[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / GlobalISel / LegalizerHelper.cpp
blob6f127d78d96729e796c3263e123a89aad15d00f6
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
27 #define DEBUG_TYPE "legalizer"
29 using namespace llvm;
30 using namespace LegalizeActions;
32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
33 ///
34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
35 /// with any leftover piece as type \p LeftoverTy
36 ///
37 /// Returns -1 in the first element of the pair if the breakdown is not
38 /// satisfiable.
39 static std::pair<int, int>
40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
41 assert(!LeftoverTy.isValid() && "this is an out argument");
43 unsigned Size = OrigTy.getSizeInBits();
44 unsigned NarrowSize = NarrowTy.getSizeInBits();
45 unsigned NumParts = Size / NarrowSize;
46 unsigned LeftoverSize = Size - NumParts * NarrowSize;
47 assert(Size > NarrowSize);
49 if (LeftoverSize == 0)
50 return {NumParts, 0};
52 if (NarrowTy.isVector()) {
53 unsigned EltSize = OrigTy.getScalarSizeInBits();
54 if (LeftoverSize % EltSize != 0)
55 return {-1, -1};
56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
57 } else {
58 LeftoverTy = LLT::scalar(LeftoverSize);
61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
62 return std::make_pair(NumParts, NumLeftover);
65 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
66 GISelChangeObserver &Observer,
67 MachineIRBuilder &Builder)
68 : MIRBuilder(Builder), MRI(MF.getRegInfo()),
69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
70 MIRBuilder.setMF(MF);
71 MIRBuilder.setChangeObserver(Observer);
74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
75 GISelChangeObserver &Observer,
76 MachineIRBuilder &B)
77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
78 MIRBuilder.setMF(MF);
79 MIRBuilder.setChangeObserver(Observer);
81 LegalizerHelper::LegalizeResult
82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
85 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
86 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
87 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized
88 : UnableToLegalize;
89 auto Step = LI.getAction(MI, MRI);
90 switch (Step.Action) {
91 case Legal:
92 LLVM_DEBUG(dbgs() << ".. Already legal\n");
93 return AlreadyLegal;
94 case Libcall:
95 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
96 return libcall(MI);
97 case NarrowScalar:
98 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
99 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
100 case WidenScalar:
101 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
102 return widenScalar(MI, Step.TypeIdx, Step.NewType);
103 case Lower:
104 LLVM_DEBUG(dbgs() << ".. Lower\n");
105 return lower(MI, Step.TypeIdx, Step.NewType);
106 case FewerElements:
107 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
108 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
109 case MoreElements:
110 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
111 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
112 case Custom:
113 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
114 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
115 : UnableToLegalize;
116 default:
117 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
118 return UnableToLegalize;
122 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
123 SmallVectorImpl<Register> &VRegs) {
124 for (int i = 0; i < NumParts; ++i)
125 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
126 MIRBuilder.buildUnmerge(VRegs, Reg);
129 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
130 LLT MainTy, LLT &LeftoverTy,
131 SmallVectorImpl<Register> &VRegs,
132 SmallVectorImpl<Register> &LeftoverRegs) {
133 assert(!LeftoverTy.isValid() && "this is an out argument");
135 unsigned RegSize = RegTy.getSizeInBits();
136 unsigned MainSize = MainTy.getSizeInBits();
137 unsigned NumParts = RegSize / MainSize;
138 unsigned LeftoverSize = RegSize - NumParts * MainSize;
140 // Use an unmerge when possible.
141 if (LeftoverSize == 0) {
142 for (unsigned I = 0; I < NumParts; ++I)
143 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
144 MIRBuilder.buildUnmerge(VRegs, Reg);
145 return true;
148 if (MainTy.isVector()) {
149 unsigned EltSize = MainTy.getScalarSizeInBits();
150 if (LeftoverSize % EltSize != 0)
151 return false;
152 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
153 } else {
154 LeftoverTy = LLT::scalar(LeftoverSize);
157 // For irregular sizes, extract the individual parts.
158 for (unsigned I = 0; I != NumParts; ++I) {
159 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
160 VRegs.push_back(NewReg);
161 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
164 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
165 Offset += LeftoverSize) {
166 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
167 LeftoverRegs.push_back(NewReg);
168 MIRBuilder.buildExtract(NewReg, Reg, Offset);
171 return true;
174 static LLT getGCDType(LLT OrigTy, LLT TargetTy) {
175 if (OrigTy.isVector() && TargetTy.isVector()) {
176 assert(OrigTy.getElementType() == TargetTy.getElementType());
177 int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
178 TargetTy.getNumElements());
179 return LLT::scalarOrVector(GCD, OrigTy.getElementType());
182 if (OrigTy.isVector() && !TargetTy.isVector()) {
183 assert(OrigTy.getElementType() == TargetTy);
184 return TargetTy;
187 assert(!OrigTy.isVector() && !TargetTy.isVector());
189 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
190 TargetTy.getSizeInBits());
191 return LLT::scalar(GCD);
194 void LegalizerHelper::insertParts(Register DstReg,
195 LLT ResultTy, LLT PartTy,
196 ArrayRef<Register> PartRegs,
197 LLT LeftoverTy,
198 ArrayRef<Register> LeftoverRegs) {
199 if (!LeftoverTy.isValid()) {
200 assert(LeftoverRegs.empty());
202 if (!ResultTy.isVector()) {
203 MIRBuilder.buildMerge(DstReg, PartRegs);
204 return;
207 if (PartTy.isVector())
208 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
209 else
210 MIRBuilder.buildBuildVector(DstReg, PartRegs);
211 return;
214 unsigned PartSize = PartTy.getSizeInBits();
215 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
218 MIRBuilder.buildUndef(CurResultReg);
220 unsigned Offset = 0;
221 for (Register PartReg : PartRegs) {
222 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
223 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
224 CurResultReg = NewResultReg;
225 Offset += PartSize;
228 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
229 // Use the original output register for the final insert to avoid a copy.
230 Register NewResultReg = (I + 1 == E) ?
231 DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
234 CurResultReg = NewResultReg;
235 Offset += LeftoverPartSize;
239 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
240 switch (Opcode) {
241 case TargetOpcode::G_SDIV:
242 assert((Size == 32 || Size == 64) && "Unsupported size");
243 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32;
244 case TargetOpcode::G_UDIV:
245 assert((Size == 32 || Size == 64) && "Unsupported size");
246 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32;
247 case TargetOpcode::G_SREM:
248 assert((Size == 32 || Size == 64) && "Unsupported size");
249 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
250 case TargetOpcode::G_UREM:
251 assert((Size == 32 || Size == 64) && "Unsupported size");
252 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
253 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
254 assert(Size == 32 && "Unsupported size");
255 return RTLIB::CTLZ_I32;
256 case TargetOpcode::G_FADD:
257 assert((Size == 32 || Size == 64) && "Unsupported size");
258 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
259 case TargetOpcode::G_FSUB:
260 assert((Size == 32 || Size == 64) && "Unsupported size");
261 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
262 case TargetOpcode::G_FMUL:
263 assert((Size == 32 || Size == 64) && "Unsupported size");
264 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
265 case TargetOpcode::G_FDIV:
266 assert((Size == 32 || Size == 64) && "Unsupported size");
267 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
268 case TargetOpcode::G_FEXP:
269 assert((Size == 32 || Size == 64) && "Unsupported size");
270 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
271 case TargetOpcode::G_FEXP2:
272 assert((Size == 32 || Size == 64) && "Unsupported size");
273 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
274 case TargetOpcode::G_FREM:
275 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
276 case TargetOpcode::G_FPOW:
277 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
278 case TargetOpcode::G_FMA:
279 assert((Size == 32 || Size == 64) && "Unsupported size");
280 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
281 case TargetOpcode::G_FSIN:
282 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
283 return Size == 128 ? RTLIB::SIN_F128
284 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
285 case TargetOpcode::G_FCOS:
286 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
287 return Size == 128 ? RTLIB::COS_F128
288 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
289 case TargetOpcode::G_FLOG10:
290 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
291 return Size == 128 ? RTLIB::LOG10_F128
292 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
293 case TargetOpcode::G_FLOG:
294 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
295 return Size == 128 ? RTLIB::LOG_F128
296 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
297 case TargetOpcode::G_FLOG2:
298 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
299 return Size == 128 ? RTLIB::LOG2_F128
300 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
301 case TargetOpcode::G_FCEIL:
302 assert((Size == 32 || Size == 64) && "Unsupported size");
303 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
304 case TargetOpcode::G_FFLOOR:
305 assert((Size == 32 || Size == 64) && "Unsupported size");
306 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
308 llvm_unreachable("Unknown libcall function");
311 LegalizerHelper::LegalizeResult
312 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
313 const CallLowering::ArgInfo &Result,
314 ArrayRef<CallLowering::ArgInfo> Args) {
315 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
316 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
317 const char *Name = TLI.getLibcallName(Libcall);
319 MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
321 CallLowering::CallLoweringInfo Info;
322 Info.CallConv = TLI.getLibcallCallingConv(Libcall);
323 Info.Callee = MachineOperand::CreateES(Name);
324 Info.OrigRet = Result;
325 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
326 if (!CLI.lowerCall(MIRBuilder, Info))
327 return LegalizerHelper::UnableToLegalize;
329 return LegalizerHelper::Legalized;
332 // Useful for libcalls where all operands have the same type.
333 static LegalizerHelper::LegalizeResult
334 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
335 Type *OpType) {
336 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
338 SmallVector<CallLowering::ArgInfo, 3> Args;
339 for (unsigned i = 1; i < MI.getNumOperands(); i++)
340 Args.push_back({MI.getOperand(i).getReg(), OpType});
341 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
342 Args);
345 LegalizerHelper::LegalizeResult
346 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
347 MachineInstr &MI) {
348 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
349 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
351 SmallVector<CallLowering::ArgInfo, 3> Args;
352 for (unsigned i = 1; i < MI.getNumOperands(); i++) {
353 Register Reg = MI.getOperand(i).getReg();
355 // Need derive an IR type for call lowering.
356 LLT OpLLT = MRI.getType(Reg);
357 Type *OpTy = nullptr;
358 if (OpLLT.isPointer())
359 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
360 else
361 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
362 Args.push_back({Reg, OpTy});
365 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
366 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
367 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
368 RTLIB::Libcall RTLibcall;
369 switch (ID) {
370 case Intrinsic::memcpy:
371 RTLibcall = RTLIB::MEMCPY;
372 break;
373 case Intrinsic::memset:
374 RTLibcall = RTLIB::MEMSET;
375 break;
376 case Intrinsic::memmove:
377 RTLibcall = RTLIB::MEMMOVE;
378 break;
379 default:
380 return LegalizerHelper::UnableToLegalize;
382 const char *Name = TLI.getLibcallName(RTLibcall);
384 MIRBuilder.setInstr(MI);
385 MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
387 CallLowering::CallLoweringInfo Info;
388 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
389 Info.Callee = MachineOperand::CreateES(Name);
390 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
391 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
392 if (!CLI.lowerCall(MIRBuilder, Info))
393 return LegalizerHelper::UnableToLegalize;
395 return LegalizerHelper::Legalized;
398 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
399 Type *FromType) {
400 auto ToMVT = MVT::getVT(ToType);
401 auto FromMVT = MVT::getVT(FromType);
403 switch (Opcode) {
404 case TargetOpcode::G_FPEXT:
405 return RTLIB::getFPEXT(FromMVT, ToMVT);
406 case TargetOpcode::G_FPTRUNC:
407 return RTLIB::getFPROUND(FromMVT, ToMVT);
408 case TargetOpcode::G_FPTOSI:
409 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
410 case TargetOpcode::G_FPTOUI:
411 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
412 case TargetOpcode::G_SITOFP:
413 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
414 case TargetOpcode::G_UITOFP:
415 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
417 llvm_unreachable("Unsupported libcall function");
420 static LegalizerHelper::LegalizeResult
421 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
422 Type *FromType) {
423 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
424 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
425 {{MI.getOperand(1).getReg(), FromType}});
428 LegalizerHelper::LegalizeResult
429 LegalizerHelper::libcall(MachineInstr &MI) {
430 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
431 unsigned Size = LLTy.getSizeInBits();
432 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
434 MIRBuilder.setInstr(MI);
436 switch (MI.getOpcode()) {
437 default:
438 return UnableToLegalize;
439 case TargetOpcode::G_SDIV:
440 case TargetOpcode::G_UDIV:
441 case TargetOpcode::G_SREM:
442 case TargetOpcode::G_UREM:
443 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
444 Type *HLTy = IntegerType::get(Ctx, Size);
445 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
446 if (Status != Legalized)
447 return Status;
448 break;
450 case TargetOpcode::G_FADD:
451 case TargetOpcode::G_FSUB:
452 case TargetOpcode::G_FMUL:
453 case TargetOpcode::G_FDIV:
454 case TargetOpcode::G_FMA:
455 case TargetOpcode::G_FPOW:
456 case TargetOpcode::G_FREM:
457 case TargetOpcode::G_FCOS:
458 case TargetOpcode::G_FSIN:
459 case TargetOpcode::G_FLOG10:
460 case TargetOpcode::G_FLOG:
461 case TargetOpcode::G_FLOG2:
462 case TargetOpcode::G_FEXP:
463 case TargetOpcode::G_FEXP2:
464 case TargetOpcode::G_FCEIL:
465 case TargetOpcode::G_FFLOOR: {
466 if (Size > 64) {
467 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
468 return UnableToLegalize;
470 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
471 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
472 if (Status != Legalized)
473 return Status;
474 break;
476 case TargetOpcode::G_FPEXT: {
477 // FIXME: Support other floating point types (half, fp128 etc)
478 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
479 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
480 if (ToSize != 64 || FromSize != 32)
481 return UnableToLegalize;
482 LegalizeResult Status = conversionLibcall(
483 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
484 if (Status != Legalized)
485 return Status;
486 break;
488 case TargetOpcode::G_FPTRUNC: {
489 // FIXME: Support other floating point types (half, fp128 etc)
490 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
491 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
492 if (ToSize != 32 || FromSize != 64)
493 return UnableToLegalize;
494 LegalizeResult Status = conversionLibcall(
495 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
496 if (Status != Legalized)
497 return Status;
498 break;
500 case TargetOpcode::G_FPTOSI:
501 case TargetOpcode::G_FPTOUI: {
502 // FIXME: Support other types
503 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
504 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
505 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
506 return UnableToLegalize;
507 LegalizeResult Status = conversionLibcall(
508 MI, MIRBuilder,
509 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
510 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
511 if (Status != Legalized)
512 return Status;
513 break;
515 case TargetOpcode::G_SITOFP:
516 case TargetOpcode::G_UITOFP: {
517 // FIXME: Support other types
518 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
519 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
520 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
521 return UnableToLegalize;
522 LegalizeResult Status = conversionLibcall(
523 MI, MIRBuilder,
524 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
525 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
526 if (Status != Legalized)
527 return Status;
528 break;
532 MI.eraseFromParent();
533 return Legalized;
536 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
537 unsigned TypeIdx,
538 LLT NarrowTy) {
539 MIRBuilder.setInstr(MI);
541 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
542 uint64_t NarrowSize = NarrowTy.getSizeInBits();
544 switch (MI.getOpcode()) {
545 default:
546 return UnableToLegalize;
547 case TargetOpcode::G_IMPLICIT_DEF: {
548 // FIXME: add support for when SizeOp0 isn't an exact multiple of
549 // NarrowSize.
550 if (SizeOp0 % NarrowSize != 0)
551 return UnableToLegalize;
552 int NumParts = SizeOp0 / NarrowSize;
554 SmallVector<Register, 2> DstRegs;
555 for (int i = 0; i < NumParts; ++i)
556 DstRegs.push_back(
557 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
559 Register DstReg = MI.getOperand(0).getReg();
560 if(MRI.getType(DstReg).isVector())
561 MIRBuilder.buildBuildVector(DstReg, DstRegs);
562 else
563 MIRBuilder.buildMerge(DstReg, DstRegs);
564 MI.eraseFromParent();
565 return Legalized;
567 case TargetOpcode::G_CONSTANT: {
568 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
569 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
570 unsigned TotalSize = Ty.getSizeInBits();
571 unsigned NarrowSize = NarrowTy.getSizeInBits();
572 int NumParts = TotalSize / NarrowSize;
574 SmallVector<Register, 4> PartRegs;
575 for (int I = 0; I != NumParts; ++I) {
576 unsigned Offset = I * NarrowSize;
577 auto K = MIRBuilder.buildConstant(NarrowTy,
578 Val.lshr(Offset).trunc(NarrowSize));
579 PartRegs.push_back(K.getReg(0));
582 LLT LeftoverTy;
583 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
584 SmallVector<Register, 1> LeftoverRegs;
585 if (LeftoverBits != 0) {
586 LeftoverTy = LLT::scalar(LeftoverBits);
587 auto K = MIRBuilder.buildConstant(
588 LeftoverTy,
589 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
590 LeftoverRegs.push_back(K.getReg(0));
593 insertParts(MI.getOperand(0).getReg(),
594 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
596 MI.eraseFromParent();
597 return Legalized;
599 case TargetOpcode::G_SEXT: {
600 if (TypeIdx != 0)
601 return UnableToLegalize;
603 if (NarrowTy.getSizeInBits() != SizeOp0 / 2) {
604 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n");
605 return UnableToLegalize;
608 Register SrcReg = MI.getOperand(1).getReg();
610 // Shift the sign bit of the low register through the high register.
611 auto ShiftAmt =
612 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1);
613 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt);
614 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)});
615 MI.eraseFromParent();
616 return Legalized;
618 case TargetOpcode::G_ZEXT: {
619 if (TypeIdx != 0)
620 return UnableToLegalize;
622 if (SizeOp0 % NarrowTy.getSizeInBits() != 0)
623 return UnableToLegalize;
625 // Generate a merge where the bottom bits are taken from the source, and
626 // zero everything else.
627 Register ZeroReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
628 unsigned NumParts = SizeOp0 / NarrowTy.getSizeInBits();
629 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()};
630 for (unsigned Part = 1; Part < NumParts; ++Part)
631 Srcs.push_back(ZeroReg);
632 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs);
633 MI.eraseFromParent();
634 return Legalized;
636 case TargetOpcode::G_TRUNC: {
637 if (TypeIdx != 1)
638 return UnableToLegalize;
640 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
641 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
642 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
643 return UnableToLegalize;
646 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
647 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0));
648 MI.eraseFromParent();
649 return Legalized;
652 case TargetOpcode::G_ADD: {
653 // FIXME: add support for when SizeOp0 isn't an exact multiple of
654 // NarrowSize.
655 if (SizeOp0 % NarrowSize != 0)
656 return UnableToLegalize;
657 // Expand in terms of carry-setting/consuming G_ADDE instructions.
658 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
660 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
661 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
662 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
664 Register CarryIn;
665 for (int i = 0; i < NumParts; ++i) {
666 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
667 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
669 if (i == 0)
670 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
671 else {
672 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
673 Src2Regs[i], CarryIn);
676 DstRegs.push_back(DstReg);
677 CarryIn = CarryOut;
679 Register DstReg = MI.getOperand(0).getReg();
680 if(MRI.getType(DstReg).isVector())
681 MIRBuilder.buildBuildVector(DstReg, DstRegs);
682 else
683 MIRBuilder.buildMerge(DstReg, DstRegs);
684 MI.eraseFromParent();
685 return Legalized;
687 case TargetOpcode::G_SUB: {
688 // FIXME: add support for when SizeOp0 isn't an exact multiple of
689 // NarrowSize.
690 if (SizeOp0 % NarrowSize != 0)
691 return UnableToLegalize;
693 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
695 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
696 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
697 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
699 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
700 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
701 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
702 {Src1Regs[0], Src2Regs[0]});
703 DstRegs.push_back(DstReg);
704 Register BorrowIn = BorrowOut;
705 for (int i = 1; i < NumParts; ++i) {
706 DstReg = MRI.createGenericVirtualRegister(NarrowTy);
707 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
709 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
710 {Src1Regs[i], Src2Regs[i], BorrowIn});
712 DstRegs.push_back(DstReg);
713 BorrowIn = BorrowOut;
715 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
716 MI.eraseFromParent();
717 return Legalized;
719 case TargetOpcode::G_MUL:
720 case TargetOpcode::G_UMULH:
721 return narrowScalarMul(MI, NarrowTy);
722 case TargetOpcode::G_EXTRACT:
723 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
724 case TargetOpcode::G_INSERT:
725 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
726 case TargetOpcode::G_LOAD: {
727 const auto &MMO = **MI.memoperands_begin();
728 Register DstReg = MI.getOperand(0).getReg();
729 LLT DstTy = MRI.getType(DstReg);
730 if (DstTy.isVector())
731 return UnableToLegalize;
733 if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
734 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
735 auto &MMO = **MI.memoperands_begin();
736 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
737 MIRBuilder.buildAnyExt(DstReg, TmpReg);
738 MI.eraseFromParent();
739 return Legalized;
742 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
744 case TargetOpcode::G_ZEXTLOAD:
745 case TargetOpcode::G_SEXTLOAD: {
746 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
747 Register DstReg = MI.getOperand(0).getReg();
748 Register PtrReg = MI.getOperand(1).getReg();
750 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
751 auto &MMO = **MI.memoperands_begin();
752 if (MMO.getSizeInBits() == NarrowSize) {
753 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
754 } else {
755 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
756 : TargetOpcode::G_SEXTLOAD;
757 MIRBuilder.buildInstr(ExtLoad)
758 .addDef(TmpReg)
759 .addUse(PtrReg)
760 .addMemOperand(&MMO);
763 if (ZExt)
764 MIRBuilder.buildZExt(DstReg, TmpReg);
765 else
766 MIRBuilder.buildSExt(DstReg, TmpReg);
768 MI.eraseFromParent();
769 return Legalized;
771 case TargetOpcode::G_STORE: {
772 const auto &MMO = **MI.memoperands_begin();
774 Register SrcReg = MI.getOperand(0).getReg();
775 LLT SrcTy = MRI.getType(SrcReg);
776 if (SrcTy.isVector())
777 return UnableToLegalize;
779 int NumParts = SizeOp0 / NarrowSize;
780 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
781 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
782 if (SrcTy.isVector() && LeftoverBits != 0)
783 return UnableToLegalize;
785 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
786 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
787 auto &MMO = **MI.memoperands_begin();
788 MIRBuilder.buildTrunc(TmpReg, SrcReg);
789 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
790 MI.eraseFromParent();
791 return Legalized;
794 return reduceLoadStoreWidth(MI, 0, NarrowTy);
796 case TargetOpcode::G_SELECT:
797 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
798 case TargetOpcode::G_AND:
799 case TargetOpcode::G_OR:
800 case TargetOpcode::G_XOR: {
801 // Legalize bitwise operation:
802 // A = BinOp<Ty> B, C
803 // into:
804 // B1, ..., BN = G_UNMERGE_VALUES B
805 // C1, ..., CN = G_UNMERGE_VALUES C
806 // A1 = BinOp<Ty/N> B1, C2
807 // ...
808 // AN = BinOp<Ty/N> BN, CN
809 // A = G_MERGE_VALUES A1, ..., AN
810 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
812 case TargetOpcode::G_SHL:
813 case TargetOpcode::G_LSHR:
814 case TargetOpcode::G_ASHR:
815 return narrowScalarShift(MI, TypeIdx, NarrowTy);
816 case TargetOpcode::G_CTLZ:
817 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
818 case TargetOpcode::G_CTTZ:
819 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
820 case TargetOpcode::G_CTPOP:
821 if (TypeIdx != 0)
822 return UnableToLegalize; // TODO
824 Observer.changingInstr(MI);
825 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
826 Observer.changedInstr(MI);
827 return Legalized;
828 case TargetOpcode::G_INTTOPTR:
829 if (TypeIdx != 1)
830 return UnableToLegalize;
832 Observer.changingInstr(MI);
833 narrowScalarSrc(MI, NarrowTy, 1);
834 Observer.changedInstr(MI);
835 return Legalized;
836 case TargetOpcode::G_PTRTOINT:
837 if (TypeIdx != 0)
838 return UnableToLegalize;
840 Observer.changingInstr(MI);
841 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
842 Observer.changedInstr(MI);
843 return Legalized;
844 case TargetOpcode::G_PHI: {
845 unsigned NumParts = SizeOp0 / NarrowSize;
846 SmallVector<Register, 2> DstRegs;
847 SmallVector<SmallVector<Register, 2>, 2> SrcRegs;
848 DstRegs.resize(NumParts);
849 SrcRegs.resize(MI.getNumOperands() / 2);
850 Observer.changingInstr(MI);
851 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
852 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
853 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
854 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
855 SrcRegs[i / 2]);
857 MachineBasicBlock &MBB = *MI.getParent();
858 MIRBuilder.setInsertPt(MBB, MI);
859 for (unsigned i = 0; i < NumParts; ++i) {
860 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
861 MachineInstrBuilder MIB =
862 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
863 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
864 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
866 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
867 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
868 Observer.changedInstr(MI);
869 MI.eraseFromParent();
870 return Legalized;
872 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
873 case TargetOpcode::G_INSERT_VECTOR_ELT: {
874 if (TypeIdx != 2)
875 return UnableToLegalize;
877 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
878 Observer.changingInstr(MI);
879 narrowScalarSrc(MI, NarrowTy, OpIdx);
880 Observer.changedInstr(MI);
881 return Legalized;
883 case TargetOpcode::G_ICMP: {
884 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
885 if (NarrowSize * 2 != SrcSize)
886 return UnableToLegalize;
888 Observer.changingInstr(MI);
889 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
890 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
891 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg());
893 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
894 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
895 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg());
897 CmpInst::Predicate Pred =
898 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
899 LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
901 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
902 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
903 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
904 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
905 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
906 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero);
907 } else {
908 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
909 MachineInstrBuilder CmpHEQ =
910 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
911 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
912 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
913 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH);
915 Observer.changedInstr(MI);
916 MI.eraseFromParent();
917 return Legalized;
919 case TargetOpcode::G_SEXT_INREG: {
920 if (TypeIdx != 0)
921 return UnableToLegalize;
923 if (!MI.getOperand(2).isImm())
924 return UnableToLegalize;
925 int64_t SizeInBits = MI.getOperand(2).getImm();
927 // So long as the new type has more bits than the bits we're extending we
928 // don't need to break it apart.
929 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
930 Observer.changingInstr(MI);
931 // We don't lose any non-extension bits by truncating the src and
932 // sign-extending the dst.
933 MachineOperand &MO1 = MI.getOperand(1);
934 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg());
935 MO1.setReg(TruncMIB->getOperand(0).getReg());
937 MachineOperand &MO2 = MI.getOperand(0);
938 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
939 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
940 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt});
941 MO2.setReg(DstExt);
942 Observer.changedInstr(MI);
943 return Legalized;
946 // Break it apart. Components below the extension point are unmodified. The
947 // component containing the extension point becomes a narrower SEXT_INREG.
948 // Components above it are ashr'd from the component containing the
949 // extension point.
950 if (SizeOp0 % NarrowSize != 0)
951 return UnableToLegalize;
952 int NumParts = SizeOp0 / NarrowSize;
954 // List the registers where the destination will be scattered.
955 SmallVector<Register, 2> DstRegs;
956 // List the registers where the source will be split.
957 SmallVector<Register, 2> SrcRegs;
959 // Create all the temporary registers.
960 for (int i = 0; i < NumParts; ++i) {
961 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
963 SrcRegs.push_back(SrcReg);
966 // Explode the big arguments into smaller chunks.
967 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg());
969 Register AshrCstReg =
970 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
971 ->getOperand(0)
972 .getReg();
973 Register FullExtensionReg = 0;
974 Register PartialExtensionReg = 0;
976 // Do the operation on each small part.
977 for (int i = 0; i < NumParts; ++i) {
978 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
979 DstRegs.push_back(SrcRegs[i]);
980 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
981 assert(PartialExtensionReg &&
982 "Expected to visit partial extension before full");
983 if (FullExtensionReg) {
984 DstRegs.push_back(FullExtensionReg);
985 continue;
987 DstRegs.push_back(MIRBuilder
988 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy},
989 {PartialExtensionReg, AshrCstReg})
990 ->getOperand(0)
991 .getReg());
992 FullExtensionReg = DstRegs.back();
993 } else {
994 DstRegs.push_back(
995 MIRBuilder
996 .buildInstr(
997 TargetOpcode::G_SEXT_INREG, {NarrowTy},
998 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
999 ->getOperand(0)
1000 .getReg());
1001 PartialExtensionReg = DstRegs.back();
1005 // Gather the destination registers into the final destination.
1006 Register DstReg = MI.getOperand(0).getReg();
1007 MIRBuilder.buildMerge(DstReg, DstRegs);
1008 MI.eraseFromParent();
1009 return Legalized;
1014 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1015 unsigned OpIdx, unsigned ExtOpcode) {
1016 MachineOperand &MO = MI.getOperand(OpIdx);
1017 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
1018 MO.setReg(ExtB->getOperand(0).getReg());
1021 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1022 unsigned OpIdx) {
1023 MachineOperand &MO = MI.getOperand(OpIdx);
1024 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
1025 {MO.getReg()});
1026 MO.setReg(ExtB->getOperand(0).getReg());
1029 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1030 unsigned OpIdx, unsigned TruncOpcode) {
1031 MachineOperand &MO = MI.getOperand(OpIdx);
1032 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1033 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1034 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
1035 MO.setReg(DstExt);
1038 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1039 unsigned OpIdx, unsigned ExtOpcode) {
1040 MachineOperand &MO = MI.getOperand(OpIdx);
1041 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1042 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1043 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
1044 MO.setReg(DstTrunc);
1047 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1048 unsigned OpIdx) {
1049 MachineOperand &MO = MI.getOperand(OpIdx);
1050 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1051 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1052 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
1053 MO.setReg(DstExt);
1056 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1057 unsigned OpIdx) {
1058 MachineOperand &MO = MI.getOperand(OpIdx);
1060 LLT OldTy = MRI.getType(MO.getReg());
1061 unsigned OldElts = OldTy.getNumElements();
1062 unsigned NewElts = MoreTy.getNumElements();
1064 unsigned NumParts = NewElts / OldElts;
1066 // Use concat_vectors if the result is a multiple of the number of elements.
1067 if (NumParts * OldElts == NewElts) {
1068 SmallVector<Register, 8> Parts;
1069 Parts.push_back(MO.getReg());
1071 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1072 for (unsigned I = 1; I != NumParts; ++I)
1073 Parts.push_back(ImpDef);
1075 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1076 MO.setReg(Concat.getReg(0));
1077 return;
1080 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1081 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1082 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1083 MO.setReg(MoreReg);
1086 LegalizerHelper::LegalizeResult
1087 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1088 LLT WideTy) {
1089 if (TypeIdx != 1)
1090 return UnableToLegalize;
1092 Register DstReg = MI.getOperand(0).getReg();
1093 LLT DstTy = MRI.getType(DstReg);
1094 if (DstTy.isVector())
1095 return UnableToLegalize;
1097 Register Src1 = MI.getOperand(1).getReg();
1098 LLT SrcTy = MRI.getType(Src1);
1099 const int DstSize = DstTy.getSizeInBits();
1100 const int SrcSize = SrcTy.getSizeInBits();
1101 const int WideSize = WideTy.getSizeInBits();
1102 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1104 unsigned NumOps = MI.getNumOperands();
1105 unsigned NumSrc = MI.getNumOperands() - 1;
1106 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1108 if (WideSize >= DstSize) {
1109 // Directly pack the bits in the target type.
1110 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1112 for (unsigned I = 2; I != NumOps; ++I) {
1113 const unsigned Offset = (I - 1) * PartSize;
1115 Register SrcReg = MI.getOperand(I).getReg();
1116 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1118 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1120 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1121 MRI.createGenericVirtualRegister(WideTy);
1123 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1124 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1125 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1126 ResultReg = NextResult;
1129 if (WideSize > DstSize)
1130 MIRBuilder.buildTrunc(DstReg, ResultReg);
1131 else if (DstTy.isPointer())
1132 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1134 MI.eraseFromParent();
1135 return Legalized;
1138 // Unmerge the original values to the GCD type, and recombine to the next
1139 // multiple greater than the original type.
1141 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1142 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1143 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1144 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1145 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1146 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1147 // %12:_(s12) = G_MERGE_VALUES %10, %11
1149 // Padding with undef if necessary:
1151 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1152 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1153 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1154 // %7:_(s2) = G_IMPLICIT_DEF
1155 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1156 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1157 // %10:_(s12) = G_MERGE_VALUES %8, %9
1159 const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1160 LLT GCDTy = LLT::scalar(GCD);
1162 SmallVector<Register, 8> Parts;
1163 SmallVector<Register, 8> NewMergeRegs;
1164 SmallVector<Register, 8> Unmerges;
1165 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1167 // Decompose the original operands if they don't evenly divide.
1168 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1169 Register SrcReg = MI.getOperand(I).getReg();
1170 if (GCD == SrcSize) {
1171 Unmerges.push_back(SrcReg);
1172 } else {
1173 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1174 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1175 Unmerges.push_back(Unmerge.getReg(J));
1179 // Pad with undef to the next size that is a multiple of the requested size.
1180 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1181 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1182 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1183 Unmerges.push_back(UndefReg);
1186 const int PartsPerGCD = WideSize / GCD;
1188 // Build merges of each piece.
1189 ArrayRef<Register> Slicer(Unmerges);
1190 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1191 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1192 NewMergeRegs.push_back(Merge.getReg(0));
1195 // A truncate may be necessary if the requested type doesn't evenly divide the
1196 // original result type.
1197 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1198 MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1199 } else {
1200 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1201 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1204 MI.eraseFromParent();
1205 return Legalized;
1208 LegalizerHelper::LegalizeResult
1209 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1210 LLT WideTy) {
1211 if (TypeIdx != 0)
1212 return UnableToLegalize;
1214 unsigned NumDst = MI.getNumOperands() - 1;
1215 Register SrcReg = MI.getOperand(NumDst).getReg();
1216 LLT SrcTy = MRI.getType(SrcReg);
1217 if (!SrcTy.isScalar())
1218 return UnableToLegalize;
1220 Register Dst0Reg = MI.getOperand(0).getReg();
1221 LLT DstTy = MRI.getType(Dst0Reg);
1222 if (!DstTy.isScalar())
1223 return UnableToLegalize;
1225 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
1226 LLT NewSrcTy = LLT::scalar(NewSrcSize);
1227 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
1229 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
1231 for (unsigned I = 1; I != NumDst; ++I) {
1232 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
1233 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
1234 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
1237 Observer.changingInstr(MI);
1239 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
1240 for (unsigned I = 0; I != NumDst; ++I)
1241 widenScalarDst(MI, WideTy, I);
1243 Observer.changedInstr(MI);
1245 return Legalized;
1248 LegalizerHelper::LegalizeResult
1249 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1250 LLT WideTy) {
1251 Register DstReg = MI.getOperand(0).getReg();
1252 Register SrcReg = MI.getOperand(1).getReg();
1253 LLT SrcTy = MRI.getType(SrcReg);
1255 LLT DstTy = MRI.getType(DstReg);
1256 unsigned Offset = MI.getOperand(2).getImm();
1258 if (TypeIdx == 0) {
1259 if (SrcTy.isVector() || DstTy.isVector())
1260 return UnableToLegalize;
1262 SrcOp Src(SrcReg);
1263 if (SrcTy.isPointer()) {
1264 // Extracts from pointers can be handled only if they are really just
1265 // simple integers.
1266 const DataLayout &DL = MIRBuilder.getDataLayout();
1267 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1268 return UnableToLegalize;
1270 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1271 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1272 SrcTy = SrcAsIntTy;
1275 if (DstTy.isPointer())
1276 return UnableToLegalize;
1278 if (Offset == 0) {
1279 // Avoid a shift in the degenerate case.
1280 MIRBuilder.buildTrunc(DstReg,
1281 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1282 MI.eraseFromParent();
1283 return Legalized;
1286 // Do a shift in the source type.
1287 LLT ShiftTy = SrcTy;
1288 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1289 Src = MIRBuilder.buildAnyExt(WideTy, Src);
1290 ShiftTy = WideTy;
1291 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1292 return UnableToLegalize;
1294 auto LShr = MIRBuilder.buildLShr(
1295 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1296 MIRBuilder.buildTrunc(DstReg, LShr);
1297 MI.eraseFromParent();
1298 return Legalized;
1301 if (SrcTy.isScalar()) {
1302 Observer.changingInstr(MI);
1303 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1304 Observer.changedInstr(MI);
1305 return Legalized;
1308 if (!SrcTy.isVector())
1309 return UnableToLegalize;
1311 if (DstTy != SrcTy.getElementType())
1312 return UnableToLegalize;
1314 if (Offset % SrcTy.getScalarSizeInBits() != 0)
1315 return UnableToLegalize;
1317 Observer.changingInstr(MI);
1318 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1320 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1321 Offset);
1322 widenScalarDst(MI, WideTy.getScalarType(), 0);
1323 Observer.changedInstr(MI);
1324 return Legalized;
1327 LegalizerHelper::LegalizeResult
1328 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1329 LLT WideTy) {
1330 if (TypeIdx != 0)
1331 return UnableToLegalize;
1332 Observer.changingInstr(MI);
1333 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1334 widenScalarDst(MI, WideTy);
1335 Observer.changedInstr(MI);
1336 return Legalized;
1339 LegalizerHelper::LegalizeResult
1340 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1341 MIRBuilder.setInstr(MI);
1343 switch (MI.getOpcode()) {
1344 default:
1345 return UnableToLegalize;
1346 case TargetOpcode::G_EXTRACT:
1347 return widenScalarExtract(MI, TypeIdx, WideTy);
1348 case TargetOpcode::G_INSERT:
1349 return widenScalarInsert(MI, TypeIdx, WideTy);
1350 case TargetOpcode::G_MERGE_VALUES:
1351 return widenScalarMergeValues(MI, TypeIdx, WideTy);
1352 case TargetOpcode::G_UNMERGE_VALUES:
1353 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1354 case TargetOpcode::G_UADDO:
1355 case TargetOpcode::G_USUBO: {
1356 if (TypeIdx == 1)
1357 return UnableToLegalize; // TODO
1358 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1359 {MI.getOperand(2).getReg()});
1360 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1361 {MI.getOperand(3).getReg()});
1362 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1363 ? TargetOpcode::G_ADD
1364 : TargetOpcode::G_SUB;
1365 // Do the arithmetic in the larger type.
1366 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1367 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1368 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
1369 auto AndOp = MIRBuilder.buildInstr(
1370 TargetOpcode::G_AND, {WideTy},
1371 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
1372 // There is no overflow if the AndOp is the same as NewOp.
1373 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
1374 AndOp);
1375 // Now trunc the NewOp to the original result.
1376 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
1377 MI.eraseFromParent();
1378 return Legalized;
1380 case TargetOpcode::G_CTTZ:
1381 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1382 case TargetOpcode::G_CTLZ:
1383 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1384 case TargetOpcode::G_CTPOP: {
1385 if (TypeIdx == 0) {
1386 Observer.changingInstr(MI);
1387 widenScalarDst(MI, WideTy, 0);
1388 Observer.changedInstr(MI);
1389 return Legalized;
1392 Register SrcReg = MI.getOperand(1).getReg();
1394 // First ZEXT the input.
1395 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1396 LLT CurTy = MRI.getType(SrcReg);
1397 if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1398 // The count is the same in the larger type except if the original
1399 // value was zero. This can be handled by setting the bit just off
1400 // the top of the original type.
1401 auto TopBit =
1402 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1403 MIBSrc = MIRBuilder.buildOr(
1404 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1407 // Perform the operation at the larger size.
1408 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1409 // This is already the correct result for CTPOP and CTTZs
1410 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1411 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1412 // The correct result is NewOp - (Difference in widety and current ty).
1413 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1414 MIBNewOp = MIRBuilder.buildInstr(
1415 TargetOpcode::G_SUB, {WideTy},
1416 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
1419 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1420 MI.eraseFromParent();
1421 return Legalized;
1423 case TargetOpcode::G_BSWAP: {
1424 Observer.changingInstr(MI);
1425 Register DstReg = MI.getOperand(0).getReg();
1427 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1428 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1429 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1430 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1432 MI.getOperand(0).setReg(DstExt);
1434 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1436 LLT Ty = MRI.getType(DstReg);
1437 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1438 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1439 MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
1440 .addDef(ShrReg)
1441 .addUse(DstExt)
1442 .addUse(ShiftAmtReg);
1444 MIRBuilder.buildTrunc(DstReg, ShrReg);
1445 Observer.changedInstr(MI);
1446 return Legalized;
1448 case TargetOpcode::G_ADD:
1449 case TargetOpcode::G_AND:
1450 case TargetOpcode::G_MUL:
1451 case TargetOpcode::G_OR:
1452 case TargetOpcode::G_XOR:
1453 case TargetOpcode::G_SUB:
1454 // Perform operation at larger width (any extension is fines here, high bits
1455 // don't affect the result) and then truncate the result back to the
1456 // original type.
1457 Observer.changingInstr(MI);
1458 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1459 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1460 widenScalarDst(MI, WideTy);
1461 Observer.changedInstr(MI);
1462 return Legalized;
1464 case TargetOpcode::G_SHL:
1465 Observer.changingInstr(MI);
1467 if (TypeIdx == 0) {
1468 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1469 widenScalarDst(MI, WideTy);
1470 } else {
1471 assert(TypeIdx == 1);
1472 // The "number of bits to shift" operand must preserve its value as an
1473 // unsigned integer:
1474 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1477 Observer.changedInstr(MI);
1478 return Legalized;
1480 case TargetOpcode::G_SDIV:
1481 case TargetOpcode::G_SREM:
1482 case TargetOpcode::G_SMIN:
1483 case TargetOpcode::G_SMAX:
1484 Observer.changingInstr(MI);
1485 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1486 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1487 widenScalarDst(MI, WideTy);
1488 Observer.changedInstr(MI);
1489 return Legalized;
1491 case TargetOpcode::G_ASHR:
1492 case TargetOpcode::G_LSHR:
1493 Observer.changingInstr(MI);
1495 if (TypeIdx == 0) {
1496 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1497 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1499 widenScalarSrc(MI, WideTy, 1, CvtOp);
1500 widenScalarDst(MI, WideTy);
1501 } else {
1502 assert(TypeIdx == 1);
1503 // The "number of bits to shift" operand must preserve its value as an
1504 // unsigned integer:
1505 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1508 Observer.changedInstr(MI);
1509 return Legalized;
1510 case TargetOpcode::G_UDIV:
1511 case TargetOpcode::G_UREM:
1512 case TargetOpcode::G_UMIN:
1513 case TargetOpcode::G_UMAX:
1514 Observer.changingInstr(MI);
1515 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1516 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1517 widenScalarDst(MI, WideTy);
1518 Observer.changedInstr(MI);
1519 return Legalized;
1521 case TargetOpcode::G_SELECT:
1522 Observer.changingInstr(MI);
1523 if (TypeIdx == 0) {
1524 // Perform operation at larger width (any extension is fine here, high
1525 // bits don't affect the result) and then truncate the result back to the
1526 // original type.
1527 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1528 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1529 widenScalarDst(MI, WideTy);
1530 } else {
1531 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1532 // Explicit extension is required here since high bits affect the result.
1533 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1535 Observer.changedInstr(MI);
1536 return Legalized;
1538 case TargetOpcode::G_FPTOSI:
1539 case TargetOpcode::G_FPTOUI:
1540 if (TypeIdx != 0)
1541 return UnableToLegalize;
1542 Observer.changingInstr(MI);
1543 widenScalarDst(MI, WideTy);
1544 Observer.changedInstr(MI);
1545 return Legalized;
1547 case TargetOpcode::G_SITOFP:
1548 if (TypeIdx != 1)
1549 return UnableToLegalize;
1550 Observer.changingInstr(MI);
1551 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1552 Observer.changedInstr(MI);
1553 return Legalized;
1555 case TargetOpcode::G_UITOFP:
1556 if (TypeIdx != 1)
1557 return UnableToLegalize;
1558 Observer.changingInstr(MI);
1559 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1560 Observer.changedInstr(MI);
1561 return Legalized;
1563 case TargetOpcode::G_LOAD:
1564 case TargetOpcode::G_SEXTLOAD:
1565 case TargetOpcode::G_ZEXTLOAD:
1566 Observer.changingInstr(MI);
1567 widenScalarDst(MI, WideTy);
1568 Observer.changedInstr(MI);
1569 return Legalized;
1571 case TargetOpcode::G_STORE: {
1572 if (TypeIdx != 0)
1573 return UnableToLegalize;
1575 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1576 if (!isPowerOf2_32(Ty.getSizeInBits()))
1577 return UnableToLegalize;
1579 Observer.changingInstr(MI);
1581 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1582 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1583 widenScalarSrc(MI, WideTy, 0, ExtType);
1585 Observer.changedInstr(MI);
1586 return Legalized;
1588 case TargetOpcode::G_CONSTANT: {
1589 MachineOperand &SrcMO = MI.getOperand(1);
1590 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1591 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
1592 Observer.changingInstr(MI);
1593 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1595 widenScalarDst(MI, WideTy);
1596 Observer.changedInstr(MI);
1597 return Legalized;
1599 case TargetOpcode::G_FCONSTANT: {
1600 MachineOperand &SrcMO = MI.getOperand(1);
1601 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1602 APFloat Val = SrcMO.getFPImm()->getValueAPF();
1603 bool LosesInfo;
1604 switch (WideTy.getSizeInBits()) {
1605 case 32:
1606 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1607 &LosesInfo);
1608 break;
1609 case 64:
1610 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1611 &LosesInfo);
1612 break;
1613 default:
1614 return UnableToLegalize;
1617 assert(!LosesInfo && "extend should always be lossless");
1619 Observer.changingInstr(MI);
1620 SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1622 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1623 Observer.changedInstr(MI);
1624 return Legalized;
1626 case TargetOpcode::G_IMPLICIT_DEF: {
1627 Observer.changingInstr(MI);
1628 widenScalarDst(MI, WideTy);
1629 Observer.changedInstr(MI);
1630 return Legalized;
1632 case TargetOpcode::G_BRCOND:
1633 Observer.changingInstr(MI);
1634 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1635 Observer.changedInstr(MI);
1636 return Legalized;
1638 case TargetOpcode::G_FCMP:
1639 Observer.changingInstr(MI);
1640 if (TypeIdx == 0)
1641 widenScalarDst(MI, WideTy);
1642 else {
1643 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1644 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1646 Observer.changedInstr(MI);
1647 return Legalized;
1649 case TargetOpcode::G_ICMP:
1650 Observer.changingInstr(MI);
1651 if (TypeIdx == 0)
1652 widenScalarDst(MI, WideTy);
1653 else {
1654 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1655 MI.getOperand(1).getPredicate()))
1656 ? TargetOpcode::G_SEXT
1657 : TargetOpcode::G_ZEXT;
1658 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1659 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1661 Observer.changedInstr(MI);
1662 return Legalized;
1664 case TargetOpcode::G_GEP:
1665 assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
1666 Observer.changingInstr(MI);
1667 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1668 Observer.changedInstr(MI);
1669 return Legalized;
1671 case TargetOpcode::G_PHI: {
1672 assert(TypeIdx == 0 && "Expecting only Idx 0");
1674 Observer.changingInstr(MI);
1675 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1676 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1677 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1678 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1681 MachineBasicBlock &MBB = *MI.getParent();
1682 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1683 widenScalarDst(MI, WideTy);
1684 Observer.changedInstr(MI);
1685 return Legalized;
1687 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1688 if (TypeIdx == 0) {
1689 Register VecReg = MI.getOperand(1).getReg();
1690 LLT VecTy = MRI.getType(VecReg);
1691 Observer.changingInstr(MI);
1693 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1694 WideTy.getSizeInBits()),
1695 1, TargetOpcode::G_SEXT);
1697 widenScalarDst(MI, WideTy, 0);
1698 Observer.changedInstr(MI);
1699 return Legalized;
1702 if (TypeIdx != 2)
1703 return UnableToLegalize;
1704 Observer.changingInstr(MI);
1705 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1706 Observer.changedInstr(MI);
1707 return Legalized;
1709 case TargetOpcode::G_FADD:
1710 case TargetOpcode::G_FMUL:
1711 case TargetOpcode::G_FSUB:
1712 case TargetOpcode::G_FMA:
1713 case TargetOpcode::G_FNEG:
1714 case TargetOpcode::G_FABS:
1715 case TargetOpcode::G_FCANONICALIZE:
1716 case TargetOpcode::G_FMINNUM:
1717 case TargetOpcode::G_FMAXNUM:
1718 case TargetOpcode::G_FMINNUM_IEEE:
1719 case TargetOpcode::G_FMAXNUM_IEEE:
1720 case TargetOpcode::G_FMINIMUM:
1721 case TargetOpcode::G_FMAXIMUM:
1722 case TargetOpcode::G_FDIV:
1723 case TargetOpcode::G_FREM:
1724 case TargetOpcode::G_FCEIL:
1725 case TargetOpcode::G_FFLOOR:
1726 case TargetOpcode::G_FCOS:
1727 case TargetOpcode::G_FSIN:
1728 case TargetOpcode::G_FLOG10:
1729 case TargetOpcode::G_FLOG:
1730 case TargetOpcode::G_FLOG2:
1731 case TargetOpcode::G_FRINT:
1732 case TargetOpcode::G_FNEARBYINT:
1733 case TargetOpcode::G_FSQRT:
1734 case TargetOpcode::G_FEXP:
1735 case TargetOpcode::G_FEXP2:
1736 case TargetOpcode::G_FPOW:
1737 case TargetOpcode::G_INTRINSIC_TRUNC:
1738 case TargetOpcode::G_INTRINSIC_ROUND:
1739 assert(TypeIdx == 0);
1740 Observer.changingInstr(MI);
1742 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1743 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1745 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1746 Observer.changedInstr(MI);
1747 return Legalized;
1748 case TargetOpcode::G_INTTOPTR:
1749 if (TypeIdx != 1)
1750 return UnableToLegalize;
1752 Observer.changingInstr(MI);
1753 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1754 Observer.changedInstr(MI);
1755 return Legalized;
1756 case TargetOpcode::G_PTRTOINT:
1757 if (TypeIdx != 0)
1758 return UnableToLegalize;
1760 Observer.changingInstr(MI);
1761 widenScalarDst(MI, WideTy, 0);
1762 Observer.changedInstr(MI);
1763 return Legalized;
1764 case TargetOpcode::G_BUILD_VECTOR: {
1765 Observer.changingInstr(MI);
1767 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
1768 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
1769 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
1771 // Avoid changing the result vector type if the source element type was
1772 // requested.
1773 if (TypeIdx == 1) {
1774 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
1775 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
1776 } else {
1777 widenScalarDst(MI, WideTy, 0);
1780 Observer.changedInstr(MI);
1781 return Legalized;
1783 case TargetOpcode::G_SEXT_INREG:
1784 if (TypeIdx != 0)
1785 return UnableToLegalize;
1787 Observer.changingInstr(MI);
1788 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1789 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
1790 Observer.changedInstr(MI);
1791 return Legalized;
1795 LegalizerHelper::LegalizeResult
1796 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
1797 using namespace TargetOpcode;
1798 MIRBuilder.setInstr(MI);
1800 switch(MI.getOpcode()) {
1801 default:
1802 return UnableToLegalize;
1803 case TargetOpcode::G_SREM:
1804 case TargetOpcode::G_UREM: {
1805 Register QuotReg = MRI.createGenericVirtualRegister(Ty);
1806 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
1807 .addDef(QuotReg)
1808 .addUse(MI.getOperand(1).getReg())
1809 .addUse(MI.getOperand(2).getReg());
1811 Register ProdReg = MRI.createGenericVirtualRegister(Ty);
1812 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
1813 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
1814 ProdReg);
1815 MI.eraseFromParent();
1816 return Legalized;
1818 case TargetOpcode::G_SMULO:
1819 case TargetOpcode::G_UMULO: {
1820 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
1821 // result.
1822 Register Res = MI.getOperand(0).getReg();
1823 Register Overflow = MI.getOperand(1).getReg();
1824 Register LHS = MI.getOperand(2).getReg();
1825 Register RHS = MI.getOperand(3).getReg();
1827 MIRBuilder.buildMul(Res, LHS, RHS);
1829 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
1830 ? TargetOpcode::G_SMULH
1831 : TargetOpcode::G_UMULH;
1833 Register HiPart = MRI.createGenericVirtualRegister(Ty);
1834 MIRBuilder.buildInstr(Opcode)
1835 .addDef(HiPart)
1836 .addUse(LHS)
1837 .addUse(RHS);
1839 Register Zero = MRI.createGenericVirtualRegister(Ty);
1840 MIRBuilder.buildConstant(Zero, 0);
1842 // For *signed* multiply, overflow is detected by checking:
1843 // (hi != (lo >> bitwidth-1))
1844 if (Opcode == TargetOpcode::G_SMULH) {
1845 Register Shifted = MRI.createGenericVirtualRegister(Ty);
1846 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty);
1847 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
1848 MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
1849 .addDef(Shifted)
1850 .addUse(Res)
1851 .addUse(ShiftAmt);
1852 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
1853 } else {
1854 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
1856 MI.eraseFromParent();
1857 return Legalized;
1859 case TargetOpcode::G_FNEG: {
1860 // TODO: Handle vector types once we are able to
1861 // represent them.
1862 if (Ty.isVector())
1863 return UnableToLegalize;
1864 Register Res = MI.getOperand(0).getReg();
1865 Type *ZeroTy;
1866 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1867 switch (Ty.getSizeInBits()) {
1868 case 16:
1869 ZeroTy = Type::getHalfTy(Ctx);
1870 break;
1871 case 32:
1872 ZeroTy = Type::getFloatTy(Ctx);
1873 break;
1874 case 64:
1875 ZeroTy = Type::getDoubleTy(Ctx);
1876 break;
1877 case 128:
1878 ZeroTy = Type::getFP128Ty(Ctx);
1879 break;
1880 default:
1881 llvm_unreachable("unexpected floating-point type");
1883 ConstantFP &ZeroForNegation =
1884 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
1885 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
1886 Register SubByReg = MI.getOperand(1).getReg();
1887 Register ZeroReg = Zero->getOperand(0).getReg();
1888 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg},
1889 MI.getFlags());
1890 MI.eraseFromParent();
1891 return Legalized;
1893 case TargetOpcode::G_FSUB: {
1894 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
1895 // First, check if G_FNEG is marked as Lower. If so, we may
1896 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
1897 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
1898 return UnableToLegalize;
1899 Register Res = MI.getOperand(0).getReg();
1900 Register LHS = MI.getOperand(1).getReg();
1901 Register RHS = MI.getOperand(2).getReg();
1902 Register Neg = MRI.createGenericVirtualRegister(Ty);
1903 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
1904 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags());
1905 MI.eraseFromParent();
1906 return Legalized;
1908 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1909 Register OldValRes = MI.getOperand(0).getReg();
1910 Register SuccessRes = MI.getOperand(1).getReg();
1911 Register Addr = MI.getOperand(2).getReg();
1912 Register CmpVal = MI.getOperand(3).getReg();
1913 Register NewVal = MI.getOperand(4).getReg();
1914 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
1915 **MI.memoperands_begin());
1916 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
1917 MI.eraseFromParent();
1918 return Legalized;
1920 case TargetOpcode::G_LOAD:
1921 case TargetOpcode::G_SEXTLOAD:
1922 case TargetOpcode::G_ZEXTLOAD: {
1923 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
1924 Register DstReg = MI.getOperand(0).getReg();
1925 Register PtrReg = MI.getOperand(1).getReg();
1926 LLT DstTy = MRI.getType(DstReg);
1927 auto &MMO = **MI.memoperands_begin();
1929 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
1930 if (MI.getOpcode() == TargetOpcode::G_LOAD) {
1931 // This load needs splitting into power of 2 sized loads.
1932 if (DstTy.isVector())
1933 return UnableToLegalize;
1934 if (isPowerOf2_32(DstTy.getSizeInBits()))
1935 return UnableToLegalize; // Don't know what we're being asked to do.
1937 // Our strategy here is to generate anyextending loads for the smaller
1938 // types up to next power-2 result type, and then combine the two larger
1939 // result values together, before truncating back down to the non-pow-2
1940 // type.
1941 // E.g. v1 = i24 load =>
1942 // v2 = i32 load (2 byte)
1943 // v3 = i32 load (1 byte)
1944 // v4 = i32 shl v3, 16
1945 // v5 = i32 or v4, v2
1946 // v1 = i24 trunc v5
1947 // By doing this we generate the correct truncate which should get
1948 // combined away as an artifact with a matching extend.
1949 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
1950 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
1952 MachineFunction &MF = MIRBuilder.getMF();
1953 MachineMemOperand *LargeMMO =
1954 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
1955 MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
1956 &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
1958 LLT PtrTy = MRI.getType(PtrReg);
1959 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
1960 LLT AnyExtTy = LLT::scalar(AnyExtSize);
1961 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
1962 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
1963 auto LargeLoad =
1964 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO);
1966 auto OffsetCst =
1967 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
1968 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
1969 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
1970 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
1971 *SmallMMO);
1973 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
1974 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
1975 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
1976 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
1977 MI.eraseFromParent();
1978 return Legalized;
1980 MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
1981 MI.eraseFromParent();
1982 return Legalized;
1985 if (DstTy.isScalar()) {
1986 Register TmpReg =
1987 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
1988 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1989 switch (MI.getOpcode()) {
1990 default:
1991 llvm_unreachable("Unexpected opcode");
1992 case TargetOpcode::G_LOAD:
1993 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1994 break;
1995 case TargetOpcode::G_SEXTLOAD:
1996 MIRBuilder.buildSExt(DstReg, TmpReg);
1997 break;
1998 case TargetOpcode::G_ZEXTLOAD:
1999 MIRBuilder.buildZExt(DstReg, TmpReg);
2000 break;
2002 MI.eraseFromParent();
2003 return Legalized;
2006 return UnableToLegalize;
2008 case TargetOpcode::G_STORE: {
2009 // Lower a non-power of 2 store into multiple pow-2 stores.
2010 // E.g. split an i24 store into an i16 store + i8 store.
2011 // We do this by first extending the stored value to the next largest power
2012 // of 2 type, and then using truncating stores to store the components.
2013 // By doing this, likewise with G_LOAD, generate an extend that can be
2014 // artifact-combined away instead of leaving behind extracts.
2015 Register SrcReg = MI.getOperand(0).getReg();
2016 Register PtrReg = MI.getOperand(1).getReg();
2017 LLT SrcTy = MRI.getType(SrcReg);
2018 MachineMemOperand &MMO = **MI.memoperands_begin();
2019 if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2020 return UnableToLegalize;
2021 if (SrcTy.isVector())
2022 return UnableToLegalize;
2023 if (isPowerOf2_32(SrcTy.getSizeInBits()))
2024 return UnableToLegalize; // Don't know what we're being asked to do.
2026 // Extend to the next pow-2.
2027 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2028 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2030 // Obtain the smaller value by shifting away the larger value.
2031 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2032 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2033 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2034 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2036 // Generate the GEP and truncating stores.
2037 LLT PtrTy = MRI.getType(PtrReg);
2038 auto OffsetCst =
2039 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2040 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
2041 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
2043 MachineFunction &MF = MIRBuilder.getMF();
2044 MachineMemOperand *LargeMMO =
2045 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2046 MachineMemOperand *SmallMMO =
2047 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2048 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2049 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2050 MI.eraseFromParent();
2051 return Legalized;
2053 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2054 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2055 case TargetOpcode::G_CTLZ:
2056 case TargetOpcode::G_CTTZ:
2057 case TargetOpcode::G_CTPOP:
2058 return lowerBitCount(MI, TypeIdx, Ty);
2059 case G_UADDO: {
2060 Register Res = MI.getOperand(0).getReg();
2061 Register CarryOut = MI.getOperand(1).getReg();
2062 Register LHS = MI.getOperand(2).getReg();
2063 Register RHS = MI.getOperand(3).getReg();
2065 MIRBuilder.buildAdd(Res, LHS, RHS);
2066 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2068 MI.eraseFromParent();
2069 return Legalized;
2071 case G_UADDE: {
2072 Register Res = MI.getOperand(0).getReg();
2073 Register CarryOut = MI.getOperand(1).getReg();
2074 Register LHS = MI.getOperand(2).getReg();
2075 Register RHS = MI.getOperand(3).getReg();
2076 Register CarryIn = MI.getOperand(4).getReg();
2078 Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2079 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
2081 MIRBuilder.buildAdd(TmpRes, LHS, RHS);
2082 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
2083 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2084 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2086 MI.eraseFromParent();
2087 return Legalized;
2089 case G_USUBO: {
2090 Register Res = MI.getOperand(0).getReg();
2091 Register BorrowOut = MI.getOperand(1).getReg();
2092 Register LHS = MI.getOperand(2).getReg();
2093 Register RHS = MI.getOperand(3).getReg();
2095 MIRBuilder.buildSub(Res, LHS, RHS);
2096 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2098 MI.eraseFromParent();
2099 return Legalized;
2101 case G_USUBE: {
2102 Register Res = MI.getOperand(0).getReg();
2103 Register BorrowOut = MI.getOperand(1).getReg();
2104 Register LHS = MI.getOperand(2).getReg();
2105 Register RHS = MI.getOperand(3).getReg();
2106 Register BorrowIn = MI.getOperand(4).getReg();
2108 Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2109 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
2110 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2111 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2113 MIRBuilder.buildSub(TmpRes, LHS, RHS);
2114 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
2115 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2116 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
2117 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
2118 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2120 MI.eraseFromParent();
2121 return Legalized;
2123 case G_UITOFP:
2124 return lowerUITOFP(MI, TypeIdx, Ty);
2125 case G_SITOFP:
2126 return lowerSITOFP(MI, TypeIdx, Ty);
2127 case G_SMIN:
2128 case G_SMAX:
2129 case G_UMIN:
2130 case G_UMAX:
2131 return lowerMinMax(MI, TypeIdx, Ty);
2132 case G_FCOPYSIGN:
2133 return lowerFCopySign(MI, TypeIdx, Ty);
2134 case G_FMINNUM:
2135 case G_FMAXNUM:
2136 return lowerFMinNumMaxNum(MI);
2137 case G_UNMERGE_VALUES:
2138 return lowerUnmergeValues(MI);
2139 case TargetOpcode::G_SEXT_INREG: {
2140 assert(MI.getOperand(2).isImm() && "Expected immediate");
2141 int64_t SizeInBits = MI.getOperand(2).getImm();
2143 Register DstReg = MI.getOperand(0).getReg();
2144 Register SrcReg = MI.getOperand(1).getReg();
2145 LLT DstTy = MRI.getType(DstReg);
2146 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2148 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2149 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()});
2150 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()});
2151 MI.eraseFromParent();
2152 return Legalized;
2154 case G_SHUFFLE_VECTOR:
2155 return lowerShuffleVector(MI);
2159 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2160 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2161 SmallVector<Register, 2> DstRegs;
2163 unsigned NarrowSize = NarrowTy.getSizeInBits();
2164 Register DstReg = MI.getOperand(0).getReg();
2165 unsigned Size = MRI.getType(DstReg).getSizeInBits();
2166 int NumParts = Size / NarrowSize;
2167 // FIXME: Don't know how to handle the situation where the small vectors
2168 // aren't all the same size yet.
2169 if (Size % NarrowSize != 0)
2170 return UnableToLegalize;
2172 for (int i = 0; i < NumParts; ++i) {
2173 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2174 MIRBuilder.buildUndef(TmpReg);
2175 DstRegs.push_back(TmpReg);
2178 if (NarrowTy.isVector())
2179 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2180 else
2181 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2183 MI.eraseFromParent();
2184 return Legalized;
2187 LegalizerHelper::LegalizeResult
2188 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2189 LLT NarrowTy) {
2190 const unsigned Opc = MI.getOpcode();
2191 const unsigned NumOps = MI.getNumOperands() - 1;
2192 const unsigned NarrowSize = NarrowTy.getSizeInBits();
2193 const Register DstReg = MI.getOperand(0).getReg();
2194 const unsigned Flags = MI.getFlags();
2195 const LLT DstTy = MRI.getType(DstReg);
2196 const unsigned Size = DstTy.getSizeInBits();
2197 const int NumParts = Size / NarrowSize;
2198 const LLT EltTy = DstTy.getElementType();
2199 const unsigned EltSize = EltTy.getSizeInBits();
2200 const unsigned BitsForNumParts = NarrowSize * NumParts;
2202 // Check if we have any leftovers. If we do, then only handle the case where
2203 // the leftover is one element.
2204 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
2205 return UnableToLegalize;
2207 if (BitsForNumParts != Size) {
2208 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
2209 MIRBuilder.buildUndef(AccumDstReg);
2211 // Handle the pieces which evenly divide into the requested type with
2212 // extract/op/insert sequence.
2213 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
2214 SmallVector<SrcOp, 4> SrcOps;
2215 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2216 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
2217 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
2218 SrcOps.push_back(PartOpReg);
2221 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
2222 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2224 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
2225 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
2226 AccumDstReg = PartInsertReg;
2229 // Handle the remaining element sized leftover piece.
2230 SmallVector<SrcOp, 4> SrcOps;
2231 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2232 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy);
2233 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
2234 BitsForNumParts);
2235 SrcOps.push_back(PartOpReg);
2238 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy);
2239 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2240 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
2241 MI.eraseFromParent();
2243 return Legalized;
2246 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2248 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
2250 if (NumOps >= 2)
2251 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
2253 if (NumOps >= 3)
2254 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
2256 for (int i = 0; i < NumParts; ++i) {
2257 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2259 if (NumOps == 1)
2260 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
2261 else if (NumOps == 2) {
2262 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
2263 } else if (NumOps == 3) {
2264 MIRBuilder.buildInstr(Opc, {DstReg},
2265 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
2268 DstRegs.push_back(DstReg);
2271 if (NarrowTy.isVector())
2272 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2273 else
2274 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2276 MI.eraseFromParent();
2277 return Legalized;
2280 // Handle splitting vector operations which need to have the same number of
2281 // elements in each type index, but each type index may have a different element
2282 // type.
2284 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2285 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2286 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2288 // Also handles some irregular breakdown cases, e.g.
2289 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2290 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2291 // s64 = G_SHL s64, s32
2292 LegalizerHelper::LegalizeResult
2293 LegalizerHelper::fewerElementsVectorMultiEltType(
2294 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2295 if (TypeIdx != 0)
2296 return UnableToLegalize;
2298 const LLT NarrowTy0 = NarrowTyArg;
2299 const unsigned NewNumElts =
2300 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2302 const Register DstReg = MI.getOperand(0).getReg();
2303 LLT DstTy = MRI.getType(DstReg);
2304 LLT LeftoverTy0;
2306 // All of the operands need to have the same number of elements, so if we can
2307 // determine a type breakdown for the result type, we can for all of the
2308 // source types.
2309 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2310 if (NumParts < 0)
2311 return UnableToLegalize;
2313 SmallVector<MachineInstrBuilder, 4> NewInsts;
2315 SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2316 SmallVector<Register, 4> PartRegs, LeftoverRegs;
2318 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2319 LLT LeftoverTy;
2320 Register SrcReg = MI.getOperand(I).getReg();
2321 LLT SrcTyI = MRI.getType(SrcReg);
2322 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2323 LLT LeftoverTyI;
2325 // Split this operand into the requested typed registers, and any leftover
2326 // required to reproduce the original type.
2327 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2328 LeftoverRegs))
2329 return UnableToLegalize;
2331 if (I == 1) {
2332 // For the first operand, create an instruction for each part and setup
2333 // the result.
2334 for (Register PartReg : PartRegs) {
2335 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2336 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2337 .addDef(PartDstReg)
2338 .addUse(PartReg));
2339 DstRegs.push_back(PartDstReg);
2342 for (Register LeftoverReg : LeftoverRegs) {
2343 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2344 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2345 .addDef(PartDstReg)
2346 .addUse(LeftoverReg));
2347 LeftoverDstRegs.push_back(PartDstReg);
2349 } else {
2350 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2352 // Add the newly created operand splits to the existing instructions. The
2353 // odd-sized pieces are ordered after the requested NarrowTyArg sized
2354 // pieces.
2355 unsigned InstCount = 0;
2356 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2357 NewInsts[InstCount++].addUse(PartRegs[J]);
2358 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2359 NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2362 PartRegs.clear();
2363 LeftoverRegs.clear();
2366 // Insert the newly built operations and rebuild the result register.
2367 for (auto &MIB : NewInsts)
2368 MIRBuilder.insertInstr(MIB);
2370 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2372 MI.eraseFromParent();
2373 return Legalized;
2376 LegalizerHelper::LegalizeResult
2377 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2378 LLT NarrowTy) {
2379 if (TypeIdx != 0)
2380 return UnableToLegalize;
2382 Register DstReg = MI.getOperand(0).getReg();
2383 Register SrcReg = MI.getOperand(1).getReg();
2384 LLT DstTy = MRI.getType(DstReg);
2385 LLT SrcTy = MRI.getType(SrcReg);
2387 LLT NarrowTy0 = NarrowTy;
2388 LLT NarrowTy1;
2389 unsigned NumParts;
2391 if (NarrowTy.isVector()) {
2392 // Uneven breakdown not handled.
2393 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2394 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2395 return UnableToLegalize;
2397 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2398 } else {
2399 NumParts = DstTy.getNumElements();
2400 NarrowTy1 = SrcTy.getElementType();
2403 SmallVector<Register, 4> SrcRegs, DstRegs;
2404 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2406 for (unsigned I = 0; I < NumParts; ++I) {
2407 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2408 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
2409 .addDef(DstReg)
2410 .addUse(SrcRegs[I]);
2412 NewInst->setFlags(MI.getFlags());
2413 DstRegs.push_back(DstReg);
2416 if (NarrowTy.isVector())
2417 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2418 else
2419 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2421 MI.eraseFromParent();
2422 return Legalized;
2425 LegalizerHelper::LegalizeResult
2426 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2427 LLT NarrowTy) {
2428 Register DstReg = MI.getOperand(0).getReg();
2429 Register Src0Reg = MI.getOperand(2).getReg();
2430 LLT DstTy = MRI.getType(DstReg);
2431 LLT SrcTy = MRI.getType(Src0Reg);
2433 unsigned NumParts;
2434 LLT NarrowTy0, NarrowTy1;
2436 if (TypeIdx == 0) {
2437 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2438 unsigned OldElts = DstTy.getNumElements();
2440 NarrowTy0 = NarrowTy;
2441 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2442 NarrowTy1 = NarrowTy.isVector() ?
2443 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2444 SrcTy.getElementType();
2446 } else {
2447 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2448 unsigned OldElts = SrcTy.getNumElements();
2450 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2451 NarrowTy.getNumElements();
2452 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2453 DstTy.getScalarSizeInBits());
2454 NarrowTy1 = NarrowTy;
2457 // FIXME: Don't know how to handle the situation where the small vectors
2458 // aren't all the same size yet.
2459 if (NarrowTy1.isVector() &&
2460 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2461 return UnableToLegalize;
2463 CmpInst::Predicate Pred
2464 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2466 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2467 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2468 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2470 for (unsigned I = 0; I < NumParts; ++I) {
2471 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2472 DstRegs.push_back(DstReg);
2474 if (MI.getOpcode() == TargetOpcode::G_ICMP)
2475 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2476 else {
2477 MachineInstr *NewCmp
2478 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2479 NewCmp->setFlags(MI.getFlags());
2483 if (NarrowTy1.isVector())
2484 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2485 else
2486 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2488 MI.eraseFromParent();
2489 return Legalized;
2492 LegalizerHelper::LegalizeResult
2493 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2494 LLT NarrowTy) {
2495 Register DstReg = MI.getOperand(0).getReg();
2496 Register CondReg = MI.getOperand(1).getReg();
2498 unsigned NumParts = 0;
2499 LLT NarrowTy0, NarrowTy1;
2501 LLT DstTy = MRI.getType(DstReg);
2502 LLT CondTy = MRI.getType(CondReg);
2503 unsigned Size = DstTy.getSizeInBits();
2505 assert(TypeIdx == 0 || CondTy.isVector());
2507 if (TypeIdx == 0) {
2508 NarrowTy0 = NarrowTy;
2509 NarrowTy1 = CondTy;
2511 unsigned NarrowSize = NarrowTy0.getSizeInBits();
2512 // FIXME: Don't know how to handle the situation where the small vectors
2513 // aren't all the same size yet.
2514 if (Size % NarrowSize != 0)
2515 return UnableToLegalize;
2517 NumParts = Size / NarrowSize;
2519 // Need to break down the condition type
2520 if (CondTy.isVector()) {
2521 if (CondTy.getNumElements() == NumParts)
2522 NarrowTy1 = CondTy.getElementType();
2523 else
2524 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2525 CondTy.getScalarSizeInBits());
2527 } else {
2528 NumParts = CondTy.getNumElements();
2529 if (NarrowTy.isVector()) {
2530 // TODO: Handle uneven breakdown.
2531 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2532 return UnableToLegalize;
2534 return UnableToLegalize;
2535 } else {
2536 NarrowTy0 = DstTy.getElementType();
2537 NarrowTy1 = NarrowTy;
2541 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2542 if (CondTy.isVector())
2543 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2545 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2546 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2548 for (unsigned i = 0; i < NumParts; ++i) {
2549 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2550 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2551 Src1Regs[i], Src2Regs[i]);
2552 DstRegs.push_back(DstReg);
2555 if (NarrowTy0.isVector())
2556 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2557 else
2558 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2560 MI.eraseFromParent();
2561 return Legalized;
2564 LegalizerHelper::LegalizeResult
2565 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2566 LLT NarrowTy) {
2567 const Register DstReg = MI.getOperand(0).getReg();
2568 LLT PhiTy = MRI.getType(DstReg);
2569 LLT LeftoverTy;
2571 // All of the operands need to have the same number of elements, so if we can
2572 // determine a type breakdown for the result type, we can for all of the
2573 // source types.
2574 int NumParts, NumLeftover;
2575 std::tie(NumParts, NumLeftover)
2576 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2577 if (NumParts < 0)
2578 return UnableToLegalize;
2580 SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2581 SmallVector<MachineInstrBuilder, 4> NewInsts;
2583 const int TotalNumParts = NumParts + NumLeftover;
2585 // Insert the new phis in the result block first.
2586 for (int I = 0; I != TotalNumParts; ++I) {
2587 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2588 Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2589 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2590 .addDef(PartDstReg));
2591 if (I < NumParts)
2592 DstRegs.push_back(PartDstReg);
2593 else
2594 LeftoverDstRegs.push_back(PartDstReg);
2597 MachineBasicBlock *MBB = MI.getParent();
2598 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2599 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2601 SmallVector<Register, 4> PartRegs, LeftoverRegs;
2603 // Insert code to extract the incoming values in each predecessor block.
2604 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2605 PartRegs.clear();
2606 LeftoverRegs.clear();
2608 Register SrcReg = MI.getOperand(I).getReg();
2609 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2610 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2612 LLT Unused;
2613 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2614 LeftoverRegs))
2615 return UnableToLegalize;
2617 // Add the newly created operand splits to the existing instructions. The
2618 // odd-sized pieces are ordered after the requested NarrowTyArg sized
2619 // pieces.
2620 for (int J = 0; J != TotalNumParts; ++J) {
2621 MachineInstrBuilder MIB = NewInsts[J];
2622 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2623 MIB.addMBB(&OpMBB);
2627 MI.eraseFromParent();
2628 return Legalized;
2631 LegalizerHelper::LegalizeResult
2632 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2633 unsigned TypeIdx,
2634 LLT NarrowTy) {
2635 if (TypeIdx != 1)
2636 return UnableToLegalize;
2638 const int NumDst = MI.getNumOperands() - 1;
2639 const Register SrcReg = MI.getOperand(NumDst).getReg();
2640 LLT SrcTy = MRI.getType(SrcReg);
2642 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2644 // TODO: Create sequence of extracts.
2645 if (DstTy == NarrowTy)
2646 return UnableToLegalize;
2648 LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2649 if (DstTy == GCDTy) {
2650 // This would just be a copy of the same unmerge.
2651 // TODO: Create extracts, pad with undef and create intermediate merges.
2652 return UnableToLegalize;
2655 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2656 const int NumUnmerge = Unmerge->getNumOperands() - 1;
2657 const int PartsPerUnmerge = NumDst / NumUnmerge;
2659 for (int I = 0; I != NumUnmerge; ++I) {
2660 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2662 for (int J = 0; J != PartsPerUnmerge; ++J)
2663 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2664 MIB.addUse(Unmerge.getReg(I));
2667 MI.eraseFromParent();
2668 return Legalized;
2671 LegalizerHelper::LegalizeResult
2672 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
2673 LLT NarrowTy) {
2674 // FIXME: Don't know how to handle secondary types yet.
2675 if (TypeIdx != 0)
2676 return UnableToLegalize;
2678 MachineMemOperand *MMO = *MI.memoperands_begin();
2680 // This implementation doesn't work for atomics. Give up instead of doing
2681 // something invalid.
2682 if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
2683 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
2684 return UnableToLegalize;
2686 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
2687 Register ValReg = MI.getOperand(0).getReg();
2688 Register AddrReg = MI.getOperand(1).getReg();
2689 LLT ValTy = MRI.getType(ValReg);
2691 int NumParts = -1;
2692 int NumLeftover = -1;
2693 LLT LeftoverTy;
2694 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
2695 if (IsLoad) {
2696 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
2697 } else {
2698 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
2699 NarrowLeftoverRegs)) {
2700 NumParts = NarrowRegs.size();
2701 NumLeftover = NarrowLeftoverRegs.size();
2705 if (NumParts == -1)
2706 return UnableToLegalize;
2708 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
2710 unsigned TotalSize = ValTy.getSizeInBits();
2712 // Split the load/store into PartTy sized pieces starting at Offset. If this
2713 // is a load, return the new registers in ValRegs. For a store, each elements
2714 // of ValRegs should be PartTy. Returns the next offset that needs to be
2715 // handled.
2716 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
2717 unsigned Offset) -> unsigned {
2718 MachineFunction &MF = MIRBuilder.getMF();
2719 unsigned PartSize = PartTy.getSizeInBits();
2720 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
2721 Offset += PartSize, ++Idx) {
2722 unsigned ByteSize = PartSize / 8;
2723 unsigned ByteOffset = Offset / 8;
2724 Register NewAddrReg;
2726 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
2728 MachineMemOperand *NewMMO =
2729 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
2731 if (IsLoad) {
2732 Register Dst = MRI.createGenericVirtualRegister(PartTy);
2733 ValRegs.push_back(Dst);
2734 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
2735 } else {
2736 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
2740 return Offset;
2743 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
2745 // Handle the rest of the register if this isn't an even type breakdown.
2746 if (LeftoverTy.isValid())
2747 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
2749 if (IsLoad) {
2750 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
2751 LeftoverTy, NarrowLeftoverRegs);
2754 MI.eraseFromParent();
2755 return Legalized;
2758 LegalizerHelper::LegalizeResult
2759 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
2760 LLT NarrowTy) {
2761 using namespace TargetOpcode;
2763 MIRBuilder.setInstr(MI);
2764 switch (MI.getOpcode()) {
2765 case G_IMPLICIT_DEF:
2766 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
2767 case G_AND:
2768 case G_OR:
2769 case G_XOR:
2770 case G_ADD:
2771 case G_SUB:
2772 case G_MUL:
2773 case G_SMULH:
2774 case G_UMULH:
2775 case G_FADD:
2776 case G_FMUL:
2777 case G_FSUB:
2778 case G_FNEG:
2779 case G_FABS:
2780 case G_FCANONICALIZE:
2781 case G_FDIV:
2782 case G_FREM:
2783 case G_FMA:
2784 case G_FPOW:
2785 case G_FEXP:
2786 case G_FEXP2:
2787 case G_FLOG:
2788 case G_FLOG2:
2789 case G_FLOG10:
2790 case G_FNEARBYINT:
2791 case G_FCEIL:
2792 case G_FFLOOR:
2793 case G_FRINT:
2794 case G_INTRINSIC_ROUND:
2795 case G_INTRINSIC_TRUNC:
2796 case G_FCOS:
2797 case G_FSIN:
2798 case G_FSQRT:
2799 case G_BSWAP:
2800 case G_SDIV:
2801 case G_SMIN:
2802 case G_SMAX:
2803 case G_UMIN:
2804 case G_UMAX:
2805 case G_FMINNUM:
2806 case G_FMAXNUM:
2807 case G_FMINNUM_IEEE:
2808 case G_FMAXNUM_IEEE:
2809 case G_FMINIMUM:
2810 case G_FMAXIMUM:
2811 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
2812 case G_SHL:
2813 case G_LSHR:
2814 case G_ASHR:
2815 case G_CTLZ:
2816 case G_CTLZ_ZERO_UNDEF:
2817 case G_CTTZ:
2818 case G_CTTZ_ZERO_UNDEF:
2819 case G_CTPOP:
2820 case G_FCOPYSIGN:
2821 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
2822 case G_ZEXT:
2823 case G_SEXT:
2824 case G_ANYEXT:
2825 case G_FPEXT:
2826 case G_FPTRUNC:
2827 case G_SITOFP:
2828 case G_UITOFP:
2829 case G_FPTOSI:
2830 case G_FPTOUI:
2831 case G_INTTOPTR:
2832 case G_PTRTOINT:
2833 case G_ADDRSPACE_CAST:
2834 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
2835 case G_ICMP:
2836 case G_FCMP:
2837 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
2838 case G_SELECT:
2839 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
2840 case G_PHI:
2841 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
2842 case G_UNMERGE_VALUES:
2843 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
2844 case G_LOAD:
2845 case G_STORE:
2846 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
2847 default:
2848 return UnableToLegalize;
2852 LegalizerHelper::LegalizeResult
2853 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
2854 const LLT HalfTy, const LLT AmtTy) {
2856 Register InL = MRI.createGenericVirtualRegister(HalfTy);
2857 Register InH = MRI.createGenericVirtualRegister(HalfTy);
2858 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2860 if (Amt.isNullValue()) {
2861 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
2862 MI.eraseFromParent();
2863 return Legalized;
2866 LLT NVT = HalfTy;
2867 unsigned NVTBits = HalfTy.getSizeInBits();
2868 unsigned VTBits = 2 * NVTBits;
2870 SrcOp Lo(Register(0)), Hi(Register(0));
2871 if (MI.getOpcode() == TargetOpcode::G_SHL) {
2872 if (Amt.ugt(VTBits)) {
2873 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2874 } else if (Amt.ugt(NVTBits)) {
2875 Lo = MIRBuilder.buildConstant(NVT, 0);
2876 Hi = MIRBuilder.buildShl(NVT, InL,
2877 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2878 } else if (Amt == NVTBits) {
2879 Lo = MIRBuilder.buildConstant(NVT, 0);
2880 Hi = InL;
2881 } else {
2882 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
2883 auto OrLHS =
2884 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
2885 auto OrRHS = MIRBuilder.buildLShr(
2886 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2887 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2889 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2890 if (Amt.ugt(VTBits)) {
2891 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2892 } else if (Amt.ugt(NVTBits)) {
2893 Lo = MIRBuilder.buildLShr(NVT, InH,
2894 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2895 Hi = MIRBuilder.buildConstant(NVT, 0);
2896 } else if (Amt == NVTBits) {
2897 Lo = InH;
2898 Hi = MIRBuilder.buildConstant(NVT, 0);
2899 } else {
2900 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2902 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2903 auto OrRHS = MIRBuilder.buildShl(
2904 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2906 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2907 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
2909 } else {
2910 if (Amt.ugt(VTBits)) {
2911 Hi = Lo = MIRBuilder.buildAShr(
2912 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2913 } else if (Amt.ugt(NVTBits)) {
2914 Lo = MIRBuilder.buildAShr(NVT, InH,
2915 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2916 Hi = MIRBuilder.buildAShr(NVT, InH,
2917 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2918 } else if (Amt == NVTBits) {
2919 Lo = InH;
2920 Hi = MIRBuilder.buildAShr(NVT, InH,
2921 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2922 } else {
2923 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2925 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2926 auto OrRHS = MIRBuilder.buildShl(
2927 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2929 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2930 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
2934 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
2935 MI.eraseFromParent();
2937 return Legalized;
2940 // TODO: Optimize if constant shift amount.
2941 LegalizerHelper::LegalizeResult
2942 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
2943 LLT RequestedTy) {
2944 if (TypeIdx == 1) {
2945 Observer.changingInstr(MI);
2946 narrowScalarSrc(MI, RequestedTy, 2);
2947 Observer.changedInstr(MI);
2948 return Legalized;
2951 Register DstReg = MI.getOperand(0).getReg();
2952 LLT DstTy = MRI.getType(DstReg);
2953 if (DstTy.isVector())
2954 return UnableToLegalize;
2956 Register Amt = MI.getOperand(2).getReg();
2957 LLT ShiftAmtTy = MRI.getType(Amt);
2958 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
2959 if (DstEltSize % 2 != 0)
2960 return UnableToLegalize;
2962 // Ignore the input type. We can only go to exactly half the size of the
2963 // input. If that isn't small enough, the resulting pieces will be further
2964 // legalized.
2965 const unsigned NewBitSize = DstEltSize / 2;
2966 const LLT HalfTy = LLT::scalar(NewBitSize);
2967 const LLT CondTy = LLT::scalar(1);
2969 if (const MachineInstr *KShiftAmt =
2970 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
2971 return narrowScalarShiftByConstant(
2972 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
2975 // TODO: Expand with known bits.
2977 // Handle the fully general expansion by an unknown amount.
2978 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
2980 Register InL = MRI.createGenericVirtualRegister(HalfTy);
2981 Register InH = MRI.createGenericVirtualRegister(HalfTy);
2982 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2984 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
2985 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
2987 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
2988 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
2989 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
2991 Register ResultRegs[2];
2992 switch (MI.getOpcode()) {
2993 case TargetOpcode::G_SHL: {
2994 // Short: ShAmt < NewBitSize
2995 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2997 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2998 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
2999 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
3001 // Long: ShAmt >= NewBitSize
3002 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
3003 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3005 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3006 auto Hi = MIRBuilder.buildSelect(
3007 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3009 ResultRegs[0] = Lo.getReg(0);
3010 ResultRegs[1] = Hi.getReg(0);
3011 break;
3013 case TargetOpcode::G_LSHR: {
3014 // Short: ShAmt < NewBitSize
3015 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt);
3017 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3018 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3019 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
3021 // Long: ShAmt >= NewBitSize
3022 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
3023 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
3025 auto Lo = MIRBuilder.buildSelect(
3026 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3027 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3029 ResultRegs[0] = Lo.getReg(0);
3030 ResultRegs[1] = Hi.getReg(0);
3031 break;
3033 case TargetOpcode::G_ASHR: {
3034 // Short: ShAmt < NewBitSize
3035 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt);
3037 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3038 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack);
3039 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
3041 // Long: ShAmt >= NewBitSize
3043 // Sign of Hi part.
3044 auto HiL = MIRBuilder.buildAShr(
3045 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1));
3047 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
3049 auto Lo = MIRBuilder.buildSelect(
3050 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3052 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3054 ResultRegs[0] = Lo.getReg(0);
3055 ResultRegs[1] = Hi.getReg(0);
3056 break;
3058 default:
3059 llvm_unreachable("not a shift");
3062 MIRBuilder.buildMerge(DstReg, ResultRegs);
3063 MI.eraseFromParent();
3064 return Legalized;
3067 LegalizerHelper::LegalizeResult
3068 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3069 LLT MoreTy) {
3070 assert(TypeIdx == 0 && "Expecting only Idx 0");
3072 Observer.changingInstr(MI);
3073 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3074 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3075 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3076 moreElementsVectorSrc(MI, MoreTy, I);
3079 MachineBasicBlock &MBB = *MI.getParent();
3080 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3081 moreElementsVectorDst(MI, MoreTy, 0);
3082 Observer.changedInstr(MI);
3083 return Legalized;
3086 LegalizerHelper::LegalizeResult
3087 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3088 LLT MoreTy) {
3089 MIRBuilder.setInstr(MI);
3090 unsigned Opc = MI.getOpcode();
3091 switch (Opc) {
3092 case TargetOpcode::G_IMPLICIT_DEF:
3093 case TargetOpcode::G_LOAD: {
3094 if (TypeIdx != 0)
3095 return UnableToLegalize;
3096 Observer.changingInstr(MI);
3097 moreElementsVectorDst(MI, MoreTy, 0);
3098 Observer.changedInstr(MI);
3099 return Legalized;
3101 case TargetOpcode::G_STORE:
3102 if (TypeIdx != 0)
3103 return UnableToLegalize;
3104 Observer.changingInstr(MI);
3105 moreElementsVectorSrc(MI, MoreTy, 0);
3106 Observer.changedInstr(MI);
3107 return Legalized;
3108 case TargetOpcode::G_AND:
3109 case TargetOpcode::G_OR:
3110 case TargetOpcode::G_XOR:
3111 case TargetOpcode::G_SMIN:
3112 case TargetOpcode::G_SMAX:
3113 case TargetOpcode::G_UMIN:
3114 case TargetOpcode::G_UMAX: {
3115 Observer.changingInstr(MI);
3116 moreElementsVectorSrc(MI, MoreTy, 1);
3117 moreElementsVectorSrc(MI, MoreTy, 2);
3118 moreElementsVectorDst(MI, MoreTy, 0);
3119 Observer.changedInstr(MI);
3120 return Legalized;
3122 case TargetOpcode::G_EXTRACT:
3123 if (TypeIdx != 1)
3124 return UnableToLegalize;
3125 Observer.changingInstr(MI);
3126 moreElementsVectorSrc(MI, MoreTy, 1);
3127 Observer.changedInstr(MI);
3128 return Legalized;
3129 case TargetOpcode::G_INSERT:
3130 if (TypeIdx != 0)
3131 return UnableToLegalize;
3132 Observer.changingInstr(MI);
3133 moreElementsVectorSrc(MI, MoreTy, 1);
3134 moreElementsVectorDst(MI, MoreTy, 0);
3135 Observer.changedInstr(MI);
3136 return Legalized;
3137 case TargetOpcode::G_SELECT:
3138 if (TypeIdx != 0)
3139 return UnableToLegalize;
3140 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3141 return UnableToLegalize;
3143 Observer.changingInstr(MI);
3144 moreElementsVectorSrc(MI, MoreTy, 2);
3145 moreElementsVectorSrc(MI, MoreTy, 3);
3146 moreElementsVectorDst(MI, MoreTy, 0);
3147 Observer.changedInstr(MI);
3148 return Legalized;
3149 case TargetOpcode::G_UNMERGE_VALUES: {
3150 if (TypeIdx != 1)
3151 return UnableToLegalize;
3153 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3154 int NumDst = MI.getNumOperands() - 1;
3155 moreElementsVectorSrc(MI, MoreTy, NumDst);
3157 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3158 for (int I = 0; I != NumDst; ++I)
3159 MIB.addDef(MI.getOperand(I).getReg());
3161 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3162 for (int I = NumDst; I != NewNumDst; ++I)
3163 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3165 MIB.addUse(MI.getOperand(NumDst).getReg());
3166 MI.eraseFromParent();
3167 return Legalized;
3169 case TargetOpcode::G_PHI:
3170 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3171 default:
3172 return UnableToLegalize;
3176 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3177 ArrayRef<Register> Src1Regs,
3178 ArrayRef<Register> Src2Regs,
3179 LLT NarrowTy) {
3180 MachineIRBuilder &B = MIRBuilder;
3181 unsigned SrcParts = Src1Regs.size();
3182 unsigned DstParts = DstRegs.size();
3184 unsigned DstIdx = 0; // Low bits of the result.
3185 Register FactorSum =
3186 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3187 DstRegs[DstIdx] = FactorSum;
3189 unsigned CarrySumPrevDstIdx;
3190 SmallVector<Register, 4> Factors;
3192 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3193 // Collect low parts of muls for DstIdx.
3194 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3195 i <= std::min(DstIdx, SrcParts - 1); ++i) {
3196 MachineInstrBuilder Mul =
3197 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3198 Factors.push_back(Mul.getReg(0));
3200 // Collect high parts of muls from previous DstIdx.
3201 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3202 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3203 MachineInstrBuilder Umulh =
3204 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3205 Factors.push_back(Umulh.getReg(0));
3207 // Add CarrySum from additons calculated for previous DstIdx.
3208 if (DstIdx != 1) {
3209 Factors.push_back(CarrySumPrevDstIdx);
3212 Register CarrySum;
3213 // Add all factors and accumulate all carries into CarrySum.
3214 if (DstIdx != DstParts - 1) {
3215 MachineInstrBuilder Uaddo =
3216 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3217 FactorSum = Uaddo.getReg(0);
3218 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3219 for (unsigned i = 2; i < Factors.size(); ++i) {
3220 MachineInstrBuilder Uaddo =
3221 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3222 FactorSum = Uaddo.getReg(0);
3223 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3224 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3226 } else {
3227 // Since value for the next index is not calculated, neither is CarrySum.
3228 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3229 for (unsigned i = 2; i < Factors.size(); ++i)
3230 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3233 CarrySumPrevDstIdx = CarrySum;
3234 DstRegs[DstIdx] = FactorSum;
3235 Factors.clear();
3239 LegalizerHelper::LegalizeResult
3240 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3241 Register DstReg = MI.getOperand(0).getReg();
3242 Register Src1 = MI.getOperand(1).getReg();
3243 Register Src2 = MI.getOperand(2).getReg();
3245 LLT Ty = MRI.getType(DstReg);
3246 if (Ty.isVector())
3247 return UnableToLegalize;
3249 unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3250 unsigned DstSize = Ty.getSizeInBits();
3251 unsigned NarrowSize = NarrowTy.getSizeInBits();
3252 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3253 return UnableToLegalize;
3255 unsigned NumDstParts = DstSize / NarrowSize;
3256 unsigned NumSrcParts = SrcSize / NarrowSize;
3257 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3258 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3260 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs;
3261 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3262 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3263 DstTmpRegs.resize(DstTmpParts);
3264 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3266 // Take only high half of registers if this is high mul.
3267 ArrayRef<Register> DstRegs(
3268 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3269 MIRBuilder.buildMerge(DstReg, DstRegs);
3270 MI.eraseFromParent();
3271 return Legalized;
3274 LegalizerHelper::LegalizeResult
3275 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3276 LLT NarrowTy) {
3277 if (TypeIdx != 1)
3278 return UnableToLegalize;
3280 uint64_t NarrowSize = NarrowTy.getSizeInBits();
3282 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3283 // FIXME: add support for when SizeOp1 isn't an exact multiple of
3284 // NarrowSize.
3285 if (SizeOp1 % NarrowSize != 0)
3286 return UnableToLegalize;
3287 int NumParts = SizeOp1 / NarrowSize;
3289 SmallVector<Register, 2> SrcRegs, DstRegs;
3290 SmallVector<uint64_t, 2> Indexes;
3291 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3293 Register OpReg = MI.getOperand(0).getReg();
3294 uint64_t OpStart = MI.getOperand(2).getImm();
3295 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3296 for (int i = 0; i < NumParts; ++i) {
3297 unsigned SrcStart = i * NarrowSize;
3299 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3300 // No part of the extract uses this subregister, ignore it.
3301 continue;
3302 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3303 // The entire subregister is extracted, forward the value.
3304 DstRegs.push_back(SrcRegs[i]);
3305 continue;
3308 // OpSegStart is where this destination segment would start in OpReg if it
3309 // extended infinitely in both directions.
3310 int64_t ExtractOffset;
3311 uint64_t SegSize;
3312 if (OpStart < SrcStart) {
3313 ExtractOffset = 0;
3314 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3315 } else {
3316 ExtractOffset = OpStart - SrcStart;
3317 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3320 Register SegReg = SrcRegs[i];
3321 if (ExtractOffset != 0 || SegSize != NarrowSize) {
3322 // A genuine extract is needed.
3323 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3324 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3327 DstRegs.push_back(SegReg);
3330 Register DstReg = MI.getOperand(0).getReg();
3331 if(MRI.getType(DstReg).isVector())
3332 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3333 else
3334 MIRBuilder.buildMerge(DstReg, DstRegs);
3335 MI.eraseFromParent();
3336 return Legalized;
3339 LegalizerHelper::LegalizeResult
3340 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3341 LLT NarrowTy) {
3342 // FIXME: Don't know how to handle secondary types yet.
3343 if (TypeIdx != 0)
3344 return UnableToLegalize;
3346 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3347 uint64_t NarrowSize = NarrowTy.getSizeInBits();
3349 // FIXME: add support for when SizeOp0 isn't an exact multiple of
3350 // NarrowSize.
3351 if (SizeOp0 % NarrowSize != 0)
3352 return UnableToLegalize;
3354 int NumParts = SizeOp0 / NarrowSize;
3356 SmallVector<Register, 2> SrcRegs, DstRegs;
3357 SmallVector<uint64_t, 2> Indexes;
3358 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3360 Register OpReg = MI.getOperand(2).getReg();
3361 uint64_t OpStart = MI.getOperand(3).getImm();
3362 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3363 for (int i = 0; i < NumParts; ++i) {
3364 unsigned DstStart = i * NarrowSize;
3366 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3367 // No part of the insert affects this subregister, forward the original.
3368 DstRegs.push_back(SrcRegs[i]);
3369 continue;
3370 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3371 // The entire subregister is defined by this insert, forward the new
3372 // value.
3373 DstRegs.push_back(OpReg);
3374 continue;
3377 // OpSegStart is where this destination segment would start in OpReg if it
3378 // extended infinitely in both directions.
3379 int64_t ExtractOffset, InsertOffset;
3380 uint64_t SegSize;
3381 if (OpStart < DstStart) {
3382 InsertOffset = 0;
3383 ExtractOffset = DstStart - OpStart;
3384 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3385 } else {
3386 InsertOffset = OpStart - DstStart;
3387 ExtractOffset = 0;
3388 SegSize =
3389 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3392 Register SegReg = OpReg;
3393 if (ExtractOffset != 0 || SegSize != OpSize) {
3394 // A genuine extract is needed.
3395 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3396 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3399 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3400 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3401 DstRegs.push_back(DstReg);
3404 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3405 Register DstReg = MI.getOperand(0).getReg();
3406 if(MRI.getType(DstReg).isVector())
3407 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3408 else
3409 MIRBuilder.buildMerge(DstReg, DstRegs);
3410 MI.eraseFromParent();
3411 return Legalized;
3414 LegalizerHelper::LegalizeResult
3415 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3416 LLT NarrowTy) {
3417 Register DstReg = MI.getOperand(0).getReg();
3418 LLT DstTy = MRI.getType(DstReg);
3420 assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3422 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3423 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3424 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3425 LLT LeftoverTy;
3426 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3427 Src0Regs, Src0LeftoverRegs))
3428 return UnableToLegalize;
3430 LLT Unused;
3431 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3432 Src1Regs, Src1LeftoverRegs))
3433 llvm_unreachable("inconsistent extractParts result");
3435 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3436 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3437 {Src0Regs[I], Src1Regs[I]});
3438 DstRegs.push_back(Inst->getOperand(0).getReg());
3441 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3442 auto Inst = MIRBuilder.buildInstr(
3443 MI.getOpcode(),
3444 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3445 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
3448 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3449 LeftoverTy, DstLeftoverRegs);
3451 MI.eraseFromParent();
3452 return Legalized;
3455 LegalizerHelper::LegalizeResult
3456 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3457 LLT NarrowTy) {
3458 if (TypeIdx != 0)
3459 return UnableToLegalize;
3461 Register CondReg = MI.getOperand(1).getReg();
3462 LLT CondTy = MRI.getType(CondReg);
3463 if (CondTy.isVector()) // TODO: Handle vselect
3464 return UnableToLegalize;
3466 Register DstReg = MI.getOperand(0).getReg();
3467 LLT DstTy = MRI.getType(DstReg);
3469 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3470 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3471 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3472 LLT LeftoverTy;
3473 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3474 Src1Regs, Src1LeftoverRegs))
3475 return UnableToLegalize;
3477 LLT Unused;
3478 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3479 Src2Regs, Src2LeftoverRegs))
3480 llvm_unreachable("inconsistent extractParts result");
3482 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3483 auto Select = MIRBuilder.buildSelect(NarrowTy,
3484 CondReg, Src1Regs[I], Src2Regs[I]);
3485 DstRegs.push_back(Select->getOperand(0).getReg());
3488 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3489 auto Select = MIRBuilder.buildSelect(
3490 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3491 DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
3494 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3495 LeftoverTy, DstLeftoverRegs);
3497 MI.eraseFromParent();
3498 return Legalized;
3501 LegalizerHelper::LegalizeResult
3502 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3503 unsigned Opc = MI.getOpcode();
3504 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
3505 auto isSupported = [this](const LegalityQuery &Q) {
3506 auto QAction = LI.getAction(Q).Action;
3507 return QAction == Legal || QAction == Libcall || QAction == Custom;
3509 switch (Opc) {
3510 default:
3511 return UnableToLegalize;
3512 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
3513 // This trivially expands to CTLZ.
3514 Observer.changingInstr(MI);
3515 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
3516 Observer.changedInstr(MI);
3517 return Legalized;
3519 case TargetOpcode::G_CTLZ: {
3520 Register SrcReg = MI.getOperand(1).getReg();
3521 unsigned Len = Ty.getSizeInBits();
3522 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
3523 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
3524 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
3525 {Ty}, {SrcReg});
3526 auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3527 auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3528 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3529 SrcReg, MIBZero);
3530 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3531 MIBCtlzZU);
3532 MI.eraseFromParent();
3533 return Legalized;
3535 // for now, we do this:
3536 // NewLen = NextPowerOf2(Len);
3537 // x = x | (x >> 1);
3538 // x = x | (x >> 2);
3539 // ...
3540 // x = x | (x >>16);
3541 // x = x | (x >>32); // for 64-bit input
3542 // Upto NewLen/2
3543 // return Len - popcount(x);
3545 // Ref: "Hacker's Delight" by Henry Warren
3546 Register Op = SrcReg;
3547 unsigned NewLen = PowerOf2Ceil(Len);
3548 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
3549 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
3550 auto MIBOp = MIRBuilder.buildInstr(
3551 TargetOpcode::G_OR, {Ty},
3552 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
3553 {Op, MIBShiftAmt})});
3554 Op = MIBOp->getOperand(0).getReg();
3556 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
3557 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3558 {MIRBuilder.buildConstant(Ty, Len), MIBPop});
3559 MI.eraseFromParent();
3560 return Legalized;
3562 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
3563 // This trivially expands to CTTZ.
3564 Observer.changingInstr(MI);
3565 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
3566 Observer.changedInstr(MI);
3567 return Legalized;
3569 case TargetOpcode::G_CTTZ: {
3570 Register SrcReg = MI.getOperand(1).getReg();
3571 unsigned Len = Ty.getSizeInBits();
3572 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
3573 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
3574 // zero.
3575 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
3576 {Ty}, {SrcReg});
3577 auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3578 auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3579 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3580 SrcReg, MIBZero);
3581 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3582 MIBCttzZU);
3583 MI.eraseFromParent();
3584 return Legalized;
3586 // for now, we use: { return popcount(~x & (x - 1)); }
3587 // unless the target has ctlz but not ctpop, in which case we use:
3588 // { return 32 - nlz(~x & (x-1)); }
3589 // Ref: "Hacker's Delight" by Henry Warren
3590 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
3591 auto MIBNot =
3592 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
3593 auto MIBTmp = MIRBuilder.buildInstr(
3594 TargetOpcode::G_AND, {Ty},
3595 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
3596 {SrcReg, MIBCstNeg1})});
3597 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
3598 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
3599 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
3600 MIRBuilder.buildInstr(
3601 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3602 {MIBCstLen,
3603 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
3604 MI.eraseFromParent();
3605 return Legalized;
3607 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
3608 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
3609 return Legalized;
3614 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
3615 // representation.
3616 LegalizerHelper::LegalizeResult
3617 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
3618 Register Dst = MI.getOperand(0).getReg();
3619 Register Src = MI.getOperand(1).getReg();
3620 const LLT S64 = LLT::scalar(64);
3621 const LLT S32 = LLT::scalar(32);
3622 const LLT S1 = LLT::scalar(1);
3624 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
3626 // unsigned cul2f(ulong u) {
3627 // uint lz = clz(u);
3628 // uint e = (u != 0) ? 127U + 63U - lz : 0;
3629 // u = (u << lz) & 0x7fffffffffffffffUL;
3630 // ulong t = u & 0xffffffffffUL;
3631 // uint v = (e << 23) | (uint)(u >> 40);
3632 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
3633 // return as_float(v + r);
3634 // }
3636 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
3637 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
3639 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
3641 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
3642 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
3644 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
3645 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
3647 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
3648 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
3650 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
3652 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
3653 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
3655 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
3656 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
3657 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
3659 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
3660 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
3661 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
3662 auto One = MIRBuilder.buildConstant(S32, 1);
3664 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
3665 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
3666 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
3667 MIRBuilder.buildAdd(Dst, V, R);
3669 return Legalized;
3672 LegalizerHelper::LegalizeResult
3673 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3674 Register Dst = MI.getOperand(0).getReg();
3675 Register Src = MI.getOperand(1).getReg();
3676 LLT DstTy = MRI.getType(Dst);
3677 LLT SrcTy = MRI.getType(Src);
3679 if (SrcTy != LLT::scalar(64))
3680 return UnableToLegalize;
3682 if (DstTy == LLT::scalar(32)) {
3683 // TODO: SelectionDAG has several alternative expansions to port which may
3684 // be more reasonble depending on the available instructions. If a target
3685 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
3686 // intermediate type, this is probably worse.
3687 return lowerU64ToF32BitOps(MI);
3690 return UnableToLegalize;
3693 LegalizerHelper::LegalizeResult
3694 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3695 Register Dst = MI.getOperand(0).getReg();
3696 Register Src = MI.getOperand(1).getReg();
3697 LLT DstTy = MRI.getType(Dst);
3698 LLT SrcTy = MRI.getType(Src);
3700 const LLT S64 = LLT::scalar(64);
3701 const LLT S32 = LLT::scalar(32);
3702 const LLT S1 = LLT::scalar(1);
3704 if (SrcTy != S64)
3705 return UnableToLegalize;
3707 if (DstTy == S32) {
3708 // signed cl2f(long l) {
3709 // long s = l >> 63;
3710 // float r = cul2f((l + s) ^ s);
3711 // return s ? -r : r;
3712 // }
3713 Register L = Src;
3714 auto SignBit = MIRBuilder.buildConstant(S64, 63);
3715 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
3717 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
3718 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
3719 auto R = MIRBuilder.buildUITOFP(S32, Xor);
3721 auto RNeg = MIRBuilder.buildFNeg(S32, R);
3722 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
3723 MIRBuilder.buildConstant(S64, 0));
3724 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
3725 return Legalized;
3728 return UnableToLegalize;
3731 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
3732 switch (Opc) {
3733 case TargetOpcode::G_SMIN:
3734 return CmpInst::ICMP_SLT;
3735 case TargetOpcode::G_SMAX:
3736 return CmpInst::ICMP_SGT;
3737 case TargetOpcode::G_UMIN:
3738 return CmpInst::ICMP_ULT;
3739 case TargetOpcode::G_UMAX:
3740 return CmpInst::ICMP_UGT;
3741 default:
3742 llvm_unreachable("not in integer min/max");
3746 LegalizerHelper::LegalizeResult
3747 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3748 Register Dst = MI.getOperand(0).getReg();
3749 Register Src0 = MI.getOperand(1).getReg();
3750 Register Src1 = MI.getOperand(2).getReg();
3752 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
3753 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
3755 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
3756 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
3758 MI.eraseFromParent();
3759 return Legalized;
3762 LegalizerHelper::LegalizeResult
3763 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3764 Register Dst = MI.getOperand(0).getReg();
3765 Register Src0 = MI.getOperand(1).getReg();
3766 Register Src1 = MI.getOperand(2).getReg();
3768 const LLT Src0Ty = MRI.getType(Src0);
3769 const LLT Src1Ty = MRI.getType(Src1);
3771 const int Src0Size = Src0Ty.getScalarSizeInBits();
3772 const int Src1Size = Src1Ty.getScalarSizeInBits();
3774 auto SignBitMask = MIRBuilder.buildConstant(
3775 Src0Ty, APInt::getSignMask(Src0Size));
3777 auto NotSignBitMask = MIRBuilder.buildConstant(
3778 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
3780 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
3781 MachineInstr *Or;
3783 if (Src0Ty == Src1Ty) {
3784 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
3785 Or = MIRBuilder.buildOr(Dst, And0, And1);
3786 } else if (Src0Size > Src1Size) {
3787 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
3788 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
3789 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
3790 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
3791 Or = MIRBuilder.buildOr(Dst, And0, And1);
3792 } else {
3793 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
3794 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
3795 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
3796 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
3797 Or = MIRBuilder.buildOr(Dst, And0, And1);
3800 // Be careful about setting nsz/nnan/ninf on every instruction, since the
3801 // constants are a nan and -0.0, but the final result should preserve
3802 // everything.
3803 if (unsigned Flags = MI.getFlags())
3804 Or->setFlags(Flags);
3806 MI.eraseFromParent();
3807 return Legalized;
3810 LegalizerHelper::LegalizeResult
3811 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
3812 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
3813 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
3815 Register Dst = MI.getOperand(0).getReg();
3816 Register Src0 = MI.getOperand(1).getReg();
3817 Register Src1 = MI.getOperand(2).getReg();
3818 LLT Ty = MRI.getType(Dst);
3820 if (!MI.getFlag(MachineInstr::FmNoNans)) {
3821 // Insert canonicalizes if it's possible we need to quiet to get correct
3822 // sNaN behavior.
3824 // Note this must be done here, and not as an optimization combine in the
3825 // absence of a dedicate quiet-snan instruction as we're using an
3826 // omni-purpose G_FCANONICALIZE.
3827 if (!isKnownNeverSNaN(Src0, MRI))
3828 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
3830 if (!isKnownNeverSNaN(Src1, MRI))
3831 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
3834 // If there are no nans, it's safe to simply replace this with the non-IEEE
3835 // version.
3836 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
3837 MI.eraseFromParent();
3838 return Legalized;
3841 LegalizerHelper::LegalizeResult
3842 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
3843 const unsigned NumDst = MI.getNumOperands() - 1;
3844 const Register SrcReg = MI.getOperand(NumDst).getReg();
3845 LLT SrcTy = MRI.getType(SrcReg);
3847 Register Dst0Reg = MI.getOperand(0).getReg();
3848 LLT DstTy = MRI.getType(Dst0Reg);
3851 // Expand scalarizing unmerge as bitcast to integer and shift.
3852 if (!DstTy.isVector() && SrcTy.isVector() &&
3853 SrcTy.getElementType() == DstTy) {
3854 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
3855 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
3857 MIRBuilder.buildTrunc(Dst0Reg, Cast);
3859 const unsigned DstSize = DstTy.getSizeInBits();
3860 unsigned Offset = DstSize;
3861 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
3862 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
3863 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
3864 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
3867 MI.eraseFromParent();
3868 return Legalized;
3871 return UnableToLegalize;
3874 LegalizerHelper::LegalizeResult
3875 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
3876 Register DstReg = MI.getOperand(0).getReg();
3877 Register Src0Reg = MI.getOperand(1).getReg();
3878 Register Src1Reg = MI.getOperand(2).getReg();
3879 LLT Src0Ty = MRI.getType(Src0Reg);
3880 LLT DstTy = MRI.getType(DstReg);
3881 LLT IdxTy = LLT::scalar(32);
3883 const Constant *ShufMask = MI.getOperand(3).getShuffleMask();
3885 SmallVector<int, 32> Mask;
3886 ShuffleVectorInst::getShuffleMask(ShufMask, Mask);
3888 if (DstTy.isScalar()) {
3889 if (Src0Ty.isVector())
3890 return UnableToLegalize;
3892 // This is just a SELECT.
3893 assert(Mask.size() == 1 && "Expected a single mask element");
3894 Register Val;
3895 if (Mask[0] < 0 || Mask[0] > 1)
3896 Val = MIRBuilder.buildUndef(DstTy).getReg(0);
3897 else
3898 Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
3899 MIRBuilder.buildCopy(DstReg, Val);
3900 MI.eraseFromParent();
3901 return Legalized;
3904 Register Undef;
3905 SmallVector<Register, 32> BuildVec;
3906 LLT EltTy = DstTy.getElementType();
3908 for (int Idx : Mask) {
3909 if (Idx < 0) {
3910 if (!Undef.isValid())
3911 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
3912 BuildVec.push_back(Undef);
3913 continue;
3916 if (Src0Ty.isScalar()) {
3917 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
3918 } else {
3919 int NumElts = Src0Ty.getNumElements();
3920 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
3921 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
3922 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
3923 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
3924 BuildVec.push_back(Extract.getReg(0));
3928 MIRBuilder.buildBuildVector(DstReg, BuildVec);
3929 MI.eraseFromParent();
3930 return Legalized;