1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AggressiveAntiDepBreaker class, which
10 // implements register anti-dependence breaking during post-RA
11 // scheduling. It attempts to break all anti-dependencies within a
14 //===----------------------------------------------------------------------===//
16 #include "AggressiveAntiDepBreaker.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterClassInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MachineValueType.h"
37 #include "llvm/Support/raw_ostream.h"
46 #define DEBUG_TYPE "post-RA-sched"
48 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
50 DebugDiv("agg-antidep-debugdiv",
51 cl::desc("Debug control for aggressive anti-dep breaker"),
52 cl::init(0), cl::Hidden
);
55 DebugMod("agg-antidep-debugmod",
56 cl::desc("Debug control for aggressive anti-dep breaker"),
57 cl::init(0), cl::Hidden
);
59 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs
,
60 MachineBasicBlock
*BB
)
61 : NumTargetRegs(TargetRegs
), GroupNodes(TargetRegs
, 0),
62 GroupNodeIndices(TargetRegs
, 0), KillIndices(TargetRegs
, 0),
63 DefIndices(TargetRegs
, 0) {
64 const unsigned BBSize
= BB
->size();
65 for (unsigned i
= 0; i
< NumTargetRegs
; ++i
) {
66 // Initialize all registers to be in their own group. Initially we
67 // assign the register to the same-indexed GroupNode.
68 GroupNodeIndices
[i
] = i
;
69 // Initialize the indices to indicate that no registers are live.
71 DefIndices
[i
] = BBSize
;
75 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg
) {
76 unsigned Node
= GroupNodeIndices
[Reg
];
77 while (GroupNodes
[Node
] != Node
)
78 Node
= GroupNodes
[Node
];
83 void AggressiveAntiDepState::GetGroupRegs(
85 std::vector
<unsigned> &Regs
,
86 std::multimap
<unsigned, AggressiveAntiDepState::RegisterReference
> *RegRefs
)
88 for (unsigned Reg
= 0; Reg
!= NumTargetRegs
; ++Reg
) {
89 if ((GetGroup(Reg
) == Group
) && (RegRefs
->count(Reg
) > 0))
94 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1
, unsigned Reg2
) {
95 assert(GroupNodes
[0] == 0 && "GroupNode 0 not parent!");
96 assert(GroupNodeIndices
[0] == 0 && "Reg 0 not in Group 0!");
98 // find group for each register
99 unsigned Group1
= GetGroup(Reg1
);
100 unsigned Group2
= GetGroup(Reg2
);
102 // if either group is 0, then that must become the parent
103 unsigned Parent
= (Group1
== 0) ? Group1
: Group2
;
104 unsigned Other
= (Parent
== Group1
) ? Group2
: Group1
;
105 GroupNodes
.at(Other
) = Parent
;
109 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg
) {
110 // Create a new GroupNode for Reg. Reg's existing GroupNode must
111 // stay as is because there could be other GroupNodes referring to
113 unsigned idx
= GroupNodes
.size();
114 GroupNodes
.push_back(idx
);
115 GroupNodeIndices
[Reg
] = idx
;
119 bool AggressiveAntiDepState::IsLive(unsigned Reg
) {
120 // KillIndex must be defined and DefIndex not defined for a register
122 return((KillIndices
[Reg
] != ~0u) && (DefIndices
[Reg
] == ~0u));
125 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
126 MachineFunction
&MFi
, const RegisterClassInfo
&RCI
,
127 TargetSubtargetInfo::RegClassVector
&CriticalPathRCs
)
128 : AntiDepBreaker(), MF(MFi
), MRI(MF
.getRegInfo()),
129 TII(MF
.getSubtarget().getInstrInfo()),
130 TRI(MF
.getSubtarget().getRegisterInfo()), RegClassInfo(RCI
) {
131 /* Collect a bitset of all registers that are only broken if they
132 are on the critical path. */
133 for (unsigned i
= 0, e
= CriticalPathRCs
.size(); i
< e
; ++i
) {
134 BitVector CPSet
= TRI
->getAllocatableSet(MF
, CriticalPathRCs
[i
]);
135 if (CriticalPathSet
.none())
136 CriticalPathSet
= CPSet
;
138 CriticalPathSet
|= CPSet
;
141 LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
142 LLVM_DEBUG(for (unsigned r
143 : CriticalPathSet
.set_bits()) dbgs()
144 << " " << printReg(r
, TRI
));
145 LLVM_DEBUG(dbgs() << '\n');
148 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
152 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock
*BB
) {
154 State
= new AggressiveAntiDepState(TRI
->getNumRegs(), BB
);
156 bool IsReturnBlock
= BB
->isReturnBlock();
157 std::vector
<unsigned> &KillIndices
= State
->GetKillIndices();
158 std::vector
<unsigned> &DefIndices
= State
->GetDefIndices();
160 // Examine the live-in regs of all successors.
161 for (MachineBasicBlock::succ_iterator SI
= BB
->succ_begin(),
162 SE
= BB
->succ_end(); SI
!= SE
; ++SI
)
163 for (const auto &LI
: (*SI
)->liveins()) {
164 for (MCRegAliasIterator
AI(LI
.PhysReg
, TRI
, true); AI
.isValid(); ++AI
) {
166 State
->UnionGroups(Reg
, 0);
167 KillIndices
[Reg
] = BB
->size();
168 DefIndices
[Reg
] = ~0u;
172 // Mark live-out callee-saved registers. In a return block this is
173 // all callee-saved registers. In non-return this is any
174 // callee-saved register that is not saved in the prolog.
175 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
176 BitVector Pristine
= MFI
.getPristineRegs(MF
);
177 for (const MCPhysReg
*I
= MF
.getRegInfo().getCalleeSavedRegs(); *I
;
180 if (!IsReturnBlock
&& !Pristine
.test(Reg
))
182 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
) {
183 unsigned AliasReg
= *AI
;
184 State
->UnionGroups(AliasReg
, 0);
185 KillIndices
[AliasReg
] = BB
->size();
186 DefIndices
[AliasReg
] = ~0u;
191 void AggressiveAntiDepBreaker::FinishBlock() {
196 void AggressiveAntiDepBreaker::Observe(MachineInstr
&MI
, unsigned Count
,
197 unsigned InsertPosIndex
) {
198 assert(Count
< InsertPosIndex
&& "Instruction index out of expected range!");
200 std::set
<unsigned> PassthruRegs
;
201 GetPassthruRegs(MI
, PassthruRegs
);
202 PrescanInstruction(MI
, Count
, PassthruRegs
);
203 ScanInstruction(MI
, Count
);
205 LLVM_DEBUG(dbgs() << "Observe: ");
206 LLVM_DEBUG(MI
.dump());
207 LLVM_DEBUG(dbgs() << "\tRegs:");
209 std::vector
<unsigned> &DefIndices
= State
->GetDefIndices();
210 for (unsigned Reg
= 0; Reg
!= TRI
->getNumRegs(); ++Reg
) {
211 // If Reg is current live, then mark that it can't be renamed as
212 // we don't know the extent of its live-range anymore (now that it
213 // has been scheduled). If it is not live but was defined in the
214 // previous schedule region, then set its def index to the most
215 // conservative location (i.e. the beginning of the previous
217 if (State
->IsLive(Reg
)) {
218 LLVM_DEBUG(if (State
->GetGroup(Reg
) != 0) dbgs()
219 << " " << printReg(Reg
, TRI
) << "=g" << State
->GetGroup(Reg
)
220 << "->g0(region live-out)");
221 State
->UnionGroups(Reg
, 0);
222 } else if ((DefIndices
[Reg
] < InsertPosIndex
)
223 && (DefIndices
[Reg
] >= Count
)) {
224 DefIndices
[Reg
] = Count
;
227 LLVM_DEBUG(dbgs() << '\n');
230 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr
&MI
,
231 MachineOperand
&MO
) {
232 if (!MO
.isReg() || !MO
.isImplicit())
235 Register Reg
= MO
.getReg();
239 MachineOperand
*Op
= nullptr;
241 Op
= MI
.findRegisterUseOperand(Reg
, true);
243 Op
= MI
.findRegisterDefOperand(Reg
);
245 return(Op
&& Op
->isImplicit());
248 void AggressiveAntiDepBreaker::GetPassthruRegs(
249 MachineInstr
&MI
, std::set
<unsigned> &PassthruRegs
) {
250 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
251 MachineOperand
&MO
= MI
.getOperand(i
);
252 if (!MO
.isReg()) continue;
253 if ((MO
.isDef() && MI
.isRegTiedToUseOperand(i
)) ||
254 IsImplicitDefUse(MI
, MO
)) {
255 const Register Reg
= MO
.getReg();
256 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
257 SubRegs
.isValid(); ++SubRegs
)
258 PassthruRegs
.insert(*SubRegs
);
263 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
264 /// in SU that we want to consider for breaking.
265 static void AntiDepEdges(const SUnit
*SU
, std::vector
<const SDep
*> &Edges
) {
266 SmallSet
<unsigned, 4> RegSet
;
267 for (SUnit::const_pred_iterator P
= SU
->Preds
.begin(), PE
= SU
->Preds
.end();
269 if ((P
->getKind() == SDep::Anti
) || (P
->getKind() == SDep::Output
)) {
270 if (RegSet
.insert(P
->getReg()).second
)
271 Edges
.push_back(&*P
);
276 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
278 static const SUnit
*CriticalPathStep(const SUnit
*SU
) {
279 const SDep
*Next
= nullptr;
280 unsigned NextDepth
= 0;
281 // Find the predecessor edge with the greatest depth.
283 for (SUnit::const_pred_iterator P
= SU
->Preds
.begin(), PE
= SU
->Preds
.end();
285 const SUnit
*PredSU
= P
->getSUnit();
286 unsigned PredLatency
= P
->getLatency();
287 unsigned PredTotalLatency
= PredSU
->getDepth() + PredLatency
;
288 // In the case of a latency tie, prefer an anti-dependency edge over
289 // other types of edges.
290 if (NextDepth
< PredTotalLatency
||
291 (NextDepth
== PredTotalLatency
&& P
->getKind() == SDep::Anti
)) {
292 NextDepth
= PredTotalLatency
;
298 return (Next
) ? Next
->getSUnit() : nullptr;
301 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg
, unsigned KillIdx
,
304 const char *footer
) {
305 std::vector
<unsigned> &KillIndices
= State
->GetKillIndices();
306 std::vector
<unsigned> &DefIndices
= State
->GetDefIndices();
307 std::multimap
<unsigned, AggressiveAntiDepState::RegisterReference
>&
308 RegRefs
= State
->GetRegRefs();
310 // FIXME: We must leave subregisters of live super registers as live, so that
311 // we don't clear out the register tracking information for subregisters of
312 // super registers we're still tracking (and with which we're unioning
313 // subregister definitions).
314 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
315 if (TRI
->isSuperRegister(Reg
, *AI
) && State
->IsLive(*AI
)) {
316 LLVM_DEBUG(if (!header
&& footer
) dbgs() << footer
);
320 if (!State
->IsLive(Reg
)) {
321 KillIndices
[Reg
] = KillIdx
;
322 DefIndices
[Reg
] = ~0u;
324 State
->LeaveGroup(Reg
);
325 LLVM_DEBUG(if (header
) {
326 dbgs() << header
<< printReg(Reg
, TRI
);
329 LLVM_DEBUG(dbgs() << "->g" << State
->GetGroup(Reg
) << tag
);
330 // Repeat for subregisters. Note that we only do this if the superregister
331 // was not live because otherwise, regardless whether we have an explicit
332 // use of the subregister, the subregister's contents are needed for the
333 // uses of the superregister.
334 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid(); ++SubRegs
) {
335 unsigned SubregReg
= *SubRegs
;
336 if (!State
->IsLive(SubregReg
)) {
337 KillIndices
[SubregReg
] = KillIdx
;
338 DefIndices
[SubregReg
] = ~0u;
339 RegRefs
.erase(SubregReg
);
340 State
->LeaveGroup(SubregReg
);
341 LLVM_DEBUG(if (header
) {
342 dbgs() << header
<< printReg(Reg
, TRI
);
345 LLVM_DEBUG(dbgs() << " " << printReg(SubregReg
, TRI
) << "->g"
346 << State
->GetGroup(SubregReg
) << tag
);
351 LLVM_DEBUG(if (!header
&& footer
) dbgs() << footer
);
354 void AggressiveAntiDepBreaker::PrescanInstruction(
355 MachineInstr
&MI
, unsigned Count
, std::set
<unsigned> &PassthruRegs
) {
356 std::vector
<unsigned> &DefIndices
= State
->GetDefIndices();
357 std::multimap
<unsigned, AggressiveAntiDepState::RegisterReference
>&
358 RegRefs
= State
->GetRegRefs();
360 // Handle dead defs by simulating a last-use of the register just
361 // after the def. A dead def can occur because the def is truly
362 // dead, or because only a subregister is live at the def. If we
363 // don't do this the dead def will be incorrectly merged into the
365 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
366 MachineOperand
&MO
= MI
.getOperand(i
);
367 if (!MO
.isReg() || !MO
.isDef()) continue;
368 Register Reg
= MO
.getReg();
369 if (Reg
== 0) continue;
371 HandleLastUse(Reg
, Count
+ 1, "", "\tDead Def: ", "\n");
374 LLVM_DEBUG(dbgs() << "\tDef Groups:");
375 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
376 MachineOperand
&MO
= MI
.getOperand(i
);
377 if (!MO
.isReg() || !MO
.isDef()) continue;
378 Register Reg
= MO
.getReg();
379 if (Reg
== 0) continue;
381 LLVM_DEBUG(dbgs() << " " << printReg(Reg
, TRI
) << "=g"
382 << State
->GetGroup(Reg
));
384 // If MI's defs have a special allocation requirement, don't allow
385 // any def registers to be changed. Also assume all registers
386 // defined in a call must not be changed (ABI). Inline assembly may
387 // reference either system calls or the register directly. Skip it until we
388 // can tell user specified registers from compiler-specified.
389 if (MI
.isCall() || MI
.hasExtraDefRegAllocReq() || TII
->isPredicated(MI
) ||
391 LLVM_DEBUG(if (State
->GetGroup(Reg
) != 0) dbgs() << "->g0(alloc-req)");
392 State
->UnionGroups(Reg
, 0);
395 // Any aliased that are live at this point are completely or
396 // partially defined here, so group those aliases with Reg.
397 for (MCRegAliasIterator
AI(Reg
, TRI
, false); AI
.isValid(); ++AI
) {
398 unsigned AliasReg
= *AI
;
399 if (State
->IsLive(AliasReg
)) {
400 State
->UnionGroups(Reg
, AliasReg
);
401 LLVM_DEBUG(dbgs() << "->g" << State
->GetGroup(Reg
) << "(via "
402 << printReg(AliasReg
, TRI
) << ")");
406 // Note register reference...
407 const TargetRegisterClass
*RC
= nullptr;
408 if (i
< MI
.getDesc().getNumOperands())
409 RC
= TII
->getRegClass(MI
.getDesc(), i
, TRI
, MF
);
410 AggressiveAntiDepState::RegisterReference RR
= { &MO
, RC
};
411 RegRefs
.insert(std::make_pair(Reg
, RR
));
414 LLVM_DEBUG(dbgs() << '\n');
416 // Scan the register defs for this instruction and update
418 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
419 MachineOperand
&MO
= MI
.getOperand(i
);
420 if (!MO
.isReg() || !MO
.isDef()) continue;
421 Register Reg
= MO
.getReg();
422 if (Reg
== 0) continue;
423 // Ignore KILLs and passthru registers for liveness...
424 if (MI
.isKill() || (PassthruRegs
.count(Reg
) != 0))
427 // Update def for Reg and aliases.
428 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
) {
429 // We need to be careful here not to define already-live super registers.
430 // If the super register is already live, then this definition is not
431 // a definition of the whole super register (just a partial insertion
432 // into it). Earlier subregister definitions (which we've not yet visited
433 // because we're iterating bottom-up) need to be linked to the same group
434 // as this definition.
435 if (TRI
->isSuperRegister(Reg
, *AI
) && State
->IsLive(*AI
))
438 DefIndices
[*AI
] = Count
;
443 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr
&MI
,
445 LLVM_DEBUG(dbgs() << "\tUse Groups:");
446 std::multimap
<unsigned, AggressiveAntiDepState::RegisterReference
>&
447 RegRefs
= State
->GetRegRefs();
449 // If MI's uses have special allocation requirement, don't allow
450 // any use registers to be changed. Also assume all registers
451 // used in a call must not be changed (ABI).
452 // Inline Assembly register uses also cannot be safely changed.
453 // FIXME: The issue with predicated instruction is more complex. We are being
454 // conservatively here because the kill markers cannot be trusted after
456 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
458 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
459 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
460 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
462 // The first R6 kill is not really a kill since it's killed by a predicated
463 // instruction which may not be executed. The second R6 def may or may not
464 // re-define R6 so it's not safe to change it since the last R6 use cannot be
466 bool Special
= MI
.isCall() || MI
.hasExtraSrcRegAllocReq() ||
467 TII
->isPredicated(MI
) || MI
.isInlineAsm();
469 // Scan the register uses for this instruction and update
470 // live-ranges, groups and RegRefs.
471 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
472 MachineOperand
&MO
= MI
.getOperand(i
);
473 if (!MO
.isReg() || !MO
.isUse()) continue;
474 Register Reg
= MO
.getReg();
475 if (Reg
== 0) continue;
477 LLVM_DEBUG(dbgs() << " " << printReg(Reg
, TRI
) << "=g"
478 << State
->GetGroup(Reg
));
480 // It wasn't previously live but now it is, this is a kill. Forget
481 // the previous live-range information and start a new live-range
483 HandleLastUse(Reg
, Count
, "(last-use)");
486 LLVM_DEBUG(if (State
->GetGroup(Reg
) != 0) dbgs() << "->g0(alloc-req)");
487 State
->UnionGroups(Reg
, 0);
490 // Note register reference...
491 const TargetRegisterClass
*RC
= nullptr;
492 if (i
< MI
.getDesc().getNumOperands())
493 RC
= TII
->getRegClass(MI
.getDesc(), i
, TRI
, MF
);
494 AggressiveAntiDepState::RegisterReference RR
= { &MO
, RC
};
495 RegRefs
.insert(std::make_pair(Reg
, RR
));
498 LLVM_DEBUG(dbgs() << '\n');
500 // Form a group of all defs and uses of a KILL instruction to ensure
501 // that all registers are renamed as a group.
503 LLVM_DEBUG(dbgs() << "\tKill Group:");
505 unsigned FirstReg
= 0;
506 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
507 MachineOperand
&MO
= MI
.getOperand(i
);
508 if (!MO
.isReg()) continue;
509 Register Reg
= MO
.getReg();
510 if (Reg
== 0) continue;
513 LLVM_DEBUG(dbgs() << "=" << printReg(Reg
, TRI
));
514 State
->UnionGroups(FirstReg
, Reg
);
516 LLVM_DEBUG(dbgs() << " " << printReg(Reg
, TRI
));
521 LLVM_DEBUG(dbgs() << "->g" << State
->GetGroup(FirstReg
) << '\n');
525 BitVector
AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg
) {
526 BitVector
BV(TRI
->getNumRegs(), false);
529 // Check all references that need rewriting for Reg. For each, use
530 // the corresponding register class to narrow the set of registers
531 // that are appropriate for renaming.
532 for (const auto &Q
: make_range(State
->GetRegRefs().equal_range(Reg
))) {
533 const TargetRegisterClass
*RC
= Q
.second
.RC
;
536 BitVector RCBV
= TRI
->getAllocatableSet(MF
, RC
);
544 LLVM_DEBUG(dbgs() << " " << TRI
->getRegClassName(RC
));
550 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
551 unsigned AntiDepGroupIndex
,
552 RenameOrderType
& RenameOrder
,
553 std::map
<unsigned, unsigned> &RenameMap
) {
554 std::vector
<unsigned> &KillIndices
= State
->GetKillIndices();
555 std::vector
<unsigned> &DefIndices
= State
->GetDefIndices();
556 std::multimap
<unsigned, AggressiveAntiDepState::RegisterReference
>&
557 RegRefs
= State
->GetRegRefs();
559 // Collect all referenced registers in the same group as
560 // AntiDepReg. These all need to be renamed together if we are to
561 // break the anti-dependence.
562 std::vector
<unsigned> Regs
;
563 State
->GetGroupRegs(AntiDepGroupIndex
, Regs
, &RegRefs
);
564 assert(!Regs
.empty() && "Empty register group!");
568 // Find the "superest" register in the group. At the same time,
569 // collect the BitVector of registers that can be used to rename
571 LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
573 std::map
<unsigned, BitVector
> RenameRegisterMap
;
574 unsigned SuperReg
= 0;
575 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
) {
576 unsigned Reg
= Regs
[i
];
577 if ((SuperReg
== 0) || TRI
->isSuperRegister(SuperReg
, Reg
))
580 // If Reg has any references, then collect possible rename regs
581 if (RegRefs
.count(Reg
) > 0) {
582 LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg
, TRI
) << ":");
584 BitVector
&BV
= RenameRegisterMap
[Reg
];
586 BV
= GetRenameRegisters(Reg
);
590 for (unsigned r
: BV
.set_bits())
591 dbgs() << " " << printReg(r
, TRI
);
597 // All group registers should be a subreg of SuperReg.
598 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
) {
599 unsigned Reg
= Regs
[i
];
600 if (Reg
== SuperReg
) continue;
601 bool IsSub
= TRI
->isSubRegister(SuperReg
, Reg
);
602 // FIXME: remove this once PR18663 has been properly fixed. For now,
603 // return a conservative answer:
604 // assert(IsSub && "Expecting group subregister");
610 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
612 static int renamecnt
= 0;
613 if (renamecnt
++ % DebugDiv
!= DebugMod
)
616 dbgs() << "*** Performing rename " << printReg(SuperReg
, TRI
)
617 << " for debug ***\n";
621 // Check each possible rename register for SuperReg in round-robin
622 // order. If that register is available, and the corresponding
623 // registers are available for the other group subregisters, then we
624 // can use those registers to rename.
626 // FIXME: Using getMinimalPhysRegClass is very conservative. We should
627 // check every use of the register and find the largest register class
628 // that can be used in all of them.
629 const TargetRegisterClass
*SuperRC
=
630 TRI
->getMinimalPhysRegClass(SuperReg
, MVT::Other
);
632 ArrayRef
<MCPhysReg
> Order
= RegClassInfo
.getOrder(SuperRC
);
634 LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
638 LLVM_DEBUG(dbgs() << "\tFind Registers:");
640 RenameOrder
.insert(RenameOrderType::value_type(SuperRC
, Order
.size()));
642 unsigned OrigR
= RenameOrder
[SuperRC
];
643 unsigned EndR
= ((OrigR
== Order
.size()) ? 0 : OrigR
);
646 if (R
== 0) R
= Order
.size();
648 const unsigned NewSuperReg
= Order
[R
];
649 // Don't consider non-allocatable registers
650 if (!MRI
.isAllocatable(NewSuperReg
)) continue;
651 // Don't replace a register with itself.
652 if (NewSuperReg
== SuperReg
) continue;
654 LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg
, TRI
) << ':');
657 // For each referenced group register (which must be a SuperReg or
658 // a subregister of SuperReg), find the corresponding subregister
659 // of NewSuperReg and make sure it is free to be renamed.
660 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
) {
661 unsigned Reg
= Regs
[i
];
663 if (Reg
== SuperReg
) {
664 NewReg
= NewSuperReg
;
666 unsigned NewSubRegIdx
= TRI
->getSubRegIndex(SuperReg
, Reg
);
667 if (NewSubRegIdx
!= 0)
668 NewReg
= TRI
->getSubReg(NewSuperReg
, NewSubRegIdx
);
671 LLVM_DEBUG(dbgs() << " " << printReg(NewReg
, TRI
));
673 // Check if Reg can be renamed to NewReg.
674 if (!RenameRegisterMap
[Reg
].test(NewReg
)) {
675 LLVM_DEBUG(dbgs() << "(no rename)");
679 // If NewReg is dead and NewReg's most recent def is not before
680 // Regs's kill, it's safe to replace Reg with NewReg. We
681 // must also check all aliases of NewReg, because we can't define a
682 // register when any sub or super is already live.
683 if (State
->IsLive(NewReg
) || (KillIndices
[Reg
] > DefIndices
[NewReg
])) {
684 LLVM_DEBUG(dbgs() << "(live)");
688 for (MCRegAliasIterator
AI(NewReg
, TRI
, false); AI
.isValid(); ++AI
) {
689 unsigned AliasReg
= *AI
;
690 if (State
->IsLive(AliasReg
) ||
691 (KillIndices
[Reg
] > DefIndices
[AliasReg
])) {
693 << "(alias " << printReg(AliasReg
, TRI
) << " live)");
702 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
703 // defines 'NewReg' via an early-clobber operand.
704 for (const auto &Q
: make_range(RegRefs
.equal_range(Reg
))) {
705 MachineInstr
*UseMI
= Q
.second
.Operand
->getParent();
706 int Idx
= UseMI
->findRegisterDefOperandIdx(NewReg
, false, true, TRI
);
710 if (UseMI
->getOperand(Idx
).isEarlyClobber()) {
711 LLVM_DEBUG(dbgs() << "(ec)");
716 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
717 // 'Reg' is an early-clobber define and that instruction also uses
719 for (const auto &Q
: make_range(RegRefs
.equal_range(Reg
))) {
720 if (!Q
.second
.Operand
->isDef() || !Q
.second
.Operand
->isEarlyClobber())
723 MachineInstr
*DefMI
= Q
.second
.Operand
->getParent();
724 if (DefMI
->readsRegister(NewReg
, TRI
)) {
725 LLVM_DEBUG(dbgs() << "(ec)");
730 // Record that 'Reg' can be renamed to 'NewReg'.
731 RenameMap
.insert(std::pair
<unsigned, unsigned>(Reg
, NewReg
));
734 // If we fall-out here, then every register in the group can be
735 // renamed, as recorded in RenameMap.
736 RenameOrder
.erase(SuperRC
);
737 RenameOrder
.insert(RenameOrderType::value_type(SuperRC
, R
));
738 LLVM_DEBUG(dbgs() << "]\n");
742 LLVM_DEBUG(dbgs() << ']');
745 LLVM_DEBUG(dbgs() << '\n');
747 // No registers are free and available!
751 /// BreakAntiDependencies - Identifiy anti-dependencies within the
752 /// ScheduleDAG and break them by renaming registers.
753 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
754 const std::vector
<SUnit
> &SUnits
,
755 MachineBasicBlock::iterator Begin
,
756 MachineBasicBlock::iterator End
,
757 unsigned InsertPosIndex
,
758 DbgValueVector
&DbgValues
) {
759 std::vector
<unsigned> &KillIndices
= State
->GetKillIndices();
760 std::vector
<unsigned> &DefIndices
= State
->GetDefIndices();
761 std::multimap
<unsigned, AggressiveAntiDepState::RegisterReference
>&
762 RegRefs
= State
->GetRegRefs();
764 // The code below assumes that there is at least one instruction,
765 // so just duck out immediately if the block is empty.
766 if (SUnits
.empty()) return 0;
768 // For each regclass the next register to use for renaming.
769 RenameOrderType RenameOrder
;
771 // ...need a map from MI to SUnit.
772 std::map
<MachineInstr
*, const SUnit
*> MISUnitMap
;
773 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
774 const SUnit
*SU
= &SUnits
[i
];
775 MISUnitMap
.insert(std::pair
<MachineInstr
*, const SUnit
*>(SU
->getInstr(),
779 // Track progress along the critical path through the SUnit graph as
780 // we walk the instructions. This is needed for regclasses that only
781 // break critical-path anti-dependencies.
782 const SUnit
*CriticalPathSU
= nullptr;
783 MachineInstr
*CriticalPathMI
= nullptr;
784 if (CriticalPathSet
.any()) {
785 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
786 const SUnit
*SU
= &SUnits
[i
];
787 if (!CriticalPathSU
||
788 ((SU
->getDepth() + SU
->Latency
) >
789 (CriticalPathSU
->getDepth() + CriticalPathSU
->Latency
))) {
794 CriticalPathMI
= CriticalPathSU
->getInstr();
798 LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
799 LLVM_DEBUG(dbgs() << "Available regs:");
800 for (unsigned Reg
= 0; Reg
< TRI
->getNumRegs(); ++Reg
) {
801 if (!State
->IsLive(Reg
))
802 LLVM_DEBUG(dbgs() << " " << printReg(Reg
, TRI
));
804 LLVM_DEBUG(dbgs() << '\n');
807 BitVector
RegAliases(TRI
->getNumRegs());
809 // Attempt to break anti-dependence edges. Walk the instructions
810 // from the bottom up, tracking information about liveness as we go
811 // to help determine which registers are available.
813 unsigned Count
= InsertPosIndex
- 1;
814 for (MachineBasicBlock::iterator I
= End
, E
= Begin
;
816 MachineInstr
&MI
= *--I
;
818 if (MI
.isDebugInstr())
821 LLVM_DEBUG(dbgs() << "Anti: ");
822 LLVM_DEBUG(MI
.dump());
824 std::set
<unsigned> PassthruRegs
;
825 GetPassthruRegs(MI
, PassthruRegs
);
827 // Process the defs in MI...
828 PrescanInstruction(MI
, Count
, PassthruRegs
);
830 // The dependence edges that represent anti- and output-
831 // dependencies that are candidates for breaking.
832 std::vector
<const SDep
*> Edges
;
833 const SUnit
*PathSU
= MISUnitMap
[&MI
];
834 AntiDepEdges(PathSU
, Edges
);
836 // If MI is not on the critical path, then we don't rename
837 // registers in the CriticalPathSet.
838 BitVector
*ExcludeRegs
= nullptr;
839 if (&MI
== CriticalPathMI
) {
840 CriticalPathSU
= CriticalPathStep(CriticalPathSU
);
841 CriticalPathMI
= (CriticalPathSU
) ? CriticalPathSU
->getInstr() : nullptr;
842 } else if (CriticalPathSet
.any()) {
843 ExcludeRegs
= &CriticalPathSet
;
846 // Ignore KILL instructions (they form a group in ScanInstruction
847 // but don't cause any anti-dependence breaking themselves)
849 // Attempt to break each anti-dependency...
850 for (unsigned i
= 0, e
= Edges
.size(); i
!= e
; ++i
) {
851 const SDep
*Edge
= Edges
[i
];
852 SUnit
*NextSU
= Edge
->getSUnit();
854 if ((Edge
->getKind() != SDep::Anti
) &&
855 (Edge
->getKind() != SDep::Output
)) continue;
857 unsigned AntiDepReg
= Edge
->getReg();
858 LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg
, TRI
));
859 assert(AntiDepReg
!= 0 && "Anti-dependence on reg0?");
861 if (!MRI
.isAllocatable(AntiDepReg
)) {
862 // Don't break anti-dependencies on non-allocatable registers.
863 LLVM_DEBUG(dbgs() << " (non-allocatable)\n");
865 } else if (ExcludeRegs
&& ExcludeRegs
->test(AntiDepReg
)) {
866 // Don't break anti-dependencies for critical path registers
867 // if not on the critical path
868 LLVM_DEBUG(dbgs() << " (not critical-path)\n");
870 } else if (PassthruRegs
.count(AntiDepReg
) != 0) {
871 // If the anti-dep register liveness "passes-thru", then
872 // don't try to change it. It will be changed along with
873 // the use if required to break an earlier antidep.
874 LLVM_DEBUG(dbgs() << " (passthru)\n");
877 // No anti-dep breaking for implicit deps
878 MachineOperand
*AntiDepOp
= MI
.findRegisterDefOperand(AntiDepReg
);
879 assert(AntiDepOp
&& "Can't find index for defined register operand");
880 if (!AntiDepOp
|| AntiDepOp
->isImplicit()) {
881 LLVM_DEBUG(dbgs() << " (implicit)\n");
885 // If the SUnit has other dependencies on the SUnit that
886 // it anti-depends on, don't bother breaking the
887 // anti-dependency since those edges would prevent such
888 // units from being scheduled past each other
891 // Also, if there are dependencies on other SUnits with the
892 // same register as the anti-dependency, don't attempt to
894 for (SUnit::const_pred_iterator P
= PathSU
->Preds
.begin(),
895 PE
= PathSU
->Preds
.end(); P
!= PE
; ++P
) {
896 if (P
->getSUnit() == NextSU
?
897 (P
->getKind() != SDep::Anti
|| P
->getReg() != AntiDepReg
) :
898 (P
->getKind() == SDep::Data
&& P
->getReg() == AntiDepReg
)) {
903 for (SUnit::const_pred_iterator P
= PathSU
->Preds
.begin(),
904 PE
= PathSU
->Preds
.end(); P
!= PE
; ++P
) {
905 if ((P
->getSUnit() == NextSU
) && (P
->getKind() != SDep::Anti
) &&
906 (P
->getKind() != SDep::Output
)) {
907 LLVM_DEBUG(dbgs() << " (real dependency)\n");
910 } else if ((P
->getSUnit() != NextSU
) &&
911 (P
->getKind() == SDep::Data
) &&
912 (P
->getReg() == AntiDepReg
)) {
913 LLVM_DEBUG(dbgs() << " (other dependency)\n");
919 if (AntiDepReg
== 0) continue;
921 // If the definition of the anti-dependency register does not start
922 // a new live range, bail out. This can happen if the anti-dep
923 // register is a sub-register of another register whose live range
924 // spans over PathSU. In such case, PathSU defines only a part of
925 // the larger register.
927 for (MCRegAliasIterator
AI(AntiDepReg
, TRI
, true); AI
.isValid(); ++AI
)
929 for (SDep S
: PathSU
->Succs
) {
930 SDep::Kind K
= S
.getKind();
931 if (K
!= SDep::Data
&& K
!= SDep::Output
&& K
!= SDep::Anti
)
933 unsigned R
= S
.getReg();
936 if (R
== AntiDepReg
|| TRI
->isSubRegister(AntiDepReg
, R
))
942 if (AntiDepReg
== 0) continue;
945 assert(AntiDepReg
!= 0);
946 if (AntiDepReg
== 0) continue;
948 // Determine AntiDepReg's register group.
949 const unsigned GroupIndex
= State
->GetGroup(AntiDepReg
);
950 if (GroupIndex
== 0) {
951 LLVM_DEBUG(dbgs() << " (zero group)\n");
955 LLVM_DEBUG(dbgs() << '\n');
957 // Look for a suitable register to use to break the anti-dependence.
958 std::map
<unsigned, unsigned> RenameMap
;
959 if (FindSuitableFreeRegisters(GroupIndex
, RenameOrder
, RenameMap
)) {
960 LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
961 << printReg(AntiDepReg
, TRI
) << ":");
963 // Handle each group register...
964 for (std::map
<unsigned, unsigned>::iterator
965 S
= RenameMap
.begin(), E
= RenameMap
.end(); S
!= E
; ++S
) {
966 unsigned CurrReg
= S
->first
;
967 unsigned NewReg
= S
->second
;
969 LLVM_DEBUG(dbgs() << " " << printReg(CurrReg
, TRI
) << "->"
970 << printReg(NewReg
, TRI
) << "("
971 << RegRefs
.count(CurrReg
) << " refs)");
973 // Update the references to the old register CurrReg to
974 // refer to the new register NewReg.
975 for (const auto &Q
: make_range(RegRefs
.equal_range(CurrReg
))) {
976 Q
.second
.Operand
->setReg(NewReg
);
977 // If the SU for the instruction being updated has debug
978 // information related to the anti-dependency register, make
979 // sure to update that as well.
980 const SUnit
*SU
= MISUnitMap
[Q
.second
.Operand
->getParent()];
982 UpdateDbgValues(DbgValues
, Q
.second
.Operand
->getParent(),
986 // We just went back in time and modified history; the
987 // liveness information for CurrReg is now inconsistent. Set
988 // the state as if it were dead.
989 State
->UnionGroups(NewReg
, 0);
990 RegRefs
.erase(NewReg
);
991 DefIndices
[NewReg
] = DefIndices
[CurrReg
];
992 KillIndices
[NewReg
] = KillIndices
[CurrReg
];
994 State
->UnionGroups(CurrReg
, 0);
995 RegRefs
.erase(CurrReg
);
996 DefIndices
[CurrReg
] = KillIndices
[CurrReg
];
997 KillIndices
[CurrReg
] = ~0u;
998 assert(((KillIndices
[CurrReg
] == ~0u) !=
999 (DefIndices
[CurrReg
] == ~0u)) &&
1000 "Kill and Def maps aren't consistent for AntiDepReg!");
1004 LLVM_DEBUG(dbgs() << '\n');
1009 ScanInstruction(MI
, Count
);