
1310 else
1311 llvm_unreachable("Unexpected SCEV type for Op.");
1313 // Although we checked in the beginning that ID is not in the cache, it is
1314 // possible that during recursion and different modification ID was inserted
1315 // into the cache. So if we find it, just return it.
1316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1317 return S;
1320 // If the input value is a chrec scev, truncate the chrec's operands.
1321 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1322 SmallVector<const SCEV *, 4> Operands;
1323 for (const SCEV *Op : AddRec->operands())
1324 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1325 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1328 // The cast wasn't folded; create an explicit cast node. We can reuse
1329 // the existing insert position since if we get here, we won't have
1330 // made any changes which would invalidate it.
1331 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1332 Op, Ty);
1333 UniqueSCEVs.InsertNode(S, IP);
1334 addToLoopUseLists(S);
1335 return S;
1338 // Get the limit of a recurrence such that incrementing by Step cannot cause
1339 // signed overflow as long as the value of the recurrence within the
1340 // loop does not exceed this limit before incrementing.
1341 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1342 ICmpInst::Predicate *Pred,
1343 ScalarEvolution *SE) {
1344 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1345 if (SE->isKnownPositive(Step)) {
1346 *Pred = ICmpInst::ICMP_SLT;
1347 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1348 SE->getSignedRangeMax(Step));
1350 if (SE->isKnownNegative(Step)) {
1351 *Pred = ICmpInst::ICMP_SGT;
1352 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1353 SE->getSignedRangeMin(Step));
1355 return nullptr;
1358 // Get the limit of a recurrence such that incrementing by Step cannot cause
1359 // unsigned overflow as long as the value of the recurrence within the loop does
1360 // not exceed this limit before incrementing.
1361 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1362 ICmpInst::Predicate *Pred,
1363 ScalarEvolution *SE) {
1364 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1365 *Pred = ICmpInst::ICMP_ULT;
1367 return SE->getConstant(APInt::getMinValue(BitWidth) -
1368 SE->getUnsignedRangeMax(Step));
1371 namespace {
1373 struct ExtendOpTraitsBase {
1374 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1375 unsigned);
1378 // Used to make code generic over signed and unsigned overflow.
1379 template <typename ExtendOp> struct ExtendOpTraits {
1380 // Members present:
1382 // static const SCEV::NoWrapFlags WrapType;
1384 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1386 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1387 // ICmpInst::Predicate *Pred,
1388 // ScalarEvolution *SE);
1391 template <>
1392 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1393 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1395 static const GetExtendExprTy GetExtendExpr;
1397 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1398 ICmpInst::Predicate *Pred,
1399 ScalarEvolution *SE) {
1400 return getSignedOverflowLimitForStep(Step, Pred, SE);
1404 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1405 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1407 template <>
1408 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1409 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1411 static const GetExtendExprTy GetExtendExpr;
1413 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1414 ICmpInst::Predicate *Pred,
1415 ScalarEvolution *SE) {
1416 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1420 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1421 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1423 } // end anonymous namespace
1425 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1426 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1427 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1428 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1429 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1430 // expression "Step + sext/zext(PreIncAR)" is congruent with
1431 // "sext/zext(PostIncAR)"
1432 template <typename ExtendOpTy>
1433 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1434 ScalarEvolution *SE, unsigned Depth) {
1435 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1436 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1438 const Loop *L = AR->getLoop();
1439 const SCEV *Start = AR->getStart();
1440 const SCEV *Step = AR->getStepRecurrence(*SE);
1442 // Check for a simple looking step prior to loop entry.
1443 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1444 if (!SA)
1445 return nullptr;
1447 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1448 // subtraction is expensive. For this purpose, perform a quick and dirty
1449 // difference, by checking for Step in the operand list.
1450 SmallVector<const SCEV *, 4> DiffOps;
1451 for (const SCEV *Op : SA->operands())
1452 if (Op != Step)
1453 DiffOps.push_back(Op);
1455 if (DiffOps.size() == SA->getNumOperands())
1456 return nullptr;
1458 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1459 // `Step`:
1461 // 1. NSW/NUW flags on the step increment.
1462 auto PreStartFlags =
1463 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1464 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1465 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1466 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1468 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1469 // "S+X does not sign/unsign-overflow".
1472 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1473 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1474 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1475 return PreStart;
1477 // 2. Direct overflow check on the step operation's expression.
1478 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1479 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1480 const SCEV *OperandExtendedStart =
1481 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1482 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1483 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1484 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1485 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1486 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1487 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1488 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1490 return PreStart;
1493 // 3. Loop precondition.
1494 ICmpInst::Predicate Pred;
1495 const SCEV *OverflowLimit =
1496 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1498 if (OverflowLimit &&
1499 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1500 return PreStart;
1502 return nullptr;
1505 // Get the normalized zero or sign extended expression for this AddRec's Start.
1506 template <typename ExtendOpTy>
1507 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1508 ScalarEvolution *SE,
1509 unsigned Depth) {
1510 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1512 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1513 if (!PreStart)
1514 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1516 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1517 Depth),
1518 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1521 // Try to prove away overflow by looking at "nearby" add recurrences. A
1522 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1523 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1525 // Formally:
1527 // {S,+,X} == {S-T,+,X} + T
1528 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1530 // If ({S-T,+,X} + T) does not overflow ... (1)
1532 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1534 // If {S-T,+,X} does not overflow ... (2)
1536 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1537 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1539 // If (S-T)+T does not overflow ... (3)
1541 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1542 // == {Ext(S),+,Ext(X)} == LHS
1544 // Thus, if (1), (2) and (3) are true for some T, then
1545 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1547 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1548 // does not overflow" restricted to the 0th iteration. Therefore we only need
1549 // to check for (1) and (2).
1551 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1552 // is `Delta` (defined below).
1553 template <typename ExtendOpTy>
1554 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1555 const SCEV *Step,
1556 const Loop *L) {
1557 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1559 // We restrict `Start` to a constant to prevent SCEV from spending too much
1560 // time here. It is correct (but more expensive) to continue with a
1561 // non-constant `Start` and do a general SCEV subtraction to compute
1562 // `PreStart` below.
1563 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1564 if (!StartC)
1565 return false;
1567 APInt StartAI = StartC->getAPInt();
1569 for (unsigned Delta : {-2, -1, 1, 2}) {
1570 const SCEV *PreStart = getConstant(StartAI - Delta);
1572 FoldingSetNodeID ID;
1573 ID.AddInteger(scAddRecExpr);
1574 ID.AddPointer(PreStart);
1575 ID.AddPointer(Step);
1576 ID.AddPointer(L);
1577 void *IP = nullptr;
1578 const auto *PreAR =
1579 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1581 // Give up if we don't already have the add recurrence we need because
1582 // actually constructing an add recurrence is relatively expensive.
1583 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1584 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1585 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1586 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1587 DeltaS, &Pred, this);
1588 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1589 return true;
1593 return false;
1596 // Finds an integer D for an expression (C + x + y + ...) such that the top
1597 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1598 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1599 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1600 // the (C + x + y + ...) expression is \p WholeAddExpr.
1601 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1602 const SCEVConstant *ConstantTerm,
1603 const SCEVAddExpr *WholeAddExpr) {
1604 const APInt C = ConstantTerm->getAPInt();
1605 const unsigned BitWidth = C.getBitWidth();
1606 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1607 uint32_t TZ = BitWidth;
1608 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1609 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1610 if (TZ) {
1611 // Set D to be as many least significant bits of C as possible while still
1612 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1613 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1615 return APInt(BitWidth, 0);
1618 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1619 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1620 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1621 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1622 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1623 const APInt &ConstantStart,
1624 const SCEV *Step) {
1625 const unsigned BitWidth = ConstantStart.getBitWidth();
1626 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1627 if (TZ)
1628 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1629 : ConstantStart;
1630 return APInt(BitWidth, 0);
1633 const SCEV *
1634 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1635 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1636 "This is not an extending conversion!");
1637 assert(isSCEVable(Ty) &&
1638 "This is not a conversion to a SCEVable type!");
1639 Ty = getEffectiveSCEVType(Ty);
1641 // Fold if the operand is constant.
1642 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1643 return getConstant(
1644 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1646 // zext(zext(x)) --> zext(x)
1647 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1648 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1650 // Before doing any expensive analysis, check to see if we've already
1651 // computed a SCEV for this Op and Ty.
1652 FoldingSetNodeID ID;
1653 ID.AddInteger(scZeroExtend);
1654 ID.AddPointer(Op);
1655 ID.AddPointer(Ty);
1656 void *IP = nullptr;
1657 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1658 if (Depth > MaxCastDepth) {
1659 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1660 Op, Ty);
1661 UniqueSCEVs.InsertNode(S, IP);
1662 addToLoopUseLists(S);
1663 return S;
1666 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1667 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1668 // It's possible the bits taken off by the truncate were all zero bits. If
1669 // so, we should be able to simplify this further.
1670 const SCEV *X = ST->getOperand();
1671 ConstantRange CR = getUnsignedRange(X);
1672 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1673 unsigned NewBits = getTypeSizeInBits(Ty);
1674 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1675 CR.zextOrTrunc(NewBits)))
1676 return getTruncateOrZeroExtend(X, Ty, Depth);
1679 // If the input value is a chrec scev, and we can prove that the value
1680 // did not overflow the old, smaller, value, we can zero extend all of the
1681 // operands (often constants). This allows analysis of something like
1682 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1683 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1684 if (AR->isAffine()) {
1685 const SCEV *Start = AR->getStart();
1686 const SCEV *Step = AR->getStepRecurrence(*this);
1687 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1688 const Loop *L = AR->getLoop();
1690 if (!AR->hasNoUnsignedWrap()) {
1691 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1692 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1695 // If we have special knowledge that this addrec won't overflow,
1696 // we don't need to do any further analysis.
1697 if (AR->hasNoUnsignedWrap())
1698 return getAddRecExpr(
1699 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1700 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1702 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1703 // Note that this serves two purposes: It filters out loops that are
1704 // simply not analyzable, and it covers the case where this code is
1705 // being called from within backedge-taken count analysis, such that
1706 // attempting to ask for the backedge-taken count would likely result
1707 // in infinite recursion. In the later case, the analysis code will
1708 // cope with a conservative value, and it will take care to purge
1709 // that value once it has finished.
1710 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1711 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1712 // Manually compute the final value for AR, checking for
1713 // overflow.
1715 // Check whether the backedge-taken count can be losslessly casted to
1716 // the addrec's type. The count is always unsigned.
1717 const SCEV *CastedMaxBECount =
1718 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1719 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1720 CastedMaxBECount, MaxBECount->getType(), Depth);
1721 if (MaxBECount == RecastedMaxBECount) {
1722 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1723 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1724 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1725 SCEV::FlagAnyWrap, Depth + 1);
1726 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1727 SCEV::FlagAnyWrap,
1728 Depth + 1),
1729 WideTy, Depth + 1);
1730 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1731 const SCEV *WideMaxBECount =
1732 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1733 const SCEV *OperandExtendedAdd =
1734 getAddExpr(WideStart,
1735 getMulExpr(WideMaxBECount,
1736 getZeroExtendExpr(Step, WideTy, Depth + 1),
1737 SCEV::FlagAnyWrap, Depth + 1),
1738 SCEV::FlagAnyWrap, Depth + 1);
1739 if (ZAdd == OperandExtendedAdd) {
1740 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1741 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1742 // Return the expression with the addrec on the outside.
1743 return getAddRecExpr(
1744 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1745 Depth + 1),
1746 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1747 AR->getNoWrapFlags());
1749 // Similar to above, only this time treat the step value as signed.
1750 // This covers loops that count down.
1751 OperandExtendedAdd =
1752 getAddExpr(WideStart,
1753 getMulExpr(WideMaxBECount,
1754 getSignExtendExpr(Step, WideTy, Depth + 1),
1755 SCEV::FlagAnyWrap, Depth + 1),
1756 SCEV::FlagAnyWrap, Depth + 1);
1757 if (ZAdd == OperandExtendedAdd) {
1758 // Cache knowledge of AR NW, which is propagated to this AddRec.
1759 // Negative step causes unsigned wrap, but it still can't self-wrap.
1760 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1761 // Return the expression with the addrec on the outside.
1762 return getAddRecExpr(
1763 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1764 Depth + 1),
1765 getSignExtendExpr(Step, Ty, Depth + 1), L,
1766 AR->getNoWrapFlags());
1771 // Normally, in the cases we can prove no-overflow via a
1772 // backedge guarding condition, we can also compute a backedge
1773 // taken count for the loop. The exceptions are assumptions and
1774 // guards present in the loop -- SCEV is not great at exploiting
1775 // these to compute max backedge taken counts, but can still use
1776 // these to prove lack of overflow. Use this fact to avoid
1777 // doing extra work that may not pay off.
1778 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1779 !AC.assumptions().empty()) {
1780 // If the backedge is guarded by a comparison with the pre-inc
1781 // value the addrec is safe. Also, if the entry is guarded by
1782 // a comparison with the start value and the backedge is
1783 // guarded by a comparison with the post-inc value, the addrec
1784 // is safe.
1785 if (isKnownPositive(Step)) {
1786 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1787 getUnsignedRangeMax(Step));
1788 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1789 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1790 // Cache knowledge of AR NUW, which is propagated to this
1791 // AddRec.
1792 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1793 // Return the expression with the addrec on the outside.
1794 return getAddRecExpr(
1795 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1796 Depth + 1),
1797 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1798 AR->getNoWrapFlags());
1800 } else if (isKnownNegative(Step)) {
1801 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1802 getSignedRangeMin(Step));
1803 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1804 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1805 // Cache knowledge of AR NW, which is propagated to this
1806 // AddRec. Negative step causes unsigned wrap, but it
1807 // still can't self-wrap.
1808 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1809 // Return the expression with the addrec on the outside.
1810 return getAddRecExpr(
1811 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1812 Depth + 1),
1813 getSignExtendExpr(Step, Ty, Depth + 1), L,
1814 AR->getNoWrapFlags());
1819 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1820 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1821 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1822 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1823 const APInt &C = SC->getAPInt();
1824 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1825 if (D != 0) {
1826 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1827 const SCEV *SResidual =
1828 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1829 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1830 return getAddExpr(SZExtD, SZExtR,
1831 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1832 Depth + 1);
1836 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1837 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1838 return getAddRecExpr(
1839 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1840 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1844 // zext(A % B) --> zext(A) % zext(B)
1846 const SCEV *LHS;
1847 const SCEV *RHS;
1848 if (matchURem(Op, LHS, RHS))
1849 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1850 getZeroExtendExpr(RHS, Ty, Depth + 1));
1853 // zext(A / B) --> zext(A) / zext(B).
1854 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1855 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1856 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1858 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1859 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1860 if (SA->hasNoUnsignedWrap()) {
1861 // If the addition does not unsign overflow then we can, by definition,
1862 // commute the zero extension with the addition operation.
1863 SmallVector<const SCEV *, 4> Ops;
1864 for (const auto *Op : SA->operands())
1865 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1866 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1869 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1870 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1871 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1873 // Often address arithmetics contain expressions like
1874 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1875 // This transformation is useful while proving that such expressions are
1876 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1877 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1878 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1879 if (D != 0) {
1880 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1881 const SCEV *SResidual =
1882 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1883 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1884 return getAddExpr(SZExtD, SZExtR,
1885 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1886 Depth + 1);
1891 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1892 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1893 if (SM->hasNoUnsignedWrap()) {
1894 // If the multiply does not unsign overflow then we can, by definition,
1895 // commute the zero extension with the multiply operation.
1896 SmallVector<const SCEV *, 4> Ops;
1897 for (const auto *Op : SM->operands())
1898 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1899 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1902 // zext(2^K * (trunc X to iN)) to iM ->
1903 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1905 // Proof:
1907 // zext(2^K * (trunc X to iN)) to iM
1908 // = zext((trunc X to iN) << K) to iM
1909 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1910 // (because shl removes the top K bits)
1911 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1912 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1914 if (SM->getNumOperands() == 2)
1915 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1916 if (MulLHS->getAPInt().isPowerOf2())
1917 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1918 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1919 MulLHS->getAPInt().logBase2();
1920 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1921 return getMulExpr(
1922 getZeroExtendExpr(MulLHS, Ty),
1923 getZeroExtendExpr(
1924 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1925 SCEV::FlagNUW, Depth + 1);
1929 // The cast wasn't folded; create an explicit cast node.
1930 // Recompute the insert position, as it may have been invalidated.
1931 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1932 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1933 Op, Ty);
1934 UniqueSCEVs.InsertNode(S, IP);
1935 addToLoopUseLists(S);
1936 return S;
1939 const SCEV *
1940 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1941 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1942 "This is not an extending conversion!");
1943 assert(isSCEVable(Ty) &&
1944 "This is not a conversion to a SCEVable type!");
1945 Ty = getEffectiveSCEVType(Ty);
1947 // Fold if the operand is constant.
1948 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1949 return getConstant(
1950 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1952 // sext(sext(x)) --> sext(x)
1953 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1954 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1956 // sext(zext(x)) --> zext(x)
1957 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1958 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1960 // Before doing any expensive analysis, check to see if we've already
1961 // computed a SCEV for this Op and Ty.
1962 FoldingSetNodeID ID;
1963 ID.AddInteger(scSignExtend);
1964 ID.AddPointer(Op);
1965 ID.AddPointer(Ty);
1966 void *IP = nullptr;
1967 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1968 // Limit recursion depth.
1969 if (Depth > MaxCastDepth) {
1970 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1971 Op, Ty);
1972 UniqueSCEVs.InsertNode(S, IP);
1973 addToLoopUseLists(S);
1974 return S;
1977 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1978 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1979 // It's possible the bits taken off by the truncate were all sign bits. If
1980 // so, we should be able to simplify this further.
1981 const SCEV *X = ST->getOperand();
1982 ConstantRange CR = getSignedRange(X);
1983 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1984 unsigned NewBits = getTypeSizeInBits(Ty);
1985 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1986 CR.sextOrTrunc(NewBits)))
1987 return getTruncateOrSignExtend(X, Ty, Depth);
1990 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1991 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1992 if (SA->hasNoSignedWrap()) {
1993 // If the addition does not sign overflow then we can, by definition,
1994 // commute the sign extension with the addition operation.
1995 SmallVector<const SCEV *, 4> Ops;
1996 for (const auto *Op : SA->operands())
1997 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1998 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2001 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2002 // if D + (C - D + x + y + ...) could be proven to not signed wrap
2003 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2005 // For instance, this will bring two seemingly different expressions:
2006 // 1 + sext(5 + 20 * %x + 24 * %y) and
2007 // sext(6 + 20 * %x + 24 * %y)
2008 // to the same form:
2009 // 2 + sext(4 + 20 * %x + 24 * %y)
2010 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2011 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2012 if (D != 0) {
2013 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2014 const SCEV *SResidual =
2015 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2016 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2017 return getAddExpr(SSExtD, SSExtR,
2018 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2019 Depth + 1);
2023 // If the input value is a chrec scev, and we can prove that the value
2024 // did not overflow the old, smaller, value, we can sign extend all of the
2025 // operands (often constants). This allows analysis of something like
2026 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
2027 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2028 if (AR->isAffine()) {
2029 const SCEV *Start = AR->getStart();
2030 const SCEV *Step = AR->getStepRecurrence(*this);
2031 unsigned BitWidth = getTypeSizeInBits(AR->getType());
2032 const Loop *L = AR->getLoop();
2034 if (!AR->hasNoSignedWrap()) {
2035 auto NewFlags = proveNoWrapViaConstantRanges(AR);
2036 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2039 // If we have special knowledge that this addrec won't overflow,
2040 // we don't need to do any further analysis.
2041 if (AR->hasNoSignedWrap())
2042 return getAddRecExpr(
2043 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2044 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2046 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2047 // Note that this serves two purposes: It filters out loops that are
2048 // simply not analyzable, and it covers the case where this code is
2049 // being called from within backedge-taken count analysis, such that
2050 // attempting to ask for the backedge-taken count would likely result
2051 // in infinite recursion. In the later case, the analysis code will
2052 // cope with a conservative value, and it will take care to purge
2053 // that value once it has finished.
2054 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2055 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2056 // Manually compute the final value for AR, checking for
2057 // overflow.
2059 // Check whether the backedge-taken count can be losslessly casted to
2060 // the addrec's type. The count is always unsigned.
2061 const SCEV *CastedMaxBECount =
2062 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2063 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2064 CastedMaxBECount, MaxBECount->getType(), Depth);
2065 if (MaxBECount == RecastedMaxBECount) {
2066 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2067 // Check whether Start+Step*MaxBECount has no signed overflow.
2068 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2069 SCEV::FlagAnyWrap, Depth + 1);
2070 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2071 SCEV::FlagAnyWrap,
2072 Depth + 1),
2073 WideTy, Depth + 1);
2074 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2075 const SCEV *WideMaxBECount =
2076 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2077 const SCEV *OperandExtendedAdd =
2078 getAddExpr(WideStart,
2079 getMulExpr(WideMaxBECount,
2080 getSignExtendExpr(Step, WideTy, Depth + 1),
2081 SCEV::FlagAnyWrap, Depth + 1),
2082 SCEV::FlagAnyWrap, Depth + 1);
2083 if (SAdd == OperandExtendedAdd) {
2084 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2085 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2086 // Return the expression with the addrec on the outside.
2087 return getAddRecExpr(
2088 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2089 Depth + 1),
2090 getSignExtendExpr(Step, Ty, Depth + 1), L,
2091 AR->getNoWrapFlags());
2093 // Similar to above, only this time treat the step value as unsigned.
2094 // This covers loops that count up with an unsigned step.
2095 OperandExtendedAdd =
2096 getAddExpr(WideStart,
2097 getMulExpr(WideMaxBECount,
2098 getZeroExtendExpr(Step, WideTy, Depth + 1),
2099 SCEV::FlagAnyWrap, Depth + 1),
2100 SCEV::FlagAnyWrap, Depth + 1);
2101 if (SAdd == OperandExtendedAdd) {
2102 // If AR wraps around then
2104 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2105 // => SAdd != OperandExtendedAdd
2107 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2108 // (SAdd == OperandExtendedAdd => AR is NW)
2110 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2112 // Return the expression with the addrec on the outside.
2113 return getAddRecExpr(
2114 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2115 Depth + 1),
2116 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2117 AR->getNoWrapFlags());
2122 // Normally, in the cases we can prove no-overflow via a
2123 // backedge guarding condition, we can also compute a backedge
2124 // taken count for the loop. The exceptions are assumptions and
2125 // guards present in the loop -- SCEV is not great at exploiting
2126 // these to compute max backedge taken counts, but can still use
2127 // these to prove lack of overflow. Use this fact to avoid
2128 // doing extra work that may not pay off.
2130 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2131 !AC.assumptions().empty()) {
2132 // If the backedge is guarded by a comparison with the pre-inc
2133 // value the addrec is safe. Also, if the entry is guarded by
2134 // a comparison with the start value and the backedge is
2135 // guarded by a comparison with the post-inc value, the addrec
2136 // is safe.
2137 ICmpInst::Predicate Pred;
2138 const SCEV *OverflowLimit =
2139 getSignedOverflowLimitForStep(Step, &Pred, this);
2140 if (OverflowLimit &&
2141 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2142 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2143 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2144 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2145 return getAddRecExpr(
2146 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2147 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2151 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2152 // if D + (C - D + Step * n) could be proven to not signed wrap
2153 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2154 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2155 const APInt &C = SC->getAPInt();
2156 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2157 if (D != 0) {
2158 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2159 const SCEV *SResidual =
2160 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2161 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2162 return getAddExpr(SSExtD, SSExtR,
2163 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2164 Depth + 1);
2168 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2169 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2170 return getAddRecExpr(
2171 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2172 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2176 // If the input value is provably positive and we could not simplify
2177 // away the sext build a zext instead.
2178 if (isKnownNonNegative(Op))
2179 return getZeroExtendExpr(Op, Ty, Depth + 1);
2181 // The cast wasn't folded; create an explicit cast node.
2182 // Recompute the insert position, as it may have been invalidated.
2183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2184 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2185 Op, Ty);
2186 UniqueSCEVs.InsertNode(S, IP);
2187 addToLoopUseLists(S);
2188 return S;
2191 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2192 /// unspecified bits out to the given type.
2193 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2194 Type *Ty) {
2195 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2196 "This is not an extending conversion!");
2197 assert(isSCEVable(Ty) &&
2198 "This is not a conversion to a SCEVable type!");
2199 Ty = getEffectiveSCEVType(Ty);
2201 // Sign-extend negative constants.
2202 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2203 if (SC->getAPInt().isNegative())
2204 return getSignExtendExpr(Op, Ty);
2206 // Peel off a truncate cast.
2207 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2208 const SCEV *NewOp = T->getOperand();
2209 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2210 return getAnyExtendExpr(NewOp, Ty);
2211 return getTruncateOrNoop(NewOp, Ty);
2214 // Next try a zext cast. If the cast is folded, use it.
2215 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2216 if (!isa<SCEVZeroExtendExpr>(ZExt))
2217 return ZExt;
2219 // Next try a sext cast. If the cast is folded, use it.
2220 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2221 if (!isa<SCEVSignExtendExpr>(SExt))
2222 return SExt;
2224 // Force the cast to be folded into the operands of an addrec.
2225 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2226 SmallVector<const SCEV *, 4> Ops;
2227 for (const SCEV *Op : AR->operands())
2228 Ops.push_back(getAnyExtendExpr(Op, Ty));
2229 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2232 // If the expression is obviously signed, use the sext cast value.
2233 if (isa<SCEVSMaxExpr>(Op))
2234 return SExt;
2236 // Absent any other information, use the zext cast value.
2237 return ZExt;
2240 /// Process the given Ops list, which is a list of operands to be added under
2241 /// the given scale, update the given map. This is a helper function for
2242 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2243 /// that would form an add expression like this:
2245 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2247 /// where A and B are constants, update the map with these values:
2249 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2251 /// and add 13 + A*B*29 to AccumulatedConstant.
2252 /// This will allow getAddRecExpr to produce this:
2254 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2256 /// This form often exposes folding opportunities that are hidden in
2257 /// the original operand list.
2259 /// Return true iff it appears that any interesting folding opportunities
2260 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2261 /// the common case where no interesting opportunities are present, and
2262 /// is also used as a check to avoid infinite recursion.
2263 static bool
2264 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2265 SmallVectorImpl<const SCEV *> &NewOps,
2266 APInt &AccumulatedConstant,
2267 const SCEV *const *Ops, size_t NumOperands,
2268 const APInt &Scale,
2269 ScalarEvolution &SE) {
2270 bool Interesting = false;
2272 // Iterate over the add operands. They are sorted, with constants first.
2273 unsigned i = 0;
2274 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2275 ++i;
2276 // Pull a buried constant out to the outside.
2277 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2278 Interesting = true;
2279 AccumulatedConstant += Scale * C->getAPInt();
2282 // Next comes everything else. We're especially interested in multiplies
2283 // here, but they're in the middle, so just visit the rest with one loop.
2284 for (; i != NumOperands; ++i) {
2285 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2286 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2287 APInt NewScale =
2288 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2289 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2290 // A multiplication of a constant with another add; recurse.
2291 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2292 Interesting |=
2293 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2294 Add->op_begin(), Add->getNumOperands(),
2295 NewScale, SE);
2296 } else {
2297 // A multiplication of a constant with some other value. Update
2298 // the map.
2299 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2300 const SCEV *Key = SE.getMulExpr(MulOps);
2301 auto Pair = M.insert({Key, NewScale});
2302 if (Pair.second) {
2303 NewOps.push_back(Pair.first->first);
2304 } else {
2305 Pair.first->second += NewScale;
2306 // The map already had an entry for this value, which may indicate
2307 // a folding opportunity.
2308 Interesting = true;
2311 } else {
2312 // An ordinary operand. Update the map.
2313 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2314 M.insert({Ops[i], Scale});
2315 if (Pair.second) {
2316 NewOps.push_back(Pair.first->first);
2317 } else {
2318 Pair.first->second += Scale;
2319 // The map already had an entry for this value, which may indicate
2320 // a folding opportunity.
2321 Interesting = true;
2326 return Interesting;
2329 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2330 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2331 // can't-overflow flags for the operation if possible.
2332 static SCEV::NoWrapFlags
2333 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2334 const ArrayRef<const SCEV *> Ops,
2335 SCEV::NoWrapFlags Flags) {
2336 using namespace std::placeholders;
2338 using OBO = OverflowingBinaryOperator;
2340 bool CanAnalyze =
2341 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2342 (void)CanAnalyze;
2343 assert(CanAnalyze && "don't call from other places!");
2345 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2346 SCEV::NoWrapFlags SignOrUnsignWrap =
2347 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2349 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2350 auto IsKnownNonNegative = [&](const SCEV *S) {
2351 return SE->isKnownNonNegative(S);
2354 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2355 Flags =
2356 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2358 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2360 if (SignOrUnsignWrap != SignOrUnsignMask &&
2361 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2362 isa<SCEVConstant>(Ops[0])) {
2364 auto Opcode = [&] {
2365 switch (Type) {
2366 case scAddExpr:
2367 return Instruction::Add;
2368 case scMulExpr:
2369 return Instruction::Mul;
2370 default:
2371 llvm_unreachable("Unexpected SCEV op.");
2373 }();
2375 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2377 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2378 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2379 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2380 Opcode, C, OBO::NoSignedWrap);
2381 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2382 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2385 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2386 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2387 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2388 Opcode, C, OBO::NoUnsignedWrap);
2389 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2390 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2394 return Flags;
2397 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2398 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2401 /// Get a canonical add expression, or something simpler if possible.
2402 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2403 SCEV::NoWrapFlags Flags,
2404 unsigned Depth) {
2405 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2406 "only nuw or nsw allowed");
2407 assert(!Ops.empty() && "Cannot get empty add!");
2408 if (Ops.size() == 1) return Ops[0];
2409 #ifndef NDEBUG
2410 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2411 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2412 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2413 "SCEVAddExpr operand types don't match!");
2414 #endif
2416 // Sort by complexity, this groups all similar expression types together.
2417 GroupByComplexity(Ops, &LI, DT);
2419 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2421 // If there are any constants, fold them together.
2422 unsigned Idx = 0;
2423 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2424 ++Idx;
2425 assert(Idx < Ops.size());
2426 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2427 // We found two constants, fold them together!
2428 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2429 if (Ops.size() == 2) return Ops[0];
2430 Ops.erase(Ops.begin()+1); // Erase the folded element
2431 LHSC = cast<SCEVConstant>(Ops[0]);
2434 // If we are left with a constant zero being added, strip it off.
2435 if (LHSC->getValue()->isZero()) {
2436 Ops.erase(Ops.begin());
2437 --Idx;
2440 if (Ops.size() == 1) return Ops[0];
2443 // Limit recursion calls depth.
2444 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2445 return getOrCreateAddExpr(Ops, Flags);
2447 // Okay, check to see if the same value occurs in the operand list more than
2448 // once. If so, merge them together into an multiply expression. Since we
2449 // sorted the list, these values are required to be adjacent.
2450 Type *Ty = Ops[0]->getType();
2451 bool FoundMatch = false;
2452 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2453 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2454 // Scan ahead to count how many equal operands there are.
2455 unsigned Count = 2;
2456 while (i+Count != e && Ops[i+Count] == Ops[i])
2457 ++Count;
2458 // Merge the values into a multiply.
2459 const SCEV *Scale = getConstant(Ty, Count);
2460 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2461 if (Ops.size() == Count)
2462 return Mul;
2463 Ops[i] = Mul;
2464 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2465 --i; e -= Count - 1;
2466 FoundMatch = true;
2468 if (FoundMatch)
2469 return getAddExpr(Ops, Flags, Depth + 1);
2471 // Check for truncates. If all the operands are truncated from the same
2472 // type, see if factoring out the truncate would permit the result to be
2473 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2474 // if the contents of the resulting outer trunc fold to something simple.
2475 auto FindTruncSrcType = [&]() -> Type * {
2476 // We're ultimately looking to fold an addrec of truncs and muls of only
2477 // constants and truncs, so if we find any other types of SCEV
2478 // as operands of the addrec then we bail and return nullptr here.
2479 // Otherwise, we return the type of the operand of a trunc that we find.
2480 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2481 return T->getOperand()->getType();
2482 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2483 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2484 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2485 return T->getOperand()->getType();
2487 return nullptr;
2489 if (auto *SrcType = FindTruncSrcType()) {
2490 SmallVector<const SCEV *, 8> LargeOps;
2491 bool Ok = true;
2492 // Check all the operands to see if they can be represented in the
2493 // source type of the truncate.
2494 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2495 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2496 if (T->getOperand()->getType() != SrcType) {
2497 Ok = false;
2498 break;
2500 LargeOps.push_back(T->getOperand());
2501 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2502 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2503 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2504 SmallVector<const SCEV *, 8> LargeMulOps;
2505 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2506 if (const SCEVTruncateExpr *T =
2507 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2508 if (T->getOperand()->getType() != SrcType) {
2509 Ok = false;
2510 break;
2512 LargeMulOps.push_back(T->getOperand());
2513 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2514 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2515 } else {
2516 Ok = false;
2517 break;
2520 if (Ok)
2521 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2522 } else {
2523 Ok = false;
2524 break;
2527 if (Ok) {
2528 // Evaluate the expression in the larger type.
2529 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2530 // If it folds to something simple, use it. Otherwise, don't.
2531 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2532 return getTruncateExpr(Fold, Ty);
2536 // Skip past any other cast SCEVs.
2537 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2538 ++Idx;
2540 // If there are add operands they would be next.
2541 if (Idx < Ops.size()) {
2542 bool DeletedAdd = false;
2543 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2544 if (Ops.size() > AddOpsInlineThreshold ||
2545 Add->getNumOperands() > AddOpsInlineThreshold)
2546 break;
2547 // If we have an add, expand the add operands onto the end of the operands
2548 // list.
2549 Ops.erase(Ops.begin()+Idx);
2550 Ops.append(Add->op_begin(), Add->op_end());
2551 DeletedAdd = true;
2554 // If we deleted at least one add, we added operands to the end of the list,
2555 // and they are not necessarily sorted. Recurse to resort and resimplify
2556 // any operands we just acquired.
2557 if (DeletedAdd)
2558 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2561 // Skip over the add expression until we get to a multiply.
2562 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2563 ++Idx;
2565 // Check to see if there are any folding opportunities present with
2566 // operands multiplied by constant values.
2567 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2568 uint64_t BitWidth = getTypeSizeInBits(Ty);
2569 DenseMap<const SCEV *, APInt> M;
2570 SmallVector<const SCEV *, 8> NewOps;
2571 APInt AccumulatedConstant(BitWidth, 0);
2572 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2573 Ops.data(), Ops.size(),
2574 APInt(BitWidth, 1), *this)) {
2575 struct APIntCompare {
2576 bool operator()(const APInt &LHS, const APInt &RHS) const {
2577 return LHS.ult(RHS);
2581 // Some interesting folding opportunity is present, so its worthwhile to
2582 // re-generate the operands list. Group the operands by constant scale,
2583 // to avoid multiplying by the same constant scale multiple times.
2584 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2585 for (const SCEV *NewOp : NewOps)
2586 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2587 // Re-generate the operands list.
2588 Ops.clear();
2589 if (AccumulatedConstant != 0)
2590 Ops.push_back(getConstant(AccumulatedConstant));
2591 for (auto &MulOp : MulOpLists)
2592 if (MulOp.first != 0)
2593 Ops.push_back(getMulExpr(
2594 getConstant(MulOp.first),
2595 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2596 SCEV::FlagAnyWrap, Depth + 1));
2597 if (Ops.empty())
2598 return getZero(Ty);
2599 if (Ops.size() == 1)
2600 return Ops[0];
2601 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2605 // If we are adding something to a multiply expression, make sure the
2606 // something is not already an operand of the multiply. If so, merge it into
2607 // the multiply.
2608 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2609 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2610 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2611 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2612 if (isa<SCEVConstant>(MulOpSCEV))
2613 continue;
2614 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2615 if (MulOpSCEV == Ops[AddOp]) {
2616 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2617 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2618 if (Mul->getNumOperands() != 2) {
2619 // If the multiply has more than two operands, we must get the
2620 // Y*Z term.
2621 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2622 Mul->op_begin()+MulOp);
2623 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2624 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2626 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2627 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2628 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2629 SCEV::FlagAnyWrap, Depth + 1);
2630 if (Ops.size() == 2) return OuterMul;
2631 if (AddOp < Idx) {
2632 Ops.erase(Ops.begin()+AddOp);
2633 Ops.erase(Ops.begin()+Idx-1);
2634 } else {
2635 Ops.erase(Ops.begin()+Idx);
2636 Ops.erase(Ops.begin()+AddOp-1);
2638 Ops.push_back(OuterMul);
2639 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2642 // Check this multiply against other multiplies being added together.
2643 for (unsigned OtherMulIdx = Idx+1;
2644 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2645 ++OtherMulIdx) {
2646 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2647 // If MulOp occurs in OtherMul, we can fold the two multiplies
2648 // together.
2649 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2650 OMulOp != e; ++OMulOp)
2651 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2652 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2653 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2654 if (Mul->getNumOperands() != 2) {
2655 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2656 Mul->op_begin()+MulOp);
2657 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2658 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2660 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2661 if (OtherMul->getNumOperands() != 2) {
2662 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2663 OtherMul->op_begin()+OMulOp);
2664 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2665 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2667 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2668 const SCEV *InnerMulSum =
2669 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2670 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2671 SCEV::FlagAnyWrap, Depth + 1);
2672 if (Ops.size() == 2) return OuterMul;
2673 Ops.erase(Ops.begin()+Idx);
2674 Ops.erase(Ops.begin()+OtherMulIdx-1);
2675 Ops.push_back(OuterMul);
2676 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2682 // If there are any add recurrences in the operands list, see if any other
2683 // added values are loop invariant. If so, we can fold them into the
2684 // recurrence.
2685 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2686 ++Idx;
2688 // Scan over all recurrences, trying to fold loop invariants into them.
2689 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2690 // Scan all of the other operands to this add and add them to the vector if
2691 // they are loop invariant w.r.t. the recurrence.
2692 SmallVector<const SCEV *, 8> LIOps;
2693 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2694 const Loop *AddRecLoop = AddRec->getLoop();
2695 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2696 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2697 LIOps.push_back(Ops[i]);
2698 Ops.erase(Ops.begin()+i);
2699 --i; --e;
2702 // If we found some loop invariants, fold them into the recurrence.
2703 if (!LIOps.empty()) {
2704 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2705 LIOps.push_back(AddRec->getStart());
2707 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2708 AddRec->op_end());
2709 // This follows from the fact that the no-wrap flags on the outer add
2710 // expression are applicable on the 0th iteration, when the add recurrence
2711 // will be equal to its start value.
2712 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2714 // Build the new addrec. Propagate the NUW and NSW flags if both the
2715 // outer add and the inner addrec are guaranteed to have no overflow.
2716 // Always propagate NW.
2717 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2718 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2720 // If all of the other operands were loop invariant, we are done.
2721 if (Ops.size() == 1) return NewRec;
2723 // Otherwise, add the folded AddRec by the non-invariant parts.
2724 for (unsigned i = 0;; ++i)
2725 if (Ops[i] == AddRec) {
2726 Ops[i] = NewRec;
2727 break;
2729 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2732 // Okay, if there weren't any loop invariants to be folded, check to see if
2733 // there are multiple AddRec's with the same loop induction variable being
2734 // added together. If so, we can fold them.
2735 for (unsigned OtherIdx = Idx+1;
2736 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2737 ++OtherIdx) {
2738 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2739 // so that the 1st found AddRecExpr is dominated by all others.
2740 assert(DT.dominates(
2741 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2742 AddRec->getLoop()->getHeader()) &&
2743 "AddRecExprs are not sorted in reverse dominance order?");
2744 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2745 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2746 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2747 AddRec->op_end());
2748 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2749 ++OtherIdx) {
2750 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2751 if (OtherAddRec->getLoop() == AddRecLoop) {
2752 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2753 i != e; ++i) {
2754 if (i >= AddRecOps.size()) {
2755 AddRecOps.append(OtherAddRec->op_begin()+i,
2756 OtherAddRec->op_end());
2757 break;
2759 SmallVector<const SCEV *, 2> TwoOps = {
2760 AddRecOps[i], OtherAddRec->getOperand(i)};
2761 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2763 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2766 // Step size has changed, so we cannot guarantee no self-wraparound.
2767 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2768 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2772 // Otherwise couldn't fold anything into this recurrence. Move onto the
2773 // next one.
2776 // Okay, it looks like we really DO need an add expr. Check to see if we
2777 // already have one, otherwise create a new one.
2778 return getOrCreateAddExpr(Ops, Flags);
2781 const SCEV *
2782 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2783 SCEV::NoWrapFlags Flags) {
2784 FoldingSetNodeID ID;
2785 ID.AddInteger(scAddExpr);
2786 for (const SCEV *Op : Ops)
2787 ID.AddPointer(Op);
2788 void *IP = nullptr;
2789 SCEVAddExpr *S =
2790 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2791 if (!S) {
2792 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2793 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2794 S = new (SCEVAllocator)
2795 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2796 UniqueSCEVs.InsertNode(S, IP);
2797 addToLoopUseLists(S);
2799 S->setNoWrapFlags(Flags);
2800 return S;
2803 const SCEV *
2804 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2805 const Loop *L, SCEV::NoWrapFlags Flags) {
2806 FoldingSetNodeID ID;
2807 ID.AddInteger(scAddRecExpr);
2808 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2809 ID.AddPointer(Ops[i]);
2810 ID.AddPointer(L);
2811 void *IP = nullptr;
2812 SCEVAddRecExpr *S =
2813 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2814 if (!S) {
2815 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2816 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2817 S = new (SCEVAllocator)
2818 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2819 UniqueSCEVs.InsertNode(S, IP);
2820 addToLoopUseLists(S);
2822 S->setNoWrapFlags(Flags);
2823 return S;
2826 const SCEV *
2827 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2828 SCEV::NoWrapFlags Flags) {
2829 FoldingSetNodeID ID;
2830 ID.AddInteger(scMulExpr);
2831 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2832 ID.AddPointer(Ops[i]);
2833 void *IP = nullptr;
2834 SCEVMulExpr *S =
2835 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2836 if (!S) {
2837 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2838 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2839 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2840 O, Ops.size());
2841 UniqueSCEVs.InsertNode(S, IP);
2842 addToLoopUseLists(S);
2844 S->setNoWrapFlags(Flags);
2845 return S;
2848 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2849 uint64_t k = i*j;
2850 if (j > 1 && k / j != i) Overflow = true;
2851 return k;
2854 /// Compute the result of "n choose k", the binomial coefficient. If an
2855 /// intermediate computation overflows, Overflow will be set and the return will
2856 /// be garbage. Overflow is not cleared on absence of overflow.
2857 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2858 // We use the multiplicative formula:
2859 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2860 // At each iteration, we take the n-th term of the numeral and divide by the
2861 // (k-n)th term of the denominator. This division will always produce an
2862 // integral result, and helps reduce the chance of overflow in the
2863 // intermediate computations. However, we can still overflow even when the
2864 // final result would fit.
2866 if (n == 0 || n == k) return 1;
2867 if (k > n) return 0;
2869 if (k > n/2)
2870 k = n-k;
2872 uint64_t r = 1;
2873 for (uint64_t i = 1; i <= k; ++i) {
2874 r = umul_ov(r, n-(i-1), Overflow);
2875 r /= i;
2877 return r;
2880 /// Determine if any of the operands in this SCEV are a constant or if
2881 /// any of the add or multiply expressions in this SCEV contain a constant.
2882 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2883 struct FindConstantInAddMulChain {
2884 bool FoundConstant = false;
2886 bool follow(const SCEV *S) {
2887 FoundConstant |= isa<SCEVConstant>(S);
2888 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2891 bool isDone() const {
2892 return FoundConstant;
2896 FindConstantInAddMulChain F;
2897 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2898 ST.visitAll(StartExpr);
2899 return F.FoundConstant;
2902 /// Get a canonical multiply expression, or something simpler if possible.
2903 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2904 SCEV::NoWrapFlags Flags,
2905 unsigned Depth) {
2906 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2907 "only nuw or nsw allowed");
2908 assert(!Ops.empty() && "Cannot get empty mul!");
2909 if (Ops.size() == 1) return Ops[0];
2910 #ifndef NDEBUG
2911 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2912 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2913 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2914 "SCEVMulExpr operand types don't match!");
2915 #endif
2917 // Sort by complexity, this groups all similar expression types together.
2918 GroupByComplexity(Ops, &LI, DT);
2920 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2922 // Limit recursion calls depth.
2923 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2924 return getOrCreateMulExpr(Ops, Flags);
2926 // If there are any constants, fold them together.
2927 unsigned Idx = 0;
2928 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2930 if (Ops.size() == 2)
2931 // C1*(C2+V) -> C1*C2 + C1*V
2932 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2933 // If any of Add's ops are Adds or Muls with a constant, apply this
2934 // transformation as well.
2936 // TODO: There are some cases where this transformation is not
2937 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2938 // this transformation should be narrowed down.
2939 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2940 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2941 SCEV::FlagAnyWrap, Depth + 1),
2942 getMulExpr(LHSC, Add->getOperand(1),
2943 SCEV::FlagAnyWrap, Depth + 1),
2944 SCEV::FlagAnyWrap, Depth + 1);
2946 ++Idx;
2947 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2948 // We found two constants, fold them together!
2949 ConstantInt *Fold =
2950 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2951 Ops[0] = getConstant(Fold);
2952 Ops.erase(Ops.begin()+1); // Erase the folded element
2953 if (Ops.size() == 1) return Ops[0];
2954 LHSC = cast<SCEVConstant>(Ops[0]);
2957 // If we are left with a constant one being multiplied, strip it off.
2958 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2959 Ops.erase(Ops.begin());
2960 --Idx;
2961 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2962 // If we have a multiply of zero, it will always be zero.
2963 return Ops[0];
2964 } else if (Ops[0]->isAllOnesValue()) {
2965 // If we have a mul by -1 of an add, try distributing the -1 among the
2966 // add operands.
2967 if (Ops.size() == 2) {
2968 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2969 SmallVector<const SCEV *, 4> NewOps;
2970 bool AnyFolded = false;
2971 for (const SCEV *AddOp : Add->operands()) {
2972 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2973 Depth + 1);
2974 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2975 NewOps.push_back(Mul);
2977 if (AnyFolded)
2978 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2979 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2980 // Negation preserves a recurrence's no self-wrap property.
2981 SmallVector<const SCEV *, 4> Operands;
2982 for (const SCEV *AddRecOp : AddRec->operands())
2983 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2984 Depth + 1));
2986 return getAddRecExpr(Operands, AddRec->getLoop(),
2987 AddRec->getNoWrapFlags(SCEV::FlagNW));
2992 if (Ops.size() == 1)
2993 return Ops[0];
2996 // Skip over the add expression until we get to a multiply.
2997 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2998 ++Idx;
3000 // If there are mul operands inline them all into this expression.
3001 if (Idx < Ops.size()) {
3002 bool DeletedMul = false;
3003 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3004 if (Ops.size() > MulOpsInlineThreshold)
3005 break;
3006 // If we have an mul, expand the mul operands onto the end of the
3007 // operands list.
3008 Ops.erase(Ops.begin()+Idx);
3009 Ops.append(Mul->op_begin(), Mul->op_end());
3010 DeletedMul = true;
3013 // If we deleted at least one mul, we added operands to the end of the
3014 // list, and they are not necessarily sorted. Recurse to resort and
3015 // resimplify any operands we just acquired.
3016 if (DeletedMul)
3017 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3020 // If there are any add recurrences in the operands list, see if any other
3021 // added values are loop invariant. If so, we can fold them into the
3022 // recurrence.
3023 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3024 ++Idx;
3026 // Scan over all recurrences, trying to fold loop invariants into them.
3027 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3028 // Scan all of the other operands to this mul and add them to the vector
3029 // if they are loop invariant w.r.t. the recurrence.
3030 SmallVector<const SCEV *, 8> LIOps;
3031 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3032 const Loop *AddRecLoop = AddRec->getLoop();
3033 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3034 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3035 LIOps.push_back(Ops[i]);
3036 Ops.erase(Ops.begin()+i);
3037 --i; --e;
3040 // If we found some loop invariants, fold them into the recurrence.
3041 if (!LIOps.empty()) {
3042 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3043 SmallVector<const SCEV *, 4> NewOps;
3044 NewOps.reserve(AddRec->getNumOperands());
3045 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3046 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3047 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3048 SCEV::FlagAnyWrap, Depth + 1));
3050 // Build the new addrec. Propagate the NUW and NSW flags if both the
3051 // outer mul and the inner addrec are guaranteed to have no overflow.
3053 // No self-wrap cannot be guaranteed after changing the step size, but
3054 // will be inferred if either NUW or NSW is true.
3055 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3056 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3058 // If all of the other operands were loop invariant, we are done.
3059 if (Ops.size() == 1) return NewRec;
3061 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3062 for (unsigned i = 0;; ++i)
3063 if (Ops[i] == AddRec) {
3064 Ops[i] = NewRec;
3065 break;
3067 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3070 // Okay, if there weren't any loop invariants to be folded, check to see
3071 // if there are multiple AddRec's with the same loop induction variable
3072 // being multiplied together. If so, we can fold them.
3074 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3075 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3076 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3077 // ]]],+,...up to x=2n}.
3078 // Note that the arguments to choose() are always integers with values
3079 // known at compile time, never SCEV objects.
3081 // The implementation avoids pointless extra computations when the two
3082 // addrec's are of different length (mathematically, it's equivalent to
3083 // an infinite stream of zeros on the right).
3084 bool OpsModified = false;
3085 for (unsigned OtherIdx = Idx+1;
3086 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3087 ++OtherIdx) {
3088 const SCEVAddRecExpr *OtherAddRec =
3089 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3090 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3091 continue;
3093 // Limit max number of arguments to avoid creation of unreasonably big
3094 // SCEVAddRecs with very complex operands.
3095 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3096 MaxAddRecSize || isHugeExpression(AddRec) ||
3097 isHugeExpression(OtherAddRec))
3098 continue;
3100 bool Overflow = false;
3101 Type *Ty = AddRec->getType();
3102 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3103 SmallVector<const SCEV*, 7> AddRecOps;
3104 for (int x = 0, xe = AddRec->getNumOperands() +
3105 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3106 SmallVector <const SCEV *, 7> SumOps;
3107 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3108 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3109 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3110 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3111 z < ze && !Overflow; ++z) {
3112 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3113 uint64_t Coeff;
3114 if (LargerThan64Bits)
3115 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3116 else
3117 Coeff = Coeff1*Coeff2;
3118 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3119 const SCEV *Term1 = AddRec->getOperand(y-z);
3120 const SCEV *Term2 = OtherAddRec->getOperand(z);
3121 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3122 SCEV::FlagAnyWrap, Depth + 1));
3125 if (SumOps.empty())
3126 SumOps.push_back(getZero(Ty));
3127 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3129 if (!Overflow) {
3130 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3131 SCEV::FlagAnyWrap);
3132 if (Ops.size() == 2) return NewAddRec;
3133 Ops[Idx] = NewAddRec;
3134 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3135 OpsModified = true;
3136 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3137 if (!AddRec)
3138 break;
3141 if (OpsModified)
3142 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3144 // Otherwise couldn't fold anything into this recurrence. Move onto the
3145 // next one.
3148 // Okay, it looks like we really DO need an mul expr. Check to see if we
3149 // already have one, otherwise create a new one.
3150 return getOrCreateMulExpr(Ops, Flags);
3153 /// Represents an unsigned remainder expression based on unsigned division.
3154 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3155 const SCEV *RHS) {
3156 assert(getEffectiveSCEVType(LHS->getType()) ==
3157 getEffectiveSCEVType(RHS->getType()) &&
3158 "SCEVURemExpr operand types don't match!");
3160 // Short-circuit easy cases
3161 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3162 // If constant is one, the result is trivial
3163 if (RHSC->getValue()->isOne())
3164 return getZero(LHS->getType()); // X urem 1 --> 0
3166 // If constant is a power of two, fold into a zext(trunc(LHS)).
3167 if (RHSC->getAPInt().isPowerOf2()) {
3168 Type *FullTy = LHS->getType();
3169 Type *TruncTy =
3170 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3171 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3175 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3176 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3177 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3178 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3181 /// Get a canonical unsigned division expression, or something simpler if
3182 /// possible.
3183 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3184 const SCEV *RHS) {
3185 assert(getEffectiveSCEVType(LHS->getType()) ==
3186 getEffectiveSCEVType(RHS->getType()) &&
3187 "SCEVUDivExpr operand types don't match!");
3189 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3190 if (RHSC->getValue()->isOne())
3191 return LHS; // X udiv 1 --> x
3192 // If the denominator is zero, the result of the udiv is undefined. Don't
3193 // try to analyze it, because the resolution chosen here may differ from
3194 // the resolution chosen in other parts of the compiler.
3195 if (!RHSC->getValue()->isZero()) {
3196 // Determine if the division can be folded into the operands of
3197 // its operands.
3198 // TODO: Generalize this to non-constants by using known-bits information.
3199 Type *Ty = LHS->getType();
3200 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3201 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3202 // For non-power-of-two values, effectively round the value up to the
3203 // nearest power of two.
3204 if (!RHSC->getAPInt().isPowerOf2())
3205 ++MaxShiftAmt;
3206 IntegerType *ExtTy =
3207 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3209 if (const SCEVConstant *Step =
3210 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3211 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3212 const APInt &StepInt = Step->getAPInt();
3213 const APInt &DivInt = RHSC->getAPInt();
3214 if (!StepInt.urem(DivInt) &&
3215 getZeroExtendExpr(AR, ExtTy) ==
3216 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3217 getZeroExtendExpr(Step, ExtTy),
3218 AR->getLoop(), SCEV::FlagAnyWrap)) {
3219 SmallVector<const SCEV *, 4> Operands;
3220 for (const SCEV *Op : AR->operands())
3221 Operands.push_back(getUDivExpr(Op, RHS));
3222 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3224 /// Get a canonical UDivExpr for a recurrence.
3225 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3226 // We can currently only fold X%N if X is constant.
3227 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3228 if (StartC && !DivInt.urem(StepInt) &&
3229 getZeroExtendExpr(AR, ExtTy) ==
3230 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3231 getZeroExtendExpr(Step, ExtTy),
3232 AR->getLoop(), SCEV::FlagAnyWrap)) {
3233 const APInt &StartInt = StartC->getAPInt();
3234 const APInt &StartRem = StartInt.urem(StepInt);
3235 if (StartRem != 0)
3236 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3237 AR->getLoop(), SCEV::FlagNW);
3240 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3241 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3242 SmallVector<const SCEV *, 4> Operands;
3243 for (const SCEV *Op : M->operands())
3244 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3245 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3246 // Find an operand that's safely divisible.
3247 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3248 const SCEV *Op = M->getOperand(i);
3249 const SCEV *Div = getUDivExpr(Op, RHSC);
3250 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3251 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3252 M->op_end());
3253 Operands[i] = Div;
3254 return getMulExpr(Operands);
3259 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3260 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3261 if (auto *DivisorConstant =
3262 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3263 bool Overflow = false;
3264 APInt NewRHS =
3265 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3266 if (Overflow) {
3267 return getConstant(RHSC->getType(), 0, false);
3269 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3273 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3274 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3275 SmallVector<const SCEV *, 4> Operands;
3276 for (const SCEV *Op : A->operands())
3277 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3278 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3279 Operands.clear();
3280 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3281 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3282 if (isa<SCEVUDivExpr>(Op) ||
3283 getMulExpr(Op, RHS) != A->getOperand(i))
3284 break;
3285 Operands.push_back(Op);
3287 if (Operands.size() == A->getNumOperands())
3288 return getAddExpr(Operands);
3292 // Fold if both operands are constant.
3293 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3294 Constant *LHSCV = LHSC->getValue();
3295 Constant *RHSCV = RHSC->getValue();
3296 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3297 RHSCV)));
3302 FoldingSetNodeID ID;
3303 ID.AddInteger(scUDivExpr);
3304 ID.AddPointer(LHS);
3305 ID.AddPointer(RHS);
3306 void *IP = nullptr;
3307 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3308 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3309 LHS, RHS);
3310 UniqueSCEVs.InsertNode(S, IP);
3311 addToLoopUseLists(S);
3312 return S;
3315 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3316 APInt A = C1->getAPInt().abs();
3317 APInt B = C2->getAPInt().abs();
3318 uint32_t ABW = A.getBitWidth();
3319 uint32_t BBW = B.getBitWidth();
3321 if (ABW > BBW)
3322 B = B.zext(ABW);
3323 else if (ABW < BBW)
3324 A = A.zext(BBW);
3326 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3329 /// Get a canonical unsigned division expression, or something simpler if
3330 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3331 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3332 /// it's not exact because the udiv may be clearing bits.
3333 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3334 const SCEV *RHS) {
3335 // TODO: we could try to find factors in all sorts of things, but for now we
3336 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3337 // end of this file for inspiration.
3339 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3340 if (!Mul || !Mul->hasNoUnsignedWrap())
3341 return getUDivExpr(LHS, RHS);
3343 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3344 // If the mulexpr multiplies by a constant, then that constant must be the
3345 // first element of the mulexpr.
3346 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3347 if (LHSCst == RHSCst) {
3348 SmallVector<const SCEV *, 2> Operands;
3349 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3350 return getMulExpr(Operands);
3353 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3354 // that there's a factor provided by one of the other terms. We need to
3355 // check.
3356 APInt Factor = gcd(LHSCst, RHSCst);
3357 if (!Factor.isIntN(1)) {
3358 LHSCst =
3359 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3360 RHSCst =
3361 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3362 SmallVector<const SCEV *, 2> Operands;
3363 Operands.push_back(LHSCst);
3364 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3365 LHS = getMulExpr(Operands);
3366 RHS = RHSCst;
3367 Mul = dyn_cast<SCEVMulExpr>(LHS);
3368 if (!Mul)
3369 return getUDivExactExpr(LHS, RHS);
3374 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3375 if (Mul->getOperand(i) == RHS) {
3376 SmallVector<const SCEV *, 2> Operands;
3377 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3378 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3379 return getMulExpr(Operands);
3383 return getUDivExpr(LHS, RHS);
3386 /// Get an add recurrence expression for the specified loop. Simplify the
3387 /// expression as much as possible.
3388 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3389 const Loop *L,
3390 SCEV::NoWrapFlags Flags) {
3391 SmallVector<const SCEV *, 4> Operands;
3392 Operands.push_back(Start);
3393 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3394 if (StepChrec->getLoop() == L) {
3395 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3396 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3399 Operands.push_back(Step);
3400 return getAddRecExpr(Operands, L, Flags);
3403 /// Get an add recurrence expression for the specified loop. Simplify the
3404 /// expression as much as possible.
3405 const SCEV *
3406 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3407 const Loop *L, SCEV::NoWrapFlags Flags) {
3408 if (Operands.size() == 1) return Operands[0];
3409 #ifndef NDEBUG
3410 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3411 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3412 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3413 "SCEVAddRecExpr operand types don't match!");
3414 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3415 assert(isLoopInvariant(Operands[i], L) &&
3416 "SCEVAddRecExpr operand is not loop-invariant!");
3417 #endif
3419 if (Operands.back()->isZero()) {
3420 Operands.pop_back();
3421 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3424 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3425 // use that information to infer NUW and NSW flags. However, computing a
3426 // BE count requires calling getAddRecExpr, so we may not yet have a
3427 // meaningful BE count at this point (and if we don't, we'd be stuck
3428 // with a SCEVCouldNotCompute as the cached BE count).
3430 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3432 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3433 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3434 const Loop *NestedLoop = NestedAR->getLoop();
3435 if (L->contains(NestedLoop)
3436 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3437 : (!NestedLoop->contains(L) &&
3438 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3439 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3440 NestedAR->op_end());
3441 Operands[0] = NestedAR->getStart();
3442 // AddRecs require their operands be loop-invariant with respect to their
3443 // loops. Don't perform this transformation if it would break this
3444 // requirement.
3445 bool AllInvariant = all_of(
3446 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3448 if (AllInvariant) {
3449 // Create a recurrence for the outer loop with the same step size.
3451 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3452 // inner recurrence has the same property.
3453 SCEV::NoWrapFlags OuterFlags =
3454 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3456 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3457 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3458 return isLoopInvariant(Op, NestedLoop);
3461 if (AllInvariant) {
3462 // Ok, both add recurrences are valid after the transformation.
3464 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3465 // the outer recurrence has the same property.
3466 SCEV::NoWrapFlags InnerFlags =
3467 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3468 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3471 // Reset Operands to its original state.
3472 Operands[0] = NestedAR;
3476 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3477 // already have one, otherwise create a new one.
3478 return getOrCreateAddRecExpr(Operands, L, Flags);
3481 const SCEV *
3482 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3483 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3484 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3485 // getSCEV(Base)->getType() has the same address space as Base->getType()
3486 // because SCEV::getType() preserves the address space.
3487 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3488 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3489 // instruction to its SCEV, because the Instruction may be guarded by control
3490 // flow and the no-overflow bits may not be valid for the expression in any
3491 // context. This can be fixed similarly to how these flags are handled for
3492 // adds.
3493 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3494 : SCEV::FlagAnyWrap;
3496 const SCEV *TotalOffset = getZero(IntPtrTy);
3497 // The array size is unimportant. The first thing we do on CurTy is getting
3498 // its element type.
3499 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3500 for (const SCEV *IndexExpr : IndexExprs) {
3501 // Compute the (potentially symbolic) offset in bytes for this index.
3502 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3503 // For a struct, add the member offset.
3504 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3505 unsigned FieldNo = Index->getZExtValue();
3506 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3508 // Add the field offset to the running total offset.
3509 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3511 // Update CurTy to the type of the field at Index.
3512 CurTy = STy->getTypeAtIndex(Index);
3513 } else {
3514 // Update CurTy to its element type.
3515 CurTy = cast<SequentialType>(CurTy)->getElementType();
3516 // For an array, add the element offset, explicitly scaled.
3517 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3518 // Getelementptr indices are signed.
3519 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3521 // Multiply the index by the element size to compute the element offset.
3522 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3524 // Add the element offset to the running total offset.
3525 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3529 // Add the total offset from all the GEP indices to the base.
3530 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3533 std::tuple<const SCEV *, FoldingSetNodeID, void *>
3534 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3535 ArrayRef<const SCEV *> Ops) {
3536 FoldingSetNodeID ID;
3537 void *IP = nullptr;
3538 ID.AddInteger(SCEVType);
3539 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3540 ID.AddPointer(Ops[i]);
3541 return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3542 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3545 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3546 SmallVectorImpl<const SCEV *> &Ops) {
3547 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3548 if (Ops.size() == 1) return Ops[0];
3549 #ifndef NDEBUG
3550 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3551 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3552 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3553 "Operand types don't match!");
3554 #endif
3556 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3557 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3559 // Sort by complexity, this groups all similar expression types together.
3560 GroupByComplexity(Ops, &LI, DT);
3562 // Check if we have created the same expression before.
3563 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3564 return S;
3567 // If there are any constants, fold them together.
3568 unsigned Idx = 0;
3569 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3570 ++Idx;
3571 assert(Idx < Ops.size());
3572 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3573 if (Kind == scSMaxExpr)
3574 return APIntOps::smax(LHS, RHS);
3575 else if (Kind == scSMinExpr)
3576 return APIntOps::smin(LHS, RHS);
3577 else if (Kind == scUMaxExpr)
3578 return APIntOps::umax(LHS, RHS);
3579 else if (Kind == scUMinExpr)
3580 return APIntOps::umin(LHS, RHS);
3581 llvm_unreachable("Unknown SCEV min/max opcode");
3584 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3585 // We found two constants, fold them together!
3586 ConstantInt *Fold = ConstantInt::get(
3587 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3588 Ops[0] = getConstant(Fold);
3589 Ops.erase(Ops.begin()+1); // Erase the folded element
3590 if (Ops.size() == 1) return Ops[0];
3591 LHSC = cast<SCEVConstant>(Ops[0]);
3594 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3595 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3597 if (IsMax ? IsMinV : IsMaxV) {
3598 // If we are left with a constant minimum(/maximum)-int, strip it off.
3599 Ops.erase(Ops.begin());
3600 --Idx;
3601 } else if (IsMax ? IsMaxV : IsMinV) {
3602 // If we have a max(/min) with a constant maximum(/minimum)-int,
3603 // it will always be the extremum.
3604 return LHSC;
3607 if (Ops.size() == 1) return Ops[0];
3610 // Find the first operation of the same kind
3611 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3612 ++Idx;
3614 // Check to see if one of the operands is of the same kind. If so, expand its
3615 // operands onto our operand list, and recurse to simplify.
3616 if (Idx < Ops.size()) {
3617 bool DeletedAny = false;
3618 while (Ops[Idx]->getSCEVType() == Kind) {
3619 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3620 Ops.erase(Ops.begin()+Idx);
3621 Ops.append(SMME->op_begin(), SMME->op_end());
3622 DeletedAny = true;
3625 if (DeletedAny)
3626 return getMinMaxExpr(Kind, Ops);
3629 // Okay, check to see if the same value occurs in the operand list twice. If
3630 // so, delete one. Since we sorted the list, these values are required to
3631 // be adjacent.
3632 llvm::CmpInst::Predicate GEPred =
3633 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3634 llvm::CmpInst::Predicate LEPred =
3635 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3636 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3637 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3638 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3639 if (Ops[i] == Ops[i + 1] ||
3640 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3641 // X op Y op Y --> X op Y
3642 // X op Y --> X, if we know X, Y are ordered appropriately
3643 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3644 --i;
3645 --e;
3646 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3647 Ops[i + 1])) {
3648 // X op Y --> Y, if we know X, Y are ordered appropriately
3649 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3650 --i;
3651 --e;
3655 if (Ops.size() == 1) return Ops[0];
3657 assert(!Ops.empty() && "Reduced smax down to nothing!");
3659 // Okay, it looks like we really DO need an expr. Check to see if we
3660 // already have one, otherwise create a new one.
3661 const SCEV *ExistingSCEV;
3662 FoldingSetNodeID ID;
3663 void *IP;
3664 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3665 if (ExistingSCEV)
3666 return ExistingSCEV;
3667 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3668 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3669 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3670 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3672 UniqueSCEVs.InsertNode(S, IP);
3673 addToLoopUseLists(S);
3674 return S;
3677 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3678 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3679 return getSMaxExpr(Ops);
3682 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3683 return getMinMaxExpr(scSMaxExpr, Ops);
3686 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3687 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3688 return getUMaxExpr(Ops);
3691 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3692 return getMinMaxExpr(scUMaxExpr, Ops);
3695 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3696 const SCEV *RHS) {
3697 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3698 return getSMinExpr(Ops);
3701 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3702 return getMinMaxExpr(scSMinExpr, Ops);
3705 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3706 const SCEV *RHS) {
3707 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3708 return getUMinExpr(Ops);
3711 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3712 return getMinMaxExpr(scUMinExpr, Ops);
3715 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3716 // We can bypass creating a target-independent
3717 // constant expression and then folding it back into a ConstantInt.
3718 // This is just a compile-time optimization.
3719 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3722 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3723 StructType *STy,
3724 unsigned FieldNo) {
3725 // We can bypass creating a target-independent
3726 // constant expression and then folding it back into a ConstantInt.
3727 // This is just a compile-time optimization.
3728 return getConstant(
3729 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3732 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3733 // Don't attempt to do anything other than create a SCEVUnknown object
3734 // here. createSCEV only calls getUnknown after checking for all other
3735 // interesting possibilities, and any other code that calls getUnknown
3736 // is doing so in order to hide a value from SCEV canonicalization.
3738 FoldingSetNodeID ID;
3739 ID.AddInteger(scUnknown);
3740 ID.AddPointer(V);
3741 void *IP = nullptr;
3742 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3743 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3744 "Stale SCEVUnknown in uniquing map!");
3745 return S;
3747 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3748 FirstUnknown);
3749 FirstUnknown = cast<SCEVUnknown>(S);
3750 UniqueSCEVs.InsertNode(S, IP);
3751 return S;
3754 //===----------------------------------------------------------------------===//
3755 // Basic SCEV Analysis and PHI Idiom Recognition Code
3758 /// Test if values of the given type are analyzable within the SCEV
3759 /// framework. This primarily includes integer types, and it can optionally
3760 /// include pointer types if the ScalarEvolution class has access to
3761 /// target-specific information.
3762 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3763 // Integers and pointers are always SCEVable.
3764 return Ty->isIntOrPtrTy();
3767 /// Return the size in bits of the specified type, for which isSCEVable must
3768 /// return true.
3769 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3770 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3771 if (Ty->isPointerTy())
3772 return getDataLayout().getIndexTypeSizeInBits(Ty);
3773 return getDataLayout().getTypeSizeInBits(Ty);
3776 /// Return a type with the same bitwidth as the given type and which represents
3777 /// how SCEV will treat the given type, for which isSCEVable must return
3778 /// true. For pointer types, this is the pointer-sized integer type.
3779 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3780 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3782 if (Ty->isIntegerTy())
3783 return Ty;
3785 // The only other support type is pointer.
3786 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3787 return getDataLayout().getIntPtrType(Ty);
3790 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3791 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3794 const SCEV *ScalarEvolution::getCouldNotCompute() {
3795 return CouldNotCompute.get();
3798 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3799 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3800 auto *SU = dyn_cast<SCEVUnknown>(S);
3801 return SU && SU->getValue() == nullptr;
3804 return !ContainsNulls;
3807 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3808 HasRecMapType::iterator I = HasRecMap.find(S);
3809 if (I != HasRecMap.end())
3810 return I->second;
3812 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3813 HasRecMap.insert({S, FoundAddRec});
3814 return FoundAddRec;
3817 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3818 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3819 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3820 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3821 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3822 if (!Add)
3823 return {S, nullptr};
3825 if (Add->getNumOperands() != 2)
3826 return {S, nullptr};
3828 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3829 if (!ConstOp)
3830 return {S, nullptr};
3832 return {Add->getOperand(1), ConstOp->getValue()};
3835 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3836 /// by the value and offset from any ValueOffsetPair in the set.
3837 SetVector<ScalarEvolution::ValueOffsetPair> *
3838 ScalarEvolution::getSCEVValues(const SCEV *S) {
3839 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3840 if (SI == ExprValueMap.end())
3841 return nullptr;
3842 #ifndef NDEBUG
3843 if (VerifySCEVMap) {
3844 // Check there is no dangling Value in the set returned.
3845 for (const auto &VE : SI->second)
3846 assert(ValueExprMap.count(VE.first));
3848 #endif
3849 return &SI->second;
3852 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3853 /// cannot be used separately. eraseValueFromMap should be used to remove
3854 /// V from ValueExprMap and ExprValueMap at the same time.
3855 void ScalarEvolution::eraseValueFromMap(Value *V) {
3856 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3857 if (I != ValueExprMap.end()) {
3858 const SCEV *S = I->second;
3859 // Remove {V, 0} from the set of ExprValueMap[S]
3860 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3861 SV->remove({V, nullptr});
3863 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3864 const SCEV *Stripped;
3865 ConstantInt *Offset;
3866 std::tie(Stripped, Offset) = splitAddExpr(S);
3867 if (Offset != nullptr) {
3868 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3869 SV->remove({V, Offset});
3871 ValueExprMap.erase(V);
3875 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3876 /// TODO: In reality it is better to check the poison recursively
3877 /// but this is better than nothing.
3878 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3879 if (auto *I = dyn_cast<Instruction>(V)) {
3880 if (isa<OverflowingBinaryOperator>(I)) {
3881 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3882 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3883 return true;
3884 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3885 return true;
3887 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3888 return true;
3890 return false;
3893 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3894 /// create a new one.
3895 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3896 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3898 const SCEV *S = getExistingSCEV(V);
3899 if (S == nullptr) {
3900 S = createSCEV(V);
3901 // During PHI resolution, it is possible to create two SCEVs for the same
3902 // V, so it is needed to double check whether V->S is inserted into
3903 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3904 std::pair<ValueExprMapType::iterator, bool> Pair =
3905 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3906 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3907 ExprValueMap[S].insert({V, nullptr});
3909 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3910 // ExprValueMap.
3911 const SCEV *Stripped = S;
3912 ConstantInt *Offset = nullptr;
3913 std::tie(Stripped, Offset) = splitAddExpr(S);
3914 // If stripped is SCEVUnknown, don't bother to save
3915 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3916 // increase the complexity of the expansion code.
3917 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3918 // because it may generate add/sub instead of GEP in SCEV expansion.
3919 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3920 !isa<GetElementPtrInst>(V))
3921 ExprValueMap[Stripped].insert({V, Offset});
3924 return S;
3927 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3928 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3930 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3931 if (I != ValueExprMap.end()) {
3932 const SCEV *S = I->second;
3933 if (checkValidity(S))
3934 return S;
3935 eraseValueFromMap(V);
3936 forgetMemoizedResults(S);
3938 return nullptr;
3941 /// Return a SCEV corresponding to -V = -1*V
3942 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3943 SCEV::NoWrapFlags Flags) {
3944 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3945 return getConstant(
3946 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3948 Type *Ty = V->getType();
3949 Ty = getEffectiveSCEVType(Ty);
3950 return getMulExpr(
3951 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3954 /// If Expr computes ~A, return A else return nullptr
3955 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3956 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3957 if (!Add || Add->getNumOperands() != 2 ||
3958 !Add->getOperand(0)->isAllOnesValue())
3959 return nullptr;
3961 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3962 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3963 !AddRHS->getOperand(0)->isAllOnesValue())
3964 return nullptr;
3966 return AddRHS->getOperand(1);
3969 /// Return a SCEV corresponding to ~V = -1-V
3970 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3971 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3972 return getConstant(
3973 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3975 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3976 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3977 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3978 SmallVector<const SCEV *, 2> MatchedOperands;
3979 for (const SCEV *Operand : MME->operands()) {
3980 const SCEV *Matched = MatchNotExpr(Operand);
3981 if (!Matched)
3982 return (const SCEV *)nullptr;
3983 MatchedOperands.push_back(Matched);
3985 return getMinMaxExpr(
3986 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3987 MatchedOperands);
3989 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3990 return Replaced;
3993 Type *Ty = V->getType();
3994 Ty = getEffectiveSCEVType(Ty);
3995 const SCEV *AllOnes =
3996 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3997 return getMinusSCEV(AllOnes, V);
4000 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4001 SCEV::NoWrapFlags Flags,
4002 unsigned Depth) {
4003 // Fast path: X - X --> 0.
4004 if (LHS == RHS)
4005 return getZero(LHS->getType());
4007 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4008 // makes it so that we cannot make much use of NUW.
4009 auto AddFlags = SCEV::FlagAnyWrap;
4010 const bool RHSIsNotMinSigned =
4011 !getSignedRangeMin(RHS).isMinSignedValue();
4012 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4013 // Let M be the minimum representable signed value. Then (-1)*RHS
4014 // signed-wraps if and only if RHS is M. That can happen even for
4015 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4016 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4017 // (-1)*RHS, we need to prove that RHS != M.
4019 // If LHS is non-negative and we know that LHS - RHS does not
4020 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4021 // either by proving that RHS > M or that LHS >= 0.
4022 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4023 AddFlags = SCEV::FlagNSW;
4027 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4028 // RHS is NSW and LHS >= 0.
4030 // The difficulty here is that the NSW flag may have been proven
4031 // relative to a loop that is to be found in a recurrence in LHS and
4032 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4033 // larger scope than intended.
4034 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4036 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4039 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4040 unsigned Depth) {
4041 Type *SrcTy = V->getType();
4042 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4043 "Cannot truncate or zero extend with non-integer arguments!");
4044 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4045 return V; // No conversion
4046 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4047 return getTruncateExpr(V, Ty, Depth);
4048 return getZeroExtendExpr(V, Ty, Depth);
4051 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4052 unsigned Depth) {
4053 Type *SrcTy = V->getType();
4054 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4055 "Cannot truncate or zero extend with non-integer arguments!");
4056 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4057 return V; // No conversion
4058 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4059 return getTruncateExpr(V, Ty, Depth);
4060 return getSignExtendExpr(V, Ty, Depth);
4063 const SCEV *
4064 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4065 Type *SrcTy = V->getType();
4066 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4067 "Cannot noop or zero extend with non-integer arguments!");
4068 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4069 "getNoopOrZeroExtend cannot truncate!");
4070 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4071 return V; // No conversion
4072 return getZeroExtendExpr(V, Ty);
4075 const SCEV *
4076 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4077 Type *SrcTy = V->getType();
4078 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4079 "Cannot noop or sign extend with non-integer arguments!");
4080 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4081 "getNoopOrSignExtend cannot truncate!");
4082 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4083 return V; // No conversion
4084 return getSignExtendExpr(V, Ty);
4087 const SCEV *
4088 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4089 Type *SrcTy = V->getType();
4090 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4091 "Cannot noop or any extend with non-integer arguments!");
4092 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4093 "getNoopOrAnyExtend cannot truncate!");
4094 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4095 return V; // No conversion
4096 return getAnyExtendExpr(V, Ty);
4099 const SCEV *
4100 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4101 Type *SrcTy = V->getType();
4102 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4103 "Cannot truncate or noop with non-integer arguments!");
4104 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4105 "getTruncateOrNoop cannot extend!");
4106 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4107 return V; // No conversion
4108 return getTruncateExpr(V, Ty);
4111 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4112 const SCEV *RHS) {
4113 const SCEV *PromotedLHS = LHS;
4114 const SCEV *PromotedRHS = RHS;
4116 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4117 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4118 else
4119 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4121 return getUMaxExpr(PromotedLHS, PromotedRHS);
4124 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4125 const SCEV *RHS) {
4126 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4127 return getUMinFromMismatchedTypes(Ops);
4130 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4131 SmallVectorImpl<const SCEV *> &Ops) {
4132 assert(!Ops.empty() && "At least one operand must be!");
4133 // Trivial case.
4134 if (Ops.size() == 1)
4135 return Ops[0];
4137 // Find the max type first.
4138 Type *MaxType = nullptr;
4139 for (auto *S : Ops)
4140 if (MaxType)
4141 MaxType = getWiderType(MaxType, S->getType());
4142 else
4143 MaxType = S->getType();
4145 // Extend all ops to max type.
4146 SmallVector<const SCEV *, 2> PromotedOps;
4147 for (auto *S : Ops)
4148 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4150 // Generate umin.
4151 return getUMinExpr(PromotedOps);
4154 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4155 // A pointer operand may evaluate to a nonpointer expression, such as null.
4156 if (!V->getType()->isPointerTy())
4157 return V;
4159 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4160 return getPointerBase(Cast->getOperand());
4161 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4162 const SCEV *PtrOp = nullptr;
4163 for (const SCEV *NAryOp : NAry->operands()) {
4164 if (NAryOp->getType()->isPointerTy()) {
4165 // Cannot find the base of an expression with multiple pointer operands.
4166 if (PtrOp)
4167 return V;
4168 PtrOp = NAryOp;
4171 if (!PtrOp)
4172 return V;
4173 return getPointerBase(PtrOp);
4175 return V;
4178 /// Push users of the given Instruction onto the given Worklist.
4179 static void
4180 PushDefUseChildren(Instruction *I,
4181 SmallVectorImpl<Instruction *> &Worklist) {
4182 // Push the def-use children onto the Worklist stack.
4183 for (User *U : I->users())
4184 Worklist.push_back(cast<Instruction>(U));
4187 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4188 SmallVector<Instruction *, 16> Worklist;
4189 PushDefUseChildren(PN, Worklist);
4191 SmallPtrSet<Instruction *, 8> Visited;
4192 Visited.insert(PN);
4193 while (!Worklist.empty()) {
4194 Instruction *I = Worklist.pop_back_val();
4195 if (!Visited.insert(I).second)
4196 continue;
4198 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4199 if (It != ValueExprMap.end()) {
4200 const SCEV *Old = It->second;
4202 // Short-circuit the def-use traversal if the symbolic name
4203 // ceases to appear in expressions.
4204 if (Old != SymName && !hasOperand(Old, SymName))
4205 continue;
4207 // SCEVUnknown for a PHI either means that it has an unrecognized
4208 // structure, it's a PHI that's in the progress of being computed
4209 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4210 // additional loop trip count information isn't going to change anything.
4211 // In the second case, createNodeForPHI will perform the necessary
4212 // updates on its own when it gets to that point. In the third, we do
4213 // want to forget the SCEVUnknown.
4214 if (!isa<PHINode>(I) ||
4215 !isa<SCEVUnknown>(Old) ||
4216 (I != PN && Old == SymName)) {
4217 eraseValueFromMap(It->first);
4218 forgetMemoizedResults(Old);
4222 PushDefUseChildren(I, Worklist);
4226 namespace {
4228 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4229 /// expression in case its Loop is L. If it is not L then
4230 /// if IgnoreOtherLoops is true then use AddRec itself
4231 /// otherwise rewrite cannot be done.
4232 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4233 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4234 public:
4235 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4236 bool IgnoreOtherLoops = true) {
4237 SCEVInitRewriter Rewriter(L, SE);
4238 const SCEV *Result = Rewriter.visit(S);
4239 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4240 return SE.getCouldNotCompute();
4241 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4242 ? SE.getCouldNotCompute()
4243 : Result;
4246 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4247 if (!SE.isLoopInvariant(Expr, L))
4248 SeenLoopVariantSCEVUnknown = true;
4249 return Expr;
4252 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4253 // Only re-write AddRecExprs for this loop.
4254 if (Expr->getLoop() == L)
4255 return Expr->getStart();
4256 SeenOtherLoops = true;
4257 return Expr;
4260 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4262 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4264 private:
4265 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4266 : SCEVRewriteVisitor(SE), L(L) {}
4268 const Loop *L;
4269 bool SeenLoopVariantSCEVUnknown = false;
4270 bool SeenOtherLoops = false;
4273 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4274 /// increment expression in case its Loop is L. If it is not L then
4275 /// use AddRec itself.
4276 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4277 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4278 public:
4279 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4280 SCEVPostIncRewriter Rewriter(L, SE);
4281 const SCEV *Result = Rewriter.visit(S);
4282 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4283 ? SE.getCouldNotCompute()
4284 : Result;
4287 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4288 if (!SE.isLoopInvariant(Expr, L))
4289 SeenLoopVariantSCEVUnknown = true;
4290 return Expr;
4293 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4294 // Only re-write AddRecExprs for this loop.
4295 if (Expr->getLoop() == L)
4296 return Expr->getPostIncExpr(SE);
4297 SeenOtherLoops = true;
4298 return Expr;
4301 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4303 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4305 private:
4306 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4307 : SCEVRewriteVisitor(SE), L(L) {}
4309 const Loop *L;
4310 bool SeenLoopVariantSCEVUnknown = false;
4311 bool SeenOtherLoops = false;
4314 /// This class evaluates the compare condition by matching it against the
4315 /// condition of loop latch. If there is a match we assume a true value
4316 /// for the condition while building SCEV nodes.
4317 class SCEVBackedgeConditionFolder
4318 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4319 public:
4320 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4321 ScalarEvolution &SE) {
4322 bool IsPosBECond = false;
4323 Value *BECond = nullptr;
4324 if (BasicBlock *Latch = L->getLoopLatch()) {
4325 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4326 if (BI && BI->isConditional()) {
4327 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4328 "Both outgoing branches should not target same header!");
4329 BECond = BI->getCondition();
4330 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4331 } else {
4332 return S;
4335 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4336 return Rewriter.visit(S);
4339 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4340 const SCEV *Result = Expr;
4341 bool InvariantF = SE.isLoopInvariant(Expr, L);
4343 if (!InvariantF) {
4344 Instruction *I = cast<Instruction>(Expr->getValue());
4345 switch (I->getOpcode()) {
4346 case Instruction::Select: {
4347 SelectInst *SI = cast<SelectInst>(I);
4348 Optional<const SCEV *> Res =
4349 compareWithBackedgeCondition(SI->getCondition());
4350 if (Res.hasValue()) {
4351 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4352 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4354 break;
4356 default: {
4357 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4358 if (Res.hasValue())
4359 Result = Res.getValue();
4360 break;
4364 return Result;
4367 private:
4368 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4369 bool IsPosBECond, ScalarEvolution &SE)
4370 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4371 IsPositiveBECond(IsPosBECond) {}
4373 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4375 const Loop *L;
4376 /// Loop back condition.
4377 Value *BackedgeCond = nullptr;
4378 /// Set to true if loop back is on positive branch condition.
4379 bool IsPositiveBECond;
4382 Optional<const SCEV *>
4383 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4385 // If value matches the backedge condition for loop latch,
4386 // then return a constant evolution node based on loopback
4387 // branch taken.
4388 if (BackedgeCond == IC)
4389 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4390 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4391 return None;
4394 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4395 public:
4396 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4397 ScalarEvolution &SE) {
4398 SCEVShiftRewriter Rewriter(L, SE);
4399 const SCEV *Result = Rewriter.visit(S);
4400 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4403 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4404 // Only allow AddRecExprs for this loop.
4405 if (!SE.isLoopInvariant(Expr, L))
4406 Valid = false;
4407 return Expr;
4410 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4411 if (Expr->getLoop() == L && Expr->isAffine())
4412 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4413 Valid = false;
4414 return Expr;
4417 bool isValid() { return Valid; }
4419 private:
4420 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4421 : SCEVRewriteVisitor(SE), L(L) {}
4423 const Loop *L;
4424 bool Valid = true;
4427 } // end anonymous namespace
4429 SCEV::NoWrapFlags
4430 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4431 if (!AR->isAffine())
4432 return SCEV::FlagAnyWrap;
4434 using OBO = OverflowingBinaryOperator;
4436 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4438 if (!AR->hasNoSignedWrap()) {
4439 ConstantRange AddRecRange = getSignedRange(AR);
4440 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4442 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4443 Instruction::Add, IncRange, OBO::NoSignedWrap);
4444 if (NSWRegion.contains(AddRecRange))
4445 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4448 if (!AR->hasNoUnsignedWrap()) {
4449 ConstantRange AddRecRange = getUnsignedRange(AR);
4450 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4452 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4453 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4454 if (NUWRegion.contains(AddRecRange))
4455 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4458 return Result;
4461 namespace {
4463 /// Represents an abstract binary operation. This may exist as a
4464 /// normal instruction or constant expression, or may have been
4465 /// derived from an expression tree.
4466 struct BinaryOp {
4467 unsigned Opcode;
4468 Value *LHS;
4469 Value *RHS;
4470 bool IsNSW = false;
4471 bool IsNUW = false;
4473 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4474 /// constant expression.
4475 Operator *Op = nullptr;
4477 explicit BinaryOp(Operator *Op)
4478 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4479 Op(Op) {
4480 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4481 IsNSW = OBO->hasNoSignedWrap();
4482 IsNUW = OBO->hasNoUnsignedWrap();
4486 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4487 bool IsNUW = false)
4488 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4491 } // end anonymous namespace
4493 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4494 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4495 auto *Op = dyn_cast<Operator>(V);
4496 if (!Op)
4497 return None;
4499 // Implementation detail: all the cleverness here should happen without
4500 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4501 // SCEV expressions when possible, and we should not break that.
4503 switch (Op->getOpcode()) {
4504 case Instruction::Add:
4505 case Instruction::Sub:
4506 case Instruction::Mul:
4507 case Instruction::UDiv:
4508 case Instruction::URem:
4509 case Instruction::And:
4510 case Instruction::Or:
4511 case Instruction::AShr:
4512 case Instruction::Shl:
4513 return BinaryOp(Op);
4515 case Instruction::Xor:
4516 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4517 // If the RHS of the xor is a signmask, then this is just an add.
4518 // Instcombine turns add of signmask into xor as a strength reduction step.
4519 if (RHSC->getValue().isSignMask())
4520 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4521 return BinaryOp(Op);
4523 case Instruction::LShr:
4524 // Turn logical shift right of a constant into a unsigned divide.
4525 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4526 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4528 // If the shift count is not less than the bitwidth, the result of
4529 // the shift is undefined. Don't try to analyze it, because the
4530 // resolution chosen here may differ from the resolution chosen in
4531 // other parts of the compiler.
4532 if (SA->getValue().ult(BitWidth)) {
4533 Constant *X =
4534 ConstantInt::get(SA->getContext(),
4535 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4536 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4539 return BinaryOp(Op);
4541 case Instruction::ExtractValue: {
4542 auto *EVI = cast<ExtractValueInst>(Op);
4543 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4544 break;
4546 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4547 if (!WO)
4548 break;
4550 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4551 bool Signed = WO->isSigned();
4552 // TODO: Should add nuw/nsw flags for mul as well.
4553 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4554 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4556 // Now that we know that all uses of the arithmetic-result component of
4557 // CI are guarded by the overflow check, we can go ahead and pretend
4558 // that the arithmetic is non-overflowing.
4559 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4560 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4563 default:
4564 break;
4567 return None;
4570 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4571 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4572 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4573 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4574 /// follows one of the following patterns:
4575 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4576 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4577 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4578 /// we return the type of the truncation operation, and indicate whether the
4579 /// truncated type should be treated as signed/unsigned by setting
4580 /// \p Signed to true/false, respectively.
4581 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4582 bool &Signed, ScalarEvolution &SE) {
4583 // The case where Op == SymbolicPHI (that is, with no type conversions on
4584 // the way) is handled by the regular add recurrence creating logic and
4585 // would have already been triggered in createAddRecForPHI. Reaching it here
4586 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4587 // because one of the other operands of the SCEVAddExpr updating this PHI is
4588 // not invariant).
4590 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4591 // this case predicates that allow us to prove that Op == SymbolicPHI will
4592 // be added.
4593 if (Op == SymbolicPHI)
4594 return nullptr;
4596 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4597 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4598 if (SourceBits != NewBits)
4599 return nullptr;
4601 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4602 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4603 if (!SExt && !ZExt)
4604 return nullptr;
4605 const SCEVTruncateExpr *Trunc =
4606 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4607 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4608 if (!Trunc)
4609 return nullptr;
4610 const SCEV *X = Trunc->getOperand();
4611 if (X != SymbolicPHI)
4612 return nullptr;
4613 Signed = SExt != nullptr;
4614 return Trunc->getType();
4617 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4618 if (!PN->getType()->isIntegerTy())
4619 return nullptr;
4620 const Loop *L = LI.getLoopFor(PN->getParent());
4621 if (!L || L->getHeader() != PN->getParent())
4622 return nullptr;
4623 return L;
4626 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4627 // computation that updates the phi follows the following pattern:
4628 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4629 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4630 // If so, try to see if it can be rewritten as an AddRecExpr under some
4631 // Predicates. If successful, return them as a pair. Also cache the results
4632 // of the analysis.
4634 // Example usage scenario:
4635 // Say the Rewriter is called for the following SCEV:
4636 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4637 // where:
4638 // %X = phi i64 (%Start, %BEValue)
4639 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4640 // and call this function with %SymbolicPHI = %X.
4642 // The analysis will find that the value coming around the backedge has
4643 // the following SCEV:
4644 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4645 // Upon concluding that this matches the desired pattern, the function
4646 // will return the pair {NewAddRec, SmallPredsVec} where:
4647 // NewAddRec = {%Start,+,%Step}
4648 // SmallPredsVec = {P1, P2, P3} as follows:
4649 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4650 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4651 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4652 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4653 // under the predicates {P1,P2,P3}.
4654 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4655 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4657 // TODO's:
4659 // 1) Extend the Induction descriptor to also support inductions that involve
4660 // casts: When needed (namely, when we are called in the context of the
4661 // vectorizer induction analysis), a Set of cast instructions will be
4662 // populated by this method, and provided back to isInductionPHI. This is
4663 // needed to allow the vectorizer to properly record them to be ignored by
4664 // the cost model and to avoid vectorizing them (otherwise these casts,
4665 // which are redundant under the runtime overflow checks, will be
4666 // vectorized, which can be costly).
4668 // 2) Support additional induction/PHISCEV patterns: We also want to support
4669 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4670 // after the induction update operation (the induction increment):
4672 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4673 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4675 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4676 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4678 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4679 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4680 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4681 SmallVector<const SCEVPredicate *, 3> Predicates;
4683 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4684 // return an AddRec expression under some predicate.
4686 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4687 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4688 assert(L && "Expecting an integer loop header phi");
4690 // The loop may have multiple entrances or multiple exits; we can analyze
4691 // this phi as an addrec if it has a unique entry value and a unique
4692 // backedge value.
4693 Value *BEValueV = nullptr, *StartValueV = nullptr;
4694 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4695 Value *V = PN->getIncomingValue(i);
4696 if (L->contains(PN->getIncomingBlock(i))) {
4697 if (!BEValueV) {
4698 BEValueV = V;
4699 } else if (BEValueV != V) {
4700 BEValueV = nullptr;
4701 break;
4703 } else if (!StartValueV) {
4704 StartValueV = V;
4705 } else if (StartValueV != V) {
4706 StartValueV = nullptr;
4707 break;
4710 if (!BEValueV || !StartValueV)
4711 return None;
4713 const SCEV *BEValue = getSCEV(BEValueV);
4715 // If the value coming around the backedge is an add with the symbolic
4716 // value we just inserted, possibly with casts that we can ignore under
4717 // an appropriate runtime guard, then we found a simple induction variable!
4718 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4719 if (!Add)
4720 return None;
4722 // If there is a single occurrence of the symbolic value, possibly
4723 // casted, replace it with a recurrence.
4724 unsigned FoundIndex = Add->getNumOperands();
4725 Type *TruncTy = nullptr;
4726 bool Signed;
4727 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4728 if ((TruncTy =
4729 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4730 if (FoundIndex == e) {
4731 FoundIndex = i;
4732 break;
4735 if (FoundIndex == Add->getNumOperands())
4736 return None;
4738 // Create an add with everything but the specified operand.
4739 SmallVector<const SCEV *, 8> Ops;
4740 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4741 if (i != FoundIndex)
4742 Ops.push_back(Add->getOperand(i));
4743 const SCEV *Accum = getAddExpr(Ops);
4745 // The runtime checks will not be valid if the step amount is
4746 // varying inside the loop.
4747 if (!isLoopInvariant(Accum, L))
4748 return None;
4750 // *** Part2: Create the predicates
4752 // Analysis was successful: we have a phi-with-cast pattern for which we
4753 // can return an AddRec expression under the following predicates:
4755 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4756 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4757 // P2: An Equal predicate that guarantees that
4758 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4759 // P3: An Equal predicate that guarantees that
4760 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4762 // As we next prove, the above predicates guarantee that:
4763 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4766 // More formally, we want to prove that:
4767 // Expr(i+1) = Start + (i+1) * Accum
4768 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4770 // Given that:
4771 // 1) Expr(0) = Start
4772 // 2) Expr(1) = Start + Accum
4773 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4774 // 3) Induction hypothesis (step i):
4775 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4777 // Proof:
4778 // Expr(i+1) =
4779 // = Start + (i+1)*Accum
4780 // = (Start + i*Accum) + Accum
4781 // = Expr(i) + Accum
4782 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4783 // :: from step i
4785 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4787 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4788 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4789 // + Accum :: from P3
4791 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4792 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4794 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4795 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4797 // By induction, the same applies to all iterations 1<=i<n:
4800 // Create a truncated addrec for which we will add a no overflow check (P1).
4801 const SCEV *StartVal = getSCEV(StartValueV);
4802 const SCEV *PHISCEV =
4803 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4804 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4806 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4807 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4808 // will be constant.
4810 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4811 // add P1.
4812 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4813 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4814 Signed ? SCEVWrapPredicate::IncrementNSSW
4815 : SCEVWrapPredicate::IncrementNUSW;
4816 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4817 Predicates.push_back(AddRecPred);
4820 // Create the Equal Predicates P2,P3:
4822 // It is possible that the predicates P2 and/or P3 are computable at
4823 // compile time due to StartVal and/or Accum being constants.
4824 // If either one is, then we can check that now and escape if either P2
4825 // or P3 is false.
4827 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4828 // for each of StartVal and Accum
4829 auto getExtendedExpr = [&](const SCEV *Expr,
4830 bool CreateSignExtend) -> const SCEV * {
4831 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4832 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4833 const SCEV *ExtendedExpr =
4834 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4835 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4836 return ExtendedExpr;
4839 // Given:
4840 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4841 // = getExtendedExpr(Expr)
4842 // Determine whether the predicate P: Expr == ExtendedExpr
4843 // is known to be false at compile time
4844 auto PredIsKnownFalse = [&](const SCEV *Expr,
4845 const SCEV *ExtendedExpr) -> bool {
4846 return Expr != ExtendedExpr &&
4847 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4850 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4851 if (PredIsKnownFalse(StartVal, StartExtended)) {
4852 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4853 return None;
4856 // The Step is always Signed (because the overflow checks are either
4857 // NSSW or NUSW)
4858 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4859 if (PredIsKnownFalse(Accum, AccumExtended)) {
4860 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4861 return None;
4864 auto AppendPredicate = [&](const SCEV *Expr,
4865 const SCEV *ExtendedExpr) -> void {
4866 if (Expr != ExtendedExpr &&
4867 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4868 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4869 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4870 Predicates.push_back(Pred);
4874 AppendPredicate(StartVal, StartExtended);
4875 AppendPredicate(Accum, AccumExtended);
4877 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4878 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4879 // into NewAR if it will also add the runtime overflow checks specified in
4880 // Predicates.
4881 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4883 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4884 std::make_pair(NewAR, Predicates);
4885 // Remember the result of the analysis for this SCEV at this locayyytion.
4886 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4887 return PredRewrite;
4890 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4891 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4892 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4893 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4894 if (!L)
4895 return None;
4897 // Check to see if we already analyzed this PHI.
4898 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4899 if (I != PredicatedSCEVRewrites.end()) {
4900 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4901 I->second;
4902 // Analysis was done before and failed to create an AddRec:
4903 if (Rewrite.first == SymbolicPHI)
4904 return None;
4905 // Analysis was done before and succeeded to create an AddRec under
4906 // a predicate:
4907 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4908 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4909 return Rewrite;
4912 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4913 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4915 // Record in the cache that the analysis failed
4916 if (!Rewrite) {
4917 SmallVector<const SCEVPredicate *, 3> Predicates;
4918 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4919 return None;
4922 return Rewrite;
4925 // FIXME: This utility is currently required because the Rewriter currently
4926 // does not rewrite this expression:
4927 // {0, +, (sext ix (trunc iy to ix) to iy)}
4928 // into {0, +, %step},
4929 // even when the following Equal predicate exists:
4930 // "%step == (sext ix (trunc iy to ix) to iy)".
4931 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4932 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4933 if (AR1 == AR2)
4934 return true;
4936 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4937 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4938 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4939 return false;
4940 return true;
4943 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4944 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4945 return false;
4946 return true;
4949 /// A helper function for createAddRecFromPHI to handle simple cases.
4951 /// This function tries to find an AddRec expression for the simplest (yet most
4952 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4953 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4954 /// technique for finding the AddRec expression.
4955 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4956 Value *BEValueV,
4957 Value *StartValueV) {
4958 const Loop *L = LI.getLoopFor(PN->getParent());
4959 assert(L && L->getHeader() == PN->getParent());
4960 assert(BEValueV && StartValueV);
4962 auto BO = MatchBinaryOp(BEValueV, DT);
4963 if (!BO)
4964 return nullptr;
4966 if (BO->Opcode != Instruction::Add)
4967 return nullptr;
4969 const SCEV *Accum = nullptr;
4970 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4971 Accum = getSCEV(BO->RHS);
4972 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4973 Accum = getSCEV(BO->LHS);
4975 if (!Accum)
4976 return nullptr;
4978 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4979 if (BO->IsNUW)
4980 Flags = setFlags(Flags, SCEV::FlagNUW);
4981 if (BO->IsNSW)
4982 Flags = setFlags(Flags, SCEV::FlagNSW);
4984 const SCEV *StartVal = getSCEV(StartValueV);
4985 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4987 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4989 // We can add Flags to the post-inc expression only if we
4990 // know that it is *undefined behavior* for BEValueV to
4991 // overflow.
4992 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4993 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4994 (void)getAddRecExpr(getAddExpr(StartVal, Accum, Flags), Accum, L, Flags);
4996 return PHISCEV;
4999 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5000 const Loop *L = LI.getLoopFor(PN->getParent());
5001 if (!L || L->getHeader() != PN->getParent())
5002 return nullptr;
5004 // The loop may have multiple entrances or multiple exits; we can analyze
5005 // this phi as an addrec if it has a unique entry value and a unique
5006 // backedge value.
5007 Value *BEValueV = nullptr, *StartValueV = nullptr;
5008 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5009 Value *V = PN->getIncomingValue(i);
5010 if (L->contains(PN->getIncomingBlock(i))) {
5011 if (!BEValueV) {
5012 BEValueV = V;
5013 } else if (BEValueV != V) {
5014 BEValueV = nullptr;
5015 break;
5017 } else if (!StartValueV) {
5018 StartValueV = V;
5019 } else if (StartValueV != V) {
5020 StartValueV = nullptr;
5021 break;
5024 if (!BEValueV || !StartValueV)
5025 return nullptr;
5027 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5028 "PHI node already processed?");
5030 // First, try to find AddRec expression without creating a fictituos symbolic
5031 // value for PN.
5032 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5033 return S;
5035 // Handle PHI node value symbolically.
5036 const SCEV *SymbolicName = getUnknown(PN);
5037 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5039 // Using this symbolic name for the PHI, analyze the value coming around
5040 // the back-edge.
5041 const SCEV *BEValue = getSCEV(BEValueV);
5043 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5044 // has a special value for the first iteration of the loop.
5046 // If the value coming around the backedge is an add with the symbolic
5047 // value we just inserted, then we found a simple induction variable!
5048 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5049 // If there is a single occurrence of the symbolic value, replace it
5050 // with a recurrence.
5051 unsigned FoundIndex = Add->getNumOperands();
5052 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5053 if (Add->getOperand(i) == SymbolicName)
5054 if (FoundIndex == e) {
5055 FoundIndex = i;
5056 break;
5059 if (FoundIndex != Add->getNumOperands()) {
5060 // Create an add with everything but the specified operand.
5061 SmallVector<const SCEV *, 8> Ops;
5062 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5063 if (i != FoundIndex)
5064 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5065 L, *this));
5066 const SCEV *Accum = getAddExpr(Ops);
5068 // This is not a valid addrec if the step amount is varying each
5069 // loop iteration, but is not itself an addrec in this loop.
5070 if (isLoopInvariant(Accum, L) ||
5071 (isa<SCEVAddRecExpr>(Accum) &&
5072 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5073 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5075 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5076 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5077 if (BO->IsNUW)
5078 Flags = setFlags(Flags, SCEV::FlagNUW);
5079 if (BO->IsNSW)
5080 Flags = setFlags(Flags, SCEV::FlagNSW);
5082 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5083 // If the increment is an inbounds GEP, then we know the address
5084 // space cannot be wrapped around. We cannot make any guarantee
5085 // about signed or unsigned overflow because pointers are
5086 // unsigned but we may have a negative index from the base
5087 // pointer. We can guarantee that no unsigned wrap occurs if the
5088 // indices form a positive value.
5089 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5090 Flags = setFlags(Flags, SCEV::FlagNW);
5092 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5093 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5094 Flags = setFlags(Flags, SCEV::FlagNUW);
5097 // We cannot transfer nuw and nsw flags from subtraction
5098 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5099 // for instance.
5102 const SCEV *StartVal = getSCEV(StartValueV);
5103 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5105 // Okay, for the entire analysis of this edge we assumed the PHI
5106 // to be symbolic. We now need to go back and purge all of the
5107 // entries for the scalars that use the symbolic expression.
5108 forgetSymbolicName(PN, SymbolicName);
5109 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5111 // We can add Flags to the post-inc expression only if we
5112 // know that it is *undefined behavior* for BEValueV to
5113 // overflow.
5114 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5115 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5116 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5118 return PHISCEV;
5121 } else {
5122 // Otherwise, this could be a loop like this:
5123 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5124 // In this case, j = {1,+,1} and BEValue is j.
5125 // Because the other in-value of i (0) fits the evolution of BEValue
5126 // i really is an addrec evolution.
5128 // We can generalize this saying that i is the shifted value of BEValue
5129 // by one iteration:
5130 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5131 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5132 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5133 if (Shifted != getCouldNotCompute() &&
5134 Start != getCouldNotCompute()) {
5135 const SCEV *StartVal = getSCEV(StartValueV);
5136 if (Start == StartVal) {
5137 // Okay, for the entire analysis of this edge we assumed the PHI
5138 // to be symbolic. We now need to go back and purge all of the
5139 // entries for the scalars that use the symbolic expression.
5140 forgetSymbolicName(PN, SymbolicName);
5141 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5142 return Shifted;
5147 // Remove the temporary PHI node SCEV that has been inserted while intending
5148 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5149 // as it will prevent later (possibly simpler) SCEV expressions to be added
5150 // to the ValueExprMap.
5151 eraseValueFromMap(PN);
5153 return nullptr;
5156 // Checks if the SCEV S is available at BB. S is considered available at BB
5157 // if S can be materialized at BB without introducing a fault.
5158 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5159 BasicBlock *BB) {
5160 struct CheckAvailable {
5161 bool TraversalDone = false;
5162 bool Available = true;
5164 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5165 BasicBlock *BB = nullptr;
5166 DominatorTree &DT;
5168 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5169 : L(L), BB(BB), DT(DT) {}
5171 bool setUnavailable() {
5172 TraversalDone = true;
5173 Available = false;
5174 return false;
5177 bool follow(const SCEV *S) {
5178 switch (S->getSCEVType()) {
5179 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5180 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5181 case scUMinExpr:
5182 case scSMinExpr:
5183 // These expressions are available if their operand(s) is/are.
5184 return true;
5186 case scAddRecExpr: {
5187 // We allow add recurrences that are on the loop BB is in, or some
5188 // outer loop. This guarantees availability because the value of the
5189 // add recurrence at BB is simply the "current" value of the induction
5190 // variable. We can relax this in the future; for instance an add
5191 // recurrence on a sibling dominating loop is also available at BB.
5192 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5193 if (L && (ARLoop == L || ARLoop->contains(L)))
5194 return true;
5196 return setUnavailable();
5199 case scUnknown: {
5200 // For SCEVUnknown, we check for simple dominance.
5201 const auto *SU = cast<SCEVUnknown>(S);
5202 Value *V = SU->getValue();
5204 if (isa<Argument>(V))
5205 return false;
5207 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5208 return false;
5210 return setUnavailable();
5213 case scUDivExpr:
5214 case scCouldNotCompute:
5215 // We do not try to smart about these at all.
5216 return setUnavailable();
5218 llvm_unreachable("switch should be fully covered!");
5221 bool isDone() { return TraversalDone; }
5224 CheckAvailable CA(L, BB, DT);
5225 SCEVTraversal<CheckAvailable> ST(CA);
5227 ST.visitAll(S);
5228 return CA.Available;
5231 // Try to match a control flow sequence that branches out at BI and merges back
5232 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5233 // match.
5234 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5235 Value *&C, Value *&LHS, Value *&RHS) {
5236 C = BI->getCondition();
5238 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5239 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5241 if (!LeftEdge.isSingleEdge())
5242 return false;
5244 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5246 Use &LeftUse = Merge->getOperandUse(0);
5247 Use &RightUse = Merge->getOperandUse(1);
5249 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5250 LHS = LeftUse;
5251 RHS = RightUse;
5252 return true;
5255 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5256 LHS = RightUse;
5257 RHS = LeftUse;
5258 return true;
5261 return false;
5264 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5265 auto IsReachable =
5266 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5267 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5268 const Loop *L = LI.getLoopFor(PN->getParent());
5270 // We don't want to break LCSSA, even in a SCEV expression tree.
5271 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5272 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5273 return nullptr;
5275 // Try to match
5277 // br %cond, label %left, label %right
5278 // left:
5279 // br label %merge
5280 // right:
5281 // br label %merge
5282 // merge:
5283 // V = phi [ %x, %left ], [ %y, %right ]
5285 // as "select %cond, %x, %y"
5287 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5288 assert(IDom && "At least the entry block should dominate PN");
5290 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5291 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5293 if (BI && BI->isConditional() &&
5294 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5295 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5296 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5297 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5300 return nullptr;
5303 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5304 if (const SCEV *S = createAddRecFromPHI(PN))
5305 return S;
5307 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5308 return S;
5310 // If the PHI has a single incoming value, follow that value, unless the
5311 // PHI's incoming blocks are in a different loop, in which case doing so
5312 // risks breaking LCSSA form. Instcombine would normally zap these, but
5313 // it doesn't have DominatorTree information, so it may miss cases.
5314 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5315 if (LI.replacementPreservesLCSSAForm(PN, V))
5316 return getSCEV(V);
5318 // If it's not a loop phi, we can't handle it yet.
5319 return getUnknown(PN);
5322 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5323 Value *Cond,
5324 Value *TrueVal,
5325 Value *FalseVal) {
5326 // Handle "constant" branch or select. This can occur for instance when a
5327 // loop pass transforms an inner loop and moves on to process the outer loop.
5328 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5329 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5331 // Try to match some simple smax or umax patterns.
5332 auto *ICI = dyn_cast<ICmpInst>(Cond);
5333 if (!ICI)
5334 return getUnknown(I);
5336 Value *LHS = ICI->getOperand(0);
5337 Value *RHS = ICI->getOperand(1);
5339 switch (ICI->getPredicate()) {
5340 case ICmpInst::ICMP_SLT:
5341 case ICmpInst::ICMP_SLE:
5342 std::swap(LHS, RHS);
5343 LLVM_FALLTHROUGH;
5344 case ICmpInst::ICMP_SGT:
5345 case ICmpInst::ICMP_SGE:
5346 // a >s b ? a+x : b+x -> smax(a, b)+x
5347 // a >s b ? b+x : a+x -> smin(a, b)+x
5348 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5349 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5350 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5351 const SCEV *LA = getSCEV(TrueVal);
5352 const SCEV *RA = getSCEV(FalseVal);
5353 const SCEV *LDiff = getMinusSCEV(LA, LS);
5354 const SCEV *RDiff = getMinusSCEV(RA, RS);
5355 if (LDiff == RDiff)
5356 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5357 LDiff = getMinusSCEV(LA, RS);
5358 RDiff = getMinusSCEV(RA, LS);
5359 if (LDiff == RDiff)
5360 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5362 break;
5363 case ICmpInst::ICMP_ULT:
5364 case ICmpInst::ICMP_ULE:
5365 std::swap(LHS, RHS);
5366 LLVM_FALLTHROUGH;
5367 case ICmpInst::ICMP_UGT:
5368 case ICmpInst::ICMP_UGE:
5369 // a >u b ? a+x : b+x -> umax(a, b)+x
5370 // a >u b ? b+x : a+x -> umin(a, b)+x
5371 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5372 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5373 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5374 const SCEV *LA = getSCEV(TrueVal);
5375 const SCEV *RA = getSCEV(FalseVal);
5376 const SCEV *LDiff = getMinusSCEV(LA, LS);
5377 const SCEV *RDiff = getMinusSCEV(RA, RS);
5378 if (LDiff == RDiff)
5379 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5380 LDiff = getMinusSCEV(LA, RS);
5381 RDiff = getMinusSCEV(RA, LS);
5382 if (LDiff == RDiff)
5383 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5385 break;
5386 case ICmpInst::ICMP_NE:
5387 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5388 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5389 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5390 const SCEV *One = getOne(I->getType());
5391 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5392 const SCEV *LA = getSCEV(TrueVal);
5393 const SCEV *RA = getSCEV(FalseVal);
5394 const SCEV *LDiff = getMinusSCEV(LA, LS);
5395 const SCEV *RDiff = getMinusSCEV(RA, One);
5396 if (LDiff == RDiff)
5397 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5399 break;
5400 case ICmpInst::ICMP_EQ:
5401 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5402 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5403 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5404 const SCEV *One = getOne(I->getType());
5405 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5406 const SCEV *LA = getSCEV(TrueVal);
5407 const SCEV *RA = getSCEV(FalseVal);
5408 const SCEV *LDiff = getMinusSCEV(LA, One);
5409 const SCEV *RDiff = getMinusSCEV(RA, LS);
5410 if (LDiff == RDiff)
5411 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5413 break;
5414 default:
5415 break;
5418 return getUnknown(I);
5421 /// Expand GEP instructions into add and multiply operations. This allows them
5422 /// to be analyzed by regular SCEV code.
5423 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5424 // Don't attempt to analyze GEPs over unsized objects.
5425 if (!GEP->getSourceElementType()->isSized())
5426 return getUnknown(GEP);
5428 SmallVector<const SCEV *, 4> IndexExprs;
5429 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5430 IndexExprs.push_back(getSCEV(*Index));
5431 return getGEPExpr(GEP, IndexExprs);
5434 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5435 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5436 return C->getAPInt().countTrailingZeros();
5438 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5439 return std::min(GetMinTrailingZeros(T->getOperand()),
5440 (uint32_t)getTypeSizeInBits(T->getType()));
5442 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5443 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5444 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5445 ? getTypeSizeInBits(E->getType())
5446 : OpRes;
5449 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5450 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5451 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5452 ? getTypeSizeInBits(E->getType())
5453 : OpRes;
5456 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5457 // The result is the min of all operands results.
5458 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5459 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5460 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5461 return MinOpRes;
5464 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5465 // The result is the sum of all operands results.
5466 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5467 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5468 for (unsigned i = 1, e = M->getNumOperands();
5469 SumOpRes != BitWidth && i != e; ++i)
5470 SumOpRes =
5471 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5472 return SumOpRes;
5475 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5476 // The result is the min of all operands results.
5477 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5478 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5479 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5480 return MinOpRes;
5483 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5484 // The result is the min of all operands results.
5485 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5486 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5487 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5488 return MinOpRes;
5491 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5492 // The result is the min of all operands results.
5493 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5494 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5495 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5496 return MinOpRes;
5499 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5500 // For a SCEVUnknown, ask ValueTracking.
5501 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5502 return Known.countMinTrailingZeros();
5505 // SCEVUDivExpr
5506 return 0;
5509 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5510 auto I = MinTrailingZerosCache.find(S);
5511 if (I != MinTrailingZerosCache.end())
5512 return I->second;
5514 uint32_t Result = GetMinTrailingZerosImpl(S);
5515 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5516 assert(InsertPair.second && "Should insert a new key");
5517 return InsertPair.first->second;
5520 /// Helper method to assign a range to V from metadata present in the IR.
5521 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5522 if (Instruction *I = dyn_cast<Instruction>(V))
5523 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5524 return getConstantRangeFromMetadata(*MD);
5526 return None;
5529 /// Determine the range for a particular SCEV. If SignHint is
5530 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5531 /// with a "cleaner" unsigned (resp. signed) representation.
5532 const ConstantRange &
5533 ScalarEvolution::getRangeRef(const SCEV *S,
5534 ScalarEvolution::RangeSignHint SignHint) {
5535 DenseMap<const SCEV *, ConstantRange> &Cache =
5536 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5537 : SignedRanges;
5538 ConstantRange::PreferredRangeType RangeType =
5539 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5540 ? ConstantRange::Unsigned : ConstantRange::Signed;
5542 // See if we've computed this range already.
5543 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5544 if (I != Cache.end())
5545 return I->second;
5547 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5548 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5550 unsigned BitWidth = getTypeSizeInBits(S->getType());
5551 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5553 // If the value has known zeros, the maximum value will have those known zeros
5554 // as well.
5555 uint32_t TZ = GetMinTrailingZeros(S);
5556 if (TZ != 0) {
5557 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5558 ConservativeResult =
5559 ConstantRange(APInt::getMinValue(BitWidth),
5560 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5561 else
5562 ConservativeResult = ConstantRange(
5563 APInt::getSignedMinValue(BitWidth),
5564 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5567 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5568 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5569 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5570 X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5571 return setRange(Add, SignHint,
5572 ConservativeResult.intersectWith(X, RangeType));
5575 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5576 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5577 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5578 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5579 return setRange(Mul, SignHint,
5580 ConservativeResult.intersectWith(X, RangeType));
5583 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5584 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5585 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5586 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5587 return setRange(SMax, SignHint,
5588 ConservativeResult.intersectWith(X, RangeType));
5591 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5592 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5593 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5594 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5595 return setRange(UMax, SignHint,
5596 ConservativeResult.intersectWith(X, RangeType));
5599 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5600 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5601 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5602 return setRange(UDiv, SignHint,
5603 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5606 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5607 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5608 return setRange(ZExt, SignHint,
5609 ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5610 RangeType));
5613 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5614 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5615 return setRange(SExt, SignHint,
5616 ConservativeResult.intersectWith(X.signExtend(BitWidth),
5617 RangeType));
5620 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5621 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5622 return setRange(Trunc, SignHint,
5623 ConservativeResult.intersectWith(X.truncate(BitWidth),
5624 RangeType));
5627 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5628 // If there's no unsigned wrap, the value will never be less than its
5629 // initial value.
5630 if (AddRec->hasNoUnsignedWrap())
5631 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5632 if (!C->getValue()->isZero())
5633 ConservativeResult = ConservativeResult.intersectWith(
5634 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)), RangeType);
5636 // If there's no signed wrap, and all the operands have the same sign or
5637 // zero, the value won't ever change sign.
5638 if (AddRec->hasNoSignedWrap()) {
5639 bool AllNonNeg = true;
5640 bool AllNonPos = true;
5641 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5642 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5643 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5645 if (AllNonNeg)
5646 ConservativeResult = ConservativeResult.intersectWith(
5647 ConstantRange(APInt(BitWidth, 0),
5648 APInt::getSignedMinValue(BitWidth)), RangeType);
5649 else if (AllNonPos)
5650 ConservativeResult = ConservativeResult.intersectWith(
5651 ConstantRange(APInt::getSignedMinValue(BitWidth),
5652 APInt(BitWidth, 1)), RangeType);
5655 // TODO: non-affine addrec
5656 if (AddRec->isAffine()) {
5657 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5658 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5659 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5660 auto RangeFromAffine = getRangeForAffineAR(
5661 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5662 BitWidth);
5663 if (!RangeFromAffine.isFullSet())
5664 ConservativeResult =
5665 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5667 auto RangeFromFactoring = getRangeViaFactoring(
5668 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5669 BitWidth);
5670 if (!RangeFromFactoring.isFullSet())
5671 ConservativeResult =
5672 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5676 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5679 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5680 // Check if the IR explicitly contains !range metadata.
5681 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5682 if (MDRange.hasValue())
5683 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5684 RangeType);
5686 // Split here to avoid paying the compile-time cost of calling both
5687 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5688 // if needed.
5689 const DataLayout &DL = getDataLayout();
5690 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5691 // For a SCEVUnknown, ask ValueTracking.
5692 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5693 if (Known.One != ~Known.Zero + 1)
5694 ConservativeResult =
5695 ConservativeResult.intersectWith(
5696 ConstantRange(Known.One, ~Known.Zero + 1), RangeType);
5697 } else {
5698 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5699 "generalize as needed!");
5700 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5701 if (NS > 1)
5702 ConservativeResult = ConservativeResult.intersectWith(
5703 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5704 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5705 RangeType);
5708 // A range of Phi is a subset of union of all ranges of its input.
5709 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5710 // Make sure that we do not run over cycled Phis.
5711 if (PendingPhiRanges.insert(Phi).second) {
5712 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5713 for (auto &Op : Phi->operands()) {
5714 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5715 RangeFromOps = RangeFromOps.unionWith(OpRange);
5716 // No point to continue if we already have a full set.
5717 if (RangeFromOps.isFullSet())
5718 break;
5720 ConservativeResult =
5721 ConservativeResult.intersectWith(RangeFromOps, RangeType);
5722 bool Erased = PendingPhiRanges.erase(Phi);
5723 assert(Erased && "Failed to erase Phi properly?");
5724 (void) Erased;
5728 return setRange(U, SignHint, std::move(ConservativeResult));
5731 return setRange(S, SignHint, std::move(ConservativeResult));
5734 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5735 // values that the expression can take. Initially, the expression has a value
5736 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5737 // argument defines if we treat Step as signed or unsigned.
5738 static ConstantRange getRangeForAffineARHelper(APInt Step,
5739 const ConstantRange &StartRange,
5740 const APInt &MaxBECount,
5741 unsigned BitWidth, bool Signed) {
5742 // If either Step or MaxBECount is 0, then the expression won't change, and we
5743 // just need to return the initial range.
5744 if (Step == 0 || MaxBECount == 0)
5745 return StartRange;
5747 // If we don't know anything about the initial value (i.e. StartRange is
5748 // FullRange), then we don't know anything about the final range either.
5749 // Return FullRange.
5750 if (StartRange.isFullSet())
5751 return ConstantRange::getFull(BitWidth);
5753 // If Step is signed and negative, then we use its absolute value, but we also
5754 // note that we're moving in the opposite direction.
5755 bool Descending = Signed && Step.isNegative();
5757 if (Signed)
5758 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5759 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5760 // This equations hold true due to the well-defined wrap-around behavior of
5761 // APInt.
5762 Step = Step.abs();
5764 // Check if Offset is more than full span of BitWidth. If it is, the
5765 // expression is guaranteed to overflow.
5766 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5767 return ConstantRange::getFull(BitWidth);
5769 // Offset is by how much the expression can change. Checks above guarantee no
5770 // overflow here.
5771 APInt Offset = Step * MaxBECount;
5773 // Minimum value of the final range will match the minimal value of StartRange
5774 // if the expression is increasing and will be decreased by Offset otherwise.
5775 // Maximum value of the final range will match the maximal value of StartRange
5776 // if the expression is decreasing and will be increased by Offset otherwise.
5777 APInt StartLower = StartRange.getLower();
5778 APInt StartUpper = StartRange.getUpper() - 1;
5779 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5780 : (StartUpper + std::move(Offset));
5782 // It's possible that the new minimum/maximum value will fall into the initial
5783 // range (due to wrap around). This means that the expression can take any
5784 // value in this bitwidth, and we have to return full range.
5785 if (StartRange.contains(MovedBoundary))
5786 return ConstantRange::getFull(BitWidth);
5788 APInt NewLower =
5789 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5790 APInt NewUpper =
5791 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5792 NewUpper += 1;
5794 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5795 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5798 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5799 const SCEV *Step,
5800 const SCEV *MaxBECount,
5801 unsigned BitWidth) {
5802 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5803 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5804 "Precondition!");
5806 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5807 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5809 // First, consider step signed.
5810 ConstantRange StartSRange = getSignedRange(Start);
5811 ConstantRange StepSRange = getSignedRange(Step);
5813 // If Step can be both positive and negative, we need to find ranges for the
5814 // maximum absolute step values in both directions and union them.
5815 ConstantRange SR =
5816 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5817 MaxBECountValue, BitWidth, /* Signed = */ true);
5818 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5819 StartSRange, MaxBECountValue,
5820 BitWidth, /* Signed = */ true));
5822 // Next, consider step unsigned.
5823 ConstantRange UR = getRangeForAffineARHelper(
5824 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5825 MaxBECountValue, BitWidth, /* Signed = */ false);
5827 // Finally, intersect signed and unsigned ranges.
5828 return SR.intersectWith(UR, ConstantRange::Smallest);
5831 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5832 const SCEV *Step,
5833 const SCEV *MaxBECount,
5834 unsigned BitWidth) {
5835 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5836 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5838 struct SelectPattern {
5839 Value *Condition = nullptr;
5840 APInt TrueValue;
5841 APInt FalseValue;
5843 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5844 const SCEV *S) {
5845 Optional<unsigned> CastOp;
5846 APInt Offset(BitWidth, 0);
5848 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5849 "Should be!");
5851 // Peel off a constant offset:
5852 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5853 // In the future we could consider being smarter here and handle
5854 // {Start+Step,+,Step} too.
5855 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5856 return;
5858 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5859 S = SA->getOperand(1);
5862 // Peel off a cast operation
5863 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5864 CastOp = SCast->getSCEVType();
5865 S = SCast->getOperand();
5868 using namespace llvm::PatternMatch;
5870 auto *SU = dyn_cast<SCEVUnknown>(S);
5871 const APInt *TrueVal, *FalseVal;
5872 if (!SU ||
5873 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5874 m_APInt(FalseVal)))) {
5875 Condition = nullptr;
5876 return;
5879 TrueValue = *TrueVal;
5880 FalseValue = *FalseVal;
5882 // Re-apply the cast we peeled off earlier
5883 if (CastOp.hasValue())
5884 switch (*CastOp) {
5885 default:
5886 llvm_unreachable("Unknown SCEV cast type!");
5888 case scTruncate:
5889 TrueValue = TrueValue.trunc(BitWidth);
5890 FalseValue = FalseValue.trunc(BitWidth);
5891 break;
5892 case scZeroExtend:
5893 TrueValue = TrueValue.zext(BitWidth);
5894 FalseValue = FalseValue.zext(BitWidth);
5895 break;
5896 case scSignExtend:
5897 TrueValue = TrueValue.sext(BitWidth);
5898 FalseValue = FalseValue.sext(BitWidth);
5899 break;
5902 // Re-apply the constant offset we peeled off earlier
5903 TrueValue += Offset;
5904 FalseValue += Offset;
5907 bool isRecognized() { return Condition != nullptr; }
5910 SelectPattern StartPattern(*this, BitWidth, Start);
5911 if (!StartPattern.isRecognized())
5912 return ConstantRange::getFull(BitWidth);
5914 SelectPattern StepPattern(*this, BitWidth, Step);
5915 if (!StepPattern.isRecognized())
5916 return ConstantRange::getFull(BitWidth);
5918 if (StartPattern.Condition != StepPattern.Condition) {
5919 // We don't handle this case today; but we could, by considering four
5920 // possibilities below instead of two. I'm not sure if there are cases where
5921 // that will help over what getRange already does, though.
5922 return ConstantRange::getFull(BitWidth);
5925 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5926 // construct arbitrary general SCEV expressions here. This function is called
5927 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5928 // say) can end up caching a suboptimal value.
5930 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5931 // C2352 and C2512 (otherwise it isn't needed).
5933 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5934 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5935 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5936 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5938 ConstantRange TrueRange =
5939 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5940 ConstantRange FalseRange =
5941 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5943 return TrueRange.unionWith(FalseRange);
5946 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5947 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5948 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5950 // Return early if there are no flags to propagate to the SCEV.
5951 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5952 if (BinOp->hasNoUnsignedWrap())
5953 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5954 if (BinOp->hasNoSignedWrap())
5955 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5956 if (Flags == SCEV::FlagAnyWrap)
5957 return SCEV::FlagAnyWrap;
5959 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5962 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5963 // Here we check that I is in the header of the innermost loop containing I,
5964 // since we only deal with instructions in the loop header. The actual loop we
5965 // need to check later will come from an add recurrence, but getting that
5966 // requires computing the SCEV of the operands, which can be expensive. This
5967 // check we can do cheaply to rule out some cases early.
5968 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5969 if (InnermostContainingLoop == nullptr ||
5970 InnermostContainingLoop->getHeader() != I->getParent())
5971 return false;
5973 // Only proceed if we can prove that I does not yield poison.
5974 if (!programUndefinedIfFullPoison(I))
5975 return false;
5977 // At this point we know that if I is executed, then it does not wrap
5978 // according to at least one of NSW or NUW. If I is not executed, then we do
5979 // not know if the calculation that I represents would wrap. Multiple
5980 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5981 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5982 // derived from other instructions that map to the same SCEV. We cannot make
5983 // that guarantee for cases where I is not executed. So we need to find the
5984 // loop that I is considered in relation to and prove that I is executed for
5985 // every iteration of that loop. That implies that the value that I
5986 // calculates does not wrap anywhere in the loop, so then we can apply the
5987 // flags to the SCEV.
5989 // We check isLoopInvariant to disambiguate in case we are adding recurrences
5990 // from different loops, so that we know which loop to prove that I is
5991 // executed in.
5992 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5993 // I could be an extractvalue from a call to an overflow intrinsic.
5994 // TODO: We can do better here in some cases.
5995 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5996 return false;
5997 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5998 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5999 bool AllOtherOpsLoopInvariant = true;
6000 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6001 ++OtherOpIndex) {
6002 if (OtherOpIndex != OpIndex) {
6003 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6004 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6005 AllOtherOpsLoopInvariant = false;
6006 break;
6010 if (AllOtherOpsLoopInvariant &&
6011 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6012 return true;
6015 return false;
6018 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6019 // If we know that \c I can never be poison period, then that's enough.
6020 if (isSCEVExprNeverPoison(I))
6021 return true;
6023 // For an add recurrence specifically, we assume that infinite loops without
6024 // side effects are undefined behavior, and then reason as follows:
6026 // If the add recurrence is poison in any iteration, it is poison on all
6027 // future iterations (since incrementing poison yields poison). If the result
6028 // of the add recurrence is fed into the loop latch condition and the loop
6029 // does not contain any throws or exiting blocks other than the latch, we now
6030 // have the ability to "choose" whether the backedge is taken or not (by
6031 // choosing a sufficiently evil value for the poison feeding into the branch)
6032 // for every iteration including and after the one in which \p I first became
6033 // poison. There are two possibilities (let's call the iteration in which \p
6034 // I first became poison as K):
6036 // 1. In the set of iterations including and after K, the loop body executes
6037 // no side effects. In this case executing the backege an infinte number
6038 // of times will yield undefined behavior.
6040 // 2. In the set of iterations including and after K, the loop body executes
6041 // at least one side effect. In this case, that specific instance of side
6042 // effect is control dependent on poison, which also yields undefined
6043 // behavior.
6045 auto *ExitingBB = L->getExitingBlock();
6046 auto *LatchBB = L->getLoopLatch();
6047 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6048 return false;
6050 SmallPtrSet<const Instruction *, 16> Pushed;
6051 SmallVector<const Instruction *, 8> PoisonStack;
6053 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6054 // things that are known to be fully poison under that assumption go on the
6055 // PoisonStack.
6056 Pushed.insert(I);
6057 PoisonStack.push_back(I);
6059 bool LatchControlDependentOnPoison = false;
6060 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6061 const Instruction *Poison = PoisonStack.pop_back_val();
6063 for (auto *PoisonUser : Poison->users()) {
6064 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6065 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6066 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6067 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6068 assert(BI->isConditional() && "Only possibility!");
6069 if (BI->getParent() == LatchBB) {
6070 LatchControlDependentOnPoison = true;
6071 break;
6077 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6080 ScalarEvolution::LoopProperties
6081 ScalarEvolution::getLoopProperties(const Loop *L) {
6082 using LoopProperties = ScalarEvolution::LoopProperties;
6084 auto Itr = LoopPropertiesCache.find(L);
6085 if (Itr == LoopPropertiesCache.end()) {
6086 auto HasSideEffects = [](Instruction *I) {
6087 if (auto *SI = dyn_cast<StoreInst>(I))
6088 return !SI->isSimple();
6090 return I->mayHaveSideEffects();
6093 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6094 /*HasNoSideEffects*/ true};
6096 for (auto *BB : L->getBlocks())
6097 for (auto &I : *BB) {
6098 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6099 LP.HasNoAbnormalExits = false;
6100 if (HasSideEffects(&I))
6101 LP.HasNoSideEffects = false;
6102 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6103 break; // We're already as pessimistic as we can get.
6106 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6107 assert(InsertPair.second && "We just checked!");
6108 Itr = InsertPair.first;
6111 return Itr->second;
6114 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6115 if (!isSCEVable(V->getType()))
6116 return getUnknown(V);
6118 if (Instruction *I = dyn_cast<Instruction>(V)) {
6119 // Don't attempt to analyze instructions in blocks that aren't
6120 // reachable. Such instructions don't matter, and they aren't required
6121 // to obey basic rules for definitions dominating uses which this
6122 // analysis depends on.
6123 if (!DT.isReachableFromEntry(I->getParent()))
6124 return getUnknown(UndefValue::get(V->getType()));
6125 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6126 return getConstant(CI);
6127 else if (isa<ConstantPointerNull>(V))
6128 return getZero(V->getType());
6129 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6130 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6131 else if (!isa<ConstantExpr>(V))
6132 return getUnknown(V);
6134 Operator *U = cast<Operator>(V);
6135 if (auto BO = MatchBinaryOp(U, DT)) {
6136 switch (BO->Opcode) {
6137 case Instruction::Add: {
6138 // The simple thing to do would be to just call getSCEV on both operands
6139 // and call getAddExpr with the result. However if we're looking at a
6140 // bunch of things all added together, this can be quite inefficient,
6141 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6142 // Instead, gather up all the operands and make a single getAddExpr call.
6143 // LLVM IR canonical form means we need only traverse the left operands.
6144 SmallVector<const SCEV *, 4> AddOps;
6145 do {
6146 if (BO->Op) {
6147 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6148 AddOps.push_back(OpSCEV);
6149 break;
6152 // If a NUW or NSW flag can be applied to the SCEV for this
6153 // addition, then compute the SCEV for this addition by itself
6154 // with a separate call to getAddExpr. We need to do that
6155 // instead of pushing the operands of the addition onto AddOps,
6156 // since the flags are only known to apply to this particular
6157 // addition - they may not apply to other additions that can be
6158 // formed with operands from AddOps.
6159 const SCEV *RHS = getSCEV(BO->RHS);
6160 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6161 if (Flags != SCEV::FlagAnyWrap) {
6162 const SCEV *LHS = getSCEV(BO->LHS);
6163 if (BO->Opcode == Instruction::Sub)
6164 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6165 else
6166 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6167 break;
6171 if (BO->Opcode == Instruction::Sub)
6172 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6173 else
6174 AddOps.push_back(getSCEV(BO->RHS));
6176 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6177 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6178 NewBO->Opcode != Instruction::Sub)) {
6179 AddOps.push_back(getSCEV(BO->LHS));
6180 break;
6182 BO = NewBO;
6183 } while (true);
6185 return getAddExpr(AddOps);
6188 case Instruction::Mul: {
6189 SmallVector<const SCEV *, 4> MulOps;
6190 do {
6191 if (BO->Op) {
6192 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6193 MulOps.push_back(OpSCEV);
6194 break;
6197 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6198 if (Flags != SCEV::FlagAnyWrap) {
6199 MulOps.push_back(
6200 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6201 break;
6205 MulOps.push_back(getSCEV(BO->RHS));
6206 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6207 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6208 MulOps.push_back(getSCEV(BO->LHS));
6209 break;
6211 BO = NewBO;
6212 } while (true);
6214 return getMulExpr(MulOps);
6216 case Instruction::UDiv:
6217 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6218 case Instruction::URem:
6219 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6220 case Instruction::Sub: {
6221 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6222 if (BO->Op)
6223 Flags = getNoWrapFlagsFromUB(BO->Op);
6224 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6226 case Instruction::And:
6227 // For an expression like x&255 that merely masks off the high bits,
6228 // use zext(trunc(x)) as the SCEV expression.
6229 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6230 if (CI->isZero())
6231 return getSCEV(BO->RHS);
6232 if (CI->isMinusOne())
6233 return getSCEV(BO->LHS);
6234 const APInt &A = CI->getValue();
6236 // Instcombine's ShrinkDemandedConstant may strip bits out of
6237 // constants, obscuring what would otherwise be a low-bits mask.
6238 // Use computeKnownBits to compute what ShrinkDemandedConstant
6239 // knew about to reconstruct a low-bits mask value.
6240 unsigned LZ = A.countLeadingZeros();
6241 unsigned TZ = A.countTrailingZeros();
6242 unsigned BitWidth = A.getBitWidth();
6243 KnownBits Known(BitWidth);
6244 computeKnownBits(BO->LHS, Known, getDataLayout(),
6245 0, &AC, nullptr, &DT);
6247 APInt EffectiveMask =
6248 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6249 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6250 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6251 const SCEV *LHS = getSCEV(BO->LHS);
6252 const SCEV *ShiftedLHS = nullptr;
6253 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6254 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6255 // For an expression like (x * 8) & 8, simplify the multiply.
6256 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6257 unsigned GCD = std::min(MulZeros, TZ);
6258 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6259 SmallVector<const SCEV*, 4> MulOps;
6260 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6261 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6262 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6263 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6266 if (!ShiftedLHS)
6267 ShiftedLHS = getUDivExpr(LHS, MulCount);
6268 return getMulExpr(
6269 getZeroExtendExpr(
6270 getTruncateExpr(ShiftedLHS,
6271 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6272 BO->LHS->getType()),
6273 MulCount);
6276 break;
6278 case Instruction::Or:
6279 // If the RHS of the Or is a constant, we may have something like:
6280 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6281 // optimizations will transparently handle this case.
6283 // In order for this transformation to be safe, the LHS must be of the
6284 // form X*(2^n) and the Or constant must be less than 2^n.
6285 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6286 const SCEV *LHS = getSCEV(BO->LHS);
6287 const APInt &CIVal = CI->getValue();
6288 if (GetMinTrailingZeros(LHS) >=
6289 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6290 // Build a plain add SCEV.
6291 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6292 // If the LHS of the add was an addrec and it has no-wrap flags,
6293 // transfer the no-wrap flags, since an or won't introduce a wrap.
6294 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6295 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6296 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6297 OldAR->getNoWrapFlags());
6299 return S;
6302 break;
6304 case Instruction::Xor:
6305 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6306 // If the RHS of xor is -1, then this is a not operation.
6307 if (CI->isMinusOne())
6308 return getNotSCEV(getSCEV(BO->LHS));
6310 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6311 // This is a variant of the check for xor with -1, and it handles
6312 // the case where instcombine has trimmed non-demanded bits out
6313 // of an xor with -1.
6314 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6315 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6316 if (LBO->getOpcode() == Instruction::And &&
6317 LCI->getValue() == CI->getValue())
6318 if (const SCEVZeroExtendExpr *Z =
6319 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6320 Type *UTy = BO->LHS->getType();
6321 const SCEV *Z0 = Z->getOperand();
6322 Type *Z0Ty = Z0->getType();
6323 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6325 // If C is a low-bits mask, the zero extend is serving to
6326 // mask off the high bits. Complement the operand and
6327 // re-apply the zext.
6328 if (CI->getValue().isMask(Z0TySize))
6329 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6331 // If C is a single bit, it may be in the sign-bit position
6332 // before the zero-extend. In this case, represent the xor
6333 // using an add, which is equivalent, and re-apply the zext.
6334 APInt Trunc = CI->getValue().trunc(Z0TySize);
6335 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6336 Trunc.isSignMask())
6337 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6338 UTy);
6341 break;
6343 case Instruction::Shl:
6344 // Turn shift left of a constant amount into a multiply.
6345 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6346 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6348 // If the shift count is not less than the bitwidth, the result of
6349 // the shift is undefined. Don't try to analyze it, because the
6350 // resolution chosen here may differ from the resolution chosen in
6351 // other parts of the compiler.
6352 if (SA->getValue().uge(BitWidth))
6353 break;
6355 // It is currently not resolved how to interpret NSW for left
6356 // shift by BitWidth - 1, so we avoid applying flags in that
6357 // case. Remove this check (or this comment) once the situation
6358 // is resolved. See
6359 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6360 // and http://reviews.llvm.org/D8890 .
6361 auto Flags = SCEV::FlagAnyWrap;
6362 if (BO->Op && SA->getValue().ult(BitWidth - 1))
6363 Flags = getNoWrapFlagsFromUB(BO->Op);
6365 Constant *X = ConstantInt::get(
6366 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6367 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6369 break;
6371 case Instruction::AShr: {
6372 // AShr X, C, where C is a constant.
6373 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6374 if (!CI)
6375 break;
6377 Type *OuterTy = BO->LHS->getType();
6378 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6379 // If the shift count is not less than the bitwidth, the result of
6380 // the shift is undefined. Don't try to analyze it, because the
6381 // resolution chosen here may differ from the resolution chosen in
6382 // other parts of the compiler.
6383 if (CI->getValue().uge(BitWidth))
6384 break;
6386 if (CI->isZero())
6387 return getSCEV(BO->LHS); // shift by zero --> noop
6389 uint64_t AShrAmt = CI->getZExtValue();
6390 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6392 Operator *L = dyn_cast<Operator>(BO->LHS);
6393 if (L && L->getOpcode() == Instruction::Shl) {
6394 // X = Shl A, n
6395 // Y = AShr X, m
6396 // Both n and m are constant.
6398 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6399 if (L->getOperand(1) == BO->RHS)
6400 // For a two-shift sext-inreg, i.e. n = m,
6401 // use sext(trunc(x)) as the SCEV expression.
6402 return getSignExtendExpr(
6403 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6405 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6406 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6407 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6408 if (ShlAmt > AShrAmt) {
6409 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6410 // expression. We already checked that ShlAmt < BitWidth, so
6411 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6412 // ShlAmt - AShrAmt < Amt.
6413 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6414 ShlAmt - AShrAmt);
6415 return getSignExtendExpr(
6416 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6417 getConstant(Mul)), OuterTy);
6421 break;
6426 switch (U->getOpcode()) {
6427 case Instruction::Trunc:
6428 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6430 case Instruction::ZExt:
6431 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6433 case Instruction::SExt:
6434 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6435 // The NSW flag of a subtract does not always survive the conversion to
6436 // A + (-1)*B. By pushing sign extension onto its operands we are much
6437 // more likely to preserve NSW and allow later AddRec optimisations.
6439 // NOTE: This is effectively duplicating this logic from getSignExtend:
6440 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6441 // but by that point the NSW information has potentially been lost.
6442 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6443 Type *Ty = U->getType();
6444 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6445 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6446 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6449 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6451 case Instruction::BitCast:
6452 // BitCasts are no-op casts so we just eliminate the cast.
6453 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6454 return getSCEV(U->getOperand(0));
6455 break;
6457 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6458 // lead to pointer expressions which cannot safely be expanded to GEPs,
6459 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6460 // simplifying integer expressions.
6462 case Instruction::GetElementPtr:
6463 return createNodeForGEP(cast<GEPOperator>(U));
6465 case Instruction::PHI:
6466 return createNodeForPHI(cast<PHINode>(U));
6468 case Instruction::Select:
6469 // U can also be a select constant expr, which let fall through. Since
6470 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6471 // constant expressions cannot have instructions as operands, we'd have
6472 // returned getUnknown for a select constant expressions anyway.
6473 if (isa<Instruction>(U))
6474 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6475 U->getOperand(1), U->getOperand(2));
6476 break;
6478 case Instruction::Call:
6479 case Instruction::Invoke:
6480 if (Value *RV = CallSite(U).getReturnedArgOperand())
6481 return getSCEV(RV);
6482 break;
6485 return getUnknown(V);
6488 //===----------------------------------------------------------------------===//
6489 // Iteration Count Computation Code
6492 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6493 if (!ExitCount)
6494 return 0;
6496 ConstantInt *ExitConst = ExitCount->getValue();
6498 // Guard against huge trip counts.
6499 if (ExitConst->getValue().getActiveBits() > 32)
6500 return 0;
6502 // In case of integer overflow, this returns 0, which is correct.
6503 return ((unsigned)ExitConst->getZExtValue()) + 1;
6506 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6507 if (BasicBlock *ExitingBB = L->getExitingBlock())
6508 return getSmallConstantTripCount(L, ExitingBB);
6510 // No trip count information for multiple exits.
6511 return 0;
6514 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6515 BasicBlock *ExitingBlock) {
6516 assert(ExitingBlock && "Must pass a non-null exiting block!");
6517 assert(L->isLoopExiting(ExitingBlock) &&
6518 "Exiting block must actually branch out of the loop!");
6519 const SCEVConstant *ExitCount =
6520 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6521 return getConstantTripCount(ExitCount);
6524 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6525 const auto *MaxExitCount =
6526 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6527 return getConstantTripCount(MaxExitCount);
6530 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6531 if (BasicBlock *ExitingBB = L->getExitingBlock())
6532 return getSmallConstantTripMultiple(L, ExitingBB);
6534 // No trip multiple information for multiple exits.
6535 return 0;
6538 /// Returns the largest constant divisor of the trip count of this loop as a
6539 /// normal unsigned value, if possible. This means that the actual trip count is
6540 /// always a multiple of the returned value (don't forget the trip count could
6541 /// very well be zero as well!).
6543 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6544 /// multiple of a constant (which is also the case if the trip count is simply
6545 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6546 /// if the trip count is very large (>= 2^32).
6548 /// As explained in the comments for getSmallConstantTripCount, this assumes
6549 /// that control exits the loop via ExitingBlock.
6550 unsigned
6551 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6552 BasicBlock *ExitingBlock) {
6553 assert(ExitingBlock && "Must pass a non-null exiting block!");
6554 assert(L->isLoopExiting(ExitingBlock) &&
6555 "Exiting block must actually branch out of the loop!");
6556 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6557 if (ExitCount == getCouldNotCompute())
6558 return 1;
6560 // Get the trip count from the BE count by adding 1.
6561 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6563 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6564 if (!TC)
6565 // Attempt to factor more general cases. Returns the greatest power of
6566 // two divisor. If overflow happens, the trip count expression is still
6567 // divisible by the greatest power of 2 divisor returned.
6568 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6570 ConstantInt *Result = TC->getValue();
6572 // Guard against huge trip counts (this requires checking
6573 // for zero to handle the case where the trip count == -1 and the
6574 // addition wraps).
6575 if (!Result || Result->getValue().getActiveBits() > 32 ||
6576 Result->getValue().getActiveBits() == 0)
6577 return 1;
6579 return (unsigned)Result->getZExtValue();
6582 /// Get the expression for the number of loop iterations for which this loop is
6583 /// guaranteed not to exit via ExitingBlock. Otherwise return
6584 /// SCEVCouldNotCompute.
6585 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6586 BasicBlock *ExitingBlock) {
6587 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6590 const SCEV *
6591 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6592 SCEVUnionPredicate &Preds) {
6593 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6596 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6597 return getBackedgeTakenInfo(L).getExact(L, this);
6600 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6601 /// known never to be less than the actual backedge taken count.
6602 const SCEV *ScalarEvolution::getConstantMaxBackedgeTakenCount(const Loop *L) {
6603 return getBackedgeTakenInfo(L).getMax(this);
6606 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6607 return getBackedgeTakenInfo(L).isMaxOrZero(this);
6610 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6611 static void
6612 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6613 BasicBlock *Header = L->getHeader();
6615 // Push all Loop-header PHIs onto the Worklist stack.
6616 for (PHINode &PN : Header->phis())
6617 Worklist.push_back(&PN);
6620 const ScalarEvolution::BackedgeTakenInfo &
6621 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6622 auto &BTI = getBackedgeTakenInfo(L);
6623 if (BTI.hasFullInfo())
6624 return BTI;
6626 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6628 if (!Pair.second)
6629 return Pair.first->second;
6631 BackedgeTakenInfo Result =
6632 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6634 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6637 const ScalarEvolution::BackedgeTakenInfo &
6638 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6639 // Initially insert an invalid entry for this loop. If the insertion
6640 // succeeds, proceed to actually compute a backedge-taken count and
6641 // update the value. The temporary CouldNotCompute value tells SCEV
6642 // code elsewhere that it shouldn't attempt to request a new
6643 // backedge-taken count, which could result in infinite recursion.
6644 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6645 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6646 if (!Pair.second)
6647 return Pair.first->second;
6649 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6650 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6651 // must be cleared in this scope.
6652 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6654 // In product build, there are no usage of statistic.
6655 (void)NumTripCountsComputed;
6656 (void)NumTripCountsNotComputed;
6657 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6658 const SCEV *BEExact = Result.getExact(L, this);
6659 if (BEExact != getCouldNotCompute()) {
6660 assert(isLoopInvariant(BEExact, L) &&
6661 isLoopInvariant(Result.getMax(this), L) &&
6662 "Computed backedge-taken count isn't loop invariant for loop!");
6663 ++NumTripCountsComputed;
6665 else if (Result.getMax(this) == getCouldNotCompute() &&
6666 isa<PHINode>(L->getHeader()->begin())) {
6667 // Only count loops that have phi nodes as not being computable.
6668 ++NumTripCountsNotComputed;
6670 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6672 // Now that we know more about the trip count for this loop, forget any
6673 // existing SCEV values for PHI nodes in this loop since they are only
6674 // conservative estimates made without the benefit of trip count
6675 // information. This is similar to the code in forgetLoop, except that
6676 // it handles SCEVUnknown PHI nodes specially.
6677 if (Result.hasAnyInfo()) {
6678 SmallVector<Instruction *, 16> Worklist;
6679 PushLoopPHIs(L, Worklist);
6681 SmallPtrSet<Instruction *, 8> Discovered;
6682 while (!Worklist.empty()) {
6683 Instruction *I = Worklist.pop_back_val();
6685 ValueExprMapType::iterator It =
6686 ValueExprMap.find_as(static_cast<Value *>(I));
6687 if (It != ValueExprMap.end()) {
6688 const SCEV *Old = It->second;
6690 // SCEVUnknown for a PHI either means that it has an unrecognized
6691 // structure, or it's a PHI that's in the progress of being computed
6692 // by createNodeForPHI. In the former case, additional loop trip
6693 // count information isn't going to change anything. In the later
6694 // case, createNodeForPHI will perform the necessary updates on its
6695 // own when it gets to that point.
6696 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6697 eraseValueFromMap(It->first);
6698 forgetMemoizedResults(Old);
6700 if (PHINode *PN = dyn_cast<PHINode>(I))
6701 ConstantEvolutionLoopExitValue.erase(PN);
6704 // Since we don't need to invalidate anything for correctness and we're
6705 // only invalidating to make SCEV's results more precise, we get to stop
6706 // early to avoid invalidating too much. This is especially important in
6707 // cases like:
6709 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6710 // loop0:
6711 // %pn0 = phi
6712 // ...
6713 // loop1:
6714 // %pn1 = phi
6715 // ...
6717 // where both loop0 and loop1's backedge taken count uses the SCEV
6718 // expression for %v. If we don't have the early stop below then in cases
6719 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6720 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6721 // count for loop1, effectively nullifying SCEV's trip count cache.
6722 for (auto *U : I->users())
6723 if (auto *I = dyn_cast<Instruction>(U)) {
6724 auto *LoopForUser = LI.getLoopFor(I->getParent());
6725 if (LoopForUser && L->contains(LoopForUser) &&
6726 Discovered.insert(I).second)
6727 Worklist.push_back(I);
6732 // Re-lookup the insert position, since the call to
6733 // computeBackedgeTakenCount above could result in a
6734 // recusive call to getBackedgeTakenInfo (on a different
6735 // loop), which would invalidate the iterator computed
6736 // earlier.
6737 return BackedgeTakenCounts.find(L)->second = std::move(Result);
6740 void ScalarEvolution::forgetAllLoops() {
6741 // This method is intended to forget all info about loops. It should
6742 // invalidate caches as if the following happened:
6743 // - The trip counts of all loops have changed arbitrarily
6744 // - Every llvm::Value has been updated in place to produce a different
6745 // result.
6746 BackedgeTakenCounts.clear();
6747 PredicatedBackedgeTakenCounts.clear();
6748 LoopPropertiesCache.clear();
6749 ConstantEvolutionLoopExitValue.clear();
6750 ValueExprMap.clear();
6751 ValuesAtScopes.clear();
6752 LoopDispositions.clear();
6753 BlockDispositions.clear();
6754 UnsignedRanges.clear();
6755 SignedRanges.clear();
6756 ExprValueMap.clear();
6757 HasRecMap.clear();
6758 MinTrailingZerosCache.clear();
6759 PredicatedSCEVRewrites.clear();
6762 void ScalarEvolution::forgetLoop(const Loop *L) {
6763 // Drop any stored trip count value.
6764 auto RemoveLoopFromBackedgeMap =
6765 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6766 auto BTCPos = Map.find(L);
6767 if (BTCPos != Map.end()) {
6768 BTCPos->second.clear();
6769 Map.erase(BTCPos);
6773 SmallVector<const Loop *, 16> LoopWorklist(1, L);
6774 SmallVector<Instruction *, 32> Worklist;
6775 SmallPtrSet<Instruction *, 16> Visited;
6777 // Iterate over all the loops and sub-loops to drop SCEV information.
6778 while (!LoopWorklist.empty()) {
6779 auto *CurrL = LoopWorklist.pop_back_val();
6781 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6782 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6784 // Drop information about predicated SCEV rewrites for this loop.
6785 for (auto I = PredicatedSCEVRewrites.begin();
6786 I != PredicatedSCEVRewrites.end();) {
6787 std::pair<const SCEV *, const Loop *> Entry = I->first;
6788 if (Entry.second == CurrL)
6789 PredicatedSCEVRewrites.erase(I++);
6790 else
6791 ++I;
6794 auto LoopUsersItr = LoopUsers.find(CurrL);
6795 if (LoopUsersItr != LoopUsers.end()) {
6796 for (auto *S : LoopUsersItr->second)
6797 forgetMemoizedResults(S);
6798 LoopUsers.erase(LoopUsersItr);
6801 // Drop information about expressions based on loop-header PHIs.
6802 PushLoopPHIs(CurrL, Worklist);
6804 while (!Worklist.empty()) {
6805 Instruction *I = Worklist.pop_back_val();
6806 if (!Visited.insert(I).second)
6807 continue;
6809 ValueExprMapType::iterator It =
6810 ValueExprMap.find_as(static_cast<Value *>(I));
6811 if (It != ValueExprMap.end()) {
6812 eraseValueFromMap(It->first);
6813 forgetMemoizedResults(It->second);
6814 if (PHINode *PN = dyn_cast<PHINode>(I))
6815 ConstantEvolutionLoopExitValue.erase(PN);
6818 PushDefUseChildren(I, Worklist);
6821 LoopPropertiesCache.erase(CurrL);
6822 // Forget all contained loops too, to avoid dangling entries in the
6823 // ValuesAtScopes map.
6824 LoopWorklist.append(CurrL->begin(), CurrL->end());
6828 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6829 while (Loop *Parent = L->getParentLoop())
6830 L = Parent;
6831 forgetLoop(L);
6834 void ScalarEvolution::forgetValue(Value *V) {
6835 Instruction *I = dyn_cast<Instruction>(V);
6836 if (!I) return;
6838 // Drop information about expressions based on loop-header PHIs.
6839 SmallVector<Instruction *, 16> Worklist;
6840 Worklist.push_back(I);
6842 SmallPtrSet<Instruction *, 8> Visited;
6843 while (!Worklist.empty()) {
6844 I = Worklist.pop_back_val();
6845 if (!Visited.insert(I).second)
6846 continue;
6848 ValueExprMapType::iterator It =
6849 ValueExprMap.find_as(static_cast<Value *>(I));
6850 if (It != ValueExprMap.end()) {
6851 eraseValueFromMap(It->first);
6852 forgetMemoizedResults(It->second);
6853 if (PHINode *PN = dyn_cast<PHINode>(I))
6854 ConstantEvolutionLoopExitValue.erase(PN);
6857 PushDefUseChildren(I, Worklist);
6861 /// Get the exact loop backedge taken count considering all loop exits. A
6862 /// computable result can only be returned for loops with all exiting blocks
6863 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6864 /// is never skipped. This is a valid assumption as long as the loop exits via
6865 /// that test. For precise results, it is the caller's responsibility to specify
6866 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6867 const SCEV *
6868 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6869 SCEVUnionPredicate *Preds) const {
6870 // If any exits were not computable, the loop is not computable.
6871 if (!isComplete() || ExitNotTaken.empty())
6872 return SE->getCouldNotCompute();
6874 const BasicBlock *Latch = L->getLoopLatch();
6875 // All exiting blocks we have collected must dominate the only backedge.
6876 if (!Latch)
6877 return SE->getCouldNotCompute();
6879 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6880 // count is simply a minimum out of all these calculated exit counts.
6881 SmallVector<const SCEV *, 2> Ops;
6882 for (auto &ENT : ExitNotTaken) {
6883 const SCEV *BECount = ENT.ExactNotTaken;
6884 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6885 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6886 "We should only have known counts for exiting blocks that dominate "
6887 "latch!");
6889 Ops.push_back(BECount);
6891 if (Preds && !ENT.hasAlwaysTruePredicate())
6892 Preds->add(ENT.Predicate.get());
6894 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6895 "Predicate should be always true!");
6898 return SE->getUMinFromMismatchedTypes(Ops);
6901 /// Get the exact not taken count for this loop exit.
6902 const SCEV *
6903 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6904 ScalarEvolution *SE) const {
6905 for (auto &ENT : ExitNotTaken)
6906 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6907 return ENT.ExactNotTaken;
6909 return SE->getCouldNotCompute();
6912 /// getMax - Get the max backedge taken count for the loop.
6913 const SCEV *
6914 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6915 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6916 return !ENT.hasAlwaysTruePredicate();
6919 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6920 return SE->getCouldNotCompute();
6922 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6923 "No point in having a non-constant max backedge taken count!");
6924 return getMax();
6927 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6928 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6929 return !ENT.hasAlwaysTruePredicate();
6931 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6934 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6935 ScalarEvolution *SE) const {
6936 if (getMax() && getMax() != SE->getCouldNotCompute() &&
6937 SE->hasOperand(getMax(), S))
6938 return true;
6940 for (auto &ENT : ExitNotTaken)
6941 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6942 SE->hasOperand(ENT.ExactNotTaken, S))
6943 return true;
6945 return false;
6948 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6949 : ExactNotTaken(E), MaxNotTaken(E) {
6950 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6951 isa<SCEVConstant>(MaxNotTaken)) &&
6952 "No point in having a non-constant max backedge taken count!");
6955 ScalarEvolution::ExitLimit::ExitLimit(
6956 const SCEV *E, const SCEV *M, bool MaxOrZero,
6957 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6958 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6959 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6960 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6961 "Exact is not allowed to be less precise than Max");
6962 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6963 isa<SCEVConstant>(MaxNotTaken)) &&
6964 "No point in having a non-constant max backedge taken count!");
6965 for (auto *PredSet : PredSetList)
6966 for (auto *P : *PredSet)
6967 addPredicate(P);
6970 ScalarEvolution::ExitLimit::ExitLimit(
6971 const SCEV *E, const SCEV *M, bool MaxOrZero,
6972 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6973 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6974 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6975 isa<SCEVConstant>(MaxNotTaken)) &&
6976 "No point in having a non-constant max backedge taken count!");
6979 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6980 bool MaxOrZero)
6981 : ExitLimit(E, M, MaxOrZero, None) {
6982 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6983 isa<SCEVConstant>(MaxNotTaken)) &&
6984 "No point in having a non-constant max backedge taken count!");
6987 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6988 /// computable exit into a persistent ExitNotTakenInfo array.
6989 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6990 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6991 ExitCounts,
6992 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6993 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6994 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6996 ExitNotTaken.reserve(ExitCounts.size());
6997 std::transform(
6998 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6999 [&](const EdgeExitInfo &EEI) {
7000 BasicBlock *ExitBB = EEI.first;
7001 const ExitLimit &EL = EEI.second;
7002 if (EL.Predicates.empty())
7003 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7005 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7006 for (auto *Pred : EL.Predicates)
7007 Predicate->add(Pred);
7009 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7011 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7012 "No point in having a non-constant max backedge taken count!");
7015 /// Invalidate this result and free the ExitNotTakenInfo array.
7016 void ScalarEvolution::BackedgeTakenInfo::clear() {
7017 ExitNotTaken.clear();
7020 /// Compute the number of times the backedge of the specified loop will execute.
7021 ScalarEvolution::BackedgeTakenInfo
7022 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7023 bool AllowPredicates) {
7024 SmallVector<BasicBlock *, 8> ExitingBlocks;
7025 L->getExitingBlocks(ExitingBlocks);
7027 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7029 SmallVector<EdgeExitInfo, 4> ExitCounts;
7030 bool CouldComputeBECount = true;
7031 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7032 const SCEV *MustExitMaxBECount = nullptr;
7033 const SCEV *MayExitMaxBECount = nullptr;
7034 bool MustExitMaxOrZero = false;
7036 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7037 // and compute maxBECount.
7038 // Do a union of all the predicates here.
7039 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7040 BasicBlock *ExitBB = ExitingBlocks[i];
7041 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7043 assert((AllowPredicates || EL.Predicates.empty()) &&
7044 "Predicated exit limit when predicates are not allowed!");
7046 // 1. For each exit that can be computed, add an entry to ExitCounts.
7047 // CouldComputeBECount is true only if all exits can be computed.
7048 if (EL.ExactNotTaken == getCouldNotCompute())
7049 // We couldn't compute an exact value for this exit, so
7050 // we won't be able to compute an exact value for the loop.
7051 CouldComputeBECount = false;
7052 else
7053 ExitCounts.emplace_back(ExitBB, EL);
7055 // 2. Derive the loop's MaxBECount from each exit's max number of
7056 // non-exiting iterations. Partition the loop exits into two kinds:
7057 // LoopMustExits and LoopMayExits.
7059 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7060 // is a LoopMayExit. If any computable LoopMustExit is found, then
7061 // MaxBECount is the minimum EL.MaxNotTaken of computable
7062 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7063 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7064 // computable EL.MaxNotTaken.
7065 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7066 DT.dominates(ExitBB, Latch)) {
7067 if (!MustExitMaxBECount) {
7068 MustExitMaxBECount = EL.MaxNotTaken;
7069 MustExitMaxOrZero = EL.MaxOrZero;
7070 } else {
7071 MustExitMaxBECount =
7072 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7074 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7075 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7076 MayExitMaxBECount = EL.MaxNotTaken;
7077 else {
7078 MayExitMaxBECount =
7079 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7083 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7084 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7085 // The loop backedge will be taken the maximum or zero times if there's
7086 // a single exit that must be taken the maximum or zero times.
7087 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7088 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7089 MaxBECount, MaxOrZero);
7092 ScalarEvolution::ExitLimit
7093 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7094 bool AllowPredicates) {
7095 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7096 // If our exiting block does not dominate the latch, then its connection with
7097 // loop's exit limit may be far from trivial.
7098 const BasicBlock *Latch = L->getLoopLatch();
7099 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7100 return getCouldNotCompute();
7102 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7103 Instruction *Term = ExitingBlock->getTerminator();
7104 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7105 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7106 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7107 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7108 "It should have one successor in loop and one exit block!");
7109 // Proceed to the next level to examine the exit condition expression.
7110 return computeExitLimitFromCond(
7111 L, BI->getCondition(), ExitIfTrue,
7112 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7115 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7116 // For switch, make sure that there is a single exit from the loop.
7117 BasicBlock *Exit = nullptr;
7118 for (auto *SBB : successors(ExitingBlock))
7119 if (!L->contains(SBB)) {
7120 if (Exit) // Multiple exit successors.
7121 return getCouldNotCompute();
7122 Exit = SBB;
7124 assert(Exit && "Exiting block must have at least one exit");
7125 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7126 /*ControlsExit=*/IsOnlyExit);
7129 return getCouldNotCompute();
7132 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7133 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7134 bool ControlsExit, bool AllowPredicates) {
7135 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7136 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7137 ControlsExit, AllowPredicates);
7140 Optional<ScalarEvolution::ExitLimit>
7141 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7142 bool ExitIfTrue, bool ControlsExit,
7143 bool AllowPredicates) {
7144 (void)this->L;
7145 (void)this->ExitIfTrue;
7146 (void)this->AllowPredicates;
7148 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7149 this->AllowPredicates == AllowPredicates &&
7150 "Variance in assumed invariant key components!");
7151 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7152 if (Itr == TripCountMap.end())
7153 return None;
7154 return Itr->second;
7157 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7158 bool ExitIfTrue,
7159 bool ControlsExit,
7160 bool AllowPredicates,
7161 const ExitLimit &EL) {
7162 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7163 this->AllowPredicates == AllowPredicates &&
7164 "Variance in assumed invariant key components!");
7166 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7167 assert(InsertResult.second && "Expected successful insertion!");
7168 (void)InsertResult;
7169 (void)ExitIfTrue;
7172 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7173 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7174 bool ControlsExit, bool AllowPredicates) {
7176 if (auto MaybeEL =
7177 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7178 return *MaybeEL;
7180 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7181 ControlsExit, AllowPredicates);
7182 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7183 return EL;
7186 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7187 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7188 bool ControlsExit, bool AllowPredicates) {
7189 // Check if the controlling expression for this loop is an And or Or.
7190 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7191 if (BO->getOpcode() == Instruction::And) {
7192 // Recurse on the operands of the and.
7193 bool EitherMayExit = !ExitIfTrue;
7194 ExitLimit EL0 = computeExitLimitFromCondCached(
7195 Cache, L, BO->getOperand(0), ExitIfTrue,
7196 ControlsExit && !EitherMayExit, AllowPredicates);
7197 ExitLimit EL1 = computeExitLimitFromCondCached(
7198 Cache, L, BO->getOperand(1), ExitIfTrue,
7199 ControlsExit && !EitherMayExit, AllowPredicates);
7200 const SCEV *BECount = getCouldNotCompute();
7201 const SCEV *MaxBECount = getCouldNotCompute();
7202 if (EitherMayExit) {
7203 // Both conditions must be true for the loop to continue executing.
7204 // Choose the less conservative count.
7205 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7206 EL1.ExactNotTaken == getCouldNotCompute())
7207 BECount = getCouldNotCompute();
7208 else
7209 BECount =
7210 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7211 if (EL0.MaxNotTaken == getCouldNotCompute())
7212 MaxBECount = EL1.MaxNotTaken;
7213 else if (EL1.MaxNotTaken == getCouldNotCompute())
7214 MaxBECount = EL0.MaxNotTaken;
7215 else
7216 MaxBECount =
7217 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7218 } else {
7219 // Both conditions must be true at the same time for the loop to exit.
7220 // For now, be conservative.
7221 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7222 MaxBECount = EL0.MaxNotTaken;
7223 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7224 BECount = EL0.ExactNotTaken;
7227 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7228 // to be more aggressive when computing BECount than when computing
7229 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7230 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7231 // to not.
7232 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7233 !isa<SCEVCouldNotCompute>(BECount))
7234 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7236 return ExitLimit(BECount, MaxBECount, false,
7237 {&EL0.Predicates, &EL1.Predicates});
7239 if (BO->getOpcode() == Instruction::Or) {
7240 // Recurse on the operands of the or.
7241 bool EitherMayExit = ExitIfTrue;
7242 ExitLimit EL0 = computeExitLimitFromCondCached(
7243 Cache, L, BO->getOperand(0), ExitIfTrue,
7244 ControlsExit && !EitherMayExit, AllowPredicates);
7245 ExitLimit EL1 = computeExitLimitFromCondCached(
7246 Cache, L, BO->getOperand(1), ExitIfTrue,
7247 ControlsExit && !EitherMayExit, AllowPredicates);
7248 const SCEV *BECount = getCouldNotCompute();
7249 const SCEV *MaxBECount = getCouldNotCompute();
7250 if (EitherMayExit) {
7251 // Both conditions must be false for the loop to continue executing.
7252 // Choose the less conservative count.
7253 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7254 EL1.ExactNotTaken == getCouldNotCompute())
7255 BECount = getCouldNotCompute();
7256 else
7257 BECount =
7258 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7259 if (EL0.MaxNotTaken == getCouldNotCompute())
7260 MaxBECount = EL1.MaxNotTaken;
7261 else if (EL1.MaxNotTaken == getCouldNotCompute())
7262 MaxBECount = EL0.MaxNotTaken;
7263 else
7264 MaxBECount =
7265 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7266 } else {
7267 // Both conditions must be false at the same time for the loop to exit.
7268 // For now, be conservative.
7269 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7270 MaxBECount = EL0.MaxNotTaken;
7271 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7272 BECount = EL0.ExactNotTaken;
7274 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7275 // to be more aggressive when computing BECount than when computing
7276 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7277 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7278 // to not.
7279 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7280 !isa<SCEVCouldNotCompute>(BECount))
7281 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7283 return ExitLimit(BECount, MaxBECount, false,
7284 {&EL0.Predicates, &EL1.Predicates});
7288 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7289 // Proceed to the next level to examine the icmp.
7290 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7291 ExitLimit EL =
7292 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7293 if (EL.hasFullInfo() || !AllowPredicates)
7294 return EL;
7296 // Try again, but use SCEV predicates this time.
7297 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7298 /*AllowPredicates=*/true);
7301 // Check for a constant condition. These are normally stripped out by
7302 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7303 // preserve the CFG and is temporarily leaving constant conditions
7304 // in place.
7305 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7306 if (ExitIfTrue == !CI->getZExtValue())
7307 // The backedge is always taken.
7308 return getCouldNotCompute();
7309 else
7310 // The backedge is never taken.
7311 return getZero(CI->getType());
7314 // If it's not an integer or pointer comparison then compute it the hard way.
7315 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7318 ScalarEvolution::ExitLimit
7319 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7320 ICmpInst *ExitCond,
7321 bool ExitIfTrue,
7322 bool ControlsExit,
7323 bool AllowPredicates) {
7324 // If the condition was exit on true, convert the condition to exit on false
7325 ICmpInst::Predicate Pred;
7326 if (!ExitIfTrue)
7327 Pred = ExitCond->getPredicate();
7328 else
7329 Pred = ExitCond->getInversePredicate();
7330 const ICmpInst::Predicate OriginalPred = Pred;
7332 // Handle common loops like: for (X = "string"; *X; ++X)
7333 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7334 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7335 ExitLimit ItCnt =
7336 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7337 if (ItCnt.hasAnyInfo())
7338 return ItCnt;
7341 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7342 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7344 // Try to evaluate any dependencies out of the loop.
7345 LHS = getSCEVAtScope(LHS, L);
7346 RHS = getSCEVAtScope(RHS, L);
7348 // At this point, we would like to compute how many iterations of the
7349 // loop the predicate will return true for these inputs.
7350 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7351 // If there is a loop-invariant, force it into the RHS.
7352 std::swap(LHS, RHS);
7353 Pred = ICmpInst::getSwappedPredicate(Pred);
7356 // Simplify the operands before analyzing them.
7357 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7359 // If we have a comparison of a chrec against a constant, try to use value
7360 // ranges to answer this query.
7361 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7362 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7363 if (AddRec->getLoop() == L) {
7364 // Form the constant range.
7365 ConstantRange CompRange =
7366 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7368 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7369 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7372 switch (Pred) {
7373 case ICmpInst::ICMP_NE: { // while (X != Y)
7374 // Convert to: while (X-Y != 0)
7375 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7376 AllowPredicates);
7377 if (EL.hasAnyInfo()) return EL;
7378 break;
7380 case ICmpInst::ICMP_EQ: { // while (X == Y)
7381 // Convert to: while (X-Y == 0)
7382 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7383 if (EL.hasAnyInfo()) return EL;
7384 break;
7386 case ICmpInst::ICMP_SLT:
7387 case ICmpInst::ICMP_ULT: { // while (X < Y)
7388 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7389 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7390 AllowPredicates);
7391 if (EL.hasAnyInfo()) return EL;
7392 break;
7394 case ICmpInst::ICMP_SGT:
7395 case ICmpInst::ICMP_UGT: { // while (X > Y)
7396 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7397 ExitLimit EL =
7398 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7399 AllowPredicates);
7400 if (EL.hasAnyInfo()) return EL;
7401 break;
7403 default:
7404 break;
7407 auto *ExhaustiveCount =
7408 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7410 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7411 return ExhaustiveCount;
7413 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7414 ExitCond->getOperand(1), L, OriginalPred);
7417 ScalarEvolution::ExitLimit
7418 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7419 SwitchInst *Switch,
7420 BasicBlock *ExitingBlock,
7421 bool ControlsExit) {
7422 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7424 // Give up if the exit is the default dest of a switch.
7425 if (Switch->getDefaultDest() == ExitingBlock)
7426 return getCouldNotCompute();
7428 assert(L->contains(Switch->getDefaultDest()) &&
7429 "Default case must not exit the loop!");
7430 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7431 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7433 // while (X != Y) --> while (X-Y != 0)
7434 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7435 if (EL.hasAnyInfo())
7436 return EL;
7438 return getCouldNotCompute();
7441 static ConstantInt *
7442 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7443 ScalarEvolution &SE) {
7444 const SCEV *InVal = SE.getConstant(C);
7445 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7446 assert(isa<SCEVConstant>(Val) &&
7447 "Evaluation of SCEV at constant didn't fold correctly?");
7448 return cast<SCEVConstant>(Val)->getValue();
7451 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7452 /// compute the backedge execution count.
7453 ScalarEvolution::ExitLimit
7454 ScalarEvolution::computeLoadConstantCompareExitLimit(
7455 LoadInst *LI,
7456 Constant *RHS,
7457 const Loop *L,
7458 ICmpInst::Predicate predicate) {
7459 if (LI->isVolatile()) return getCouldNotCompute();
7461 // Check to see if the loaded pointer is a getelementptr of a global.
7462 // TODO: Use SCEV instead of manually grubbing with GEPs.
7463 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7464 if (!GEP) return getCouldNotCompute();
7466 // Make sure that it is really a constant global we are gepping, with an
7467 // initializer, and make sure the first IDX is really 0.
7468 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7469 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7470 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7471 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7472 return getCouldNotCompute();
7474 // Okay, we allow one non-constant index into the GEP instruction.
7475 Value *VarIdx = nullptr;
7476 std::vector<Constant*> Indexes;
7477 unsigned VarIdxNum = 0;
7478 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7479 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7480 Indexes.push_back(CI);
7481 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7482 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7483 VarIdx = GEP->getOperand(i);
7484 VarIdxNum = i-2;
7485 Indexes.push_back(nullptr);
7488 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7489 if (!VarIdx)
7490 return getCouldNotCompute();
7492 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7493 // Check to see if X is a loop variant variable value now.
7494 const SCEV *Idx = getSCEV(VarIdx);
7495 Idx = getSCEVAtScope(Idx, L);
7497 // We can only recognize very limited forms of loop index expressions, in
7498 // particular, only affine AddRec's like {C1,+,C2}.
7499 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7500 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7501 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7502 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7503 return getCouldNotCompute();
7505 unsigned MaxSteps = MaxBruteForceIterations;
7506 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7507 ConstantInt *ItCst = ConstantInt::get(
7508 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7509 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7511 // Form the GEP offset.
7512 Indexes[VarIdxNum] = Val;
7514 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7515 Indexes);
7516 if (!Result) break; // Cannot compute!
7518 // Evaluate the condition for this iteration.
7519 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7520 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7521 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7522 ++NumArrayLenItCounts;
7523 return getConstant(ItCst); // Found terminating iteration!
7526 return getCouldNotCompute();
7529 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7530 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7531 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7532 if (!RHS)
7533 return getCouldNotCompute();
7535 const BasicBlock *Latch = L->getLoopLatch();
7536 if (!Latch)
7537 return getCouldNotCompute();
7539 const BasicBlock *Predecessor = L->getLoopPredecessor();
7540 if (!Predecessor)
7541 return getCouldNotCompute();
7543 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7544 // Return LHS in OutLHS and shift_opt in OutOpCode.
7545 auto MatchPositiveShift =
7546 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7548 using namespace PatternMatch;
7550 ConstantInt *ShiftAmt;
7551 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7552 OutOpCode = Instruction::LShr;
7553 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7554 OutOpCode = Instruction::AShr;
7555 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7556 OutOpCode = Instruction::Shl;
7557 else
7558 return false;
7560 return ShiftAmt->getValue().isStrictlyPositive();
7563 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7565 // loop:
7566 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7567 // %iv.shifted = lshr i32 %iv, <positive constant>
7569 // Return true on a successful match. Return the corresponding PHI node (%iv
7570 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7571 auto MatchShiftRecurrence =
7572 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7573 Optional<Instruction::BinaryOps> PostShiftOpCode;
7576 Instruction::BinaryOps OpC;
7577 Value *V;
7579 // If we encounter a shift instruction, "peel off" the shift operation,
7580 // and remember that we did so. Later when we inspect %iv's backedge
7581 // value, we will make sure that the backedge value uses the same
7582 // operation.
7584 // Note: the peeled shift operation does not have to be the same
7585 // instruction as the one feeding into the PHI's backedge value. We only
7586 // really care about it being the same *kind* of shift instruction --
7587 // that's all that is required for our later inferences to hold.
7588 if (MatchPositiveShift(LHS, V, OpC)) {
7589 PostShiftOpCode = OpC;
7590 LHS = V;
7594 PNOut = dyn_cast<PHINode>(LHS);
7595 if (!PNOut || PNOut->getParent() != L->getHeader())
7596 return false;
7598 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7599 Value *OpLHS;
7601 return
7602 // The backedge value for the PHI node must be a shift by a positive
7603 // amount
7604 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7606 // of the PHI node itself
7607 OpLHS == PNOut &&
7609 // and the kind of shift should be match the kind of shift we peeled
7610 // off, if any.
7611 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7614 PHINode *PN;
7615 Instruction::BinaryOps OpCode;
7616 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7617 return getCouldNotCompute();
7619 const DataLayout &DL = getDataLayout();
7621 // The key rationale for this optimization is that for some kinds of shift
7622 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7623 // within a finite number of iterations. If the condition guarding the
7624 // backedge (in the sense that the backedge is taken if the condition is true)
7625 // is false for the value the shift recurrence stabilizes to, then we know
7626 // that the backedge is taken only a finite number of times.
7628 ConstantInt *StableValue = nullptr;
7629 switch (OpCode) {
7630 default:
7631 llvm_unreachable("Impossible case!");
7633 case Instruction::AShr: {
7634 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7635 // bitwidth(K) iterations.
7636 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7637 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7638 Predecessor->getTerminator(), &DT);
7639 auto *Ty = cast<IntegerType>(RHS->getType());
7640 if (Known.isNonNegative())
7641 StableValue = ConstantInt::get(Ty, 0);
7642 else if (Known.isNegative())
7643 StableValue = ConstantInt::get(Ty, -1, true);
7644 else
7645 return getCouldNotCompute();
7647 break;
7649 case Instruction::LShr:
7650 case Instruction::Shl:
7651 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7652 // stabilize to 0 in at most bitwidth(K) iterations.
7653 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7654 break;
7657 auto *Result =
7658 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7659 assert(Result->getType()->isIntegerTy(1) &&
7660 "Otherwise cannot be an operand to a branch instruction");
7662 if (Result->isZeroValue()) {
7663 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7664 const SCEV *UpperBound =
7665 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7666 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7669 return getCouldNotCompute();
7672 /// Return true if we can constant fold an instruction of the specified type,
7673 /// assuming that all operands were constants.
7674 static bool CanConstantFold(const Instruction *I) {
7675 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7676 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7677 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7678 return true;
7680 if (const CallInst *CI = dyn_cast<CallInst>(I))
7681 if (const Function *F = CI->getCalledFunction())
7682 return canConstantFoldCallTo(CI, F);
7683 return false;
7686 /// Determine whether this instruction can constant evolve within this loop
7687 /// assuming its operands can all constant evolve.
7688 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7689 // An instruction outside of the loop can't be derived from a loop PHI.
7690 if (!L->contains(I)) return false;
7692 if (isa<PHINode>(I)) {
7693 // We don't currently keep track of the control flow needed to evaluate
7694 // PHIs, so we cannot handle PHIs inside of loops.
7695 return L->getHeader() == I->getParent();
7698 // If we won't be able to constant fold this expression even if the operands
7699 // are constants, bail early.
7700 return CanConstantFold(I);
7703 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7704 /// recursing through each instruction operand until reaching a loop header phi.
7705 static PHINode *
7706 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7707 DenseMap<Instruction *, PHINode *> &PHIMap,
7708 unsigned Depth) {
7709 if (Depth > MaxConstantEvolvingDepth)
7710 return nullptr;
7712 // Otherwise, we can evaluate this instruction if all of its operands are
7713 // constant or derived from a PHI node themselves.
7714 PHINode *PHI = nullptr;
7715 for (Value *Op : UseInst->operands()) {
7716 if (isa<Constant>(Op)) continue;
7718 Instruction *OpInst = dyn_cast<Instruction>(Op);
7719 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7721 PHINode *P = dyn_cast<PHINode>(OpInst);
7722 if (!P)
7723 // If this operand is already visited, reuse the prior result.
7724 // We may have P != PHI if this is the deepest point at which the
7725 // inconsistent paths meet.
7726 P = PHIMap.lookup(OpInst);
7727 if (!P) {
7728 // Recurse and memoize the results, whether a phi is found or not.
7729 // This recursive call invalidates pointers into PHIMap.
7730 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7731 PHIMap[OpInst] = P;
7733 if (!P)
7734 return nullptr; // Not evolving from PHI
7735 if (PHI && PHI != P)
7736 return nullptr; // Evolving from multiple different PHIs.
7737 PHI = P;
7739 // This is a expression evolving from a constant PHI!
7740 return PHI;
7743 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7744 /// in the loop that V is derived from. We allow arbitrary operations along the
7745 /// way, but the operands of an operation must either be constants or a value
7746 /// derived from a constant PHI. If this expression does not fit with these
7747 /// constraints, return null.
7748 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7749 Instruction *I = dyn_cast<Instruction>(V);
7750 if (!I || !canConstantEvolve(I, L)) return nullptr;
7752 if (PHINode *PN = dyn_cast<PHINode>(I))
7753 return PN;
7755 // Record non-constant instructions contained by the loop.
7756 DenseMap<Instruction *, PHINode *> PHIMap;
7757 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7760 /// EvaluateExpression - Given an expression that passes the
7761 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7762 /// in the loop has the value PHIVal. If we can't fold this expression for some
7763 /// reason, return null.
7764 static Constant *EvaluateExpression(Value *V, const Loop *L,
7765 DenseMap<Instruction *, Constant *> &Vals,
7766 const DataLayout &DL,
7767 const TargetLibraryInfo *TLI) {
7768 // Convenient constant check, but redundant for recursive calls.
7769 if (Constant *C = dyn_cast<Constant>(V)) return C;
7770 Instruction *I = dyn_cast<Instruction>(V);
7771 if (!I) return nullptr;
7773 if (Constant *C = Vals.lookup(I)) return C;
7775 // An instruction inside the loop depends on a value outside the loop that we
7776 // weren't given a mapping for, or a value such as a call inside the loop.
7777 if (!canConstantEvolve(I, L)) return nullptr;
7779 // An unmapped PHI can be due to a branch or another loop inside this loop,
7780 // or due to this not being the initial iteration through a loop where we
7781 // couldn't compute the evolution of this particular PHI last time.
7782 if (isa<PHINode>(I)) return nullptr;
7784 std::vector<Constant*> Operands(I->getNumOperands());
7786 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7787 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7788 if (!Operand) {
7789 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7790 if (!Operands[i]) return nullptr;
7791 continue;
7793 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7794 Vals[Operand] = C;
7795 if (!C) return nullptr;
7796 Operands[i] = C;
7799 if (CmpInst *CI = dyn_cast<CmpInst>(I))
7800 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7801 Operands[1], DL, TLI);
7802 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7803 if (!LI->isVolatile())
7804 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7806 return ConstantFoldInstOperands(I, Operands, DL, TLI);
7810 // If every incoming value to PN except the one for BB is a specific Constant,
7811 // return that, else return nullptr.
7812 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7813 Constant *IncomingVal = nullptr;
7815 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7816 if (PN->getIncomingBlock(i) == BB)
7817 continue;
7819 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7820 if (!CurrentVal)
7821 return nullptr;
7823 if (IncomingVal != CurrentVal) {
7824 if (IncomingVal)
7825 return nullptr;
7826 IncomingVal = CurrentVal;
7830 return IncomingVal;
7833 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7834 /// in the header of its containing loop, we know the loop executes a
7835 /// constant number of times, and the PHI node is just a recurrence
7836 /// involving constants, fold it.
7837 Constant *
7838 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7839 const APInt &BEs,
7840 const Loop *L) {
7841 auto I = ConstantEvolutionLoopExitValue.find(PN);
7842 if (I != ConstantEvolutionLoopExitValue.end())
7843 return I->second;
7845 if (BEs.ugt(MaxBruteForceIterations))
7846 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
7848 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7850 DenseMap<Instruction *, Constant *> CurrentIterVals;
7851 BasicBlock *Header = L->getHeader();
7852 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7854 BasicBlock *Latch = L->getLoopLatch();
7855 if (!Latch)
7856 return nullptr;
7858 for (PHINode &PHI : Header->phis()) {
7859 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7860 CurrentIterVals[&PHI] = StartCST;
7862 if (!CurrentIterVals.count(PN))
7863 return RetVal = nullptr;
7865 Value *BEValue = PN->getIncomingValueForBlock(Latch);
7867 // Execute the loop symbolically to determine the exit value.
7868 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7869 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7871 unsigned NumIterations = BEs.getZExtValue(); // must be in range
7872 unsigned IterationNum = 0;
7873 const DataLayout &DL = getDataLayout();
7874 for (; ; ++IterationNum) {
7875 if (IterationNum == NumIterations)
7876 return RetVal = CurrentIterVals[PN]; // Got exit value!
7878 // Compute the value of the PHIs for the next iteration.
7879 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7880 DenseMap<Instruction *, Constant *> NextIterVals;
7881 Constant *NextPHI =
7882 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7883 if (!NextPHI)
7884 return nullptr; // Couldn't evaluate!
7885 NextIterVals[PN] = NextPHI;
7887 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7889 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7890 // cease to be able to evaluate one of them or if they stop evolving,
7891 // because that doesn't necessarily prevent us from computing PN.
7892 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7893 for (const auto &I : CurrentIterVals) {
7894 PHINode *PHI = dyn_cast<PHINode>(I.first);
7895 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7896 PHIsToCompute.emplace_back(PHI, I.second);
7898 // We use two distinct loops because EvaluateExpression may invalidate any
7899 // iterators into CurrentIterVals.
7900 for (const auto &I : PHIsToCompute) {
7901 PHINode *PHI = I.first;
7902 Constant *&NextPHI = NextIterVals[PHI];
7903 if (!NextPHI) { // Not already computed.
7904 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7905 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7907 if (NextPHI != I.second)
7908 StoppedEvolving = false;
7911 // If all entries in CurrentIterVals == NextIterVals then we can stop
7912 // iterating, the loop can't continue to change.
7913 if (StoppedEvolving)
7914 return RetVal = CurrentIterVals[PN];
7916 CurrentIterVals.swap(NextIterVals);
7920 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7921 Value *Cond,
7922 bool ExitWhen) {
7923 PHINode *PN = getConstantEvolvingPHI(Cond, L);
7924 if (!PN) return getCouldNotCompute();
7926 // If the loop is canonicalized, the PHI will have exactly two entries.
7927 // That's the only form we support here.
7928 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7930 DenseMap<Instruction *, Constant *> CurrentIterVals;
7931 BasicBlock *Header = L->getHeader();
7932 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7934 BasicBlock *Latch = L->getLoopLatch();
7935 assert(Latch && "Should follow from NumIncomingValues == 2!");
7937 for (PHINode &PHI : Header->phis()) {
7938 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7939 CurrentIterVals[&PHI] = StartCST;
7941 if (!CurrentIterVals.count(PN))
7942 return getCouldNotCompute();
7944 // Okay, we find a PHI node that defines the trip count of this loop. Execute
7945 // the loop symbolically to determine when the condition gets a value of
7946 // "ExitWhen".
7947 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
7948 const DataLayout &DL = getDataLayout();
7949 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7950 auto *CondVal = dyn_cast_or_null<ConstantInt>(
7951 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7953 // Couldn't symbolically evaluate.
7954 if (!CondVal) return getCouldNotCompute();
7956 if (CondVal->getValue() == uint64_t(ExitWhen)) {
7957 ++NumBruteForceTripCountsComputed;
7958 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7961 // Update all the PHI nodes for the next iteration.
7962 DenseMap<Instruction *, Constant *> NextIterVals;
7964 // Create a list of which PHIs we need to compute. We want to do this before
7965 // calling EvaluateExpression on them because that may invalidate iterators
7966 // into CurrentIterVals.
7967 SmallVector<PHINode *, 8> PHIsToCompute;
7968 for (const auto &I : CurrentIterVals) {
7969 PHINode *PHI = dyn_cast<PHINode>(I.first);
7970 if (!PHI || PHI->getParent() != Header) continue;
7971 PHIsToCompute.push_back(PHI);
7973 for (PHINode *PHI : PHIsToCompute) {
7974 Constant *&NextPHI = NextIterVals[PHI];
7975 if (NextPHI) continue; // Already computed!
7977 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7978 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7980 CurrentIterVals.swap(NextIterVals);
7983 // Too many iterations were needed to evaluate.
7984 return getCouldNotCompute();
7987 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7988 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7989 ValuesAtScopes[V];
7990 // Check to see if we've folded this expression at this loop before.
7991 for (auto &LS : Values)
7992 if (LS.first == L)
7993 return LS.second ? LS.second : V;
7995 Values.emplace_back(L, nullptr);
7997 // Otherwise compute it.
7998 const SCEV *C = computeSCEVAtScope(V, L);
7999 for (auto &LS : reverse(ValuesAtScopes[V]))
8000 if (LS.first == L) {
8001 LS.second = C;
8002 break;
8004 return C;
8007 /// This builds up a Constant using the ConstantExpr interface. That way, we
8008 /// will return Constants for objects which aren't represented by a
8009 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8010 /// Returns NULL if the SCEV isn't representable as a Constant.
8011 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8012 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8013 case scCouldNotCompute:
8014 case scAddRecExpr:
8015 break;
8016 case scConstant:
8017 return cast<SCEVConstant>(V)->getValue();
8018 case scUnknown:
8019 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8020 case scSignExtend: {
8021 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8022 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8023 return ConstantExpr::getSExt(CastOp, SS->getType());
8024 break;
8026 case scZeroExtend: {
8027 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8028 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8029 return ConstantExpr::getZExt(CastOp, SZ->getType());
8030 break;
8032 case scTruncate: {
8033 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8034 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8035 return ConstantExpr::getTrunc(CastOp, ST->getType());
8036 break;
8038 case scAddExpr: {
8039 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8040 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8041 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8042 unsigned AS = PTy->getAddressSpace();
8043 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8044 C = ConstantExpr::getBitCast(C, DestPtrTy);
8046 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8047 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8048 if (!C2) return nullptr;
8050 // First pointer!
8051 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8052 unsigned AS = C2->getType()->getPointerAddressSpace();
8053 std::swap(C, C2);
8054 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8055 // The offsets have been converted to bytes. We can add bytes to an
8056 // i8* by GEP with the byte count in the first index.
8057 C = ConstantExpr::getBitCast(C, DestPtrTy);
8060 // Don't bother trying to sum two pointers. We probably can't
8061 // statically compute a load that results from it anyway.
8062 if (C2->getType()->isPointerTy())
8063 return nullptr;
8065 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8066 if (PTy->getElementType()->isStructTy())
8067 C2 = ConstantExpr::getIntegerCast(
8068 C2, Type::getInt32Ty(C->getContext()), true);
8069 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8070 } else
8071 C = ConstantExpr::getAdd(C, C2);
8073 return C;
8075 break;
8077 case scMulExpr: {
8078 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8079 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8080 // Don't bother with pointers at all.
8081 if (C->getType()->isPointerTy()) return nullptr;
8082 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8083 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8084 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8085 C = ConstantExpr::getMul(C, C2);
8087 return C;
8089 break;
8091 case scUDivExpr: {
8092 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8093 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8094 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8095 if (LHS->getType() == RHS->getType())
8096 return ConstantExpr::getUDiv(LHS, RHS);
8097 break;
8099 case scSMaxExpr:
8100 case scUMaxExpr:
8101 case scSMinExpr:
8102 case scUMinExpr:
8103 break; // TODO: smax, umax, smin, umax.
8105 return nullptr;
8108 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8109 if (isa<SCEVConstant>(V)) return V;
8111 // If this instruction is evolved from a constant-evolving PHI, compute the
8112 // exit value from the loop without using SCEVs.
8113 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8114 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8115 if (PHINode *PN = dyn_cast<PHINode>(I)) {
8116 const Loop *LI = this->LI[I->getParent()];
8117 // Looking for loop exit value.
8118 if (LI && LI->getParentLoop() == L &&
8119 PN->getParent() == LI->getHeader()) {
8120 // Okay, there is no closed form solution for the PHI node. Check
8121 // to see if the loop that contains it has a known backedge-taken
8122 // count. If so, we may be able to force computation of the exit
8123 // value.
8124 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8125 // This trivial case can show up in some degenerate cases where
8126 // the incoming IR has not yet been fully simplified.
8127 if (BackedgeTakenCount->isZero()) {
8128 Value *InitValue = nullptr;
8129 bool MultipleInitValues = false;
8130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8131 if (!LI->contains(PN->getIncomingBlock(i))) {
8132 if (!InitValue)
8133 InitValue = PN->getIncomingValue(i);
8134 else if (InitValue != PN->getIncomingValue(i)) {
8135 MultipleInitValues = true;
8136 break;
8140 if (!MultipleInitValues && InitValue)
8141 return getSCEV(InitValue);
8143 // Do we have a loop invariant value flowing around the backedge
8144 // for a loop which must execute the backedge?
8145 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8146 isKnownPositive(BackedgeTakenCount) &&
8147 PN->getNumIncomingValues() == 2) {
8148 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8149 const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
8150 if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
8151 return OnBackedge;
8153 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8154 // Okay, we know how many times the containing loop executes. If
8155 // this is a constant evolving PHI node, get the final value at
8156 // the specified iteration number.
8157 Constant *RV =
8158 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8159 if (RV) return getSCEV(RV);
8163 // If there is a single-input Phi, evaluate it at our scope. If we can
8164 // prove that this replacement does not break LCSSA form, use new value.
8165 if (PN->getNumOperands() == 1) {
8166 const SCEV *Input = getSCEV(PN->getOperand(0));
8167 const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8168 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8169 // for the simplest case just support constants.
8170 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8174 // Okay, this is an expression that we cannot symbolically evaluate
8175 // into a SCEV. Check to see if it's possible to symbolically evaluate
8176 // the arguments into constants, and if so, try to constant propagate the
8177 // result. This is particularly useful for computing loop exit values.
8178 if (CanConstantFold(I)) {
8179 SmallVector<Constant *, 4> Operands;
8180 bool MadeImprovement = false;
8181 for (Value *Op : I->operands()) {
8182 if (Constant *C = dyn_cast<Constant>(Op)) {
8183 Operands.push_back(C);
8184 continue;
8187 // If any of the operands is non-constant and if they are
8188 // non-integer and non-pointer, don't even try to analyze them
8189 // with scev techniques.
8190 if (!isSCEVable(Op->getType()))
8191 return V;
8193 const SCEV *OrigV = getSCEV(Op);
8194 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8195 MadeImprovement |= OrigV != OpV;
8197 Constant *C = BuildConstantFromSCEV(OpV);
8198 if (!C) return V;
8199 if (C->getType() != Op->getType())
8200 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8201 Op->getType(),
8202 false),
8203 C, Op->getType());
8204 Operands.push_back(C);
8207 // Check to see if getSCEVAtScope actually made an improvement.
8208 if (MadeImprovement) {
8209 Constant *C = nullptr;
8210 const DataLayout &DL = getDataLayout();
8211 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8212 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8213 Operands[1], DL, &TLI);
8214 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8215 if (!LI->isVolatile())
8216 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8217 } else
8218 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8219 if (!C) return V;
8220 return getSCEV(C);
8225 // This is some other type of SCEVUnknown, just return it.
8226 return V;
8229 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8230 // Avoid performing the look-up in the common case where the specified
8231 // expression has no loop-variant portions.
8232 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8233 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8234 if (OpAtScope != Comm->getOperand(i)) {
8235 // Okay, at least one of these operands is loop variant but might be
8236 // foldable. Build a new instance of the folded commutative expression.
8237 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8238 Comm->op_begin()+i);
8239 NewOps.push_back(OpAtScope);
8241 for (++i; i != e; ++i) {
8242 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8243 NewOps.push_back(OpAtScope);
8245 if (isa<SCEVAddExpr>(Comm))
8246 return getAddExpr(NewOps, Comm->getNoWrapFlags());
8247 if (isa<SCEVMulExpr>(Comm))
8248 return getMulExpr(NewOps, Comm->getNoWrapFlags());
8249 if (isa<SCEVMinMaxExpr>(Comm))
8250 return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8251 llvm_unreachable("Unknown commutative SCEV type!");
8254 // If we got here, all operands are loop invariant.
8255 return Comm;
8258 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8259 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8260 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8261 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8262 return Div; // must be loop invariant
8263 return getUDivExpr(LHS, RHS);
8266 // If this is a loop recurrence for a loop that does not contain L, then we
8267 // are dealing with the final value computed by the loop.
8268 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8269 // First, attempt to evaluate each operand.
8270 // Avoid performing the look-up in the common case where the specified
8271 // expression has no loop-variant portions.
8272 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8273 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8274 if (OpAtScope == AddRec->getOperand(i))
8275 continue;
8277 // Okay, at least one of these operands is loop variant but might be
8278 // foldable. Build a new instance of the folded commutative expression.
8279 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8280 AddRec->op_begin()+i);
8281 NewOps.push_back(OpAtScope);
8282 for (++i; i != e; ++i)
8283 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8285 const SCEV *FoldedRec =
8286 getAddRecExpr(NewOps, AddRec->getLoop(),
8287 AddRec->getNoWrapFlags(SCEV::FlagNW));
8288 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8289 // The addrec may be folded to a nonrecurrence, for example, if the
8290 // induction variable is multiplied by zero after constant folding. Go
8291 // ahead and return the folded value.
8292 if (!AddRec)
8293 return FoldedRec;
8294 break;
8297 // If the scope is outside the addrec's loop, evaluate it by using the
8298 // loop exit value of the addrec.
8299 if (!AddRec->getLoop()->contains(L)) {
8300 // To evaluate this recurrence, we need to know how many times the AddRec
8301 // loop iterates. Compute this now.
8302 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8303 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8305 // Then, evaluate the AddRec.
8306 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8309 return AddRec;
8312 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8313 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8314 if (Op == Cast->getOperand())
8315 return Cast; // must be loop invariant
8316 return getZeroExtendExpr(Op, Cast->getType());
8319 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8320 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8321 if (Op == Cast->getOperand())
8322 return Cast; // must be loop invariant
8323 return getSignExtendExpr(Op, Cast->getType());
8326 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8327 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8328 if (Op == Cast->getOperand())
8329 return Cast; // must be loop invariant
8330 return getTruncateExpr(Op, Cast->getType());
8333 llvm_unreachable("Unknown SCEV type!");
8336 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8337 return getSCEVAtScope(getSCEV(V), L);
8340 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8341 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8342 return stripInjectiveFunctions(ZExt->getOperand());
8343 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8344 return stripInjectiveFunctions(SExt->getOperand());
8345 return S;
8348 /// Finds the minimum unsigned root of the following equation:
8350 /// A * X = B (mod N)
8352 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8353 /// A and B isn't important.
8355 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8356 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8357 ScalarEvolution &SE) {
8358 uint32_t BW = A.getBitWidth();
8359 assert(BW == SE.getTypeSizeInBits(B->getType()));
8360 assert(A != 0 && "A must be non-zero.");
8362 // 1. D = gcd(A, N)
8364 // The gcd of A and N may have only one prime factor: 2. The number of
8365 // trailing zeros in A is its multiplicity
8366 uint32_t Mult2 = A.countTrailingZeros();
8367 // D = 2^Mult2
8369 // 2. Check if B is divisible by D.
8371 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8372 // is not less than multiplicity of this prime factor for D.
8373 if (SE.GetMinTrailingZeros(B) < Mult2)
8374 return SE.getCouldNotCompute();
8376 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8377 // modulo (N / D).
8379 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8380 // (N / D) in general. The inverse itself always fits into BW bits, though,
8381 // so we immediately truncate it.
8382 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8383 APInt Mod(BW + 1, 0);
8384 Mod.setBit(BW - Mult2); // Mod = N / D
8385 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8387 // 4. Compute the minimum unsigned root of the equation:
8388 // I * (B / D) mod (N / D)
8389 // To simplify the computation, we factor out the divide by D:
8390 // (I * B mod N) / D
8391 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8392 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8395 /// For a given quadratic addrec, generate coefficients of the corresponding
8396 /// quadratic equation, multiplied by a common value to ensure that they are
8397 /// integers.
8398 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8399 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8400 /// were multiplied by, and BitWidth is the bit width of the original addrec
8401 /// coefficients.
8402 /// This function returns None if the addrec coefficients are not compile-
8403 /// time constants.
8404 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8405 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8406 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8407 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8408 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8409 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8410 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8411 << *AddRec << '\n');
8413 // We currently can only solve this if the coefficients are constants.
8414 if (!LC || !MC || !NC) {
8415 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8416 return None;
8419 APInt L = LC->getAPInt();
8420 APInt M = MC->getAPInt();
8421 APInt N = NC->getAPInt();
8422 assert(!N.isNullValue() && "This is not a quadratic addrec");
8424 unsigned BitWidth = LC->getAPInt().getBitWidth();
8425 unsigned NewWidth = BitWidth + 1;
8426 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8427 << BitWidth << '\n');
8428 // The sign-extension (as opposed to a zero-extension) here matches the
8429 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8430 N = N.sext(NewWidth);
8431 M = M.sext(NewWidth);
8432 L = L.sext(NewWidth);
8434 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8435 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8436 // L+M, L+2M+N, L+3M+3N, ...
8437 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8439 // The equation Acc = 0 is then
8440 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8441 // In a quadratic form it becomes:
8442 // N n^2 + (2M-N) n + 2L = 0.
8444 APInt A = N;
8445 APInt B = 2 * M - A;
8446 APInt C = 2 * L;
8447 APInt T = APInt(NewWidth, 2);
8448 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8449 << "x + " << C << ", coeff bw: " << NewWidth
8450 << ", multiplied by " << T << '\n');
8451 return std::make_tuple(A, B, C, T, BitWidth);
8454 /// Helper function to compare optional APInts:
8455 /// (a) if X and Y both exist, return min(X, Y),
8456 /// (b) if neither X nor Y exist, return None,
8457 /// (c) if exactly one of X and Y exists, return that value.
8458 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8459 if (X.hasValue() && Y.hasValue()) {
8460 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8461 APInt XW = X->sextOrSelf(W);
8462 APInt YW = Y->sextOrSelf(W);
8463 return XW.slt(YW) ? *X : *Y;
8465 if (!X.hasValue() && !Y.hasValue())
8466 return None;
8467 return X.hasValue() ? *X : *Y;
8470 /// Helper function to truncate an optional APInt to a given BitWidth.
8471 /// When solving addrec-related equations, it is preferable to return a value
8472 /// that has the same bit width as the original addrec's coefficients. If the
8473 /// solution fits in the original bit width, truncate it (except for i1).
8474 /// Returning a value of a different bit width may inhibit some optimizations.
8476 /// In general, a solution to a quadratic equation generated from an addrec
8477 /// may require BW+1 bits, where BW is the bit width of the addrec's
8478 /// coefficients. The reason is that the coefficients of the quadratic
8479 /// equation are BW+1 bits wide (to avoid truncation when converting from
8480 /// the addrec to the equation).
8481 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8482 if (!X.hasValue())
8483 return None;
8484 unsigned W = X->getBitWidth();
8485 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8486 return X->trunc(BitWidth);
8487 return X;
8490 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8491 /// iterations. The values L, M, N are assumed to be signed, and they
8492 /// should all have the same bit widths.
8493 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8494 /// where BW is the bit width of the addrec's coefficients.
8495 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8496 /// returned as such, otherwise the bit width of the returned value may
8497 /// be greater than BW.
8499 /// This function returns None if
8500 /// (a) the addrec coefficients are not constant, or
8501 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8502 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8503 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8504 static Optional<APInt>
8505 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8506 APInt A, B, C, M;
8507 unsigned BitWidth;
8508 auto T = GetQuadraticEquation(AddRec);
8509 if (!T.hasValue())
8510 return None;
8512 std::tie(A, B, C, M, BitWidth) = *T;
8513 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8514 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8515 if (!X.hasValue())
8516 return None;
8518 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8519 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8520 if (!V->isZero())
8521 return None;
8523 return TruncIfPossible(X, BitWidth);
8526 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8527 /// iterations. The values M, N are assumed to be signed, and they
8528 /// should all have the same bit widths.
8529 /// Find the least n such that c(n) does not belong to the given range,
8530 /// while c(n-1) does.
8532 /// This function returns None if
8533 /// (a) the addrec coefficients are not constant, or
8534 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8535 /// bounds of the range.
8536 static Optional<APInt>
8537 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8538 const ConstantRange &Range, ScalarEvolution &SE) {
8539 assert(AddRec->getOperand(0)->isZero() &&
8540 "Starting value of addrec should be 0");
8541 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8542 << Range << ", addrec " << *AddRec << '\n');
8543 // This case is handled in getNumIterationsInRange. Here we can assume that
8544 // we start in the range.
8545 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8546 "Addrec's initial value should be in range");
8548 APInt A, B, C, M;
8549 unsigned BitWidth;
8550 auto T = GetQuadraticEquation(AddRec);
8551 if (!T.hasValue())
8552 return None;
8554 // Be careful about the return value: there can be two reasons for not
8555 // returning an actual number. First, if no solutions to the equations
8556 // were found, and second, if the solutions don't leave the given range.
8557 // The first case means that the actual solution is "unknown", the second
8558 // means that it's known, but not valid. If the solution is unknown, we
8559 // cannot make any conclusions.
8560 // Return a pair: the optional solution and a flag indicating if the
8561 // solution was found.
8562 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8563 // Solve for signed overflow and unsigned overflow, pick the lower
8564 // solution.
8565 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8566 << Bound << " (before multiplying by " << M << ")\n");
8567 Bound *= M; // The quadratic equation multiplier.
8569 Optional<APInt> SO = None;
8570 if (BitWidth > 1) {
8571 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8572 "signed overflow\n");
8573 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8575 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8576 "unsigned overflow\n");
8577 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8578 BitWidth+1);
8580 auto LeavesRange = [&] (const APInt &X) {
8581 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8582 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8583 if (Range.contains(V0->getValue()))
8584 return false;
8585 // X should be at least 1, so X-1 is non-negative.
8586 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8587 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8588 if (Range.contains(V1->getValue()))
8589 return true;
8590 return false;
8593 // If SolveQuadraticEquationWrap returns None, it means that there can
8594 // be a solution, but the function failed to find it. We cannot treat it
8595 // as "no solution".
8596 if (!SO.hasValue() || !UO.hasValue())
8597 return { None, false };
8599 // Check the smaller value first to see if it leaves the range.
8600 // At this point, both SO and UO must have values.
8601 Optional<APInt> Min = MinOptional(SO, UO);
8602 if (LeavesRange(*Min))
8603 return { Min, true };
8604 Optional<APInt> Max = Min == SO ? UO : SO;
8605 if (LeavesRange(*Max))
8606 return { Max, true };
8608 // Solutions were found, but were eliminated, hence the "true".
8609 return { None, true };
8612 std::tie(A, B, C, M, BitWidth) = *T;
8613 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8614 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8615 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8616 auto SL = SolveForBoundary(Lower);
8617 auto SU = SolveForBoundary(Upper);
8618 // If any of the solutions was unknown, no meaninigful conclusions can
8619 // be made.
8620 if (!SL.second || !SU.second)
8621 return None;
8623 // Claim: The correct solution is not some value between Min and Max.
8625 // Justification: Assuming that Min and Max are different values, one of
8626 // them is when the first signed overflow happens, the other is when the
8627 // first unsigned overflow happens. Crossing the range boundary is only
8628 // possible via an overflow (treating 0 as a special case of it, modeling
8629 // an overflow as crossing k*2^W for some k).
8631 // The interesting case here is when Min was eliminated as an invalid
8632 // solution, but Max was not. The argument is that if there was another
8633 // overflow between Min and Max, it would also have been eliminated if
8634 // it was considered.
8636 // For a given boundary, it is possible to have two overflows of the same
8637 // type (signed/unsigned) without having the other type in between: this
8638 // can happen when the vertex of the parabola is between the iterations
8639 // corresponding to the overflows. This is only possible when the two
8640 // overflows cross k*2^W for the same k. In such case, if the second one
8641 // left the range (and was the first one to do so), the first overflow
8642 // would have to enter the range, which would mean that either we had left
8643 // the range before or that we started outside of it. Both of these cases
8644 // are contradictions.
8646 // Claim: In the case where SolveForBoundary returns None, the correct
8647 // solution is not some value between the Max for this boundary and the
8648 // Min of the other boundary.
8650 // Justification: Assume that we had such Max_A and Min_B corresponding
8651 // to range boundaries A and B and such that Max_A < Min_B. If there was
8652 // a solution between Max_A and Min_B, it would have to be caused by an
8653 // overflow corresponding to either A or B. It cannot correspond to B,
8654 // since Min_B is the first occurrence of such an overflow. If it
8655 // corresponded to A, it would have to be either a signed or an unsigned
8656 // overflow that is larger than both eliminated overflows for A. But
8657 // between the eliminated overflows and this overflow, the values would
8658 // cover the entire value space, thus crossing the other boundary, which
8659 // is a contradiction.
8661 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8664 ScalarEvolution::ExitLimit
8665 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8666 bool AllowPredicates) {
8668 // This is only used for loops with a "x != y" exit test. The exit condition
8669 // is now expressed as a single expression, V = x-y. So the exit test is
8670 // effectively V != 0. We know and take advantage of the fact that this
8671 // expression only being used in a comparison by zero context.
8673 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8674 // If the value is a constant
8675 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8676 // If the value is already zero, the branch will execute zero times.
8677 if (C->getValue()->isZero()) return C;
8678 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8681 const SCEVAddRecExpr *AddRec =
8682 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8684 if (!AddRec && AllowPredicates)
8685 // Try to make this an AddRec using runtime tests, in the first X
8686 // iterations of this loop, where X is the SCEV expression found by the
8687 // algorithm below.
8688 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8690 if (!AddRec || AddRec->getLoop() != L)
8691 return getCouldNotCompute();
8693 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8694 // the quadratic equation to solve it.
8695 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8696 // We can only use this value if the chrec ends up with an exact zero
8697 // value at this index. When solving for "X*X != 5", for example, we
8698 // should not accept a root of 2.
8699 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8700 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8701 return ExitLimit(R, R, false, Predicates);
8703 return getCouldNotCompute();
8706 // Otherwise we can only handle this if it is affine.
8707 if (!AddRec->isAffine())
8708 return getCouldNotCompute();
8710 // If this is an affine expression, the execution count of this branch is
8711 // the minimum unsigned root of the following equation:
8713 // Start + Step*N = 0 (mod 2^BW)
8715 // equivalent to:
8717 // Step*N = -Start (mod 2^BW)
8719 // where BW is the common bit width of Start and Step.
8721 // Get the initial value for the loop.
8722 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8723 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8725 // For now we handle only constant steps.
8727 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8728 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8729 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8730 // We have not yet seen any such cases.
8731 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8732 if (!StepC || StepC->getValue()->isZero())
8733 return getCouldNotCompute();
8735 // For positive steps (counting up until unsigned overflow):
8736 // N = -Start/Step (as unsigned)
8737 // For negative steps (counting down to zero):
8738 // N = Start/-Step
8739 // First compute the unsigned distance from zero in the direction of Step.
8740 bool CountDown = StepC->getAPInt().isNegative();
8741 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8743 // Handle unitary steps, which cannot wraparound.
8744 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8745 // N = Distance (as unsigned)
8746 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8747 APInt MaxBECount = getUnsignedRangeMax(Distance);
8749 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8750 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8751 // case, and see if we can improve the bound.
8753 // Explicitly handling this here is necessary because getUnsignedRange
8754 // isn't context-sensitive; it doesn't know that we only care about the
8755 // range inside the loop.
8756 const SCEV *Zero = getZero(Distance->getType());
8757 const SCEV *One = getOne(Distance->getType());
8758 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8759 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8760 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8761 // as "unsigned_max(Distance + 1) - 1".
8762 ConstantRange CR = getUnsignedRange(DistancePlusOne);
8763 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8765 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8768 // If the condition controls loop exit (the loop exits only if the expression
8769 // is true) and the addition is no-wrap we can use unsigned divide to
8770 // compute the backedge count. In this case, the step may not divide the
8771 // distance, but we don't care because if the condition is "missed" the loop
8772 // will have undefined behavior due to wrapping.
8773 if (ControlsExit && AddRec->hasNoSelfWrap() &&
8774 loopHasNoAbnormalExits(AddRec->getLoop())) {
8775 const SCEV *Exact =
8776 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8777 const SCEV *Max =
8778 Exact == getCouldNotCompute()
8779 ? Exact
8780 : getConstant(getUnsignedRangeMax(Exact));
8781 return ExitLimit(Exact, Max, false, Predicates);
8784 // Solve the general equation.
8785 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8786 getNegativeSCEV(Start), *this);
8787 const SCEV *M = E == getCouldNotCompute()
8789 : getConstant(getUnsignedRangeMax(E));
8790 return ExitLimit(E, M, false, Predicates);
8793 ScalarEvolution::ExitLimit
8794 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8795 // Loops that look like: while (X == 0) are very strange indeed. We don't
8796 // handle them yet except for the trivial case. This could be expanded in the
8797 // future as needed.
8799 // If the value is a constant, check to see if it is known to be non-zero
8800 // already. If so, the backedge will execute zero times.
8801 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8802 if (!C->getValue()->isZero())
8803 return getZero(C->getType());
8804 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8807 // We could implement others, but I really doubt anyone writes loops like
8808 // this, and if they did, they would already be constant folded.
8809 return getCouldNotCompute();
8812 std::pair<BasicBlock *, BasicBlock *>
8813 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8814 // If the block has a unique predecessor, then there is no path from the
8815 // predecessor to the block that does not go through the direct edge
8816 // from the predecessor to the block.
8817 if (BasicBlock *Pred = BB->getSinglePredecessor())
8818 return {Pred, BB};
8820 // A loop's header is defined to be a block that dominates the loop.
8821 // If the header has a unique predecessor outside the loop, it must be
8822 // a block that has exactly one successor that can reach the loop.
8823 if (Loop *L = LI.getLoopFor(BB))
8824 return {L->getLoopPredecessor(), L->getHeader()};
8826 return {nullptr, nullptr};
8829 /// SCEV structural equivalence is usually sufficient for testing whether two
8830 /// expressions are equal, however for the purposes of looking for a condition
8831 /// guarding a loop, it can be useful to be a little more general, since a
8832 /// front-end may have replicated the controlling expression.
8833 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8834 // Quick check to see if they are the same SCEV.
8835 if (A == B) return true;
8837 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8838 // Not all instructions that are "identical" compute the same value. For
8839 // instance, two distinct alloca instructions allocating the same type are
8840 // identical and do not read memory; but compute distinct values.
8841 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8844 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8845 // two different instructions with the same value. Check for this case.
8846 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8847 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8848 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8849 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8850 if (ComputesEqualValues(AI, BI))
8851 return true;
8853 // Otherwise assume they may have a different value.
8854 return false;
8857 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8858 const SCEV *&LHS, const SCEV *&RHS,
8859 unsigned Depth) {
8860 bool Changed = false;
8861 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8862 // '0 != 0'.
8863 auto TrivialCase = [&](bool TriviallyTrue) {
8864 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8865 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8866 return true;
8868 // If we hit the max recursion limit bail out.
8869 if (Depth >= 3)
8870 return false;
8872 // Canonicalize a constant to the right side.
8873 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8874 // Check for both operands constant.
8875 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8876 if (ConstantExpr::getICmp(Pred,
8877 LHSC->getValue(),
8878 RHSC->getValue())->isNullValue())
8879 return TrivialCase(false);
8880 else
8881 return TrivialCase(true);
8883 // Otherwise swap the operands to put the constant on the right.
8884 std::swap(LHS, RHS);
8885 Pred = ICmpInst::getSwappedPredicate(Pred);
8886 Changed = true;
8889 // If we're comparing an addrec with a value which is loop-invariant in the
8890 // addrec's loop, put the addrec on the left. Also make a dominance check,
8891 // as both operands could be addrecs loop-invariant in each other's loop.
8892 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8893 const Loop *L = AR->getLoop();
8894 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8895 std::swap(LHS, RHS);
8896 Pred = ICmpInst::getSwappedPredicate(Pred);
8897 Changed = true;
8901 // If there's a constant operand, canonicalize comparisons with boundary
8902 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8903 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8904 const APInt &RA = RC->getAPInt();
8906 bool SimplifiedByConstantRange = false;
8908 if (!ICmpInst::isEquality(Pred)) {
8909 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8910 if (ExactCR.isFullSet())
8911 return TrivialCase(true);
8912 else if (ExactCR.isEmptySet())
8913 return TrivialCase(false);
8915 APInt NewRHS;
8916 CmpInst::Predicate NewPred;
8917 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8918 ICmpInst::isEquality(NewPred)) {
8919 // We were able to convert an inequality to an equality.
8920 Pred = NewPred;
8921 RHS = getConstant(NewRHS);
8922 Changed = SimplifiedByConstantRange = true;
8926 if (!SimplifiedByConstantRange) {
8927 switch (Pred) {
8928 default:
8929 break;
8930 case ICmpInst::ICMP_EQ:
8931 case ICmpInst::ICMP_NE:
8932 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8933 if (!RA)
8934 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8935 if (const SCEVMulExpr *ME =
8936 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8937 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8938 ME->getOperand(0)->isAllOnesValue()) {
8939 RHS = AE->getOperand(1);
8940 LHS = ME->getOperand(1);
8941 Changed = true;
8943 break;
8946 // The "Should have been caught earlier!" messages refer to the fact
8947 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8948 // should have fired on the corresponding cases, and canonicalized the
8949 // check to trivial case.
8951 case ICmpInst::ICMP_UGE:
8952 assert(!RA.isMinValue() && "Should have been caught earlier!");
8953 Pred = ICmpInst::ICMP_UGT;
8954 RHS = getConstant(RA - 1);
8955 Changed = true;
8956 break;
8957 case ICmpInst::ICMP_ULE:
8958 assert(!RA.isMaxValue() && "Should have been caught earlier!");
8959 Pred = ICmpInst::ICMP_ULT;
8960 RHS = getConstant(RA + 1);
8961 Changed = true;
8962 break;
8963 case ICmpInst::ICMP_SGE:
8964 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8965 Pred = ICmpInst::ICMP_SGT;
8966 RHS = getConstant(RA - 1);
8967 Changed = true;
8968 break;
8969 case ICmpInst::ICMP_SLE:
8970 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8971 Pred = ICmpInst::ICMP_SLT;
8972 RHS = getConstant(RA + 1);
8973 Changed = true;
8974 break;
8979 // Check for obvious equality.
8980 if (HasSameValue(LHS, RHS)) {
8981 if (ICmpInst::isTrueWhenEqual(Pred))
8982 return TrivialCase(true);
8983 if (ICmpInst::isFalseWhenEqual(Pred))
8984 return TrivialCase(false);
8987 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8988 // adding or subtracting 1 from one of the operands.
8989 switch (Pred) {
8990 case ICmpInst::ICMP_SLE:
8991 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8992 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8993 SCEV::FlagNSW);
8994 Pred = ICmpInst::ICMP_SLT;
8995 Changed = true;
8996 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8997 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8998 SCEV::FlagNSW);
8999 Pred = ICmpInst::ICMP_SLT;
9000 Changed = true;
9002 break;
9003 case ICmpInst::ICMP_SGE:
9004 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9005 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9006 SCEV::FlagNSW);
9007 Pred = ICmpInst::ICMP_SGT;
9008 Changed = true;
9009 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9010 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9011 SCEV::FlagNSW);
9012 Pred = ICmpInst::ICMP_SGT;
9013 Changed = true;
9015 break;
9016 case ICmpInst::ICMP_ULE:
9017 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9018 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9019 SCEV::FlagNUW);
9020 Pred = ICmpInst::ICMP_ULT;
9021 Changed = true;
9022 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9023 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9024 Pred = ICmpInst::ICMP_ULT;
9025 Changed = true;
9027 break;
9028 case ICmpInst::ICMP_UGE:
9029 if (!getUnsignedRangeMin(RHS).isMinValue()) {
9030 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9031 Pred = ICmpInst::ICMP_UGT;
9032 Changed = true;
9033 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9034 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9035 SCEV::FlagNUW);
9036 Pred = ICmpInst::ICMP_UGT;
9037 Changed = true;
9039 break;
9040 default:
9041 break;
9044 // TODO: More simplifications are possible here.
9046 // Recursively simplify until we either hit a recursion limit or nothing
9047 // changes.
9048 if (Changed)
9049 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9051 return Changed;
9054 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9055 return getSignedRangeMax(S).isNegative();
9058 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9059 return getSignedRangeMin(S).isStrictlyPositive();
9062 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9063 return !getSignedRangeMin(S).isNegative();
9066 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9067 return !getSignedRangeMax(S).isStrictlyPositive();
9070 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9071 return isKnownNegative(S) || isKnownPositive(S);
9074 std::pair<const SCEV *, const SCEV *>
9075 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9076 // Compute SCEV on entry of loop L.
9077 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9078 if (Start == getCouldNotCompute())
9079 return { Start, Start };
9080 // Compute post increment SCEV for loop L.
9081 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9082 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9083 return { Start, PostInc };
9086 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9087 const SCEV *LHS, const SCEV *RHS) {
9088 // First collect all loops.
9089 SmallPtrSet<const Loop *, 8> LoopsUsed;
9090 getUsedLoops(LHS, LoopsUsed);
9091 getUsedLoops(RHS, LoopsUsed);
9093 if (LoopsUsed.empty())
9094 return false;
9096 // Domination relationship must be a linear order on collected loops.
9097 #ifndef NDEBUG
9098 for (auto *L1 : LoopsUsed)
9099 for (auto *L2 : LoopsUsed)
9100 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9101 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9102 "Domination relationship is not a linear order");
9103 #endif
9105 const Loop *MDL =
9106 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9107 [&](const Loop *L1, const Loop *L2) {
9108 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9111 // Get init and post increment value for LHS.
9112 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9113 // if LHS contains unknown non-invariant SCEV then bail out.
9114 if (SplitLHS.first == getCouldNotCompute())
9115 return false;
9116 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9117 // Get init and post increment value for RHS.
9118 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9119 // if RHS contains unknown non-invariant SCEV then bail out.
9120 if (SplitRHS.first == getCouldNotCompute())
9121 return false;
9122 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9123 // It is possible that init SCEV contains an invariant load but it does
9124 // not dominate MDL and is not available at MDL loop entry, so we should
9125 // check it here.
9126 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9127 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9128 return false;
9130 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9131 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9132 SplitRHS.second);
9135 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9136 const SCEV *LHS, const SCEV *RHS) {
9137 // Canonicalize the inputs first.
9138 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9140 if (isKnownViaInduction(Pred, LHS, RHS))
9141 return true;
9143 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9144 return true;
9146 // Otherwise see what can be done with some simple reasoning.
9147 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9150 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9151 const SCEVAddRecExpr *LHS,
9152 const SCEV *RHS) {
9153 const Loop *L = LHS->getLoop();
9154 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9155 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9158 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9159 ICmpInst::Predicate Pred,
9160 bool &Increasing) {
9161 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9163 #ifndef NDEBUG
9164 // Verify an invariant: inverting the predicate should turn a monotonically
9165 // increasing change to a monotonically decreasing one, and vice versa.
9166 bool IncreasingSwapped;
9167 bool ResultSwapped = isMonotonicPredicateImpl(
9168 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9170 assert(Result == ResultSwapped && "should be able to analyze both!");
9171 if (ResultSwapped)
9172 assert(Increasing == !IncreasingSwapped &&
9173 "monotonicity should flip as we flip the predicate");
9174 #endif
9176 return Result;
9179 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9180 ICmpInst::Predicate Pred,
9181 bool &Increasing) {
9183 // A zero step value for LHS means the induction variable is essentially a
9184 // loop invariant value. We don't really depend on the predicate actually
9185 // flipping from false to true (for increasing predicates, and the other way
9186 // around for decreasing predicates), all we care about is that *if* the
9187 // predicate changes then it only changes from false to true.
9189 // A zero step value in itself is not very useful, but there may be places
9190 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9191 // as general as possible.
9193 switch (Pred) {
9194 default:
9195 return false; // Conservative answer
9197 case ICmpInst::ICMP_UGT:
9198 case ICmpInst::ICMP_UGE:
9199 case ICmpInst::ICMP_ULT:
9200 case ICmpInst::ICMP_ULE:
9201 if (!LHS->hasNoUnsignedWrap())
9202 return false;
9204 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9205 return true;
9207 case ICmpInst::ICMP_SGT:
9208 case ICmpInst::ICMP_SGE:
9209 case ICmpInst::ICMP_SLT:
9210 case ICmpInst::ICMP_SLE: {
9211 if (!LHS->hasNoSignedWrap())
9212 return false;
9214 const SCEV *Step = LHS->getStepRecurrence(*this);
9216 if (isKnownNonNegative(Step)) {
9217 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9218 return true;
9221 if (isKnownNonPositive(Step)) {
9222 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9223 return true;
9226 return false;
9231 llvm_unreachable("switch has default clause!");
9234 bool ScalarEvolution::isLoopInvariantPredicate(
9235 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9236 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9237 const SCEV *&InvariantRHS) {
9239 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9240 if (!isLoopInvariant(RHS, L)) {
9241 if (!isLoopInvariant(LHS, L))
9242 return false;
9244 std::swap(LHS, RHS);
9245 Pred = ICmpInst::getSwappedPredicate(Pred);
9248 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9249 if (!ArLHS || ArLHS->getLoop() != L)
9250 return false;
9252 bool Increasing;
9253 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9254 return false;
9256 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9257 // true as the loop iterates, and the backedge is control dependent on
9258 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9260 // * if the predicate was false in the first iteration then the predicate
9261 // is never evaluated again, since the loop exits without taking the
9262 // backedge.
9263 // * if the predicate was true in the first iteration then it will
9264 // continue to be true for all future iterations since it is
9265 // monotonically increasing.
9267 // For both the above possibilities, we can replace the loop varying
9268 // predicate with its value on the first iteration of the loop (which is
9269 // loop invariant).
9271 // A similar reasoning applies for a monotonically decreasing predicate, by
9272 // replacing true with false and false with true in the above two bullets.
9274 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9276 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9277 return false;
9279 InvariantPred = Pred;
9280 InvariantLHS = ArLHS->getStart();
9281 InvariantRHS = RHS;
9282 return true;
9285 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9286 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9287 if (HasSameValue(LHS, RHS))
9288 return ICmpInst::isTrueWhenEqual(Pred);
9290 // This code is split out from isKnownPredicate because it is called from
9291 // within isLoopEntryGuardedByCond.
9293 auto CheckRanges =
9294 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9295 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9296 .contains(RangeLHS);
9299 // The check at the top of the function catches the case where the values are
9300 // known to be equal.
9301 if (Pred == CmpInst::ICMP_EQ)
9302 return false;
9304 if (Pred == CmpInst::ICMP_NE)
9305 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9306 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9307 isKnownNonZero(getMinusSCEV(LHS, RHS));
9309 if (CmpInst::isSigned(Pred))
9310 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9312 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9315 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9316 const SCEV *LHS,
9317 const SCEV *RHS) {
9318 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9319 // Return Y via OutY.
9320 auto MatchBinaryAddToConst =
9321 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9322 SCEV::NoWrapFlags ExpectedFlags) {
9323 const SCEV *NonConstOp, *ConstOp;
9324 SCEV::NoWrapFlags FlagsPresent;
9326 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9327 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9328 return false;
9330 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9331 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9334 APInt C;
9336 switch (Pred) {
9337 default:
9338 break;
9340 case ICmpInst::ICMP_SGE:
9341 std::swap(LHS, RHS);
9342 LLVM_FALLTHROUGH;
9343 case ICmpInst::ICMP_SLE:
9344 // X s<= (X + C)<nsw> if C >= 0
9345 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9346 return true;
9348 // (X + C)<nsw> s<= X if C <= 0
9349 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9350 !C.isStrictlyPositive())
9351 return true;
9352 break;
9354 case ICmpInst::ICMP_SGT:
9355 std::swap(LHS, RHS);
9356 LLVM_FALLTHROUGH;
9357 case ICmpInst::ICMP_SLT:
9358 // X s< (X + C)<nsw> if C > 0
9359 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9360 C.isStrictlyPositive())
9361 return true;
9363 // (X + C)<nsw> s< X if C < 0
9364 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9365 return true;
9366 break;
9369 return false;
9372 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9373 const SCEV *LHS,
9374 const SCEV *RHS) {
9375 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9376 return false;
9378 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9379 // the stack can result in exponential time complexity.
9380 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9382 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9384 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9385 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9386 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9387 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9388 // use isKnownPredicate later if needed.
9389 return isKnownNonNegative(RHS) &&
9390 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9391 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9394 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9395 ICmpInst::Predicate Pred,
9396 const SCEV *LHS, const SCEV *RHS) {
9397 // No need to even try if we know the module has no guards.
9398 if (!HasGuards)
9399 return false;
9401 return any_of(*BB, [&](Instruction &I) {
9402 using namespace llvm::PatternMatch;
9404 Value *Condition;
9405 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9406 m_Value(Condition))) &&
9407 isImpliedCond(Pred, LHS, RHS, Condition, false);
9411 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9412 /// protected by a conditional between LHS and RHS. This is used to
9413 /// to eliminate casts.
9414 bool
9415 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9416 ICmpInst::Predicate Pred,
9417 const SCEV *LHS, const SCEV *RHS) {
9418 // Interpret a null as meaning no loop, where there is obviously no guard
9419 // (interprocedural conditions notwithstanding).
9420 if (!L) return true;
9422 if (VerifyIR)
9423 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9424 "This cannot be done on broken IR!");
9427 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9428 return true;
9430 BasicBlock *Latch = L->getLoopLatch();
9431 if (!Latch)
9432 return false;
9434 BranchInst *LoopContinuePredicate =
9435 dyn_cast<BranchInst>(Latch->getTerminator());
9436 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9437 isImpliedCond(Pred, LHS, RHS,
9438 LoopContinuePredicate->getCondition(),
9439 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9440 return true;
9442 // We don't want more than one activation of the following loops on the stack
9443 // -- that can lead to O(n!) time complexity.
9444 if (WalkingBEDominatingConds)
9445 return false;
9447 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9449 // See if we can exploit a trip count to prove the predicate.
9450 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9451 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9452 if (LatchBECount != getCouldNotCompute()) {
9453 // We know that Latch branches back to the loop header exactly
9454 // LatchBECount times. This means the backdege condition at Latch is
9455 // equivalent to "{0,+,1} u< LatchBECount".
9456 Type *Ty = LatchBECount->getType();
9457 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9458 const SCEV *LoopCounter =
9459 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9460 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9461 LatchBECount))
9462 return true;
9465 // Check conditions due to any @llvm.assume intrinsics.
9466 for (auto &AssumeVH : AC.assumptions()) {
9467 if (!AssumeVH)
9468 continue;
9469 auto *CI = cast<CallInst>(AssumeVH);
9470 if (!DT.dominates(CI, Latch->getTerminator()))
9471 continue;
9473 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9474 return true;
9477 // If the loop is not reachable from the entry block, we risk running into an
9478 // infinite loop as we walk up into the dom tree. These loops do not matter
9479 // anyway, so we just return a conservative answer when we see them.
9480 if (!DT.isReachableFromEntry(L->getHeader()))
9481 return false;
9483 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9484 return true;
9486 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9487 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9488 assert(DTN && "should reach the loop header before reaching the root!");
9490 BasicBlock *BB = DTN->getBlock();
9491 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9492 return true;
9494 BasicBlock *PBB = BB->getSinglePredecessor();
9495 if (!PBB)
9496 continue;
9498 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9499 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9500 continue;
9502 Value *Condition = ContinuePredicate->getCondition();
9504 // If we have an edge `E` within the loop body that dominates the only
9505 // latch, the condition guarding `E` also guards the backedge. This
9506 // reasoning works only for loops with a single latch.
9508 BasicBlockEdge DominatingEdge(PBB, BB);
9509 if (DominatingEdge.isSingleEdge()) {
9510 // We're constructively (and conservatively) enumerating edges within the
9511 // loop body that dominate the latch. The dominator tree better agree
9512 // with us on this:
9513 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9515 if (isImpliedCond(Pred, LHS, RHS, Condition,
9516 BB != ContinuePredicate->getSuccessor(0)))
9517 return true;
9521 return false;
9524 bool
9525 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9526 ICmpInst::Predicate Pred,
9527 const SCEV *LHS, const SCEV *RHS) {
9528 // Interpret a null as meaning no loop, where there is obviously no guard
9529 // (interprocedural conditions notwithstanding).
9530 if (!L) return false;
9532 if (VerifyIR)
9533 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9534 "This cannot be done on broken IR!");
9536 // Both LHS and RHS must be available at loop entry.
9537 assert(isAvailableAtLoopEntry(LHS, L) &&
9538 "LHS is not available at Loop Entry");
9539 assert(isAvailableAtLoopEntry(RHS, L) &&
9540 "RHS is not available at Loop Entry");
9542 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9543 return true;
9545 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9546 // the facts (a >= b && a != b) separately. A typical situation is when the
9547 // non-strict comparison is known from ranges and non-equality is known from
9548 // dominating predicates. If we are proving strict comparison, we always try
9549 // to prove non-equality and non-strict comparison separately.
9550 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9551 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9552 bool ProvedNonStrictComparison = false;
9553 bool ProvedNonEquality = false;
9555 if (ProvingStrictComparison) {
9556 ProvedNonStrictComparison =
9557 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9558 ProvedNonEquality =
9559 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9560 if (ProvedNonStrictComparison && ProvedNonEquality)
9561 return true;
9564 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9565 auto ProveViaGuard = [&](BasicBlock *Block) {
9566 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9567 return true;
9568 if (ProvingStrictComparison) {
9569 if (!ProvedNonStrictComparison)
9570 ProvedNonStrictComparison =
9571 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9572 if (!ProvedNonEquality)
9573 ProvedNonEquality =
9574 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9575 if (ProvedNonStrictComparison && ProvedNonEquality)
9576 return true;
9578 return false;
9581 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9582 auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9583 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9584 return true;
9585 if (ProvingStrictComparison) {
9586 if (!ProvedNonStrictComparison)
9587 ProvedNonStrictComparison =
9588 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9589 if (!ProvedNonEquality)
9590 ProvedNonEquality =
9591 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9592 if (ProvedNonStrictComparison && ProvedNonEquality)
9593 return true;
9595 return false;
9598 // Starting at the loop predecessor, climb up the predecessor chain, as long
9599 // as there are predecessors that can be found that have unique successors
9600 // leading to the original header.
9601 for (std::pair<BasicBlock *, BasicBlock *>
9602 Pair(L->getLoopPredecessor(), L->getHeader());
9603 Pair.first;
9604 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9606 if (ProveViaGuard(Pair.first))
9607 return true;
9609 BranchInst *LoopEntryPredicate =
9610 dyn_cast<BranchInst>(Pair.first->getTerminator());
9611 if (!LoopEntryPredicate ||
9612 LoopEntryPredicate->isUnconditional())
9613 continue;
9615 if (ProveViaCond(LoopEntryPredicate->getCondition(),
9616 LoopEntryPredicate->getSuccessor(0) != Pair.second))
9617 return true;
9620 // Check conditions due to any @llvm.assume intrinsics.
9621 for (auto &AssumeVH : AC.assumptions()) {
9622 if (!AssumeVH)
9623 continue;
9624 auto *CI = cast<CallInst>(AssumeVH);
9625 if (!DT.dominates(CI, L->getHeader()))
9626 continue;
9628 if (ProveViaCond(CI->getArgOperand(0), false))
9629 return true;
9632 return false;
9635 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9636 const SCEV *LHS, const SCEV *RHS,
9637 Value *FoundCondValue,
9638 bool Inverse) {
9639 if (!PendingLoopPredicates.insert(FoundCondValue).second)
9640 return false;
9642 auto ClearOnExit =
9643 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9645 // Recursively handle And and Or conditions.
9646 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9647 if (BO->getOpcode() == Instruction::And) {
9648 if (!Inverse)
9649 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9650 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9651 } else if (BO->getOpcode() == Instruction::Or) {
9652 if (Inverse)
9653 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9654 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9658 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9659 if (!ICI) return false;
9661 // Now that we found a conditional branch that dominates the loop or controls
9662 // the loop latch. Check to see if it is the comparison we are looking for.
9663 ICmpInst::Predicate FoundPred;
9664 if (Inverse)
9665 FoundPred = ICI->getInversePredicate();
9666 else
9667 FoundPred = ICI->getPredicate();
9669 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9670 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9672 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9675 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9676 const SCEV *RHS,
9677 ICmpInst::Predicate FoundPred,
9678 const SCEV *FoundLHS,
9679 const SCEV *FoundRHS) {
9680 // Balance the types.
9681 if (getTypeSizeInBits(LHS->getType()) <
9682 getTypeSizeInBits(FoundLHS->getType())) {
9683 if (CmpInst::isSigned(Pred)) {
9684 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9685 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9686 } else {
9687 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9688 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9690 } else if (getTypeSizeInBits(LHS->getType()) >
9691 getTypeSizeInBits(FoundLHS->getType())) {
9692 if (CmpInst::isSigned(FoundPred)) {
9693 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9694 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9695 } else {
9696 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9697 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9701 // Canonicalize the query to match the way instcombine will have
9702 // canonicalized the comparison.
9703 if (SimplifyICmpOperands(Pred, LHS, RHS))
9704 if (LHS == RHS)
9705 return CmpInst::isTrueWhenEqual(Pred);
9706 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9707 if (FoundLHS == FoundRHS)
9708 return CmpInst::isFalseWhenEqual(FoundPred);
9710 // Check to see if we can make the LHS or RHS match.
9711 if (LHS == FoundRHS || RHS == FoundLHS) {
9712 if (isa<SCEVConstant>(RHS)) {
9713 std::swap(FoundLHS, FoundRHS);
9714 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9715 } else {
9716 std::swap(LHS, RHS);
9717 Pred = ICmpInst::getSwappedPredicate(Pred);
9721 // Check whether the found predicate is the same as the desired predicate.
9722 if (FoundPred == Pred)
9723 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9725 // Check whether swapping the found predicate makes it the same as the
9726 // desired predicate.
9727 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9728 if (isa<SCEVConstant>(RHS))
9729 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9730 else
9731 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9732 RHS, LHS, FoundLHS, FoundRHS);
9735 // Unsigned comparison is the same as signed comparison when both the operands
9736 // are non-negative.
9737 if (CmpInst::isUnsigned(FoundPred) &&
9738 CmpInst::getSignedPredicate(FoundPred) == Pred &&
9739 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9740 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9742 // Check if we can make progress by sharpening ranges.
9743 if (FoundPred == ICmpInst::ICMP_NE &&
9744 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9746 const SCEVConstant *C = nullptr;
9747 const SCEV *V = nullptr;
9749 if (isa<SCEVConstant>(FoundLHS)) {
9750 C = cast<SCEVConstant>(FoundLHS);
9751 V = FoundRHS;
9752 } else {
9753 C = cast<SCEVConstant>(FoundRHS);
9754 V = FoundLHS;
9757 // The guarding predicate tells us that C != V. If the known range
9758 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9759 // range we consider has to correspond to same signedness as the
9760 // predicate we're interested in folding.
9762 APInt Min = ICmpInst::isSigned(Pred) ?
9763 getSignedRangeMin(V) : getUnsignedRangeMin(V);
9765 if (Min == C->getAPInt()) {
9766 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9767 // This is true even if (Min + 1) wraps around -- in case of
9768 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9770 APInt SharperMin = Min + 1;
9772 switch (Pred) {
9773 case ICmpInst::ICMP_SGE:
9774 case ICmpInst::ICMP_UGE:
9775 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9776 // RHS, we're done.
9777 if (isImpliedCondOperands(Pred, LHS, RHS, V,
9778 getConstant(SharperMin)))
9779 return true;
9780 LLVM_FALLTHROUGH;
9782 case ICmpInst::ICMP_SGT:
9783 case ICmpInst::ICMP_UGT:
9784 // We know from the range information that (V `Pred` Min ||
9785 // V == Min). We know from the guarding condition that !(V
9786 // == Min). This gives us
9788 // V `Pred` Min || V == Min && !(V == Min)
9789 // => V `Pred` Min
9791 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9793 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9794 return true;
9795 LLVM_FALLTHROUGH;
9797 default:
9798 // No change
9799 break;
9804 // Check whether the actual condition is beyond sufficient.
9805 if (FoundPred == ICmpInst::ICMP_EQ)
9806 if (ICmpInst::isTrueWhenEqual(Pred))
9807 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9808 return true;
9809 if (Pred == ICmpInst::ICMP_NE)
9810 if (!ICmpInst::isTrueWhenEqual(FoundPred))
9811 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9812 return true;
9814 // Otherwise assume the worst.
9815 return false;
9818 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9819 const SCEV *&L, const SCEV *&R,
9820 SCEV::NoWrapFlags &Flags) {
9821 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9822 if (!AE || AE->getNumOperands() != 2)
9823 return false;
9825 L = AE->getOperand(0);
9826 R = AE->getOperand(1);
9827 Flags = AE->getNoWrapFlags();
9828 return true;
9831 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9832 const SCEV *Less) {
9833 // We avoid subtracting expressions here because this function is usually
9834 // fairly deep in the call stack (i.e. is called many times).
9836 // X - X = 0.
9837 if (More == Less)
9838 return APInt(getTypeSizeInBits(More->getType()), 0);
9840 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9841 const auto *LAR = cast<SCEVAddRecExpr>(Less);
9842 const auto *MAR = cast<SCEVAddRecExpr>(More);
9844 if (LAR->getLoop() != MAR->getLoop())
9845 return None;
9847 // We look at affine expressions only; not for correctness but to keep
9848 // getStepRecurrence cheap.
9849 if (!LAR->isAffine() || !MAR->isAffine())
9850 return None;
9852 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9853 return None;
9855 Less = LAR->getStart();
9856 More = MAR->getStart();
9858 // fall through
9861 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9862 const auto &M = cast<SCEVConstant>(More)->getAPInt();
9863 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9864 return M - L;
9867 SCEV::NoWrapFlags Flags;
9868 const SCEV *LLess = nullptr, *RLess = nullptr;
9869 const SCEV *LMore = nullptr, *RMore = nullptr;
9870 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9871 // Compare (X + C1) vs X.
9872 if (splitBinaryAdd(Less, LLess, RLess, Flags))
9873 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9874 if (RLess == More)
9875 return -(C1->getAPInt());
9877 // Compare X vs (X + C2).
9878 if (splitBinaryAdd(More, LMore, RMore, Flags))
9879 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9880 if (RMore == Less)
9881 return C2->getAPInt();
9883 // Compare (X + C1) vs (X + C2).
9884 if (C1 && C2 && RLess == RMore)
9885 return C2->getAPInt() - C1->getAPInt();
9887 return None;
9890 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9891 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9892 const SCEV *FoundLHS, const SCEV *FoundRHS) {
9893 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9894 return false;
9896 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9897 if (!AddRecLHS)
9898 return false;
9900 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9901 if (!AddRecFoundLHS)
9902 return false;
9904 // We'd like to let SCEV reason about control dependencies, so we constrain
9905 // both the inequalities to be about add recurrences on the same loop. This
9906 // way we can use isLoopEntryGuardedByCond later.
9908 const Loop *L = AddRecFoundLHS->getLoop();
9909 if (L != AddRecLHS->getLoop())
9910 return false;
9912 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
9914 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9915 // ... (2)
9917 // Informal proof for (2), assuming (1) [*]:
9919 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9921 // Then
9923 // FoundLHS s< FoundRHS s< INT_MIN - C
9924 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
9925 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9926 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
9927 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9928 // <=> FoundLHS + C s< FoundRHS + C
9930 // [*]: (1) can be proved by ruling out overflow.
9932 // [**]: This can be proved by analyzing all the four possibilities:
9933 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9934 // (A s>= 0, B s>= 0).
9936 // Note:
9937 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9938 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
9939 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
9940 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
9941 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9942 // C)".
9944 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9945 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9946 if (!LDiff || !RDiff || *LDiff != *RDiff)
9947 return false;
9949 if (LDiff->isMinValue())
9950 return true;
9952 APInt FoundRHSLimit;
9954 if (Pred == CmpInst::ICMP_ULT) {
9955 FoundRHSLimit = -(*RDiff);
9956 } else {
9957 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9958 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9961 // Try to prove (1) or (2), as needed.
9962 return isAvailableAtLoopEntry(FoundRHS, L) &&
9963 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9964 getConstant(FoundRHSLimit));
9967 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9968 const SCEV *LHS, const SCEV *RHS,
9969 const SCEV *FoundLHS,
9970 const SCEV *FoundRHS, unsigned Depth) {
9971 const PHINode *LPhi = nullptr, *RPhi = nullptr;
9973 auto ClearOnExit = make_scope_exit([&]() {
9974 if (LPhi) {
9975 bool Erased = PendingMerges.erase(LPhi);
9976 assert(Erased && "Failed to erase LPhi!");
9977 (void)Erased;
9979 if (RPhi) {
9980 bool Erased = PendingMerges.erase(RPhi);
9981 assert(Erased && "Failed to erase RPhi!");
9982 (void)Erased;
9986 // Find respective Phis and check that they are not being pending.
9987 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9988 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9989 if (!PendingMerges.insert(Phi).second)
9990 return false;
9991 LPhi = Phi;
9993 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9994 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9995 // If we detect a loop of Phi nodes being processed by this method, for
9996 // example:
9998 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9999 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10001 // we don't want to deal with a case that complex, so return conservative
10002 // answer false.
10003 if (!PendingMerges.insert(Phi).second)
10004 return false;
10005 RPhi = Phi;
10008 // If none of LHS, RHS is a Phi, nothing to do here.
10009 if (!LPhi && !RPhi)
10010 return false;
10012 // If there is a SCEVUnknown Phi we are interested in, make it left.
10013 if (!LPhi) {
10014 std::swap(LHS, RHS);
10015 std::swap(FoundLHS, FoundRHS);
10016 std::swap(LPhi, RPhi);
10017 Pred = ICmpInst::getSwappedPredicate(Pred);
10020 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10021 const BasicBlock *LBB = LPhi->getParent();
10022 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10024 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10025 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10026 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10027 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10030 if (RPhi && RPhi->getParent() == LBB) {
10031 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10032 // If we compare two Phis from the same block, and for each entry block
10033 // the predicate is true for incoming values from this block, then the
10034 // predicate is also true for the Phis.
10035 for (const BasicBlock *IncBB : predecessors(LBB)) {
10036 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10037 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10038 if (!ProvedEasily(L, R))
10039 return false;
10041 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10042 // Case two: RHS is also a Phi from the same basic block, and it is an
10043 // AddRec. It means that there is a loop which has both AddRec and Unknown
10044 // PHIs, for it we can compare incoming values of AddRec from above the loop
10045 // and latch with their respective incoming values of LPhi.
10046 // TODO: Generalize to handle loops with many inputs in a header.
10047 if (LPhi->getNumIncomingValues() != 2) return false;
10049 auto *RLoop = RAR->getLoop();
10050 auto *Predecessor = RLoop->getLoopPredecessor();
10051 assert(Predecessor && "Loop with AddRec with no predecessor?");
10052 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10053 if (!ProvedEasily(L1, RAR->getStart()))
10054 return false;
10055 auto *Latch = RLoop->getLoopLatch();
10056 assert(Latch && "Loop with AddRec with no latch?");
10057 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10058 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10059 return false;
10060 } else {
10061 // In all other cases go over inputs of LHS and compare each of them to RHS,
10062 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10063 // At this point RHS is either a non-Phi, or it is a Phi from some block
10064 // different from LBB.
10065 for (const BasicBlock *IncBB : predecessors(LBB)) {
10066 // Check that RHS is available in this block.
10067 if (!dominates(RHS, IncBB))
10068 return false;
10069 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10070 if (!ProvedEasily(L, RHS))
10071 return false;
10074 return true;
10077 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10078 const SCEV *LHS, const SCEV *RHS,
10079 const SCEV *FoundLHS,
10080 const SCEV *FoundRHS) {
10081 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10082 return true;
10084 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10085 return true;
10087 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10088 FoundLHS, FoundRHS) ||
10089 // ~x < ~y --> x > y
10090 isImpliedCondOperandsHelper(Pred, LHS, RHS,
10091 getNotSCEV(FoundRHS),
10092 getNotSCEV(FoundLHS));
10095 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10096 template <typename MinMaxExprType>
10097 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10098 const SCEV *Candidate) {
10099 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10100 if (!MinMaxExpr)
10101 return false;
10103 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10106 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10107 ICmpInst::Predicate Pred,
10108 const SCEV *LHS, const SCEV *RHS) {
10109 // If both sides are affine addrecs for the same loop, with equal
10110 // steps, and we know the recurrences don't wrap, then we only
10111 // need to check the predicate on the starting values.
10113 if (!ICmpInst::isRelational(Pred))
10114 return false;
10116 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10117 if (!LAR)
10118 return false;
10119 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10120 if (!RAR)
10121 return false;
10122 if (LAR->getLoop() != RAR->getLoop())
10123 return false;
10124 if (!LAR->isAffine() || !RAR->isAffine())
10125 return false;
10127 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10128 return false;
10130 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10131 SCEV::FlagNSW : SCEV::FlagNUW;
10132 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10133 return false;
10135 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10138 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10139 /// expression?
10140 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10141 ICmpInst::Predicate Pred,
10142 const SCEV *LHS, const SCEV *RHS) {
10143 switch (Pred) {
10144 default:
10145 return false;
10147 case ICmpInst::ICMP_SGE:
10148 std::swap(LHS, RHS);
10149 LLVM_FALLTHROUGH;
10150 case ICmpInst::ICMP_SLE:
10151 return
10152 // min(A, ...) <= A
10153 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10154 // A <= max(A, ...)
10155 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10157 case ICmpInst::ICMP_UGE:
10158 std::swap(LHS, RHS);
10159 LLVM_FALLTHROUGH;
10160 case ICmpInst::ICMP_ULE:
10161 return
10162 // min(A, ...) <= A
10163 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10164 // A <= max(A, ...)
10165 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10168 llvm_unreachable("covered switch fell through?!");
10171 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10172 const SCEV *LHS, const SCEV *RHS,
10173 const SCEV *FoundLHS,
10174 const SCEV *FoundRHS,
10175 unsigned Depth) {
10176 assert(getTypeSizeInBits(LHS->getType()) ==
10177 getTypeSizeInBits(RHS->getType()) &&
10178 "LHS and RHS have different sizes?");
10179 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10180 getTypeSizeInBits(FoundRHS->getType()) &&
10181 "FoundLHS and FoundRHS have different sizes?");
10182 // We want to avoid hurting the compile time with analysis of too big trees.
10183 if (Depth > MaxSCEVOperationsImplicationDepth)
10184 return false;
10185 // We only want to work with ICMP_SGT comparison so far.
10186 // TODO: Extend to ICMP_UGT?
10187 if (Pred == ICmpInst::ICMP_SLT) {
10188 Pred = ICmpInst::ICMP_SGT;
10189 std::swap(LHS, RHS);
10190 std::swap(FoundLHS, FoundRHS);
10192 if (Pred != ICmpInst::ICMP_SGT)
10193 return false;
10195 auto GetOpFromSExt = [&](const SCEV *S) {
10196 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10197 return Ext->getOperand();
10198 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10199 // the constant in some cases.
10200 return S;
10203 // Acquire values from extensions.
10204 auto *OrigLHS = LHS;
10205 auto *OrigFoundLHS = FoundLHS;
10206 LHS = GetOpFromSExt(LHS);
10207 FoundLHS = GetOpFromSExt(FoundLHS);
10209 // Is the SGT predicate can be proved trivially or using the found context.
10210 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10211 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10212 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10213 FoundRHS, Depth + 1);
10216 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10217 // We want to avoid creation of any new non-constant SCEV. Since we are
10218 // going to compare the operands to RHS, we should be certain that we don't
10219 // need any size extensions for this. So let's decline all cases when the
10220 // sizes of types of LHS and RHS do not match.
10221 // TODO: Maybe try to get RHS from sext to catch more cases?
10222 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10223 return false;
10225 // Should not overflow.
10226 if (!LHSAddExpr->hasNoSignedWrap())
10227 return false;
10229 auto *LL = LHSAddExpr->getOperand(0);
10230 auto *LR = LHSAddExpr->getOperand(1);
10231 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10233 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10234 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10235 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10237 // Try to prove the following rule:
10238 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10239 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10240 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10241 return true;
10242 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10243 Value *LL, *LR;
10244 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10246 using namespace llvm::PatternMatch;
10248 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10249 // Rules for division.
10250 // We are going to perform some comparisons with Denominator and its
10251 // derivative expressions. In general case, creating a SCEV for it may
10252 // lead to a complex analysis of the entire graph, and in particular it
10253 // can request trip count recalculation for the same loop. This would
10254 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10255 // this, we only want to create SCEVs that are constants in this section.
10256 // So we bail if Denominator is not a constant.
10257 if (!isa<ConstantInt>(LR))
10258 return false;
10260 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10262 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10263 // then a SCEV for the numerator already exists and matches with FoundLHS.
10264 auto *Numerator = getExistingSCEV(LL);
10265 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10266 return false;
10268 // Make sure that the numerator matches with FoundLHS and the denominator
10269 // is positive.
10270 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10271 return false;
10273 auto *DTy = Denominator->getType();
10274 auto *FRHSTy = FoundRHS->getType();
10275 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10276 // One of types is a pointer and another one is not. We cannot extend
10277 // them properly to a wider type, so let us just reject this case.
10278 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10279 // to avoid this check.
10280 return false;
10282 // Given that:
10283 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10284 auto *WTy = getWiderType(DTy, FRHSTy);
10285 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10286 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10288 // Try to prove the following rule:
10289 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10290 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10291 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10292 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10293 if (isKnownNonPositive(RHS) &&
10294 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10295 return true;
10297 // Try to prove the following rule:
10298 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10299 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10300 // If we divide it by Denominator > 2, then:
10301 // 1. If FoundLHS is negative, then the result is 0.
10302 // 2. If FoundLHS is non-negative, then the result is non-negative.
10303 // Anyways, the result is non-negative.
10304 auto *MinusOne = getNegativeSCEV(getOne(WTy));
10305 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10306 if (isKnownNegative(RHS) &&
10307 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10308 return true;
10312 // If our expression contained SCEVUnknown Phis, and we split it down and now
10313 // need to prove something for them, try to prove the predicate for every
10314 // possible incoming values of those Phis.
10315 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10316 return true;
10318 return false;
10321 bool
10322 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10323 const SCEV *LHS, const SCEV *RHS) {
10324 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10325 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10326 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10327 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10330 bool
10331 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10332 const SCEV *LHS, const SCEV *RHS,
10333 const SCEV *FoundLHS,
10334 const SCEV *FoundRHS) {
10335 switch (Pred) {
10336 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10337 case ICmpInst::ICMP_EQ:
10338 case ICmpInst::ICMP_NE:
10339 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10340 return true;
10341 break;
10342 case ICmpInst::ICMP_SLT:
10343 case ICmpInst::ICMP_SLE:
10344 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10345 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10346 return true;
10347 break;
10348 case ICmpInst::ICMP_SGT:
10349 case ICmpInst::ICMP_SGE:
10350 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10351 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10352 return true;
10353 break;
10354 case ICmpInst::ICMP_ULT:
10355 case ICmpInst::ICMP_ULE:
10356 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10357 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10358 return true;
10359 break;
10360 case ICmpInst::ICMP_UGT:
10361 case ICmpInst::ICMP_UGE:
10362 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10363 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10364 return true;
10365 break;
10368 // Maybe it can be proved via operations?
10369 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10370 return true;
10372 return false;
10375 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10376 const SCEV *LHS,
10377 const SCEV *RHS,
10378 const SCEV *FoundLHS,
10379 const SCEV *FoundRHS) {
10380 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10381 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10382 // reduce the compile time impact of this optimization.
10383 return false;
10385 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10386 if (!Addend)
10387 return false;
10389 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10391 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10392 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10393 ConstantRange FoundLHSRange =
10394 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10396 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10397 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10399 // We can also compute the range of values for `LHS` that satisfy the
10400 // consequent, "`LHS` `Pred` `RHS`":
10401 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10402 ConstantRange SatisfyingLHSRange =
10403 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10405 // The antecedent implies the consequent if every value of `LHS` that
10406 // satisfies the antecedent also satisfies the consequent.
10407 return SatisfyingLHSRange.contains(LHSRange);
10410 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10411 bool IsSigned, bool NoWrap) {
10412 assert(isKnownPositive(Stride) && "Positive stride expected!");
10414 if (NoWrap) return false;
10416 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10417 const SCEV *One = getOne(Stride->getType());
10419 if (IsSigned) {
10420 APInt MaxRHS = getSignedRangeMax(RHS);
10421 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10422 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10424 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10425 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10428 APInt MaxRHS = getUnsignedRangeMax(RHS);
10429 APInt MaxValue = APInt::getMaxValue(BitWidth);
10430 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10432 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10433 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10436 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10437 bool IsSigned, bool NoWrap) {
10438 if (NoWrap) return false;
10440 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10441 const SCEV *One = getOne(Stride->getType());
10443 if (IsSigned) {
10444 APInt MinRHS = getSignedRangeMin(RHS);
10445 APInt MinValue = APInt::getSignedMinValue(BitWidth);
10446 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10448 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10449 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10452 APInt MinRHS = getUnsignedRangeMin(RHS);
10453 APInt MinValue = APInt::getMinValue(BitWidth);
10454 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10456 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10457 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10460 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10461 bool Equality) {
10462 const SCEV *One = getOne(Step->getType());
10463 Delta = Equality ? getAddExpr(Delta, Step)
10464 : getAddExpr(Delta, getMinusSCEV(Step, One));
10465 return getUDivExpr(Delta, Step);
10468 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10469 const SCEV *Stride,
10470 const SCEV *End,
10471 unsigned BitWidth,
10472 bool IsSigned) {
10474 assert(!isKnownNonPositive(Stride) &&
10475 "Stride is expected strictly positive!");
10476 // Calculate the maximum backedge count based on the range of values
10477 // permitted by Start, End, and Stride.
10478 const SCEV *MaxBECount;
10479 APInt MinStart =
10480 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10482 APInt StrideForMaxBECount =
10483 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10485 // We already know that the stride is positive, so we paper over conservatism
10486 // in our range computation by forcing StrideForMaxBECount to be at least one.
10487 // In theory this is unnecessary, but we expect MaxBECount to be a
10488 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10489 // is nothing to constant fold it to).
10490 APInt One(BitWidth, 1, IsSigned);
10491 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10493 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10494 : APInt::getMaxValue(BitWidth);
10495 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10497 // Although End can be a MAX expression we estimate MaxEnd considering only
10498 // the case End = RHS of the loop termination condition. This is safe because
10499 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10500 // taken count.
10501 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10502 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10504 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10505 getConstant(StrideForMaxBECount) /* Step */,
10506 false /* Equality */);
10508 return MaxBECount;
10511 ScalarEvolution::ExitLimit
10512 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10513 const Loop *L, bool IsSigned,
10514 bool ControlsExit, bool AllowPredicates) {
10515 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10517 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10518 bool PredicatedIV = false;
10520 if (!IV && AllowPredicates) {
10521 // Try to make this an AddRec using runtime tests, in the first X
10522 // iterations of this loop, where X is the SCEV expression found by the
10523 // algorithm below.
10524 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10525 PredicatedIV = true;
10528 // Avoid weird loops
10529 if (!IV || IV->getLoop() != L || !IV->isAffine())
10530 return getCouldNotCompute();
10532 bool NoWrap = ControlsExit &&
10533 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10535 const SCEV *Stride = IV->getStepRecurrence(*this);
10537 bool PositiveStride = isKnownPositive(Stride);
10539 // Avoid negative or zero stride values.
10540 if (!PositiveStride) {
10541 // We can compute the correct backedge taken count for loops with unknown
10542 // strides if we can prove that the loop is not an infinite loop with side
10543 // effects. Here's the loop structure we are trying to handle -
10545 // i = start
10546 // do {
10547 // A[i] = i;
10548 // i += s;
10549 // } while (i < end);
10551 // The backedge taken count for such loops is evaluated as -
10552 // (max(end, start + stride) - start - 1) /u stride
10554 // The additional preconditions that we need to check to prove correctness
10555 // of the above formula is as follows -
10557 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10558 // NoWrap flag).
10559 // b) loop is single exit with no side effects.
10562 // Precondition a) implies that if the stride is negative, this is a single
10563 // trip loop. The backedge taken count formula reduces to zero in this case.
10565 // Precondition b) implies that the unknown stride cannot be zero otherwise
10566 // we have UB.
10568 // The positive stride case is the same as isKnownPositive(Stride) returning
10569 // true (original behavior of the function).
10571 // We want to make sure that the stride is truly unknown as there are edge
10572 // cases where ScalarEvolution propagates no wrap flags to the
10573 // post-increment/decrement IV even though the increment/decrement operation
10574 // itself is wrapping. The computed backedge taken count may be wrong in
10575 // such cases. This is prevented by checking that the stride is not known to
10576 // be either positive or non-positive. For example, no wrap flags are
10577 // propagated to the post-increment IV of this loop with a trip count of 2 -
10579 // unsigned char i;
10580 // for(i=127; i<128; i+=129)
10581 // A[i] = i;
10583 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10584 !loopHasNoSideEffects(L))
10585 return getCouldNotCompute();
10586 } else if (!Stride->isOne() &&
10587 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10588 // Avoid proven overflow cases: this will ensure that the backedge taken
10589 // count will not generate any unsigned overflow. Relaxed no-overflow
10590 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10591 // undefined behaviors like the case of C language.
10592 return getCouldNotCompute();
10594 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10595 : ICmpInst::ICMP_ULT;
10596 const SCEV *Start = IV->getStart();
10597 const SCEV *End = RHS;
10598 // When the RHS is not invariant, we do not know the end bound of the loop and
10599 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10600 // calculate the MaxBECount, given the start, stride and max value for the end
10601 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10602 // checked above).
10603 if (!isLoopInvariant(RHS, L)) {
10604 const SCEV *MaxBECount = computeMaxBECountForLT(
10605 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10606 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10607 false /*MaxOrZero*/, Predicates);
10609 // If the backedge is taken at least once, then it will be taken
10610 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10611 // is the LHS value of the less-than comparison the first time it is evaluated
10612 // and End is the RHS.
10613 const SCEV *BECountIfBackedgeTaken =
10614 computeBECount(getMinusSCEV(End, Start), Stride, false);
10615 // If the loop entry is guarded by the result of the backedge test of the
10616 // first loop iteration, then we know the backedge will be taken at least
10617 // once and so the backedge taken count is as above. If not then we use the
10618 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10619 // as if the backedge is taken at least once max(End,Start) is End and so the
10620 // result is as above, and if not max(End,Start) is Start so we get a backedge
10621 // count of zero.
10622 const SCEV *BECount;
10623 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10624 BECount = BECountIfBackedgeTaken;
10625 else {
10626 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10627 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10630 const SCEV *MaxBECount;
10631 bool MaxOrZero = false;
10632 if (isa<SCEVConstant>(BECount))
10633 MaxBECount = BECount;
10634 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10635 // If we know exactly how many times the backedge will be taken if it's
10636 // taken at least once, then the backedge count will either be that or
10637 // zero.
10638 MaxBECount = BECountIfBackedgeTaken;
10639 MaxOrZero = true;
10640 } else {
10641 MaxBECount = computeMaxBECountForLT(
10642 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10645 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10646 !isa<SCEVCouldNotCompute>(BECount))
10647 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10649 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10652 ScalarEvolution::ExitLimit
10653 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10654 const Loop *L, bool IsSigned,
10655 bool ControlsExit, bool AllowPredicates) {
10656 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10657 // We handle only IV > Invariant
10658 if (!isLoopInvariant(RHS, L))
10659 return getCouldNotCompute();
10661 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10662 if (!IV && AllowPredicates)
10663 // Try to make this an AddRec using runtime tests, in the first X
10664 // iterations of this loop, where X is the SCEV expression found by the
10665 // algorithm below.
10666 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10668 // Avoid weird loops
10669 if (!IV || IV->getLoop() != L || !IV->isAffine())
10670 return getCouldNotCompute();
10672 bool NoWrap = ControlsExit &&
10673 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10675 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10677 // Avoid negative or zero stride values
10678 if (!isKnownPositive(Stride))
10679 return getCouldNotCompute();
10681 // Avoid proven overflow cases: this will ensure that the backedge taken count
10682 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10683 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10684 // behaviors like the case of C language.
10685 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10686 return getCouldNotCompute();
10688 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10689 : ICmpInst::ICMP_UGT;
10691 const SCEV *Start = IV->getStart();
10692 const SCEV *End = RHS;
10693 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10694 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10696 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10698 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10699 : getUnsignedRangeMax(Start);
10701 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10702 : getUnsignedRangeMin(Stride);
10704 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10705 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10706 : APInt::getMinValue(BitWidth) + (MinStride - 1);
10708 // Although End can be a MIN expression we estimate MinEnd considering only
10709 // the case End = RHS. This is safe because in the other case (Start - End)
10710 // is zero, leading to a zero maximum backedge taken count.
10711 APInt MinEnd =
10712 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10713 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10715 const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10716 ? BECount
10717 : computeBECount(getConstant(MaxStart - MinEnd),
10718 getConstant(MinStride), false);
10720 if (isa<SCEVCouldNotCompute>(MaxBECount))
10721 MaxBECount = BECount;
10723 return ExitLimit(BECount, MaxBECount, false, Predicates);
10726 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10727 ScalarEvolution &SE) const {
10728 if (Range.isFullSet()) // Infinite loop.
10729 return SE.getCouldNotCompute();
10731 // If the start is a non-zero constant, shift the range to simplify things.
10732 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10733 if (!SC->getValue()->isZero()) {
10734 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10735 Operands[0] = SE.getZero(SC->getType());
10736 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10737 getNoWrapFlags(FlagNW));
10738 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10739 return ShiftedAddRec->getNumIterationsInRange(
10740 Range.subtract(SC->getAPInt()), SE);
10741 // This is strange and shouldn't happen.
10742 return SE.getCouldNotCompute();
10745 // The only time we can solve this is when we have all constant indices.
10746 // Otherwise, we cannot determine the overflow conditions.
10747 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10748 return SE.getCouldNotCompute();
10750 // Okay at this point we know that all elements of the chrec are constants and
10751 // that the start element is zero.
10753 // First check to see if the range contains zero. If not, the first
10754 // iteration exits.
10755 unsigned BitWidth = SE.getTypeSizeInBits(getType());
10756 if (!Range.contains(APInt(BitWidth, 0)))
10757 return SE.getZero(getType());
10759 if (isAffine()) {
10760 // If this is an affine expression then we have this situation:
10761 // Solve {0,+,A} in Range === Ax in Range
10763 // We know that zero is in the range. If A is positive then we know that
10764 // the upper value of the range must be the first possible exit value.
10765 // If A is negative then the lower of the range is the last possible loop
10766 // value. Also note that we already checked for a full range.
10767 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10768 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10770 // The exit value should be (End+A)/A.
10771 APInt ExitVal = (End + A).udiv(A);
10772 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10774 // Evaluate at the exit value. If we really did fall out of the valid
10775 // range, then we computed our trip count, otherwise wrap around or other
10776 // things must have happened.
10777 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10778 if (Range.contains(Val->getValue()))
10779 return SE.getCouldNotCompute(); // Something strange happened
10781 // Ensure that the previous value is in the range. This is a sanity check.
10782 assert(Range.contains(
10783 EvaluateConstantChrecAtConstant(this,
10784 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10785 "Linear scev computation is off in a bad way!");
10786 return SE.getConstant(ExitValue);
10789 if (isQuadratic()) {
10790 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10791 return SE.getConstant(S.getValue());
10794 return SE.getCouldNotCompute();
10797 const SCEVAddRecExpr *
10798 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10799 assert(getNumOperands() > 1 && "AddRec with zero step?");
10800 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10801 // but in this case we cannot guarantee that the value returned will be an
10802 // AddRec because SCEV does not have a fixed point where it stops
10803 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10804 // may happen if we reach arithmetic depth limit while simplifying. So we
10805 // construct the returned value explicitly.
10806 SmallVector<const SCEV *, 3> Ops;
10807 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10808 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10809 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10810 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10811 // We know that the last operand is not a constant zero (otherwise it would
10812 // have been popped out earlier). This guarantees us that if the result has
10813 // the same last operand, then it will also not be popped out, meaning that
10814 // the returned value will be an AddRec.
10815 const SCEV *Last = getOperand(getNumOperands() - 1);
10816 assert(!Last->isZero() && "Recurrency with zero step?");
10817 Ops.push_back(Last);
10818 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10819 SCEV::FlagAnyWrap));
10822 // Return true when S contains at least an undef value.
10823 static inline bool containsUndefs(const SCEV *S) {
10824 return SCEVExprContains(S, [](const SCEV *S) {
10825 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10826 return isa<UndefValue>(SU->getValue());
10827 return false;
10831 namespace {
10833 // Collect all steps of SCEV expressions.
10834 struct SCEVCollectStrides {
10835 ScalarEvolution &SE;
10836 SmallVectorImpl<const SCEV *> &Strides;
10838 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10839 : SE(SE), Strides(S) {}
10841 bool follow(const SCEV *S) {
10842 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10843 Strides.push_back(AR->getStepRecurrence(SE));
10844 return true;
10847 bool isDone() const { return false; }
10850 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10851 struct SCEVCollectTerms {
10852 SmallVectorImpl<const SCEV *> &Terms;
10854 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10856 bool follow(const SCEV *S) {
10857 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10858 isa<SCEVSignExtendExpr>(S)) {
10859 if (!containsUndefs(S))
10860 Terms.push_back(S);
10862 // Stop recursion: once we collected a term, do not walk its operands.
10863 return false;
10866 // Keep looking.
10867 return true;
10870 bool isDone() const { return false; }
10873 // Check if a SCEV contains an AddRecExpr.
10874 struct SCEVHasAddRec {
10875 bool &ContainsAddRec;
10877 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10878 ContainsAddRec = false;
10881 bool follow(const SCEV *S) {
10882 if (isa<SCEVAddRecExpr>(S)) {
10883 ContainsAddRec = true;
10885 // Stop recursion: once we collected a term, do not walk its operands.
10886 return false;
10889 // Keep looking.
10890 return true;
10893 bool isDone() const { return false; }
10896 // Find factors that are multiplied with an expression that (possibly as a
10897 // subexpression) contains an AddRecExpr. In the expression:
10899 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
10901 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10902 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10903 // parameters as they form a product with an induction variable.
10905 // This collector expects all array size parameters to be in the same MulExpr.
10906 // It might be necessary to later add support for collecting parameters that are
10907 // spread over different nested MulExpr.
10908 struct SCEVCollectAddRecMultiplies {
10909 SmallVectorImpl<const SCEV *> &Terms;
10910 ScalarEvolution &SE;
10912 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10913 : Terms(T), SE(SE) {}
10915 bool follow(const SCEV *S) {
10916 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10917 bool HasAddRec = false;
10918 SmallVector<const SCEV *, 0> Operands;
10919 for (auto Op : Mul->operands()) {
10920 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10921 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10922 Operands.push_back(Op);
10923 } else if (Unknown) {
10924 HasAddRec = true;
10925 } else {
10926 bool ContainsAddRec;
10927 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10928 visitAll(Op, ContiansAddRec);
10929 HasAddRec |= ContainsAddRec;
10932 if (Operands.size() == 0)
10933 return true;
10935 if (!HasAddRec)
10936 return false;
10938 Terms.push_back(SE.getMulExpr(Operands));
10939 // Stop recursion: once we collected a term, do not walk its operands.
10940 return false;
10943 // Keep looking.
10944 return true;
10947 bool isDone() const { return false; }
10950 } // end anonymous namespace
10952 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10953 /// two places:
10954 /// 1) The strides of AddRec expressions.
10955 /// 2) Unknowns that are multiplied with AddRec expressions.
10956 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10957 SmallVectorImpl<const SCEV *> &Terms) {
10958 SmallVector<const SCEV *, 4> Strides;
10959 SCEVCollectStrides StrideCollector(*this, Strides);
10960 visitAll(Expr, StrideCollector);
10962 LLVM_DEBUG({
10963 dbgs() << "Strides:\n";
10964 for (const SCEV *S : Strides)
10965 dbgs() << *S << "\n";
10968 for (const SCEV *S : Strides) {
10969 SCEVCollectTerms TermCollector(Terms);
10970 visitAll(S, TermCollector);
10973 LLVM_DEBUG({
10974 dbgs() << "Terms:\n";
10975 for (const SCEV *T : Terms)
10976 dbgs() << *T << "\n";
10979 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10980 visitAll(Expr, MulCollector);
10983 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10984 SmallVectorImpl<const SCEV *> &Terms,
10985 SmallVectorImpl<const SCEV *> &Sizes) {
10986 int Last = Terms.size() - 1;
10987 const SCEV *Step = Terms[Last];
10989 // End of recursion.
10990 if (Last == 0) {
10991 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10992 SmallVector<const SCEV *, 2> Qs;
10993 for (const SCEV *Op : M->operands())
10994 if (!isa<SCEVConstant>(Op))
10995 Qs.push_back(Op);
10997 Step = SE.getMulExpr(Qs);
11000 Sizes.push_back(Step);
11001 return true;
11004 for (const SCEV *&Term : Terms) {
11005 // Normalize the terms before the next call to findArrayDimensionsRec.
11006 const SCEV *Q, *R;
11007 SCEVDivision::divide(SE, Term, Step, &Q, &R);
11009 // Bail out when GCD does not evenly divide one of the terms.
11010 if (!R->isZero())
11011 return false;
11013 Term = Q;
11016 // Remove all SCEVConstants.
11017 Terms.erase(
11018 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11019 Terms.end());
11021 if (Terms.size() > 0)
11022 if (!findArrayDimensionsRec(SE, Terms, Sizes))
11023 return false;
11025 Sizes.push_back(Step);
11026 return true;
11029 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11030 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11031 for (const SCEV *T : Terms)
11032 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11033 return true;
11034 return false;
11037 // Return the number of product terms in S.
11038 static inline int numberOfTerms(const SCEV *S) {
11039 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11040 return Expr->getNumOperands();
11041 return 1;
11044 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11045 if (isa<SCEVConstant>(T))
11046 return nullptr;
11048 if (isa<SCEVUnknown>(T))
11049 return T;
11051 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11052 SmallVector<const SCEV *, 2> Factors;
11053 for (const SCEV *Op : M->operands())
11054 if (!isa<SCEVConstant>(Op))
11055 Factors.push_back(Op);
11057 return SE.getMulExpr(Factors);
11060 return T;
11063 /// Return the size of an element read or written by Inst.
11064 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11065 Type *Ty;
11066 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11067 Ty = Store->getValueOperand()->getType();
11068 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11069 Ty = Load->getType();
11070 else
11071 return nullptr;
11073 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11074 return getSizeOfExpr(ETy, Ty);
11077 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11078 SmallVectorImpl<const SCEV *> &Sizes,
11079 const SCEV *ElementSize) {
11080 if (Terms.size() < 1 || !ElementSize)
11081 return;
11083 // Early return when Terms do not contain parameters: we do not delinearize
11084 // non parametric SCEVs.
11085 if (!containsParameters(Terms))
11086 return;
11088 LLVM_DEBUG({
11089 dbgs() << "Terms:\n";
11090 for (const SCEV *T : Terms)
11091 dbgs() << *T << "\n";
11094 // Remove duplicates.
11095 array_pod_sort(Terms.begin(), Terms.end());
11096 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11098 // Put larger terms first.
11099 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11100 return numberOfTerms(LHS) > numberOfTerms(RHS);
11103 // Try to divide all terms by the element size. If term is not divisible by
11104 // element size, proceed with the original term.
11105 for (const SCEV *&Term : Terms) {
11106 const SCEV *Q, *R;
11107 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11108 if (!Q->isZero())
11109 Term = Q;
11112 SmallVector<const SCEV *, 4> NewTerms;
11114 // Remove constant factors.
11115 for (const SCEV *T : Terms)
11116 if (const SCEV *NewT = removeConstantFactors(*this, T))
11117 NewTerms.push_back(NewT);
11119 LLVM_DEBUG({
11120 dbgs() << "Terms after sorting:\n";
11121 for (const SCEV *T : NewTerms)
11122 dbgs() << *T << "\n";
11125 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11126 Sizes.clear();
11127 return;
11130 // The last element to be pushed into Sizes is the size of an element.
11131 Sizes.push_back(ElementSize);
11133 LLVM_DEBUG({
11134 dbgs() << "Sizes:\n";
11135 for (const SCEV *S : Sizes)
11136 dbgs() << *S << "\n";
11140 void ScalarEvolution::computeAccessFunctions(
11141 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11142 SmallVectorImpl<const SCEV *> &Sizes) {
11143 // Early exit in case this SCEV is not an affine multivariate function.
11144 if (Sizes.empty())
11145 return;
11147 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11148 if (!AR->isAffine())
11149 return;
11151 const SCEV *Res = Expr;
11152 int Last = Sizes.size() - 1;
11153 for (int i = Last; i >= 0; i--) {
11154 const SCEV *Q, *R;
11155 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11157 LLVM_DEBUG({
11158 dbgs() << "Res: " << *Res << "\n";
11159 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11160 dbgs() << "Res divided by Sizes[i]:\n";
11161 dbgs() << "Quotient: " << *Q << "\n";
11162 dbgs() << "Remainder: " << *R << "\n";
11165 Res = Q;
11167 // Do not record the last subscript corresponding to the size of elements in
11168 // the array.
11169 if (i == Last) {
11171 // Bail out if the remainder is too complex.
11172 if (isa<SCEVAddRecExpr>(R)) {
11173 Subscripts.clear();
11174 Sizes.clear();
11175 return;
11178 continue;
11181 // Record the access function for the current subscript.
11182 Subscripts.push_back(R);
11185 // Also push in last position the remainder of the last division: it will be
11186 // the access function of the innermost dimension.
11187 Subscripts.push_back(Res);
11189 std::reverse(Subscripts.begin(), Subscripts.end());
11191 LLVM_DEBUG({
11192 dbgs() << "Subscripts:\n";
11193 for (const SCEV *S : Subscripts)
11194 dbgs() << *S << "\n";
11198 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11199 /// sizes of an array access. Returns the remainder of the delinearization that
11200 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11201 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11202 /// expressions in the stride and base of a SCEV corresponding to the
11203 /// computation of a GCD (greatest common divisor) of base and stride. When
11204 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11206 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11208 /// void foo(long n, long m, long o, double A[n][m][o]) {
11210 /// for (long i = 0; i < n; i++)
11211 /// for (long j = 0; j < m; j++)
11212 /// for (long k = 0; k < o; k++)
11213 /// A[i][j][k] = 1.0;
11214 /// }
11216 /// the delinearization input is the following AddRec SCEV:
11218 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11220 /// From this SCEV, we are able to say that the base offset of the access is %A
11221 /// because it appears as an offset that does not divide any of the strides in
11222 /// the loops:
11224 /// CHECK: Base offset: %A
11226 /// and then SCEV->delinearize determines the size of some of the dimensions of
11227 /// the array as these are the multiples by which the strides are happening:
11229 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11231 /// Note that the outermost dimension remains of UnknownSize because there are
11232 /// no strides that would help identifying the size of the last dimension: when
11233 /// the array has been statically allocated, one could compute the size of that
11234 /// dimension by dividing the overall size of the array by the size of the known
11235 /// dimensions: %m * %o * 8.
11237 /// Finally delinearize provides the access functions for the array reference
11238 /// that does correspond to A[i][j][k] of the above C testcase:
11240 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11242 /// The testcases are checking the output of a function pass:
11243 /// DelinearizationPass that walks through all loads and stores of a function
11244 /// asking for the SCEV of the memory access with respect to all enclosing
11245 /// loops, calling SCEV->delinearize on that and printing the results.
11246 void ScalarEvolution::delinearize(const SCEV *Expr,
11247 SmallVectorImpl<const SCEV *> &Subscripts,
11248 SmallVectorImpl<const SCEV *> &Sizes,
11249 const SCEV *ElementSize) {
11250 // First step: collect parametric terms.
11251 SmallVector<const SCEV *, 4> Terms;
11252 collectParametricTerms(Expr, Terms);
11254 if (Terms.empty())
11255 return;
11257 // Second step: find subscript sizes.
11258 findArrayDimensions(Terms, Sizes, ElementSize);
11260 if (Sizes.empty())
11261 return;
11263 // Third step: compute the access functions for each subscript.
11264 computeAccessFunctions(Expr, Subscripts, Sizes);
11266 if (Subscripts.empty())
11267 return;
11269 LLVM_DEBUG({
11270 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11271 dbgs() << "ArrayDecl[UnknownSize]";
11272 for (const SCEV *S : Sizes)
11273 dbgs() << "[" << *S << "]";
11275 dbgs() << "\nArrayRef";
11276 for (const SCEV *S : Subscripts)
11277 dbgs() << "[" << *S << "]";
11278 dbgs() << "\n";
11282 //===----------------------------------------------------------------------===//
11283 // SCEVCallbackVH Class Implementation
11284 //===----------------------------------------------------------------------===//
11286 void ScalarEvolution::SCEVCallbackVH::deleted() {
11287 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11288 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11289 SE->ConstantEvolutionLoopExitValue.erase(PN);
11290 SE->eraseValueFromMap(getValPtr());
11291 // this now dangles!
11294 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11295 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11297 // Forget all the expressions associated with users of the old value,
11298 // so that future queries will recompute the expressions using the new
11299 // value.
11300 Value *Old = getValPtr();
11301 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11302 SmallPtrSet<User *, 8> Visited;
11303 while (!Worklist.empty()) {
11304 User *U = Worklist.pop_back_val();
11305 // Deleting the Old value will cause this to dangle. Postpone
11306 // that until everything else is done.
11307 if (U == Old)
11308 continue;
11309 if (!Visited.insert(U).second)
11310 continue;
11311 if (PHINode *PN = dyn_cast<PHINode>(U))
11312 SE->ConstantEvolutionLoopExitValue.erase(PN);
11313 SE->eraseValueFromMap(U);
11314 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11316 // Delete the Old value.
11317 if (PHINode *PN = dyn_cast<PHINode>(Old))
11318 SE->ConstantEvolutionLoopExitValue.erase(PN);
11319 SE->eraseValueFromMap(Old);
11320 // this now dangles!
11323 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11324 : CallbackVH(V), SE(se) {}
11326 //===----------------------------------------------------------------------===//
11327 // ScalarEvolution Class Implementation
11328 //===----------------------------------------------------------------------===//
11330 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11331 AssumptionCache &AC, DominatorTree &DT,
11332 LoopInfo &LI)
11333 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11334 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11335 LoopDispositions(64), BlockDispositions(64) {
11336 // To use guards for proving predicates, we need to scan every instruction in
11337 // relevant basic blocks, and not just terminators. Doing this is a waste of
11338 // time if the IR does not actually contain any calls to
11339 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11341 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11342 // to _add_ guards to the module when there weren't any before, and wants
11343 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11344 // efficient in lieu of being smart in that rather obscure case.
11346 auto *GuardDecl = F.getParent()->getFunction(
11347 Intrinsic::getName(Intrinsic::experimental_guard));
11348 HasGuards = GuardDecl && !GuardDecl->use_empty();
11351 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11352 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11353 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11354 ValueExprMap(std::move(Arg.ValueExprMap)),
11355 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11356 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11357 PendingMerges(std::move(Arg.PendingMerges)),
11358 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11359 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11360 PredicatedBackedgeTakenCounts(
11361 std::move(Arg.PredicatedBackedgeTakenCounts)),
11362 ConstantEvolutionLoopExitValue(
11363 std::move(Arg.ConstantEvolutionLoopExitValue)),
11364 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11365 LoopDispositions(std::move(Arg.LoopDispositions)),
11366 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11367 BlockDispositions(std::move(Arg.BlockDispositions)),
11368 UnsignedRanges(std::move(Arg.UnsignedRanges)),
11369 SignedRanges(std::move(Arg.SignedRanges)),
11370 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11371 UniquePreds(std::move(Arg.UniquePreds)),
11372 SCEVAllocator(std::move(Arg.SCEVAllocator)),
11373 LoopUsers(std::move(Arg.LoopUsers)),
11374 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11375 FirstUnknown(Arg.FirstUnknown) {
11376 Arg.FirstUnknown = nullptr;
11379 ScalarEvolution::~ScalarEvolution() {
11380 // Iterate through all the SCEVUnknown instances and call their
11381 // destructors, so that they release their references to their values.
11382 for (SCEVUnknown *U = FirstUnknown; U;) {
11383 SCEVUnknown *Tmp = U;
11384 U = U->Next;
11385 Tmp->~SCEVUnknown();
11387 FirstUnknown = nullptr;
11389 ExprValueMap.clear();
11390 ValueExprMap.clear();
11391 HasRecMap.clear();
11393 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11394 // that a loop had multiple computable exits.
11395 for (auto &BTCI : BackedgeTakenCounts)
11396 BTCI.second.clear();
11397 for (auto &BTCI : PredicatedBackedgeTakenCounts)
11398 BTCI.second.clear();
11400 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11401 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11402 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11403 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11404 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11407 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11408 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11411 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11412 const Loop *L) {
11413 // Print all inner loops first
11414 for (Loop *I : *L)
11415 PrintLoopInfo(OS, SE, I);
11417 OS << "Loop ";
11418 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11419 OS << ": ";
11421 SmallVector<BasicBlock *, 8> ExitingBlocks;
11422 L->getExitingBlocks(ExitingBlocks);
11423 if (ExitingBlocks.size() != 1)
11424 OS << "<multiple exits> ";
11426 if (SE->hasLoopInvariantBackedgeTakenCount(L))
11427 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11428 else
11429 OS << "Unpredictable backedge-taken count.\n";
11431 if (ExitingBlocks.size() > 1)
11432 for (BasicBlock *ExitingBlock : ExitingBlocks) {
11433 OS << " exit count for " << ExitingBlock->getName() << ": "
11434 << *SE->getExitCount(L, ExitingBlock) << "\n";
11437 OS << "Loop ";
11438 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11439 OS << ": ";
11441 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11442 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11443 if (SE->isBackedgeTakenCountMaxOrZero(L))
11444 OS << ", actual taken count either this or zero.";
11445 } else {
11446 OS << "Unpredictable max backedge-taken count. ";
11449 OS << "\n"
11450 "Loop ";
11451 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11452 OS << ": ";
11454 SCEVUnionPredicate Pred;
11455 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11456 if (!isa<SCEVCouldNotCompute>(PBT)) {
11457 OS << "Predicated backedge-taken count is " << *PBT << "\n";
11458 OS << " Predicates:\n";
11459 Pred.print(OS, 4);
11460 } else {
11461 OS << "Unpredictable predicated backedge-taken count. ";
11463 OS << "\n";
11465 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11466 OS << "Loop ";
11467 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11468 OS << ": ";
11469 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11473 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11474 switch (LD) {
11475 case ScalarEvolution::LoopVariant:
11476 return "Variant";
11477 case ScalarEvolution::LoopInvariant:
11478 return "Invariant";
11479 case ScalarEvolution::LoopComputable:
11480 return "Computable";
11482 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11485 void ScalarEvolution::print(raw_ostream &OS) const {
11486 // ScalarEvolution's implementation of the print method is to print
11487 // out SCEV values of all instructions that are interesting. Doing
11488 // this potentially causes it to create new SCEV objects though,
11489 // which technically conflicts with the const qualifier. This isn't
11490 // observable from outside the class though, so casting away the
11491 // const isn't dangerous.
11492 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11494 OS << "Classifying expressions for: ";
11495 F.printAsOperand(OS, /*PrintType=*/false);
11496 OS << "\n";
11497 for (Instruction &I : instructions(F))
11498 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11499 OS << I << '\n';
11500 OS << " --> ";
11501 const SCEV *SV = SE.getSCEV(&I);
11502 SV->print(OS);
11503 if (!isa<SCEVCouldNotCompute>(SV)) {
11504 OS << " U: ";
11505 SE.getUnsignedRange(SV).print(OS);
11506 OS << " S: ";
11507 SE.getSignedRange(SV).print(OS);
11510 const Loop *L = LI.getLoopFor(I.getParent());
11512 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11513 if (AtUse != SV) {
11514 OS << " --> ";
11515 AtUse->print(OS);
11516 if (!isa<SCEVCouldNotCompute>(AtUse)) {
11517 OS << " U: ";
11518 SE.getUnsignedRange(AtUse).print(OS);
11519 OS << " S: ";
11520 SE.getSignedRange(AtUse).print(OS);
11524 if (L) {
11525 OS << "\t\t" "Exits: ";
11526 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11527 if (!SE.isLoopInvariant(ExitValue, L)) {
11528 OS << "<<Unknown>>";
11529 } else {
11530 OS << *ExitValue;
11533 bool First = true;
11534 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11535 if (First) {
11536 OS << "\t\t" "LoopDispositions: { ";
11537 First = false;
11538 } else {
11539 OS << ", ";
11542 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11543 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11546 for (auto *InnerL : depth_first(L)) {
11547 if (InnerL == L)
11548 continue;
11549 if (First) {
11550 OS << "\t\t" "LoopDispositions: { ";
11551 First = false;
11552 } else {
11553 OS << ", ";
11556 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11557 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11560 OS << " }";
11563 OS << "\n";
11566 OS << "Determining loop execution counts for: ";
11567 F.printAsOperand(OS, /*PrintType=*/false);
11568 OS << "\n";
11569 for (Loop *I : LI)
11570 PrintLoopInfo(OS, &SE, I);
11573 ScalarEvolution::LoopDisposition
11574 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11575 auto &Values = LoopDispositions[S];
11576 for (auto &V : Values) {
11577 if (V.getPointer() == L)
11578 return V.getInt();
11580 Values.emplace_back(L, LoopVariant);
11581 LoopDisposition D = computeLoopDisposition(S, L);
11582 auto &Values2 = LoopDispositions[S];
11583 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11584 if (V.getPointer() == L) {
11585 V.setInt(D);
11586 break;
11589 return D;
11592 ScalarEvolution::LoopDisposition
11593 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11594 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11595 case scConstant:
11596 return LoopInvariant;
11597 case scTruncate:
11598 case scZeroExtend:
11599 case scSignExtend:
11600 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11601 case scAddRecExpr: {
11602 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11604 // If L is the addrec's loop, it's computable.
11605 if (AR->getLoop() == L)
11606 return LoopComputable;
11608 // Add recurrences are never invariant in the function-body (null loop).
11609 if (!L)
11610 return LoopVariant;
11612 // Everything that is not defined at loop entry is variant.
11613 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11614 return LoopVariant;
11615 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11616 " dominate the contained loop's header?");
11618 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11619 if (AR->getLoop()->contains(L))
11620 return LoopInvariant;
11622 // This recurrence is variant w.r.t. L if any of its operands
11623 // are variant.
11624 for (auto *Op : AR->operands())
11625 if (!isLoopInvariant(Op, L))
11626 return LoopVariant;
11628 // Otherwise it's loop-invariant.
11629 return LoopInvariant;
11631 case scAddExpr:
11632 case scMulExpr:
11633 case scUMaxExpr:
11634 case scSMaxExpr:
11635 case scUMinExpr:
11636 case scSMinExpr: {
11637 bool HasVarying = false;
11638 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11639 LoopDisposition D = getLoopDisposition(Op, L);
11640 if (D == LoopVariant)
11641 return LoopVariant;
11642 if (D == LoopComputable)
11643 HasVarying = true;
11645 return HasVarying ? LoopComputable : LoopInvariant;
11647 case scUDivExpr: {
11648 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11649 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11650 if (LD == LoopVariant)
11651 return LoopVariant;
11652 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11653 if (RD == LoopVariant)
11654 return LoopVariant;
11655 return (LD == LoopInvariant && RD == LoopInvariant) ?
11656 LoopInvariant : LoopComputable;
11658 case scUnknown:
11659 // All non-instruction values are loop invariant. All instructions are loop
11660 // invariant if they are not contained in the specified loop.
11661 // Instructions are never considered invariant in the function body
11662 // (null loop) because they are defined within the "loop".
11663 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11664 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11665 return LoopInvariant;
11666 case scCouldNotCompute:
11667 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11669 llvm_unreachable("Unknown SCEV kind!");
11672 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11673 return getLoopDisposition(S, L) == LoopInvariant;
11676 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11677 return getLoopDisposition(S, L) == LoopComputable;
11680 ScalarEvolution::BlockDisposition
11681 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11682 auto &Values = BlockDispositions[S];
11683 for (auto &V : Values) {
11684 if (V.getPointer() == BB)
11685 return V.getInt();
11687 Values.emplace_back(BB, DoesNotDominateBlock);
11688 BlockDisposition D = computeBlockDisposition(S, BB);
11689 auto &Values2 = BlockDispositions[S];
11690 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11691 if (V.getPointer() == BB) {
11692 V.setInt(D);
11693 break;
11696 return D;
11699 ScalarEvolution::BlockDisposition
11700 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11701 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11702 case scConstant:
11703 return ProperlyDominatesBlock;
11704 case scTruncate:
11705 case scZeroExtend:
11706 case scSignExtend:
11707 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11708 case scAddRecExpr: {
11709 // This uses a "dominates" query instead of "properly dominates" query
11710 // to test for proper dominance too, because the instruction which
11711 // produces the addrec's value is a PHI, and a PHI effectively properly
11712 // dominates its entire containing block.
11713 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11714 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11715 return DoesNotDominateBlock;
11717 // Fall through into SCEVNAryExpr handling.
11718 LLVM_FALLTHROUGH;
11720 case scAddExpr:
11721 case scMulExpr:
11722 case scUMaxExpr:
11723 case scSMaxExpr:
11724 case scUMinExpr:
11725 case scSMinExpr: {
11726 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11727 bool Proper = true;
11728 for (const SCEV *NAryOp : NAry->operands()) {
11729 BlockDisposition D = getBlockDisposition(NAryOp, BB);
11730 if (D == DoesNotDominateBlock)
11731 return DoesNotDominateBlock;
11732 if (D == DominatesBlock)
11733 Proper = false;
11735 return Proper ? ProperlyDominatesBlock : DominatesBlock;
11737 case scUDivExpr: {
11738 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11739 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11740 BlockDisposition LD = getBlockDisposition(LHS, BB);
11741 if (LD == DoesNotDominateBlock)
11742 return DoesNotDominateBlock;
11743 BlockDisposition RD = getBlockDisposition(RHS, BB);
11744 if (RD == DoesNotDominateBlock)
11745 return DoesNotDominateBlock;
11746 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11747 ProperlyDominatesBlock : DominatesBlock;
11749 case scUnknown:
11750 if (Instruction *I =
11751 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11752 if (I->getParent() == BB)
11753 return DominatesBlock;
11754 if (DT.properlyDominates(I->getParent(), BB))
11755 return ProperlyDominatesBlock;
11756 return DoesNotDominateBlock;
11758 return ProperlyDominatesBlock;
11759 case scCouldNotCompute:
11760 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11762 llvm_unreachable("Unknown SCEV kind!");
11765 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11766 return getBlockDisposition(S, BB) >= DominatesBlock;
11769 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11770 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11773 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11774 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11777 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11778 auto IsS = [&](const SCEV *X) { return S == X; };
11779 auto ContainsS = [&](const SCEV *X) {
11780 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11782 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11785 void
11786 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11787 ValuesAtScopes.erase(S);
11788 LoopDispositions.erase(S);
11789 BlockDispositions.erase(S);
11790 UnsignedRanges.erase(S);
11791 SignedRanges.erase(S);
11792 ExprValueMap.erase(S);
11793 HasRecMap.erase(S);
11794 MinTrailingZerosCache.erase(S);
11796 for (auto I = PredicatedSCEVRewrites.begin();
11797 I != PredicatedSCEVRewrites.end();) {
11798 std::pair<const SCEV *, const Loop *> Entry = I->first;
11799 if (Entry.first == S)
11800 PredicatedSCEVRewrites.erase(I++);
11801 else
11802 ++I;
11805 auto RemoveSCEVFromBackedgeMap =
11806 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11807 for (auto I = Map.begin(), E = Map.end(); I != E;) {
11808 BackedgeTakenInfo &BEInfo = I->second;
11809 if (BEInfo.hasOperand(S, this)) {
11810 BEInfo.clear();
11811 Map.erase(I++);
11812 } else
11813 ++I;
11817 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11818 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11821 void
11822 ScalarEvolution::getUsedLoops(const SCEV *S,
11823 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11824 struct FindUsedLoops {
11825 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11826 : LoopsUsed(LoopsUsed) {}
11827 SmallPtrSetImpl<const Loop *> &LoopsUsed;
11828 bool follow(const SCEV *S) {
11829 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11830 LoopsUsed.insert(AR->getLoop());
11831 return true;
11834 bool isDone() const { return false; }
11837 FindUsedLoops F(LoopsUsed);
11838 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11841 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11842 SmallPtrSet<const Loop *, 8> LoopsUsed;
11843 getUsedLoops(S, LoopsUsed);
11844 for (auto *L : LoopsUsed)
11845 LoopUsers[L].push_back(S);
11848 void ScalarEvolution::verify() const {
11849 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11850 ScalarEvolution SE2(F, TLI, AC, DT, LI);
11852 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11854 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11855 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11856 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11858 const SCEV *visitConstant(const SCEVConstant *Constant) {
11859 return SE.getConstant(Constant->getAPInt());
11862 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11863 return SE.getUnknown(Expr->getValue());
11866 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11867 return SE.getCouldNotCompute();
11871 SCEVMapper SCM(SE2);
11873 while (!LoopStack.empty()) {
11874 auto *L = LoopStack.pop_back_val();
11875 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11877 auto *CurBECount = SCM.visit(
11878 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11879 auto *NewBECount = SE2.getBackedgeTakenCount(L);
11881 if (CurBECount == SE2.getCouldNotCompute() ||
11882 NewBECount == SE2.getCouldNotCompute()) {
11883 // NB! This situation is legal, but is very suspicious -- whatever pass
11884 // change the loop to make a trip count go from could not compute to
11885 // computable or vice-versa *should have* invalidated SCEV. However, we
11886 // choose not to assert here (for now) since we don't want false
11887 // positives.
11888 continue;
11891 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11892 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11893 // not propagate undef aggressively). This means we can (and do) fail
11894 // verification in cases where a transform makes the trip count of a loop
11895 // go from "undef" to "undef+1" (say). The transform is fine, since in
11896 // both cases the loop iterates "undef" times, but SCEV thinks we
11897 // increased the trip count of the loop by 1 incorrectly.
11898 continue;
11901 if (SE.getTypeSizeInBits(CurBECount->getType()) >
11902 SE.getTypeSizeInBits(NewBECount->getType()))
11903 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11904 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11905 SE.getTypeSizeInBits(NewBECount->getType()))
11906 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11908 auto *ConstantDelta =
11909 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11911 if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11912 dbgs() << "Trip Count Changed!\n";
11913 dbgs() << "Old: " << *CurBECount << "\n";
11914 dbgs() << "New: " << *NewBECount << "\n";
11915 dbgs() << "Delta: " << *ConstantDelta << "\n";
11916 std::abort();
11921 bool ScalarEvolution::invalidate(
11922 Function &F, const PreservedAnalyses &PA,
11923 FunctionAnalysisManager::Invalidator &Inv) {
11924 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11925 // of its dependencies is invalidated.
11926 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11927 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11928 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11929 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11930 Inv.invalidate<LoopAnalysis>(F, PA);
11933 AnalysisKey ScalarEvolutionAnalysis::Key;
11935 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11936 FunctionAnalysisManager &AM) {
11937 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11938 AM.getResult<AssumptionAnalysis>(F),
11939 AM.getResult<DominatorTreeAnalysis>(F),
11940 AM.getResult<LoopAnalysis>(F));
11943 PreservedAnalyses
11944 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11945 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11946 return PreservedAnalyses::all();
11949 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11950 "Scalar Evolution Analysis", false, true)
11951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11952 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11954 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11955 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11956 "Scalar Evolution Analysis", false, true)
11958 char ScalarEvolutionWrapperPass::ID = 0;
11960 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11961 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11964 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11965 SE.reset(new ScalarEvolution(
11966 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11967 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11968 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11969 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11970 return false;
11973 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11975 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11976 SE->print(OS);
11979 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11980 if (!VerifySCEV)
11981 return;
11983 SE->verify();
11986 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11987 AU.setPreservesAll();
11988 AU.addRequiredTransitive<AssumptionCacheTracker>();
11989 AU.addRequiredTransitive<LoopInfoWrapperPass>();
11990 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11991 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11994 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11995 const SCEV *RHS) {
11996 FoldingSetNodeID ID;
11997 assert(LHS->getType() == RHS->getType() &&
11998 "Type mismatch between LHS and RHS");
11999 // Unique this node based on the arguments
12000 ID.AddInteger(SCEVPredicate::P_Equal);
12001 ID.AddPointer(LHS);
12002 ID.AddPointer(RHS);
12003 void *IP = nullptr;
12004 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12005 return S;
12006 SCEVEqualPredicate *Eq = new (SCEVAllocator)
12007 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12008 UniquePreds.InsertNode(Eq, IP);
12009 return Eq;
12012 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12013 const SCEVAddRecExpr *AR,
12014 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12015 FoldingSetNodeID ID;
12016 // Unique this node based on the arguments
12017 ID.AddInteger(SCEVPredicate::P_Wrap);
12018 ID.AddPointer(AR);
12019 ID.AddInteger(AddedFlags);
12020 void *IP = nullptr;
12021 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12022 return S;
12023 auto *OF = new (SCEVAllocator)
12024 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12025 UniquePreds.InsertNode(OF, IP);
12026 return OF;
12029 namespace {
12031 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12032 public:
12034 /// Rewrites \p S in the context of a loop L and the SCEV predication
12035 /// infrastructure.
12037 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12038 /// equivalences present in \p Pred.
12040 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12041 /// \p NewPreds such that the result will be an AddRecExpr.
12042 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12043 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12044 SCEVUnionPredicate *Pred) {
12045 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12046 return Rewriter.visit(S);
12049 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12050 if (Pred) {
12051 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12052 for (auto *Pred : ExprPreds)
12053 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12054 if (IPred->getLHS() == Expr)
12055 return IPred->getRHS();
12057 return convertToAddRecWithPreds(Expr);
12060 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12061 const SCEV *Operand = visit(Expr->getOperand());
12062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12063 if (AR && AR->getLoop() == L && AR->isAffine()) {
12064 // This couldn't be folded because the operand didn't have the nuw
12065 // flag. Add the nusw flag as an assumption that we could make.
12066 const SCEV *Step = AR->getStepRecurrence(SE);
12067 Type *Ty = Expr->getType();
12068 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12069 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12070 SE.getSignExtendExpr(Step, Ty), L,
12071 AR->getNoWrapFlags());
12073 return SE.getZeroExtendExpr(Operand, Expr->getType());
12076 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12077 const SCEV *Operand = visit(Expr->getOperand());
12078 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12079 if (AR && AR->getLoop() == L && AR->isAffine()) {
12080 // This couldn't be folded because the operand didn't have the nsw
12081 // flag. Add the nssw flag as an assumption that we could make.
12082 const SCEV *Step = AR->getStepRecurrence(SE);
12083 Type *Ty = Expr->getType();
12084 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12085 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12086 SE.getSignExtendExpr(Step, Ty), L,
12087 AR->getNoWrapFlags());
12089 return SE.getSignExtendExpr(Operand, Expr->getType());
12092 private:
12093 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12094 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12095 SCEVUnionPredicate *Pred)
12096 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12098 bool addOverflowAssumption(const SCEVPredicate *P) {
12099 if (!NewPreds) {
12100 // Check if we've already made this assumption.
12101 return Pred && Pred->implies(P);
12103 NewPreds->insert(P);
12104 return true;
12107 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12108 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12109 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12110 return addOverflowAssumption(A);
12113 // If \p Expr represents a PHINode, we try to see if it can be represented
12114 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12115 // to add this predicate as a runtime overflow check, we return the AddRec.
12116 // If \p Expr does not meet these conditions (is not a PHI node, or we
12117 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12118 // return \p Expr.
12119 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12120 if (!isa<PHINode>(Expr->getValue()))
12121 return Expr;
12122 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12123 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12124 if (!PredicatedRewrite)
12125 return Expr;
12126 for (auto *P : PredicatedRewrite->second){
12127 // Wrap predicates from outer loops are not supported.
12128 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12129 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12130 if (L != AR->getLoop())
12131 return Expr;
12133 if (!addOverflowAssumption(P))
12134 return Expr;
12136 return PredicatedRewrite->first;
12139 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12140 SCEVUnionPredicate *Pred;
12141 const Loop *L;
12144 } // end anonymous namespace
12146 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12147 SCEVUnionPredicate &Preds) {
12148 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12151 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12152 const SCEV *S, const Loop *L,
12153 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12154 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12155 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12156 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12158 if (!AddRec)
12159 return nullptr;
12161 // Since the transformation was successful, we can now transfer the SCEV
12162 // predicates.
12163 for (auto *P : TransformPreds)
12164 Preds.insert(P);
12166 return AddRec;
12169 /// SCEV predicates
12170 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12171 SCEVPredicateKind Kind)
12172 : FastID(ID), Kind(Kind) {}
12174 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12175 const SCEV *LHS, const SCEV *RHS)
12176 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12177 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12178 assert(LHS != RHS && "LHS and RHS are the same SCEV");
12181 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12182 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12184 if (!Op)
12185 return false;
12187 return Op->LHS == LHS && Op->RHS == RHS;
12190 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12192 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12194 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12195 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12198 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12199 const SCEVAddRecExpr *AR,
12200 IncrementWrapFlags Flags)
12201 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12203 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12205 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12206 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12208 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12211 bool SCEVWrapPredicate::isAlwaysTrue() const {
12212 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12213 IncrementWrapFlags IFlags = Flags;
12215 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12216 IFlags = clearFlags(IFlags, IncrementNSSW);
12218 return IFlags == IncrementAnyWrap;
12221 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12222 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12223 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12224 OS << "<nusw>";
12225 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12226 OS << "<nssw>";
12227 OS << "\n";
12230 SCEVWrapPredicate::IncrementWrapFlags
12231 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12232 ScalarEvolution &SE) {
12233 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12234 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12236 // We can safely transfer the NSW flag as NSSW.
12237 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12238 ImpliedFlags = IncrementNSSW;
12240 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12241 // If the increment is positive, the SCEV NUW flag will also imply the
12242 // WrapPredicate NUSW flag.
12243 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12244 if (Step->getValue()->getValue().isNonNegative())
12245 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12248 return ImpliedFlags;
12251 /// Union predicates don't get cached so create a dummy set ID for it.
12252 SCEVUnionPredicate::SCEVUnionPredicate()
12253 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12255 bool SCEVUnionPredicate::isAlwaysTrue() const {
12256 return all_of(Preds,
12257 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12260 ArrayRef<const SCEVPredicate *>
12261 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12262 auto I = SCEVToPreds.find(Expr);
12263 if (I == SCEVToPreds.end())
12264 return ArrayRef<const SCEVPredicate *>();
12265 return I->second;
12268 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12269 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12270 return all_of(Set->Preds,
12271 [this](const SCEVPredicate *I) { return this->implies(I); });
12273 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12274 if (ScevPredsIt == SCEVToPreds.end())
12275 return false;
12276 auto &SCEVPreds = ScevPredsIt->second;
12278 return any_of(SCEVPreds,
12279 [N](const SCEVPredicate *I) { return I->implies(N); });
12282 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12284 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12285 for (auto Pred : Preds)
12286 Pred->print(OS, Depth);
12289 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12290 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12291 for (auto Pred : Set->Preds)
12292 add(Pred);
12293 return;
12296 if (implies(N))
12297 return;
12299 const SCEV *Key = N->getExpr();
12300 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12301 " associated expression!");
12303 SCEVToPreds[Key].push_back(N);
12304 Preds.push_back(N);
12307 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12308 Loop &L)
12309 : SE(SE), L(L) {}
12311 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12312 const SCEV *Expr = SE.getSCEV(V);
12313 RewriteEntry &Entry = RewriteMap[Expr];
12315 // If we already have an entry and the version matches, return it.
12316 if (Entry.second && Generation == Entry.first)
12317 return Entry.second;
12319 // We found an entry but it's stale. Rewrite the stale entry
12320 // according to the current predicate.
12321 if (Entry.second)
12322 Expr = Entry.second;
12324 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12325 Entry = {Generation, NewSCEV};
12327 return NewSCEV;
12330 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12331 if (!BackedgeCount) {
12332 SCEVUnionPredicate BackedgePred;
12333 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12334 addPredicate(BackedgePred);
12336 return BackedgeCount;
12339 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12340 if (Preds.implies(&Pred))
12341 return;
12342 Preds.add(&Pred);
12343 updateGeneration();
12346 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12347 return Preds;
12350 void PredicatedScalarEvolution::updateGeneration() {
12351 // If the generation number wrapped recompute everything.
12352 if (++Generation == 0) {
12353 for (auto &II : RewriteMap) {
12354 const SCEV *Rewritten = II.second.second;
12355 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12360 void PredicatedScalarEvolution::setNoOverflow(
12361 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12362 const SCEV *Expr = getSCEV(V);
12363 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12365 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12367 // Clear the statically implied flags.
12368 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12369 addPredicate(*SE.getWrapPredicate(AR, Flags));
12371 auto II = FlagsMap.insert({V, Flags});
12372 if (!II.second)
12373 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12376 bool PredicatedScalarEvolution::hasNoOverflow(
12377 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12378 const SCEV *Expr = getSCEV(V);
12379 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12381 Flags = SCEVWrapPredicate::clearFlags(
12382 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12384 auto II = FlagsMap.find(V);
12386 if (II != FlagsMap.end())
12387 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12389 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12392 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12393 const SCEV *Expr = this->getSCEV(V);
12394 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12395 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12397 if (!New)
12398 return nullptr;
12400 for (auto *P : NewPreds)
12401 Preds.add(P);
12403 updateGeneration();
12404 RewriteMap[SE.getSCEV(V)] = {Generation, New};
12405 return New;
12408 PredicatedScalarEvolution::PredicatedScalarEvolution(
12409 const PredicatedScalarEvolution &Init)
12410 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12411 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12412 for (const auto &I : Init.FlagsMap)
12413 FlagsMap.insert(I);
12416 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12417 // For each block.
12418 for (auto *BB : L.getBlocks())
12419 for (auto &I : *BB) {
12420 if (!SE.isSCEVable(I.getType()))
12421 continue;
12423 auto *Expr = SE.getSCEV(&I);
12424 auto II = RewriteMap.find(Expr);
12426 if (II == RewriteMap.end())
12427 continue;
12429 // Don't print things that are not interesting.
12430 if (II->second.second == Expr)
12431 continue;
12433 OS.indent(Depth) << "[PSE]" << I << ":\n";
12434 OS.indent(Depth + 2) << *Expr << "\n";
12435 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12439 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12440 // arbitrary expressions.
12441 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12442 // 4, A / B becomes X / 8).
12443 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12444 const SCEV *&RHS) {
12445 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12446 if (Add == nullptr || Add->getNumOperands() != 2)
12447 return false;
12449 const SCEV *A = Add->getOperand(1);
12450 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12452 if (Mul == nullptr)
12453 return false;
12455 const auto MatchURemWithDivisor = [&](const SCEV *B) {
12456 // (SomeExpr + (-(SomeExpr / B) * B)).
12457 if (Expr == getURemExpr(A, B)) {
12458 LHS = A;
12459 RHS = B;
12460 return true;
12462 return false;
12465 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12466 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12467 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12468 MatchURemWithDivisor(Mul->getOperand(2));
12470 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12471 if (Mul->getNumOperands() == 2)
12472 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12473 MatchURemWithDivisor(Mul->getOperand(0)) ||
12474 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12475 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12476 return false;