[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / AtomicExpandPass.cpp
blobdc7eaf6a5fe7ec05cc1d5db31419b72778d857c6
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <iterator>
52 using namespace llvm;
54 #define DEBUG_TYPE "atomic-expand"
56 namespace {
58 class AtomicExpand: public FunctionPass {
59 const TargetLowering *TLI = nullptr;
61 public:
62 static char ID; // Pass identification, replacement for typeid
64 AtomicExpand() : FunctionPass(ID) {
65 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
68 bool runOnFunction(Function &F) override;
70 private:
71 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
72 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
73 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
74 bool tryExpandAtomicLoad(LoadInst *LI);
75 bool expandAtomicLoadToLL(LoadInst *LI);
76 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
77 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
78 bool expandAtomicStore(StoreInst *SI);
79 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
80 Value *
81 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
82 AtomicOrdering MemOpOrder,
83 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
84 void expandAtomicOpToLLSC(
85 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
86 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
87 void expandPartwordAtomicRMW(
88 AtomicRMWInst *I,
89 TargetLoweringBase::AtomicExpansionKind ExpansionKind);
90 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
91 void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
92 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
93 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
96 static Value *insertRMWCmpXchgLoop(
97 IRBuilder<> &Builder, Type *ResultType, Value *Addr,
98 AtomicOrdering MemOpOrder,
99 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
100 CreateCmpXchgInstFun CreateCmpXchg);
101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
104 bool isIdempotentRMW(AtomicRMWInst *RMWI);
105 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
108 Value *PointerOperand, Value *ValueOperand,
109 Value *CASExpected, AtomicOrdering Ordering,
110 AtomicOrdering Ordering2,
111 ArrayRef<RTLIB::Libcall> Libcalls);
112 void expandAtomicLoadToLibcall(LoadInst *LI);
113 void expandAtomicStoreToLibcall(StoreInst *LI);
114 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
115 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117 friend bool
118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
119 CreateCmpXchgInstFun CreateCmpXchg);
122 } // end anonymous namespace
124 char AtomicExpand::ID = 0;
126 char &llvm::AtomicExpandID = AtomicExpand::ID;
128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
129 false, false)
131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133 // Helper functions to retrieve the size of atomic instructions.
134 static unsigned getAtomicOpSize(LoadInst *LI) {
135 const DataLayout &DL = LI->getModule()->getDataLayout();
136 return DL.getTypeStoreSize(LI->getType());
139 static unsigned getAtomicOpSize(StoreInst *SI) {
140 const DataLayout &DL = SI->getModule()->getDataLayout();
141 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
145 const DataLayout &DL = RMWI->getModule()->getDataLayout();
146 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
150 const DataLayout &DL = CASI->getModule()->getDataLayout();
151 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
154 // Helper functions to retrieve the alignment of atomic instructions.
155 static unsigned getAtomicOpAlign(LoadInst *LI) {
156 unsigned Align = LI->getAlignment();
157 // In the future, if this IR restriction is relaxed, we should
158 // return DataLayout::getABITypeAlignment when there's no align
159 // value.
160 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
161 return Align;
164 static unsigned getAtomicOpAlign(StoreInst *SI) {
165 unsigned Align = SI->getAlignment();
166 // In the future, if this IR restriction is relaxed, we should
167 // return DataLayout::getABITypeAlignment when there's no align
168 // value.
169 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
170 return Align;
173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
174 // TODO(PR27168): This instruction has no alignment attribute, but unlike the
175 // default alignment for load/store, the default here is to assume
176 // it has NATURAL alignment, not DataLayout-specified alignment.
177 const DataLayout &DL = RMWI->getModule()->getDataLayout();
178 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
182 // TODO(PR27168): same comment as above.
183 const DataLayout &DL = CASI->getModule()->getDataLayout();
184 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
187 // Determine if a particular atomic operation has a supported size,
188 // and is of appropriate alignment, to be passed through for target
189 // lowering. (Versus turning into a __atomic libcall)
190 template <typename Inst>
191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
192 unsigned Size = getAtomicOpSize(I);
193 unsigned Align = getAtomicOpAlign(I);
194 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
197 bool AtomicExpand::runOnFunction(Function &F) {
198 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
199 if (!TPC)
200 return false;
202 auto &TM = TPC->getTM<TargetMachine>();
203 if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
204 return false;
205 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
207 SmallVector<Instruction *, 1> AtomicInsts;
209 // Changing control-flow while iterating through it is a bad idea, so gather a
210 // list of all atomic instructions before we start.
211 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
212 Instruction *I = &*II;
213 if (I->isAtomic() && !isa<FenceInst>(I))
214 AtomicInsts.push_back(I);
217 bool MadeChange = false;
218 for (auto I : AtomicInsts) {
219 auto LI = dyn_cast<LoadInst>(I);
220 auto SI = dyn_cast<StoreInst>(I);
221 auto RMWI = dyn_cast<AtomicRMWInst>(I);
222 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
223 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
225 // If the Size/Alignment is not supported, replace with a libcall.
226 if (LI) {
227 if (!atomicSizeSupported(TLI, LI)) {
228 expandAtomicLoadToLibcall(LI);
229 MadeChange = true;
230 continue;
232 } else if (SI) {
233 if (!atomicSizeSupported(TLI, SI)) {
234 expandAtomicStoreToLibcall(SI);
235 MadeChange = true;
236 continue;
238 } else if (RMWI) {
239 if (!atomicSizeSupported(TLI, RMWI)) {
240 expandAtomicRMWToLibcall(RMWI);
241 MadeChange = true;
242 continue;
244 } else if (CASI) {
245 if (!atomicSizeSupported(TLI, CASI)) {
246 expandAtomicCASToLibcall(CASI);
247 MadeChange = true;
248 continue;
252 if (TLI->shouldInsertFencesForAtomic(I)) {
253 auto FenceOrdering = AtomicOrdering::Monotonic;
254 if (LI && isAcquireOrStronger(LI->getOrdering())) {
255 FenceOrdering = LI->getOrdering();
256 LI->setOrdering(AtomicOrdering::Monotonic);
257 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
258 FenceOrdering = SI->getOrdering();
259 SI->setOrdering(AtomicOrdering::Monotonic);
260 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
261 isAcquireOrStronger(RMWI->getOrdering()))) {
262 FenceOrdering = RMWI->getOrdering();
263 RMWI->setOrdering(AtomicOrdering::Monotonic);
264 } else if (CASI &&
265 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
266 TargetLoweringBase::AtomicExpansionKind::None &&
267 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
268 isAcquireOrStronger(CASI->getSuccessOrdering()))) {
269 // If a compare and swap is lowered to LL/SC, we can do smarter fence
270 // insertion, with a stronger one on the success path than on the
271 // failure path. As a result, fence insertion is directly done by
272 // expandAtomicCmpXchg in that case.
273 FenceOrdering = CASI->getSuccessOrdering();
274 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
275 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
278 if (FenceOrdering != AtomicOrdering::Monotonic) {
279 MadeChange |= bracketInstWithFences(I, FenceOrdering);
283 if (LI) {
284 if (LI->getType()->isFloatingPointTy()) {
285 // TODO: add a TLI hook to control this so that each target can
286 // convert to lowering the original type one at a time.
287 LI = convertAtomicLoadToIntegerType(LI);
288 assert(LI->getType()->isIntegerTy() && "invariant broken");
289 MadeChange = true;
292 MadeChange |= tryExpandAtomicLoad(LI);
293 } else if (SI) {
294 if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
295 // TODO: add a TLI hook to control this so that each target can
296 // convert to lowering the original type one at a time.
297 SI = convertAtomicStoreToIntegerType(SI);
298 assert(SI->getValueOperand()->getType()->isIntegerTy() &&
299 "invariant broken");
300 MadeChange = true;
303 if (TLI->shouldExpandAtomicStoreInIR(SI))
304 MadeChange |= expandAtomicStore(SI);
305 } else if (RMWI) {
306 // There are two different ways of expanding RMW instructions:
307 // - into a load if it is idempotent
308 // - into a Cmpxchg/LL-SC loop otherwise
309 // we try them in that order.
311 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
312 MadeChange = true;
313 } else {
314 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
315 unsigned ValueSize = getAtomicOpSize(RMWI);
316 AtomicRMWInst::BinOp Op = RMWI->getOperation();
317 if (ValueSize < MinCASSize &&
318 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
319 Op == AtomicRMWInst::And)) {
320 RMWI = widenPartwordAtomicRMW(RMWI);
321 MadeChange = true;
324 MadeChange |= tryExpandAtomicRMW(RMWI);
326 } else if (CASI) {
327 // TODO: when we're ready to make the change at the IR level, we can
328 // extend convertCmpXchgToInteger for floating point too.
329 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
330 "unimplemented - floating point not legal at IR level");
331 if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
332 // TODO: add a TLI hook to control this so that each target can
333 // convert to lowering the original type one at a time.
334 CASI = convertCmpXchgToIntegerType(CASI);
335 assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
336 "invariant broken");
337 MadeChange = true;
340 MadeChange |= tryExpandAtomicCmpXchg(CASI);
343 return MadeChange;
346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
347 IRBuilder<> Builder(I);
349 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
351 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
352 // We have a guard here because not every atomic operation generates a
353 // trailing fence.
354 if (TrailingFence)
355 TrailingFence->moveAfter(I);
357 return (LeadingFence || TrailingFence);
360 /// Get the iX type with the same bitwidth as T.
361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
362 const DataLayout &DL) {
363 EVT VT = TLI->getMemValueType(DL, T);
364 unsigned BitWidth = VT.getStoreSizeInBits();
365 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
366 return IntegerType::get(T->getContext(), BitWidth);
369 /// Convert an atomic load of a non-integral type to an integer load of the
370 /// equivalent bitwidth. See the function comment on
371 /// convertAtomicStoreToIntegerType for background.
372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
373 auto *M = LI->getModule();
374 Type *NewTy = getCorrespondingIntegerType(LI->getType(),
375 M->getDataLayout());
377 IRBuilder<> Builder(LI);
379 Value *Addr = LI->getPointerOperand();
380 Type *PT = PointerType::get(NewTy,
381 Addr->getType()->getPointerAddressSpace());
382 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
384 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
385 NewLI->setAlignment(LI->getAlignment());
386 NewLI->setVolatile(LI->isVolatile());
387 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
388 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
390 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
391 LI->replaceAllUsesWith(NewVal);
392 LI->eraseFromParent();
393 return NewLI;
396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
397 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
398 case TargetLoweringBase::AtomicExpansionKind::None:
399 return false;
400 case TargetLoweringBase::AtomicExpansionKind::LLSC:
401 expandAtomicOpToLLSC(
402 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
403 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
404 return true;
405 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
406 return expandAtomicLoadToLL(LI);
407 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
408 return expandAtomicLoadToCmpXchg(LI);
409 default:
410 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
415 IRBuilder<> Builder(LI);
417 // On some architectures, load-linked instructions are atomic for larger
418 // sizes than normal loads. For example, the only 64-bit load guaranteed
419 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
420 Value *Val =
421 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
422 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
424 LI->replaceAllUsesWith(Val);
425 LI->eraseFromParent();
427 return true;
430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
431 IRBuilder<> Builder(LI);
432 AtomicOrdering Order = LI->getOrdering();
433 if (Order == AtomicOrdering::Unordered)
434 Order = AtomicOrdering::Monotonic;
436 Value *Addr = LI->getPointerOperand();
437 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
438 Constant *DummyVal = Constant::getNullValue(Ty);
440 Value *Pair = Builder.CreateAtomicCmpXchg(
441 Addr, DummyVal, DummyVal, Order,
442 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
443 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
445 LI->replaceAllUsesWith(Loaded);
446 LI->eraseFromParent();
448 return true;
451 /// Convert an atomic store of a non-integral type to an integer store of the
452 /// equivalent bitwidth. We used to not support floating point or vector
453 /// atomics in the IR at all. The backends learned to deal with the bitcast
454 /// idiom because that was the only way of expressing the notion of a atomic
455 /// float or vector store. The long term plan is to teach each backend to
456 /// instruction select from the original atomic store, but as a migration
457 /// mechanism, we convert back to the old format which the backends understand.
458 /// Each backend will need individual work to recognize the new format.
459 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
460 IRBuilder<> Builder(SI);
461 auto *M = SI->getModule();
462 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
463 M->getDataLayout());
464 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
466 Value *Addr = SI->getPointerOperand();
467 Type *PT = PointerType::get(NewTy,
468 Addr->getType()->getPointerAddressSpace());
469 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
471 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
472 NewSI->setAlignment(SI->getAlignment());
473 NewSI->setVolatile(SI->isVolatile());
474 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
475 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
476 SI->eraseFromParent();
477 return NewSI;
480 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
481 // This function is only called on atomic stores that are too large to be
482 // atomic if implemented as a native store. So we replace them by an
483 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
484 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
485 // It is the responsibility of the target to only signal expansion via
486 // shouldExpandAtomicRMW in cases where this is required and possible.
487 IRBuilder<> Builder(SI);
488 AtomicRMWInst *AI =
489 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
490 SI->getValueOperand(), SI->getOrdering());
491 SI->eraseFromParent();
493 // Now we have an appropriate swap instruction, lower it as usual.
494 return tryExpandAtomicRMW(AI);
497 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
498 Value *Loaded, Value *NewVal,
499 AtomicOrdering MemOpOrder,
500 Value *&Success, Value *&NewLoaded) {
501 Type *OrigTy = NewVal->getType();
503 // This code can go away when cmpxchg supports FP types.
504 bool NeedBitcast = OrigTy->isFloatingPointTy();
505 if (NeedBitcast) {
506 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
507 unsigned AS = Addr->getType()->getPointerAddressSpace();
508 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
509 NewVal = Builder.CreateBitCast(NewVal, IntTy);
510 Loaded = Builder.CreateBitCast(Loaded, IntTy);
513 Value* Pair = Builder.CreateAtomicCmpXchg(
514 Addr, Loaded, NewVal, MemOpOrder,
515 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
516 Success = Builder.CreateExtractValue(Pair, 1, "success");
517 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
519 if (NeedBitcast)
520 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
523 /// Emit IR to implement the given atomicrmw operation on values in registers,
524 /// returning the new value.
525 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
526 Value *Loaded, Value *Inc) {
527 Value *NewVal;
528 switch (Op) {
529 case AtomicRMWInst::Xchg:
530 return Inc;
531 case AtomicRMWInst::Add:
532 return Builder.CreateAdd(Loaded, Inc, "new");
533 case AtomicRMWInst::Sub:
534 return Builder.CreateSub(Loaded, Inc, "new");
535 case AtomicRMWInst::And:
536 return Builder.CreateAnd(Loaded, Inc, "new");
537 case AtomicRMWInst::Nand:
538 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
539 case AtomicRMWInst::Or:
540 return Builder.CreateOr(Loaded, Inc, "new");
541 case AtomicRMWInst::Xor:
542 return Builder.CreateXor(Loaded, Inc, "new");
543 case AtomicRMWInst::Max:
544 NewVal = Builder.CreateICmpSGT(Loaded, Inc);
545 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
546 case AtomicRMWInst::Min:
547 NewVal = Builder.CreateICmpSLE(Loaded, Inc);
548 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
549 case AtomicRMWInst::UMax:
550 NewVal = Builder.CreateICmpUGT(Loaded, Inc);
551 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
552 case AtomicRMWInst::UMin:
553 NewVal = Builder.CreateICmpULE(Loaded, Inc);
554 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
555 case AtomicRMWInst::FAdd:
556 return Builder.CreateFAdd(Loaded, Inc, "new");
557 case AtomicRMWInst::FSub:
558 return Builder.CreateFSub(Loaded, Inc, "new");
559 default:
560 llvm_unreachable("Unknown atomic op");
564 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
565 switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
566 case TargetLoweringBase::AtomicExpansionKind::None:
567 return false;
568 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
569 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
570 unsigned ValueSize = getAtomicOpSize(AI);
571 if (ValueSize < MinCASSize) {
572 llvm_unreachable(
573 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
574 } else {
575 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
576 return performAtomicOp(AI->getOperation(), Builder, Loaded,
577 AI->getValOperand());
579 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
580 AI->getOrdering(), PerformOp);
582 return true;
584 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
585 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
586 unsigned ValueSize = getAtomicOpSize(AI);
587 if (ValueSize < MinCASSize) {
588 // TODO: Handle atomicrmw fadd/fsub
589 if (AI->getType()->isFloatingPointTy())
590 return false;
592 expandPartwordAtomicRMW(AI,
593 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
594 } else {
595 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
597 return true;
599 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
600 expandAtomicRMWToMaskedIntrinsic(AI);
601 return true;
603 default:
604 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
608 namespace {
610 /// Result values from createMaskInstrs helper.
611 struct PartwordMaskValues {
612 Type *WordType;
613 Type *ValueType;
614 Value *AlignedAddr;
615 Value *ShiftAmt;
616 Value *Mask;
617 Value *Inv_Mask;
620 } // end anonymous namespace
622 /// This is a helper function which builds instructions to provide
623 /// values necessary for partword atomic operations. It takes an
624 /// incoming address, Addr, and ValueType, and constructs the address,
625 /// shift-amounts and masks needed to work with a larger value of size
626 /// WordSize.
628 /// AlignedAddr: Addr rounded down to a multiple of WordSize
630 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
631 /// from AlignAddr for it to have the same value as if
632 /// ValueType was loaded from Addr.
634 /// Mask: Value to mask with the value loaded from AlignAddr to
635 /// include only the part that would've been loaded from Addr.
637 /// Inv_Mask: The inverse of Mask.
638 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
639 Type *ValueType, Value *Addr,
640 unsigned WordSize) {
641 PartwordMaskValues Ret;
643 BasicBlock *BB = I->getParent();
644 Function *F = BB->getParent();
645 Module *M = I->getModule();
647 LLVMContext &Ctx = F->getContext();
648 const DataLayout &DL = M->getDataLayout();
650 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
652 assert(ValueSize < WordSize);
654 Ret.ValueType = ValueType;
655 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
657 Type *WordPtrType =
658 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
660 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
661 Ret.AlignedAddr = Builder.CreateIntToPtr(
662 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
663 "AlignedAddr");
665 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
666 if (DL.isLittleEndian()) {
667 // turn bytes into bits
668 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
669 } else {
670 // turn bytes into bits, and count from the other side.
671 Ret.ShiftAmt =
672 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
675 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
676 Ret.Mask = Builder.CreateShl(
677 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
678 "Mask");
679 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
681 return Ret;
684 /// Emit IR to implement a masked version of a given atomicrmw
685 /// operation. (That is, only the bits under the Mask should be
686 /// affected by the operation)
687 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
688 IRBuilder<> &Builder, Value *Loaded,
689 Value *Shifted_Inc, Value *Inc,
690 const PartwordMaskValues &PMV) {
691 // TODO: update to use
692 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
693 // to merge bits from two values without requiring PMV.Inv_Mask.
694 switch (Op) {
695 case AtomicRMWInst::Xchg: {
696 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
697 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
698 return FinalVal;
700 case AtomicRMWInst::Or:
701 case AtomicRMWInst::Xor:
702 case AtomicRMWInst::And:
703 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
704 case AtomicRMWInst::Add:
705 case AtomicRMWInst::Sub:
706 case AtomicRMWInst::Nand: {
707 // The other arithmetic ops need to be masked into place.
708 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
709 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
710 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
711 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
712 return FinalVal;
714 case AtomicRMWInst::Max:
715 case AtomicRMWInst::Min:
716 case AtomicRMWInst::UMax:
717 case AtomicRMWInst::UMin: {
718 // Finally, comparison ops will operate on the full value, so
719 // truncate down to the original size, and expand out again after
720 // doing the operation.
721 Value *Loaded_Shiftdown = Builder.CreateTrunc(
722 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
723 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
724 Value *NewVal_Shiftup = Builder.CreateShl(
725 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
726 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
727 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
728 return FinalVal;
730 default:
731 llvm_unreachable("Unknown atomic op");
735 /// Expand a sub-word atomicrmw operation into an appropriate
736 /// word-sized operation.
738 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
739 /// way as a typical atomicrmw expansion. The only difference here is
740 /// that the operation inside of the loop must operate only upon a
741 /// part of the value.
742 void AtomicExpand::expandPartwordAtomicRMW(
743 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
744 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
746 AtomicOrdering MemOpOrder = AI->getOrdering();
748 IRBuilder<> Builder(AI);
750 PartwordMaskValues PMV =
751 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
752 TLI->getMinCmpXchgSizeInBits() / 8);
754 Value *ValOperand_Shifted =
755 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
756 PMV.ShiftAmt, "ValOperand_Shifted");
758 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
759 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
760 ValOperand_Shifted, AI->getValOperand(), PMV);
763 // TODO: When we're ready to support LLSC conversions too, use
764 // insertRMWLLSCLoop here for ExpansionKind==LLSC.
765 Value *OldResult =
766 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
767 PerformPartwordOp, createCmpXchgInstFun);
768 Value *FinalOldResult = Builder.CreateTrunc(
769 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
770 AI->replaceAllUsesWith(FinalOldResult);
771 AI->eraseFromParent();
774 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
775 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
776 IRBuilder<> Builder(AI);
777 AtomicRMWInst::BinOp Op = AI->getOperation();
779 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
780 Op == AtomicRMWInst::And) &&
781 "Unable to widen operation");
783 PartwordMaskValues PMV =
784 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
785 TLI->getMinCmpXchgSizeInBits() / 8);
787 Value *ValOperand_Shifted =
788 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
789 PMV.ShiftAmt, "ValOperand_Shifted");
791 Value *NewOperand;
793 if (Op == AtomicRMWInst::And)
794 NewOperand =
795 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
796 else
797 NewOperand = ValOperand_Shifted;
799 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
800 NewOperand, AI->getOrdering());
802 Value *FinalOldResult = Builder.CreateTrunc(
803 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
804 AI->replaceAllUsesWith(FinalOldResult);
805 AI->eraseFromParent();
806 return NewAI;
809 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
810 // The basic idea here is that we're expanding a cmpxchg of a
811 // smaller memory size up to a word-sized cmpxchg. To do this, we
812 // need to add a retry-loop for strong cmpxchg, so that
813 // modifications to other parts of the word don't cause a spurious
814 // failure.
816 // This generates code like the following:
817 // [[Setup mask values PMV.*]]
818 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
819 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
820 // %InitLoaded = load i32* %addr
821 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
822 // br partword.cmpxchg.loop
823 // partword.cmpxchg.loop:
824 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
825 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
826 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
827 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
828 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
829 // i32 %FullWord_NewVal success_ordering failure_ordering
830 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
831 // %Success = extractvalue { i32, i1 } %NewCI, 1
832 // br i1 %Success, label %partword.cmpxchg.end,
833 // label %partword.cmpxchg.failure
834 // partword.cmpxchg.failure:
835 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
836 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
837 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
838 // label %partword.cmpxchg.end
839 // partword.cmpxchg.end:
840 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
841 // %FinalOldVal = trunc i32 %tmp1 to i8
842 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
843 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
845 Value *Addr = CI->getPointerOperand();
846 Value *Cmp = CI->getCompareOperand();
847 Value *NewVal = CI->getNewValOperand();
849 BasicBlock *BB = CI->getParent();
850 Function *F = BB->getParent();
851 IRBuilder<> Builder(CI);
852 LLVMContext &Ctx = Builder.getContext();
854 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
856 BasicBlock *EndBB =
857 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
858 auto FailureBB =
859 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
860 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
862 // The split call above "helpfully" added a branch at the end of BB
863 // (to the wrong place).
864 std::prev(BB->end())->eraseFromParent();
865 Builder.SetInsertPoint(BB);
867 PartwordMaskValues PMV = createMaskInstrs(
868 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
870 // Shift the incoming values over, into the right location in the word.
871 Value *NewVal_Shifted =
872 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
873 Value *Cmp_Shifted =
874 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
876 // Load the entire current word, and mask into place the expected and new
877 // values
878 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
879 InitLoaded->setVolatile(CI->isVolatile());
880 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
881 Builder.CreateBr(LoopBB);
883 // partword.cmpxchg.loop:
884 Builder.SetInsertPoint(LoopBB);
885 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
886 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
888 // Mask/Or the expected and new values into place in the loaded word.
889 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
890 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
891 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
892 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
893 CI->getFailureOrdering(), CI->getSyncScopeID());
894 NewCI->setVolatile(CI->isVolatile());
895 // When we're building a strong cmpxchg, we need a loop, so you
896 // might think we could use a weak cmpxchg inside. But, using strong
897 // allows the below comparison for ShouldContinue, and we're
898 // expecting the underlying cmpxchg to be a machine instruction,
899 // which is strong anyways.
900 NewCI->setWeak(CI->isWeak());
902 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
903 Value *Success = Builder.CreateExtractValue(NewCI, 1);
905 if (CI->isWeak())
906 Builder.CreateBr(EndBB);
907 else
908 Builder.CreateCondBr(Success, EndBB, FailureBB);
910 // partword.cmpxchg.failure:
911 Builder.SetInsertPoint(FailureBB);
912 // Upon failure, verify that the masked-out part of the loaded value
913 // has been modified. If it didn't, abort the cmpxchg, since the
914 // masked-in part must've.
915 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
916 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
917 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
919 // Add the second value to the phi from above
920 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
922 // partword.cmpxchg.end:
923 Builder.SetInsertPoint(CI);
925 Value *FinalOldVal = Builder.CreateTrunc(
926 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
927 Value *Res = UndefValue::get(CI->getType());
928 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
929 Res = Builder.CreateInsertValue(Res, Success, 1);
931 CI->replaceAllUsesWith(Res);
932 CI->eraseFromParent();
935 void AtomicExpand::expandAtomicOpToLLSC(
936 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
937 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
938 IRBuilder<> Builder(I);
939 Value *Loaded =
940 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
942 I->replaceAllUsesWith(Loaded);
943 I->eraseFromParent();
946 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
947 IRBuilder<> Builder(AI);
949 PartwordMaskValues PMV =
950 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
951 TLI->getMinCmpXchgSizeInBits() / 8);
953 // The value operand must be sign-extended for signed min/max so that the
954 // target's signed comparison instructions can be used. Otherwise, just
955 // zero-ext.
956 Instruction::CastOps CastOp = Instruction::ZExt;
957 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
958 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
959 CastOp = Instruction::SExt;
961 Value *ValOperand_Shifted = Builder.CreateShl(
962 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
963 PMV.ShiftAmt, "ValOperand_Shifted");
964 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
965 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
966 AI->getOrdering());
967 Value *FinalOldResult = Builder.CreateTrunc(
968 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
969 AI->replaceAllUsesWith(FinalOldResult);
970 AI->eraseFromParent();
973 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
974 IRBuilder<> Builder(CI);
976 PartwordMaskValues PMV = createMaskInstrs(
977 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
978 TLI->getMinCmpXchgSizeInBits() / 8);
980 Value *CmpVal_Shifted = Builder.CreateShl(
981 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
982 "CmpVal_Shifted");
983 Value *NewVal_Shifted = Builder.CreateShl(
984 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
985 "NewVal_Shifted");
986 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
987 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
988 CI->getSuccessOrdering());
989 Value *FinalOldVal = Builder.CreateTrunc(
990 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
992 Value *Res = UndefValue::get(CI->getType());
993 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
994 Value *Success = Builder.CreateICmpEQ(
995 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
996 Res = Builder.CreateInsertValue(Res, Success, 1);
998 CI->replaceAllUsesWith(Res);
999 CI->eraseFromParent();
1002 Value *AtomicExpand::insertRMWLLSCLoop(
1003 IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1004 AtomicOrdering MemOpOrder,
1005 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1006 LLVMContext &Ctx = Builder.getContext();
1007 BasicBlock *BB = Builder.GetInsertBlock();
1008 Function *F = BB->getParent();
1010 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1012 // The standard expansion we produce is:
1013 // [...]
1014 // atomicrmw.start:
1015 // %loaded = @load.linked(%addr)
1016 // %new = some_op iN %loaded, %incr
1017 // %stored = @store_conditional(%new, %addr)
1018 // %try_again = icmp i32 ne %stored, 0
1019 // br i1 %try_again, label %loop, label %atomicrmw.end
1020 // atomicrmw.end:
1021 // [...]
1022 BasicBlock *ExitBB =
1023 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1024 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1026 // The split call above "helpfully" added a branch at the end of BB (to the
1027 // wrong place).
1028 std::prev(BB->end())->eraseFromParent();
1029 Builder.SetInsertPoint(BB);
1030 Builder.CreateBr(LoopBB);
1032 // Start the main loop block now that we've taken care of the preliminaries.
1033 Builder.SetInsertPoint(LoopBB);
1034 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1036 Value *NewVal = PerformOp(Builder, Loaded);
1038 Value *StoreSuccess =
1039 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1040 Value *TryAgain = Builder.CreateICmpNE(
1041 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1042 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1044 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1045 return Loaded;
1048 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1049 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1050 /// IR. As a migration step, we convert back to what use to be the standard
1051 /// way to represent a pointer cmpxchg so that we can update backends one by
1052 /// one.
1053 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1054 auto *M = CI->getModule();
1055 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1056 M->getDataLayout());
1058 IRBuilder<> Builder(CI);
1060 Value *Addr = CI->getPointerOperand();
1061 Type *PT = PointerType::get(NewTy,
1062 Addr->getType()->getPointerAddressSpace());
1063 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1065 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1066 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1069 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1070 CI->getSuccessOrdering(),
1071 CI->getFailureOrdering(),
1072 CI->getSyncScopeID());
1073 NewCI->setVolatile(CI->isVolatile());
1074 NewCI->setWeak(CI->isWeak());
1075 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1077 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1078 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1080 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1082 Value *Res = UndefValue::get(CI->getType());
1083 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1084 Res = Builder.CreateInsertValue(Res, Succ, 1);
1086 CI->replaceAllUsesWith(Res);
1087 CI->eraseFromParent();
1088 return NewCI;
1091 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1092 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1093 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1094 Value *Addr = CI->getPointerOperand();
1095 BasicBlock *BB = CI->getParent();
1096 Function *F = BB->getParent();
1097 LLVMContext &Ctx = F->getContext();
1098 // If shouldInsertFencesForAtomic() returns true, then the target does not
1099 // want to deal with memory orders, and emitLeading/TrailingFence should take
1100 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1101 // should preserve the ordering.
1102 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1103 AtomicOrdering MemOpOrder =
1104 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1106 // In implementations which use a barrier to achieve release semantics, we can
1107 // delay emitting this barrier until we know a store is actually going to be
1108 // attempted. The cost of this delay is that we need 2 copies of the block
1109 // emitting the load-linked, affecting code size.
1111 // Ideally, this logic would be unconditional except for the minsize check
1112 // since in other cases the extra blocks naturally collapse down to the
1113 // minimal loop. Unfortunately, this puts too much stress on later
1114 // optimisations so we avoid emitting the extra logic in those cases too.
1115 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1116 SuccessOrder != AtomicOrdering::Monotonic &&
1117 SuccessOrder != AtomicOrdering::Acquire &&
1118 !F->hasMinSize();
1120 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1121 // do it even on minsize.
1122 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1124 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1126 // The full expansion we produce is:
1127 // [...]
1128 // cmpxchg.start:
1129 // %unreleasedload = @load.linked(%addr)
1130 // %should_store = icmp eq %unreleasedload, %desired
1131 // br i1 %should_store, label %cmpxchg.fencedstore,
1132 // label %cmpxchg.nostore
1133 // cmpxchg.releasingstore:
1134 // fence?
1135 // br label cmpxchg.trystore
1136 // cmpxchg.trystore:
1137 // %loaded.trystore = phi [%unreleasedload, %releasingstore],
1138 // [%releasedload, %cmpxchg.releasedload]
1139 // %stored = @store_conditional(%new, %addr)
1140 // %success = icmp eq i32 %stored, 0
1141 // br i1 %success, label %cmpxchg.success,
1142 // label %cmpxchg.releasedload/%cmpxchg.failure
1143 // cmpxchg.releasedload:
1144 // %releasedload = @load.linked(%addr)
1145 // %should_store = icmp eq %releasedload, %desired
1146 // br i1 %should_store, label %cmpxchg.trystore,
1147 // label %cmpxchg.failure
1148 // cmpxchg.success:
1149 // fence?
1150 // br label %cmpxchg.end
1151 // cmpxchg.nostore:
1152 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1153 // [%releasedload,
1154 // %cmpxchg.releasedload/%cmpxchg.trystore]
1155 // @load_linked_fail_balance()?
1156 // br label %cmpxchg.failure
1157 // cmpxchg.failure:
1158 // fence?
1159 // br label %cmpxchg.end
1160 // cmpxchg.end:
1161 // %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1162 // [%loaded.trystore, %cmpxchg.trystore]
1163 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1164 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1165 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1166 // [...]
1167 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1168 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1169 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1170 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1171 auto ReleasedLoadBB =
1172 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1173 auto TryStoreBB =
1174 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1175 auto ReleasingStoreBB =
1176 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1177 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1179 // This grabs the DebugLoc from CI
1180 IRBuilder<> Builder(CI);
1182 // The split call above "helpfully" added a branch at the end of BB (to the
1183 // wrong place), but we might want a fence too. It's easiest to just remove
1184 // the branch entirely.
1185 std::prev(BB->end())->eraseFromParent();
1186 Builder.SetInsertPoint(BB);
1187 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1188 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1189 Builder.CreateBr(StartBB);
1191 // Start the main loop block now that we've taken care of the preliminaries.
1192 Builder.SetInsertPoint(StartBB);
1193 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1194 Value *ShouldStore = Builder.CreateICmpEQ(
1195 UnreleasedLoad, CI->getCompareOperand(), "should_store");
1197 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1198 // jump straight past that fence instruction (if it exists).
1199 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1201 Builder.SetInsertPoint(ReleasingStoreBB);
1202 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1203 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1204 Builder.CreateBr(TryStoreBB);
1206 Builder.SetInsertPoint(TryStoreBB);
1207 Value *StoreSuccess = TLI->emitStoreConditional(
1208 Builder, CI->getNewValOperand(), Addr, MemOpOrder);
1209 StoreSuccess = Builder.CreateICmpEQ(
1210 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1211 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1212 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1213 CI->isWeak() ? FailureBB : RetryBB);
1215 Builder.SetInsertPoint(ReleasedLoadBB);
1216 Value *SecondLoad;
1217 if (HasReleasedLoadBB) {
1218 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1219 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
1220 "should_store");
1222 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1223 // jump straight past that fence instruction (if it exists).
1224 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1225 } else
1226 Builder.CreateUnreachable();
1228 // Make sure later instructions don't get reordered with a fence if
1229 // necessary.
1230 Builder.SetInsertPoint(SuccessBB);
1231 if (ShouldInsertFencesForAtomic)
1232 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1233 Builder.CreateBr(ExitBB);
1235 Builder.SetInsertPoint(NoStoreBB);
1236 // In the failing case, where we don't execute the store-conditional, the
1237 // target might want to balance out the load-linked with a dedicated
1238 // instruction (e.g., on ARM, clearing the exclusive monitor).
1239 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1240 Builder.CreateBr(FailureBB);
1242 Builder.SetInsertPoint(FailureBB);
1243 if (ShouldInsertFencesForAtomic)
1244 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1245 Builder.CreateBr(ExitBB);
1247 // Finally, we have control-flow based knowledge of whether the cmpxchg
1248 // succeeded or not. We expose this to later passes by converting any
1249 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1250 // PHI.
1251 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1252 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
1253 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1254 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1256 // Setup the builder so we can create any PHIs we need.
1257 Value *Loaded;
1258 if (!HasReleasedLoadBB)
1259 Loaded = UnreleasedLoad;
1260 else {
1261 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
1262 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1263 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1264 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1266 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
1267 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1268 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
1269 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1271 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
1272 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1273 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
1274 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
1276 Loaded = ExitLoaded;
1279 // Look for any users of the cmpxchg that are just comparing the loaded value
1280 // against the desired one, and replace them with the CFG-derived version.
1281 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1282 for (auto User : CI->users()) {
1283 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1284 if (!EV)
1285 continue;
1287 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1288 "weird extraction from { iN, i1 }");
1290 if (EV->getIndices()[0] == 0)
1291 EV->replaceAllUsesWith(Loaded);
1292 else
1293 EV->replaceAllUsesWith(Success);
1295 PrunedInsts.push_back(EV);
1298 // We can remove the instructions now we're no longer iterating through them.
1299 for (auto EV : PrunedInsts)
1300 EV->eraseFromParent();
1302 if (!CI->use_empty()) {
1303 // Some use of the full struct return that we don't understand has happened,
1304 // so we've got to reconstruct it properly.
1305 Value *Res;
1306 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1307 Res = Builder.CreateInsertValue(Res, Success, 1);
1309 CI->replaceAllUsesWith(Res);
1312 CI->eraseFromParent();
1313 return true;
1316 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1317 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1318 if(!C)
1319 return false;
1321 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1322 switch(Op) {
1323 case AtomicRMWInst::Add:
1324 case AtomicRMWInst::Sub:
1325 case AtomicRMWInst::Or:
1326 case AtomicRMWInst::Xor:
1327 return C->isZero();
1328 case AtomicRMWInst::And:
1329 return C->isMinusOne();
1330 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1331 default:
1332 return false;
1336 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1337 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1338 tryExpandAtomicLoad(ResultingLoad);
1339 return true;
1341 return false;
1344 Value *AtomicExpand::insertRMWCmpXchgLoop(
1345 IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1346 AtomicOrdering MemOpOrder,
1347 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1348 CreateCmpXchgInstFun CreateCmpXchg) {
1349 LLVMContext &Ctx = Builder.getContext();
1350 BasicBlock *BB = Builder.GetInsertBlock();
1351 Function *F = BB->getParent();
1353 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1355 // The standard expansion we produce is:
1356 // [...]
1357 // %init_loaded = load atomic iN* %addr
1358 // br label %loop
1359 // loop:
1360 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1361 // %new = some_op iN %loaded, %incr
1362 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1363 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1364 // %success = extractvalue { iN, i1 } %pair, 1
1365 // br i1 %success, label %atomicrmw.end, label %loop
1366 // atomicrmw.end:
1367 // [...]
1368 BasicBlock *ExitBB =
1369 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1370 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1372 // The split call above "helpfully" added a branch at the end of BB (to the
1373 // wrong place), but we want a load. It's easiest to just remove
1374 // the branch entirely.
1375 std::prev(BB->end())->eraseFromParent();
1376 Builder.SetInsertPoint(BB);
1377 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1378 // Atomics require at least natural alignment.
1379 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
1380 Builder.CreateBr(LoopBB);
1382 // Start the main loop block now that we've taken care of the preliminaries.
1383 Builder.SetInsertPoint(LoopBB);
1384 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1385 Loaded->addIncoming(InitLoaded, BB);
1387 Value *NewVal = PerformOp(Builder, Loaded);
1389 Value *NewLoaded = nullptr;
1390 Value *Success = nullptr;
1392 CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1393 MemOpOrder == AtomicOrdering::Unordered
1394 ? AtomicOrdering::Monotonic
1395 : MemOpOrder,
1396 Success, NewLoaded);
1397 assert(Success && NewLoaded);
1399 Loaded->addIncoming(NewLoaded, LoopBB);
1401 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1403 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1404 return NewLoaded;
1407 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1408 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1409 unsigned ValueSize = getAtomicOpSize(CI);
1411 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1412 default:
1413 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1414 case TargetLoweringBase::AtomicExpansionKind::None:
1415 if (ValueSize < MinCASSize)
1416 expandPartwordCmpXchg(CI);
1417 return false;
1418 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1419 assert(ValueSize >= MinCASSize &&
1420 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1421 return expandAtomicCmpXchg(CI);
1423 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1424 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1425 return true;
1429 // Note: This function is exposed externally by AtomicExpandUtils.h
1430 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1431 CreateCmpXchgInstFun CreateCmpXchg) {
1432 IRBuilder<> Builder(AI);
1433 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1434 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1435 [&](IRBuilder<> &Builder, Value *Loaded) {
1436 return performAtomicOp(AI->getOperation(), Builder, Loaded,
1437 AI->getValOperand());
1439 CreateCmpXchg);
1441 AI->replaceAllUsesWith(Loaded);
1442 AI->eraseFromParent();
1443 return true;
1446 // In order to use one of the sized library calls such as
1447 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1448 // must be one of the potentially-specialized sizes, and the value
1449 // type must actually exist in C on the target (otherwise, the
1450 // function wouldn't actually be defined.)
1451 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
1452 const DataLayout &DL) {
1453 // TODO: "LargestSize" is an approximation for "largest type that
1454 // you can express in C". It seems to be the case that int128 is
1455 // supported on all 64-bit platforms, otherwise only up to 64-bit
1456 // integers are supported. If we get this wrong, then we'll try to
1457 // call a sized libcall that doesn't actually exist. There should
1458 // really be some more reliable way in LLVM of determining integer
1459 // sizes which are valid in the target's C ABI...
1460 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1461 return Align >= Size &&
1462 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1463 Size <= LargestSize;
1466 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1467 static const RTLIB::Libcall Libcalls[6] = {
1468 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1469 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1470 unsigned Size = getAtomicOpSize(I);
1471 unsigned Align = getAtomicOpAlign(I);
1473 bool expanded = expandAtomicOpToLibcall(
1474 I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
1475 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1476 (void)expanded;
1477 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1480 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1481 static const RTLIB::Libcall Libcalls[6] = {
1482 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1483 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1484 unsigned Size = getAtomicOpSize(I);
1485 unsigned Align = getAtomicOpAlign(I);
1487 bool expanded = expandAtomicOpToLibcall(
1488 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
1489 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1490 (void)expanded;
1491 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1494 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1495 static const RTLIB::Libcall Libcalls[6] = {
1496 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1497 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1498 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1499 unsigned Size = getAtomicOpSize(I);
1500 unsigned Align = getAtomicOpAlign(I);
1502 bool expanded = expandAtomicOpToLibcall(
1503 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
1504 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1505 Libcalls);
1506 (void)expanded;
1507 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1510 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1511 static const RTLIB::Libcall LibcallsXchg[6] = {
1512 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1513 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1514 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1515 static const RTLIB::Libcall LibcallsAdd[6] = {
1516 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1517 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1518 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1519 static const RTLIB::Libcall LibcallsSub[6] = {
1520 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1521 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1522 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1523 static const RTLIB::Libcall LibcallsAnd[6] = {
1524 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1525 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1526 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1527 static const RTLIB::Libcall LibcallsOr[6] = {
1528 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1529 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1530 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1531 static const RTLIB::Libcall LibcallsXor[6] = {
1532 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1533 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1534 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1535 static const RTLIB::Libcall LibcallsNand[6] = {
1536 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1537 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1538 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1540 switch (Op) {
1541 case AtomicRMWInst::BAD_BINOP:
1542 llvm_unreachable("Should not have BAD_BINOP.");
1543 case AtomicRMWInst::Xchg:
1544 return makeArrayRef(LibcallsXchg);
1545 case AtomicRMWInst::Add:
1546 return makeArrayRef(LibcallsAdd);
1547 case AtomicRMWInst::Sub:
1548 return makeArrayRef(LibcallsSub);
1549 case AtomicRMWInst::And:
1550 return makeArrayRef(LibcallsAnd);
1551 case AtomicRMWInst::Or:
1552 return makeArrayRef(LibcallsOr);
1553 case AtomicRMWInst::Xor:
1554 return makeArrayRef(LibcallsXor);
1555 case AtomicRMWInst::Nand:
1556 return makeArrayRef(LibcallsNand);
1557 case AtomicRMWInst::Max:
1558 case AtomicRMWInst::Min:
1559 case AtomicRMWInst::UMax:
1560 case AtomicRMWInst::UMin:
1561 case AtomicRMWInst::FAdd:
1562 case AtomicRMWInst::FSub:
1563 // No atomic libcalls are available for max/min/umax/umin.
1564 return {};
1566 llvm_unreachable("Unexpected AtomicRMW operation.");
1569 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1570 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1572 unsigned Size = getAtomicOpSize(I);
1573 unsigned Align = getAtomicOpAlign(I);
1575 bool Success = false;
1576 if (!Libcalls.empty())
1577 Success = expandAtomicOpToLibcall(
1578 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
1579 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1581 // The expansion failed: either there were no libcalls at all for
1582 // the operation (min/max), or there were only size-specialized
1583 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1584 // CAS libcall, via a CAS loop, instead.
1585 if (!Success) {
1586 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1587 Value *Loaded, Value *NewVal,
1588 AtomicOrdering MemOpOrder,
1589 Value *&Success, Value *&NewLoaded) {
1590 // Create the CAS instruction normally...
1591 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1592 Addr, Loaded, NewVal, MemOpOrder,
1593 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1594 Success = Builder.CreateExtractValue(Pair, 1, "success");
1595 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1597 // ...and then expand the CAS into a libcall.
1598 expandAtomicCASToLibcall(Pair);
1603 // A helper routine for the above expandAtomic*ToLibcall functions.
1605 // 'Libcalls' contains an array of enum values for the particular
1606 // ATOMIC libcalls to be emitted. All of the other arguments besides
1607 // 'I' are extracted from the Instruction subclass by the
1608 // caller. Depending on the particular call, some will be null.
1609 bool AtomicExpand::expandAtomicOpToLibcall(
1610 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
1611 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1612 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1613 assert(Libcalls.size() == 6);
1615 LLVMContext &Ctx = I->getContext();
1616 Module *M = I->getModule();
1617 const DataLayout &DL = M->getDataLayout();
1618 IRBuilder<> Builder(I);
1619 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1621 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
1622 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1624 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
1626 // TODO: the "order" argument type is "int", not int32. So
1627 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1628 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1629 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1630 Constant *OrderingVal =
1631 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1632 Constant *Ordering2Val = nullptr;
1633 if (CASExpected) {
1634 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1635 Ordering2Val =
1636 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1638 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1640 RTLIB::Libcall RTLibType;
1641 if (UseSizedLibcall) {
1642 switch (Size) {
1643 case 1: RTLibType = Libcalls[1]; break;
1644 case 2: RTLibType = Libcalls[2]; break;
1645 case 4: RTLibType = Libcalls[3]; break;
1646 case 8: RTLibType = Libcalls[4]; break;
1647 case 16: RTLibType = Libcalls[5]; break;
1649 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1650 RTLibType = Libcalls[0];
1651 } else {
1652 // Can't use sized function, and there's no generic for this
1653 // operation, so give up.
1654 return false;
1657 // Build up the function call. There's two kinds. First, the sized
1658 // variants. These calls are going to be one of the following (with
1659 // N=1,2,4,8,16):
1660 // iN __atomic_load_N(iN *ptr, int ordering)
1661 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1662 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1663 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1664 // int success_order, int failure_order)
1666 // Note that these functions can be used for non-integer atomic
1667 // operations, the values just need to be bitcast to integers on the
1668 // way in and out.
1670 // And, then, the generic variants. They look like the following:
1671 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1672 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1673 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1674 // int ordering)
1675 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1676 // void *desired, int success_order,
1677 // int failure_order)
1679 // The different signatures are built up depending on the
1680 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1681 // variables.
1683 AllocaInst *AllocaCASExpected = nullptr;
1684 Value *AllocaCASExpected_i8 = nullptr;
1685 AllocaInst *AllocaValue = nullptr;
1686 Value *AllocaValue_i8 = nullptr;
1687 AllocaInst *AllocaResult = nullptr;
1688 Value *AllocaResult_i8 = nullptr;
1690 Type *ResultTy;
1691 SmallVector<Value *, 6> Args;
1692 AttributeList Attr;
1694 // 'size' argument.
1695 if (!UseSizedLibcall) {
1696 // Note, getIntPtrType is assumed equivalent to size_t.
1697 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1700 // 'ptr' argument.
1701 // note: This assumes all address spaces share a common libfunc
1702 // implementation and that addresses are convertable. For systems without
1703 // that property, we'd need to extend this mechanism to support AS-specific
1704 // families of atomic intrinsics.
1705 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1706 Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1707 Type::getInt8PtrTy(Ctx, PtrTypeAS));
1708 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1709 Args.push_back(PtrVal);
1711 // 'expected' argument, if present.
1712 if (CASExpected) {
1713 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1714 AllocaCASExpected->setAlignment(AllocaAlignment);
1715 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1717 AllocaCASExpected_i8 =
1718 Builder.CreateBitCast(AllocaCASExpected,
1719 Type::getInt8PtrTy(Ctx, AllocaAS));
1720 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1721 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1722 Args.push_back(AllocaCASExpected_i8);
1725 // 'val' argument ('desired' for cas), if present.
1726 if (ValueOperand) {
1727 if (UseSizedLibcall) {
1728 Value *IntValue =
1729 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1730 Args.push_back(IntValue);
1731 } else {
1732 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1733 AllocaValue->setAlignment(AllocaAlignment);
1734 AllocaValue_i8 =
1735 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1736 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1737 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1738 Args.push_back(AllocaValue_i8);
1742 // 'ret' argument.
1743 if (!CASExpected && HasResult && !UseSizedLibcall) {
1744 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1745 AllocaResult->setAlignment(AllocaAlignment);
1746 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1747 AllocaResult_i8 =
1748 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1749 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1750 Args.push_back(AllocaResult_i8);
1753 // 'ordering' ('success_order' for cas) argument.
1754 Args.push_back(OrderingVal);
1756 // 'failure_order' argument, if present.
1757 if (Ordering2Val)
1758 Args.push_back(Ordering2Val);
1760 // Now, the return type.
1761 if (CASExpected) {
1762 ResultTy = Type::getInt1Ty(Ctx);
1763 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1764 } else if (HasResult && UseSizedLibcall)
1765 ResultTy = SizedIntTy;
1766 else
1767 ResultTy = Type::getVoidTy(Ctx);
1769 // Done with setting up arguments and return types, create the call:
1770 SmallVector<Type *, 6> ArgTys;
1771 for (Value *Arg : Args)
1772 ArgTys.push_back(Arg->getType());
1773 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1774 FunctionCallee LibcallFn =
1775 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1776 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1777 Call->setAttributes(Attr);
1778 Value *Result = Call;
1780 // And then, extract the results...
1781 if (ValueOperand && !UseSizedLibcall)
1782 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1784 if (CASExpected) {
1785 // The final result from the CAS is {load of 'expected' alloca, bool result
1786 // from call}
1787 Type *FinalResultTy = I->getType();
1788 Value *V = UndefValue::get(FinalResultTy);
1789 Value *ExpectedOut = Builder.CreateAlignedLoad(
1790 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1791 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1792 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1793 V = Builder.CreateInsertValue(V, Result, 1);
1794 I->replaceAllUsesWith(V);
1795 } else if (HasResult) {
1796 Value *V;
1797 if (UseSizedLibcall)
1798 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1799 else {
1800 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1801 AllocaAlignment);
1802 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1804 I->replaceAllUsesWith(V);
1806 I->eraseFromParent();
1807 return true;