[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / IfConversion.cpp
blob83317194b746754ac3d694f1bab30b5a0accdd7f
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSchedule.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <functional>
49 #include <iterator>
50 #include <memory>
51 #include <utility>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "if-converter"
58 // Hidden options for help debugging.
59 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
60 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
61 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
62 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
63 cl::init(false), cl::Hidden);
64 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
65 cl::init(false), cl::Hidden);
66 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
67 cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
69 cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
71 cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
75 cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77 cl::init(false), cl::Hidden);
78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
79 cl::init(true), cl::Hidden);
81 STATISTIC(NumSimple, "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
90 STATISTIC(NumDupBBs, "Number of duplicated blocks");
91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
93 namespace {
95 class IfConverter : public MachineFunctionPass {
96 enum IfcvtKind {
97 ICNotClassfied, // BB data valid, but not classified.
98 ICSimpleFalse, // Same as ICSimple, but on the false path.
99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
101 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
102 ICTriangleFalse, // Same as ICTriangle, but on the false path.
103 ICTriangle, // BB is entry of a triangle sub-CFG.
104 ICDiamond, // BB is entry of a diamond sub-CFG.
105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
106 // common tail that can be shared.
109 /// One per MachineBasicBlock, this is used to cache the result
110 /// if-conversion feasibility analysis. This includes results from
111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112 /// classification, and common tail block of its successors (if it's a
113 /// diamond shape), its size, whether it's predicable, and whether any
114 /// instruction can clobber the 'would-be' predicate.
116 /// IsDone - True if BB is not to be considered for ifcvt.
117 /// IsBeingAnalyzed - True if BB is currently being analyzed.
118 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
120 /// IsBrAnalyzable - True if analyzeBranch() returns false.
121 /// HasFallThrough - True if BB may fallthrough to the following BB.
122 /// IsUnpredicable - True if BB is known to be unpredicable.
123 /// ClobbersPred - True if BB could modify predicates (e.g. has
124 /// cmp, call, etc.)
125 /// NonPredSize - Number of non-predicated instructions.
126 /// ExtraCost - Extra cost for multi-cycle instructions.
127 /// ExtraCost2 - Some instructions are slower when predicated
128 /// BB - Corresponding MachineBasicBlock.
129 /// TrueBB / FalseBB- See analyzeBranch().
130 /// BrCond - Conditions for end of block conditional branches.
131 /// Predicate - Predicate used in the BB.
132 struct BBInfo {
133 bool IsDone : 1;
134 bool IsBeingAnalyzed : 1;
135 bool IsAnalyzed : 1;
136 bool IsEnqueued : 1;
137 bool IsBrAnalyzable : 1;
138 bool IsBrReversible : 1;
139 bool HasFallThrough : 1;
140 bool IsUnpredicable : 1;
141 bool CannotBeCopied : 1;
142 bool ClobbersPred : 1;
143 unsigned NonPredSize = 0;
144 unsigned ExtraCost = 0;
145 unsigned ExtraCost2 = 0;
146 MachineBasicBlock *BB = nullptr;
147 MachineBasicBlock *TrueBB = nullptr;
148 MachineBasicBlock *FalseBB = nullptr;
149 SmallVector<MachineOperand, 4> BrCond;
150 SmallVector<MachineOperand, 4> Predicate;
152 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154 IsBrReversible(false), HasFallThrough(false),
155 IsUnpredicable(false), CannotBeCopied(false),
156 ClobbersPred(false) {}
159 /// Record information about pending if-conversions to attempt:
160 /// BBI - Corresponding BBInfo.
161 /// Kind - Type of block. See IfcvtKind.
162 /// NeedSubsumption - True if the to-be-predicated BB has already been
163 /// predicated.
164 /// NumDups - Number of instructions that would be duplicated due
165 /// to this if-conversion. (For diamonds, the number of
166 /// identical instructions at the beginnings of both
167 /// paths).
168 /// NumDups2 - For diamonds, the number of identical instructions
169 /// at the ends of both paths.
170 struct IfcvtToken {
171 BBInfo &BBI;
172 IfcvtKind Kind;
173 unsigned NumDups;
174 unsigned NumDups2;
175 bool NeedSubsumption : 1;
176 bool TClobbersPred : 1;
177 bool FClobbersPred : 1;
179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
180 bool tc = false, bool fc = false)
181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
182 TClobbersPred(tc), FClobbersPred(fc) {}
185 /// Results of if-conversion feasibility analysis indexed by basic block
186 /// number.
187 std::vector<BBInfo> BBAnalysis;
188 TargetSchedModel SchedModel;
190 const TargetLoweringBase *TLI;
191 const TargetInstrInfo *TII;
192 const TargetRegisterInfo *TRI;
193 const MachineBranchProbabilityInfo *MBPI;
194 MachineRegisterInfo *MRI;
196 LivePhysRegs Redefs;
198 bool PreRegAlloc;
199 bool MadeChange;
200 int FnNum = -1;
201 std::function<bool(const MachineFunction &)> PredicateFtor;
203 public:
204 static char ID;
206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
208 initializeIfConverterPass(*PassRegistry::getPassRegistry());
211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.addRequired<MachineBlockFrequencyInfo>();
213 AU.addRequired<MachineBranchProbabilityInfo>();
214 MachineFunctionPass::getAnalysisUsage(AU);
217 bool runOnMachineFunction(MachineFunction &MF) override;
219 MachineFunctionProperties getRequiredProperties() const override {
220 return MachineFunctionProperties().set(
221 MachineFunctionProperties::Property::NoVRegs);
224 private:
225 bool reverseBranchCondition(BBInfo &BBI) const;
226 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
227 BranchProbability Prediction) const;
228 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
229 bool FalseBranch, unsigned &Dups,
230 BranchProbability Prediction) const;
231 bool CountDuplicatedInstructions(
232 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
233 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
234 unsigned &Dups1, unsigned &Dups2,
235 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
236 bool SkipUnconditionalBranches) const;
237 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
238 unsigned &Dups1, unsigned &Dups2,
239 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
240 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
241 unsigned &Dups1, unsigned &Dups2,
242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
243 void AnalyzeBranches(BBInfo &BBI);
244 void ScanInstructions(BBInfo &BBI,
245 MachineBasicBlock::iterator &Begin,
246 MachineBasicBlock::iterator &End,
247 bool BranchUnpredicable = false) const;
248 bool RescanInstructions(
249 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
250 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
251 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
252 void AnalyzeBlock(MachineBasicBlock &MBB,
253 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
254 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
255 bool isTriangle = false, bool RevBranch = false,
256 bool hasCommonTail = false);
257 void AnalyzeBlocks(MachineFunction &MF,
258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
259 void InvalidatePreds(MachineBasicBlock &MBB);
260 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
261 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
262 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
263 unsigned NumDups1, unsigned NumDups2,
264 bool TClobbersPred, bool FClobbersPred,
265 bool RemoveBranch, bool MergeAddEdges);
266 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
267 unsigned NumDups1, unsigned NumDups2,
268 bool TClobbers, bool FClobbers);
269 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
270 unsigned NumDups1, unsigned NumDups2,
271 bool TClobbers, bool FClobbers);
272 void PredicateBlock(BBInfo &BBI,
273 MachineBasicBlock::iterator E,
274 SmallVectorImpl<MachineOperand> &Cond,
275 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
276 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
277 SmallVectorImpl<MachineOperand> &Cond,
278 bool IgnoreBr = false);
279 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
282 unsigned Cycle, unsigned Extra,
283 BranchProbability Prediction) const {
284 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
285 Prediction);
288 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
289 unsigned TCycle, unsigned TExtra,
290 MachineBasicBlock &FBB,
291 unsigned FCycle, unsigned FExtra,
292 BranchProbability Prediction) const {
293 return TCycle > 0 && FCycle > 0 &&
294 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
295 Prediction);
298 /// Returns true if Block ends without a terminator.
299 bool blockAlwaysFallThrough(BBInfo &BBI) const {
300 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
303 /// Used to sort if-conversion candidates.
304 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
305 const std::unique_ptr<IfcvtToken> &C2) {
306 int Incr1 = (C1->Kind == ICDiamond)
307 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
308 int Incr2 = (C2->Kind == ICDiamond)
309 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
310 if (Incr1 > Incr2)
311 return true;
312 else if (Incr1 == Incr2) {
313 // Favors subsumption.
314 if (!C1->NeedSubsumption && C2->NeedSubsumption)
315 return true;
316 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
317 // Favors diamond over triangle, etc.
318 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
319 return true;
320 else if (C1->Kind == C2->Kind)
321 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
324 return false;
328 } // end anonymous namespace
330 char IfConverter::ID = 0;
332 char &llvm::IfConverterID = IfConverter::ID;
334 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
336 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
338 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
339 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
340 return false;
342 const TargetSubtargetInfo &ST = MF.getSubtarget();
343 TLI = ST.getTargetLowering();
344 TII = ST.getInstrInfo();
345 TRI = ST.getRegisterInfo();
346 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
347 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
348 MRI = &MF.getRegInfo();
349 SchedModel.init(&ST);
351 if (!TII) return false;
353 PreRegAlloc = MRI->isSSA();
355 bool BFChange = false;
356 if (!PreRegAlloc) {
357 // Tail merge tend to expose more if-conversion opportunities.
358 BranchFolder BF(true, false, MBFI, *MBPI);
359 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
360 getAnalysisIfAvailable<MachineModuleInfo>());
363 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
364 << MF.getName() << "\'");
366 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
367 LLVM_DEBUG(dbgs() << " skipped\n");
368 return false;
370 LLVM_DEBUG(dbgs() << "\n");
372 MF.RenumberBlocks();
373 BBAnalysis.resize(MF.getNumBlockIDs());
375 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
376 MadeChange = false;
377 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
378 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
379 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
380 // Do an initial analysis for each basic block and find all the potential
381 // candidates to perform if-conversion.
382 bool Change = false;
383 AnalyzeBlocks(MF, Tokens);
384 while (!Tokens.empty()) {
385 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
386 Tokens.pop_back();
387 BBInfo &BBI = Token->BBI;
388 IfcvtKind Kind = Token->Kind;
389 unsigned NumDups = Token->NumDups;
390 unsigned NumDups2 = Token->NumDups2;
392 // If the block has been evicted out of the queue or it has already been
393 // marked dead (due to it being predicated), then skip it.
394 if (BBI.IsDone)
395 BBI.IsEnqueued = false;
396 if (!BBI.IsEnqueued)
397 continue;
399 BBI.IsEnqueued = false;
401 bool RetVal = false;
402 switch (Kind) {
403 default: llvm_unreachable("Unexpected!");
404 case ICSimple:
405 case ICSimpleFalse: {
406 bool isFalse = Kind == ICSimpleFalse;
407 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
408 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
409 << (Kind == ICSimpleFalse ? " false" : "")
410 << "): " << printMBBReference(*BBI.BB) << " ("
411 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
412 : BBI.TrueBB->getNumber())
413 << ") ");
414 RetVal = IfConvertSimple(BBI, Kind);
415 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
416 if (RetVal) {
417 if (isFalse) ++NumSimpleFalse;
418 else ++NumSimple;
420 break;
422 case ICTriangle:
423 case ICTriangleRev:
424 case ICTriangleFalse:
425 case ICTriangleFRev: {
426 bool isFalse = Kind == ICTriangleFalse;
427 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
428 if (DisableTriangle && !isFalse && !isRev) break;
429 if (DisableTriangleR && !isFalse && isRev) break;
430 if (DisableTriangleF && isFalse && !isRev) break;
431 if (DisableTriangleFR && isFalse && isRev) break;
432 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
433 if (isFalse)
434 LLVM_DEBUG(dbgs() << " false");
435 if (isRev)
436 LLVM_DEBUG(dbgs() << " rev");
437 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
438 << " (T:" << BBI.TrueBB->getNumber()
439 << ",F:" << BBI.FalseBB->getNumber() << ") ");
440 RetVal = IfConvertTriangle(BBI, Kind);
441 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
442 if (RetVal) {
443 if (isFalse) {
444 if (isRev) ++NumTriangleFRev;
445 else ++NumTriangleFalse;
446 } else {
447 if (isRev) ++NumTriangleRev;
448 else ++NumTriangle;
451 break;
453 case ICDiamond:
454 if (DisableDiamond) break;
455 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
456 << " (T:" << BBI.TrueBB->getNumber()
457 << ",F:" << BBI.FalseBB->getNumber() << ") ");
458 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
459 Token->TClobbersPred,
460 Token->FClobbersPred);
461 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
462 if (RetVal) ++NumDiamonds;
463 break;
464 case ICForkedDiamond:
465 if (DisableForkedDiamond) break;
466 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
467 << printMBBReference(*BBI.BB)
468 << " (T:" << BBI.TrueBB->getNumber()
469 << ",F:" << BBI.FalseBB->getNumber() << ") ");
470 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
471 Token->TClobbersPred,
472 Token->FClobbersPred);
473 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
474 if (RetVal) ++NumForkedDiamonds;
475 break;
478 if (RetVal && MRI->tracksLiveness())
479 recomputeLivenessFlags(*BBI.BB);
481 Change |= RetVal;
483 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
484 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
485 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
486 break;
489 if (!Change)
490 break;
491 MadeChange |= Change;
494 Tokens.clear();
495 BBAnalysis.clear();
497 if (MadeChange && IfCvtBranchFold) {
498 BranchFolder BF(false, false, MBFI, *MBPI);
499 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
500 getAnalysisIfAvailable<MachineModuleInfo>());
503 MadeChange |= BFChange;
504 return MadeChange;
507 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
508 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
509 MachineBasicBlock *TrueBB) {
510 for (MachineBasicBlock *SuccBB : BB->successors()) {
511 if (SuccBB != TrueBB)
512 return SuccBB;
514 return nullptr;
517 /// Reverse the condition of the end of the block branch. Swap block's 'true'
518 /// and 'false' successors.
519 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
520 DebugLoc dl; // FIXME: this is nowhere
521 if (!TII->reverseBranchCondition(BBI.BrCond)) {
522 TII->removeBranch(*BBI.BB);
523 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
524 std::swap(BBI.TrueBB, BBI.FalseBB);
525 return true;
527 return false;
530 /// Returns the next block in the function blocks ordering. If it is the end,
531 /// returns NULL.
532 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
533 MachineFunction::iterator I = MBB.getIterator();
534 MachineFunction::iterator E = MBB.getParent()->end();
535 if (++I == E)
536 return nullptr;
537 return &*I;
540 /// Returns true if the 'true' block (along with its predecessor) forms a valid
541 /// simple shape for ifcvt. It also returns the number of instructions that the
542 /// ifcvt would need to duplicate if performed in Dups.
543 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
544 BranchProbability Prediction) const {
545 Dups = 0;
546 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
547 return false;
549 if (TrueBBI.IsBrAnalyzable)
550 return false;
552 if (TrueBBI.BB->pred_size() > 1) {
553 if (TrueBBI.CannotBeCopied ||
554 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
555 Prediction))
556 return false;
557 Dups = TrueBBI.NonPredSize;
560 return true;
563 /// Returns true if the 'true' and 'false' blocks (along with their common
564 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
565 /// true, it checks if 'true' block's false branch branches to the 'false' block
566 /// rather than the other way around. It also returns the number of instructions
567 /// that the ifcvt would need to duplicate if performed in 'Dups'.
568 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
569 bool FalseBranch, unsigned &Dups,
570 BranchProbability Prediction) const {
571 Dups = 0;
572 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
573 return false;
575 if (TrueBBI.BB->pred_size() > 1) {
576 if (TrueBBI.CannotBeCopied)
577 return false;
579 unsigned Size = TrueBBI.NonPredSize;
580 if (TrueBBI.IsBrAnalyzable) {
581 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
582 // Ends with an unconditional branch. It will be removed.
583 --Size;
584 else {
585 MachineBasicBlock *FExit = FalseBranch
586 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
587 if (FExit)
588 // Require a conditional branch
589 ++Size;
592 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
593 return false;
594 Dups = Size;
597 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
598 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
599 MachineFunction::iterator I = TrueBBI.BB->getIterator();
600 if (++I == TrueBBI.BB->getParent()->end())
601 return false;
602 TExit = &*I;
604 return TExit && TExit == FalseBBI.BB;
607 /// Count duplicated instructions and move the iterators to show where they
608 /// are.
609 /// @param TIB True Iterator Begin
610 /// @param FIB False Iterator Begin
611 /// These two iterators initially point to the first instruction of the two
612 /// blocks, and finally point to the first non-shared instruction.
613 /// @param TIE True Iterator End
614 /// @param FIE False Iterator End
615 /// These two iterators initially point to End() for the two blocks() and
616 /// finally point to the first shared instruction in the tail.
617 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
618 /// two blocks.
619 /// @param Dups1 count of duplicated instructions at the beginning of the 2
620 /// blocks.
621 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
622 /// @param SkipUnconditionalBranches if true, Don't make sure that
623 /// unconditional branches at the end of the blocks are the same. True is
624 /// passed when the blocks are analyzable to allow for fallthrough to be
625 /// handled.
626 /// @return false if the shared portion prevents if conversion.
627 bool IfConverter::CountDuplicatedInstructions(
628 MachineBasicBlock::iterator &TIB,
629 MachineBasicBlock::iterator &FIB,
630 MachineBasicBlock::iterator &TIE,
631 MachineBasicBlock::iterator &FIE,
632 unsigned &Dups1, unsigned &Dups2,
633 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
634 bool SkipUnconditionalBranches) const {
635 while (TIB != TIE && FIB != FIE) {
636 // Skip dbg_value instructions. These do not count.
637 TIB = skipDebugInstructionsForward(TIB, TIE);
638 FIB = skipDebugInstructionsForward(FIB, FIE);
639 if (TIB == TIE || FIB == FIE)
640 break;
641 if (!TIB->isIdenticalTo(*FIB))
642 break;
643 // A pred-clobbering instruction in the shared portion prevents
644 // if-conversion.
645 std::vector<MachineOperand> PredDefs;
646 if (TII->DefinesPredicate(*TIB, PredDefs))
647 return false;
648 // If we get all the way to the branch instructions, don't count them.
649 if (!TIB->isBranch())
650 ++Dups1;
651 ++TIB;
652 ++FIB;
655 // Check for already containing all of the block.
656 if (TIB == TIE || FIB == FIE)
657 return true;
658 // Now, in preparation for counting duplicate instructions at the ends of the
659 // blocks, switch to reverse_iterators. Note that getReverse() returns an
660 // iterator that points to the same instruction, unlike std::reverse_iterator.
661 // We have to do our own shifting so that we get the same range.
662 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
663 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
664 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
665 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
667 if (!TBB.succ_empty() || !FBB.succ_empty()) {
668 if (SkipUnconditionalBranches) {
669 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
670 ++RTIE;
671 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
672 ++RFIE;
676 // Count duplicate instructions at the ends of the blocks.
677 while (RTIE != RTIB && RFIE != RFIB) {
678 // Skip dbg_value instructions. These do not count.
679 // Note that these are reverse iterators going forward.
680 RTIE = skipDebugInstructionsForward(RTIE, RTIB);
681 RFIE = skipDebugInstructionsForward(RFIE, RFIB);
682 if (RTIE == RTIB || RFIE == RFIB)
683 break;
684 if (!RTIE->isIdenticalTo(*RFIE))
685 break;
686 // We have to verify that any branch instructions are the same, and then we
687 // don't count them toward the # of duplicate instructions.
688 if (!RTIE->isBranch())
689 ++Dups2;
690 ++RTIE;
691 ++RFIE;
693 TIE = std::next(RTIE.getReverse());
694 FIE = std::next(RFIE.getReverse());
695 return true;
698 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
699 /// @param TIB - True Iterator Begin, points to first non-shared instruction
700 /// @param FIB - False Iterator Begin, points to first non-shared instruction
701 /// @param TIE - True Iterator End, points past last non-shared instruction
702 /// @param FIE - False Iterator End, points past last non-shared instruction
703 /// @param TrueBBI - BBInfo to update for the true block.
704 /// @param FalseBBI - BBInfo to update for the false block.
705 /// @returns - false if either block cannot be predicated or if both blocks end
706 /// with a predicate-clobbering instruction.
707 bool IfConverter::RescanInstructions(
708 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
709 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
710 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
711 bool BranchUnpredicable = true;
712 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
713 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
714 if (TrueBBI.IsUnpredicable)
715 return false;
716 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
717 if (FalseBBI.IsUnpredicable)
718 return false;
719 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
720 return false;
721 return true;
724 #ifndef NDEBUG
725 static void verifySameBranchInstructions(
726 MachineBasicBlock *MBB1,
727 MachineBasicBlock *MBB2) {
728 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
729 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
730 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
731 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
732 while (E1 != B1 && E2 != B2) {
733 skipDebugInstructionsForward(E1, B1);
734 skipDebugInstructionsForward(E2, B2);
735 if (E1 == B1 && E2 == B2)
736 break;
738 if (E1 == B1) {
739 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
740 break;
742 if (E2 == B2) {
743 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
744 break;
747 if (E1->isBranch() || E2->isBranch())
748 assert(E1->isIdenticalTo(*E2) &&
749 "Branch mis-match, branch instructions don't match.");
750 else
751 break;
752 ++E1;
753 ++E2;
756 #endif
758 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
759 /// with their common predecessor) form a diamond if a common tail block is
760 /// extracted.
761 /// While not strictly a diamond, this pattern would form a diamond if
762 /// tail-merging had merged the shared tails.
763 /// EBB
764 /// _/ \_
765 /// | |
766 /// TBB FBB
767 /// / \ / \
768 /// FalseBB TrueBB FalseBB
769 /// Currently only handles analyzable branches.
770 /// Specifically excludes actual diamonds to avoid overlap.
771 bool IfConverter::ValidForkedDiamond(
772 BBInfo &TrueBBI, BBInfo &FalseBBI,
773 unsigned &Dups1, unsigned &Dups2,
774 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
775 Dups1 = Dups2 = 0;
776 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
777 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
778 return false;
780 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
781 return false;
782 // Don't IfConvert blocks that can't be folded into their predecessor.
783 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
784 return false;
786 // This function is specifically looking for conditional tails, as
787 // unconditional tails are already handled by the standard diamond case.
788 if (TrueBBI.BrCond.size() == 0 ||
789 FalseBBI.BrCond.size() == 0)
790 return false;
792 MachineBasicBlock *TT = TrueBBI.TrueBB;
793 MachineBasicBlock *TF = TrueBBI.FalseBB;
794 MachineBasicBlock *FT = FalseBBI.TrueBB;
795 MachineBasicBlock *FF = FalseBBI.FalseBB;
797 if (!TT)
798 TT = getNextBlock(*TrueBBI.BB);
799 if (!TF)
800 TF = getNextBlock(*TrueBBI.BB);
801 if (!FT)
802 FT = getNextBlock(*FalseBBI.BB);
803 if (!FF)
804 FF = getNextBlock(*FalseBBI.BB);
806 if (!TT || !TF)
807 return false;
809 // Check successors. If they don't match, bail.
810 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
811 return false;
813 bool FalseReversed = false;
814 if (TF == FT && TT == FF) {
815 // If the branches are opposing, but we can't reverse, don't do it.
816 if (!FalseBBI.IsBrReversible)
817 return false;
818 FalseReversed = true;
819 reverseBranchCondition(FalseBBI);
821 auto UnReverseOnExit = make_scope_exit([&]() {
822 if (FalseReversed)
823 reverseBranchCondition(FalseBBI);
826 // Count duplicate instructions at the beginning of the true and false blocks.
827 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
828 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
829 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
830 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
831 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
832 *TrueBBI.BB, *FalseBBI.BB,
833 /* SkipUnconditionalBranches */ true))
834 return false;
836 TrueBBICalc.BB = TrueBBI.BB;
837 FalseBBICalc.BB = FalseBBI.BB;
838 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
839 return false;
841 // The size is used to decide whether to if-convert, and the shared portions
842 // are subtracted off. Because of the subtraction, we just use the size that
843 // was calculated by the original ScanInstructions, as it is correct.
844 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
845 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
846 return true;
849 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
850 /// with their common predecessor) forms a valid diamond shape for ifcvt.
851 bool IfConverter::ValidDiamond(
852 BBInfo &TrueBBI, BBInfo &FalseBBI,
853 unsigned &Dups1, unsigned &Dups2,
854 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
855 Dups1 = Dups2 = 0;
856 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
857 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
858 return false;
860 MachineBasicBlock *TT = TrueBBI.TrueBB;
861 MachineBasicBlock *FT = FalseBBI.TrueBB;
863 if (!TT && blockAlwaysFallThrough(TrueBBI))
864 TT = getNextBlock(*TrueBBI.BB);
865 if (!FT && blockAlwaysFallThrough(FalseBBI))
866 FT = getNextBlock(*FalseBBI.BB);
867 if (TT != FT)
868 return false;
869 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
870 return false;
871 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
872 return false;
874 // FIXME: Allow true block to have an early exit?
875 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
876 return false;
878 // Count duplicate instructions at the beginning and end of the true and
879 // false blocks.
880 // Skip unconditional branches only if we are considering an analyzable
881 // diamond. Otherwise the branches must be the same.
882 bool SkipUnconditionalBranches =
883 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
884 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
885 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
886 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
887 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
888 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
889 *TrueBBI.BB, *FalseBBI.BB,
890 SkipUnconditionalBranches))
891 return false;
893 TrueBBICalc.BB = TrueBBI.BB;
894 FalseBBICalc.BB = FalseBBI.BB;
895 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
896 return false;
897 // The size is used to decide whether to if-convert, and the shared portions
898 // are subtracted off. Because of the subtraction, we just use the size that
899 // was calculated by the original ScanInstructions, as it is correct.
900 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
901 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
902 return true;
905 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
906 /// the block is predicable.
907 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
908 if (BBI.IsDone)
909 return;
911 BBI.TrueBB = BBI.FalseBB = nullptr;
912 BBI.BrCond.clear();
913 BBI.IsBrAnalyzable =
914 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
915 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
916 BBI.IsBrReversible = (RevCond.size() == 0) ||
917 !TII->reverseBranchCondition(RevCond);
918 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
920 if (BBI.BrCond.size()) {
921 // No false branch. This BB must end with a conditional branch and a
922 // fallthrough.
923 if (!BBI.FalseBB)
924 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
925 if (!BBI.FalseBB) {
926 // Malformed bcc? True and false blocks are the same?
927 BBI.IsUnpredicable = true;
932 /// ScanInstructions - Scan all the instructions in the block to determine if
933 /// the block is predicable. In most cases, that means all the instructions
934 /// in the block are isPredicable(). Also checks if the block contains any
935 /// instruction which can clobber a predicate (e.g. condition code register).
936 /// If so, the block is not predicable unless it's the last instruction.
937 void IfConverter::ScanInstructions(BBInfo &BBI,
938 MachineBasicBlock::iterator &Begin,
939 MachineBasicBlock::iterator &End,
940 bool BranchUnpredicable) const {
941 if (BBI.IsDone || BBI.IsUnpredicable)
942 return;
944 bool AlreadyPredicated = !BBI.Predicate.empty();
946 BBI.NonPredSize = 0;
947 BBI.ExtraCost = 0;
948 BBI.ExtraCost2 = 0;
949 BBI.ClobbersPred = false;
950 for (MachineInstr &MI : make_range(Begin, End)) {
951 if (MI.isDebugInstr())
952 continue;
954 // It's unsafe to duplicate convergent instructions in this context, so set
955 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
956 // following CFG, which is subject to our "simple" transformation.
958 // BB0 // if (c1) goto BB1; else goto BB2;
959 // / \
960 // BB1 |
961 // | BB2 // if (c2) goto TBB; else goto FBB;
962 // | / |
963 // | / |
964 // TBB |
965 // | |
966 // | FBB
967 // |
968 // exit
970 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
971 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
972 // TBB contains a convergent instruction. This is safe iff doing so does
973 // not add a control-flow dependency to the convergent instruction -- i.e.,
974 // it's safe iff the set of control flows that leads us to the convergent
975 // instruction does not get smaller after the transformation.
977 // Originally we executed TBB if c1 || c2. After the transformation, there
978 // are two copies of TBB's instructions. We get to the first if c1, and we
979 // get to the second if !c1 && c2.
981 // There are clearly fewer ways to satisfy the condition "c1" than
982 // "c1 || c2". Since we've shrunk the set of control flows which lead to
983 // our convergent instruction, the transformation is unsafe.
984 if (MI.isNotDuplicable() || MI.isConvergent())
985 BBI.CannotBeCopied = true;
987 bool isPredicated = TII->isPredicated(MI);
988 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
990 if (BranchUnpredicable && MI.isBranch()) {
991 BBI.IsUnpredicable = true;
992 return;
995 // A conditional branch is not predicable, but it may be eliminated.
996 if (isCondBr)
997 continue;
999 if (!isPredicated) {
1000 BBI.NonPredSize++;
1001 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1002 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1003 if (NumCycles > 1)
1004 BBI.ExtraCost += NumCycles-1;
1005 BBI.ExtraCost2 += ExtraPredCost;
1006 } else if (!AlreadyPredicated) {
1007 // FIXME: This instruction is already predicated before the
1008 // if-conversion pass. It's probably something like a conditional move.
1009 // Mark this block unpredicable for now.
1010 BBI.IsUnpredicable = true;
1011 return;
1014 if (BBI.ClobbersPred && !isPredicated) {
1015 // Predicate modification instruction should end the block (except for
1016 // already predicated instructions and end of block branches).
1017 // Predicate may have been modified, the subsequent (currently)
1018 // unpredicated instructions cannot be correctly predicated.
1019 BBI.IsUnpredicable = true;
1020 return;
1023 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1024 // still potentially predicable.
1025 std::vector<MachineOperand> PredDefs;
1026 if (TII->DefinesPredicate(MI, PredDefs))
1027 BBI.ClobbersPred = true;
1029 if (!TII->isPredicable(MI)) {
1030 BBI.IsUnpredicable = true;
1031 return;
1036 /// Determine if the block is a suitable candidate to be predicated by the
1037 /// specified predicate.
1038 /// @param BBI BBInfo for the block to check
1039 /// @param Pred Predicate array for the branch that leads to BBI
1040 /// @param isTriangle true if the Analysis is for a triangle
1041 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1042 /// case
1043 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1044 /// contains any instruction that would make the block unpredicable.
1045 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1046 SmallVectorImpl<MachineOperand> &Pred,
1047 bool isTriangle, bool RevBranch,
1048 bool hasCommonTail) {
1049 // If the block is dead or unpredicable, then it cannot be predicated.
1050 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1051 // them from being if-converted. The non-shared portion is assumed to have
1052 // been checked
1053 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1054 return false;
1056 // If it is already predicated but we couldn't analyze its terminator, the
1057 // latter might fallthrough, but we can't determine where to.
1058 // Conservatively avoid if-converting again.
1059 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1060 return false;
1062 // If it is already predicated, check if the new predicate subsumes
1063 // its predicate.
1064 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1065 return false;
1067 if (!hasCommonTail && BBI.BrCond.size()) {
1068 if (!isTriangle)
1069 return false;
1071 // Test predicate subsumption.
1072 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1073 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1074 if (RevBranch) {
1075 if (TII->reverseBranchCondition(Cond))
1076 return false;
1078 if (TII->reverseBranchCondition(RevPred) ||
1079 !TII->SubsumesPredicate(Cond, RevPred))
1080 return false;
1083 return true;
1086 /// Analyze the structure of the sub-CFG starting from the specified block.
1087 /// Record its successors and whether it looks like an if-conversion candidate.
1088 void IfConverter::AnalyzeBlock(
1089 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1090 struct BBState {
1091 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1092 MachineBasicBlock *MBB;
1094 /// This flag is true if MBB's successors have been analyzed.
1095 bool SuccsAnalyzed;
1098 // Push MBB to the stack.
1099 SmallVector<BBState, 16> BBStack(1, MBB);
1101 while (!BBStack.empty()) {
1102 BBState &State = BBStack.back();
1103 MachineBasicBlock *BB = State.MBB;
1104 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1106 if (!State.SuccsAnalyzed) {
1107 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1108 BBStack.pop_back();
1109 continue;
1112 BBI.BB = BB;
1113 BBI.IsBeingAnalyzed = true;
1115 AnalyzeBranches(BBI);
1116 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1117 MachineBasicBlock::iterator End = BBI.BB->end();
1118 ScanInstructions(BBI, Begin, End);
1120 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1121 // not considered for ifcvt anymore.
1122 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1123 BBI.IsBeingAnalyzed = false;
1124 BBI.IsAnalyzed = true;
1125 BBStack.pop_back();
1126 continue;
1129 // Do not ifcvt if either path is a back edge to the entry block.
1130 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1131 BBI.IsBeingAnalyzed = false;
1132 BBI.IsAnalyzed = true;
1133 BBStack.pop_back();
1134 continue;
1137 // Do not ifcvt if true and false fallthrough blocks are the same.
1138 if (!BBI.FalseBB) {
1139 BBI.IsBeingAnalyzed = false;
1140 BBI.IsAnalyzed = true;
1141 BBStack.pop_back();
1142 continue;
1145 // Push the False and True blocks to the stack.
1146 State.SuccsAnalyzed = true;
1147 BBStack.push_back(*BBI.FalseBB);
1148 BBStack.push_back(*BBI.TrueBB);
1149 continue;
1152 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1153 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1155 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1156 BBI.IsBeingAnalyzed = false;
1157 BBI.IsAnalyzed = true;
1158 BBStack.pop_back();
1159 continue;
1162 SmallVector<MachineOperand, 4>
1163 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1164 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1166 unsigned Dups = 0;
1167 unsigned Dups2 = 0;
1168 bool TNeedSub = !TrueBBI.Predicate.empty();
1169 bool FNeedSub = !FalseBBI.Predicate.empty();
1170 bool Enqueued = false;
1172 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1174 if (CanRevCond) {
1175 BBInfo TrueBBICalc, FalseBBICalc;
1176 auto feasibleDiamond = [&]() {
1177 bool MeetsSize = MeetIfcvtSizeLimit(
1178 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1179 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1180 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1181 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1182 Prediction);
1183 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1184 /* IsTriangle */ false, /* RevCond */ false,
1185 /* hasCommonTail */ true);
1186 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1187 /* IsTriangle */ false, /* RevCond */ false,
1188 /* hasCommonTail */ true);
1189 return MeetsSize && TrueFeasible && FalseFeasible;
1192 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1193 TrueBBICalc, FalseBBICalc)) {
1194 if (feasibleDiamond()) {
1195 // Diamond:
1196 // EBB
1197 // / \_
1198 // | |
1199 // TBB FBB
1200 // \ /
1201 // TailBB
1202 // Note TailBB can be empty.
1203 Tokens.push_back(std::make_unique<IfcvtToken>(
1204 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1205 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1206 Enqueued = true;
1208 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1209 TrueBBICalc, FalseBBICalc)) {
1210 if (feasibleDiamond()) {
1211 // ForkedDiamond:
1212 // if TBB and FBB have a common tail that includes their conditional
1213 // branch instructions, then we can If Convert this pattern.
1214 // EBB
1215 // _/ \_
1216 // | |
1217 // TBB FBB
1218 // / \ / \
1219 // FalseBB TrueBB FalseBB
1221 Tokens.push_back(std::make_unique<IfcvtToken>(
1222 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1223 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1224 Enqueued = true;
1229 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1230 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1231 TrueBBI.ExtraCost2, Prediction) &&
1232 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1233 // Triangle:
1234 // EBB
1235 // | \_
1236 // | |
1237 // | TBB
1238 // | /
1239 // FBB
1240 Tokens.push_back(
1241 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1242 Enqueued = true;
1245 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1246 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1247 TrueBBI.ExtraCost2, Prediction) &&
1248 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1249 Tokens.push_back(
1250 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1251 Enqueued = true;
1254 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1255 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1256 TrueBBI.ExtraCost2, Prediction) &&
1257 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1258 // Simple (split, no rejoin):
1259 // EBB
1260 // | \_
1261 // | |
1262 // | TBB---> exit
1263 // |
1264 // FBB
1265 Tokens.push_back(
1266 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1267 Enqueued = true;
1270 if (CanRevCond) {
1271 // Try the other path...
1272 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1273 Prediction.getCompl()) &&
1274 MeetIfcvtSizeLimit(*FalseBBI.BB,
1275 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1276 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1277 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1278 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1279 FNeedSub, Dups));
1280 Enqueued = true;
1283 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1284 Prediction.getCompl()) &&
1285 MeetIfcvtSizeLimit(*FalseBBI.BB,
1286 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1287 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1288 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1289 Tokens.push_back(
1290 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1291 Enqueued = true;
1294 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1295 MeetIfcvtSizeLimit(*FalseBBI.BB,
1296 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1297 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1298 FeasibilityAnalysis(FalseBBI, RevCond)) {
1299 Tokens.push_back(
1300 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1301 Enqueued = true;
1305 BBI.IsEnqueued = Enqueued;
1306 BBI.IsBeingAnalyzed = false;
1307 BBI.IsAnalyzed = true;
1308 BBStack.pop_back();
1312 /// Analyze all blocks and find entries for all if-conversion candidates.
1313 void IfConverter::AnalyzeBlocks(
1314 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1315 for (MachineBasicBlock &MBB : MF)
1316 AnalyzeBlock(MBB, Tokens);
1318 // Sort to favor more complex ifcvt scheme.
1319 llvm::stable_sort(Tokens, IfcvtTokenCmp);
1322 /// Returns true either if ToMBB is the next block after MBB or that all the
1323 /// intervening blocks are empty (given MBB can fall through to its next block).
1324 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1325 MachineFunction::iterator PI = MBB.getIterator();
1326 MachineFunction::iterator I = std::next(PI);
1327 MachineFunction::iterator TI = ToMBB.getIterator();
1328 MachineFunction::iterator E = MBB.getParent()->end();
1329 while (I != TI) {
1330 // Check isSuccessor to avoid case where the next block is empty, but
1331 // it's not a successor.
1332 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1333 return false;
1334 PI = I++;
1336 // Finally see if the last I is indeed a successor to PI.
1337 return PI->isSuccessor(&*I);
1340 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1341 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1342 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1343 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1344 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1345 if (PBBI.IsDone || PBBI.BB == &MBB)
1346 continue;
1347 PBBI.IsAnalyzed = false;
1348 PBBI.IsEnqueued = false;
1352 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1353 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1354 const TargetInstrInfo *TII) {
1355 DebugLoc dl; // FIXME: this is nowhere
1356 SmallVector<MachineOperand, 0> NoCond;
1357 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1360 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1361 /// values defined in MI which are also live/used by MI.
1362 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1363 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1365 // Before stepping forward past MI, remember which regs were live
1366 // before MI. This is needed to set the Undef flag only when reg is
1367 // dead.
1368 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1369 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1370 for (unsigned Reg : Redefs)
1371 LiveBeforeMI.insert(Reg);
1373 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1374 Redefs.stepForward(MI, Clobbers);
1376 // Now add the implicit uses for each of the clobbered values.
1377 for (auto Clobber : Clobbers) {
1378 // FIXME: Const cast here is nasty, but better than making StepForward
1379 // take a mutable instruction instead of const.
1380 unsigned Reg = Clobber.first;
1381 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1382 MachineInstr *OpMI = Op.getParent();
1383 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1384 if (Op.isRegMask()) {
1385 // First handle regmasks. They clobber any entries in the mask which
1386 // means that we need a def for those registers.
1387 if (LiveBeforeMI.count(Reg))
1388 MIB.addReg(Reg, RegState::Implicit);
1390 // We also need to add an implicit def of this register for the later
1391 // use to read from.
1392 // For the register allocator to have allocated a register clobbered
1393 // by the call which is used later, it must be the case that
1394 // the call doesn't return.
1395 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1396 continue;
1398 if (LiveBeforeMI.count(Reg))
1399 MIB.addReg(Reg, RegState::Implicit);
1400 else {
1401 bool HasLiveSubReg = false;
1402 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1403 if (!LiveBeforeMI.count(*S))
1404 continue;
1405 HasLiveSubReg = true;
1406 break;
1408 if (HasLiveSubReg)
1409 MIB.addReg(Reg, RegState::Implicit);
1414 /// If convert a simple (split, no rejoin) sub-CFG.
1415 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1416 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1417 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1418 BBInfo *CvtBBI = &TrueBBI;
1419 BBInfo *NextBBI = &FalseBBI;
1421 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1422 if (Kind == ICSimpleFalse)
1423 std::swap(CvtBBI, NextBBI);
1425 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1426 MachineBasicBlock &NextMBB = *NextBBI->BB;
1427 if (CvtBBI->IsDone ||
1428 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1429 // Something has changed. It's no longer safe to predicate this block.
1430 BBI.IsAnalyzed = false;
1431 CvtBBI->IsAnalyzed = false;
1432 return false;
1435 if (CvtMBB.hasAddressTaken())
1436 // Conservatively abort if-conversion if BB's address is taken.
1437 return false;
1439 if (Kind == ICSimpleFalse)
1440 if (TII->reverseBranchCondition(Cond))
1441 llvm_unreachable("Unable to reverse branch condition!");
1443 Redefs.init(*TRI);
1445 if (MRI->tracksLiveness()) {
1446 // Initialize liveins to the first BB. These are potentially redefined by
1447 // predicated instructions.
1448 Redefs.addLiveIns(CvtMBB);
1449 Redefs.addLiveIns(NextMBB);
1452 // Remove the branches from the entry so we can add the contents of the true
1453 // block to it.
1454 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1456 if (CvtMBB.pred_size() > 1) {
1457 // Copy instructions in the true block, predicate them, and add them to
1458 // the entry block.
1459 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1461 // Keep the CFG updated.
1462 BBI.BB->removeSuccessor(&CvtMBB, true);
1463 } else {
1464 // Predicate the instructions in the true block.
1465 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1467 // Merge converted block into entry block. The BB to Cvt edge is removed
1468 // by MergeBlocks.
1469 MergeBlocks(BBI, *CvtBBI);
1472 bool IterIfcvt = true;
1473 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1474 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1475 BBI.HasFallThrough = false;
1476 // Now ifcvt'd block will look like this:
1477 // BB:
1478 // ...
1479 // t, f = cmp
1480 // if t op
1481 // b BBf
1483 // We cannot further ifcvt this block because the unconditional branch
1484 // will have to be predicated on the new condition, that will not be
1485 // available if cmp executes.
1486 IterIfcvt = false;
1489 // Update block info. BB can be iteratively if-converted.
1490 if (!IterIfcvt)
1491 BBI.IsDone = true;
1492 InvalidatePreds(*BBI.BB);
1493 CvtBBI->IsDone = true;
1495 // FIXME: Must maintain LiveIns.
1496 return true;
1499 /// If convert a triangle sub-CFG.
1500 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1501 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1502 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1503 BBInfo *CvtBBI = &TrueBBI;
1504 BBInfo *NextBBI = &FalseBBI;
1505 DebugLoc dl; // FIXME: this is nowhere
1507 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1508 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1509 std::swap(CvtBBI, NextBBI);
1511 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1512 MachineBasicBlock &NextMBB = *NextBBI->BB;
1513 if (CvtBBI->IsDone ||
1514 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1515 // Something has changed. It's no longer safe to predicate this block.
1516 BBI.IsAnalyzed = false;
1517 CvtBBI->IsAnalyzed = false;
1518 return false;
1521 if (CvtMBB.hasAddressTaken())
1522 // Conservatively abort if-conversion if BB's address is taken.
1523 return false;
1525 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1526 if (TII->reverseBranchCondition(Cond))
1527 llvm_unreachable("Unable to reverse branch condition!");
1529 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1530 if (reverseBranchCondition(*CvtBBI)) {
1531 // BB has been changed, modify its predecessors (except for this
1532 // one) so they don't get ifcvt'ed based on bad intel.
1533 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1534 if (PBB == BBI.BB)
1535 continue;
1536 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1537 if (PBBI.IsEnqueued) {
1538 PBBI.IsAnalyzed = false;
1539 PBBI.IsEnqueued = false;
1545 // Initialize liveins to the first BB. These are potentially redefined by
1546 // predicated instructions.
1547 Redefs.init(*TRI);
1548 if (MRI->tracksLiveness()) {
1549 Redefs.addLiveIns(CvtMBB);
1550 Redefs.addLiveIns(NextMBB);
1553 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1554 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1556 if (HasEarlyExit) {
1557 // Get probabilities before modifying CvtMBB and BBI.BB.
1558 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1559 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1560 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1561 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1564 // Remove the branches from the entry so we can add the contents of the true
1565 // block to it.
1566 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1568 if (CvtMBB.pred_size() > 1) {
1569 // Copy instructions in the true block, predicate them, and add them to
1570 // the entry block.
1571 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1572 } else {
1573 // Predicate the 'true' block after removing its branch.
1574 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1575 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1577 // Now merge the entry of the triangle with the true block.
1578 MergeBlocks(BBI, *CvtBBI, false);
1581 // Keep the CFG updated.
1582 BBI.BB->removeSuccessor(&CvtMBB, true);
1584 // If 'true' block has a 'false' successor, add an exit branch to it.
1585 if (HasEarlyExit) {
1586 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1587 CvtBBI->BrCond.end());
1588 if (TII->reverseBranchCondition(RevCond))
1589 llvm_unreachable("Unable to reverse branch condition!");
1591 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1592 // NewNext = New_Prob(BBI.BB, NextMBB) =
1593 // Prob(BBI.BB, NextMBB) +
1594 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1595 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1596 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1597 auto NewTrueBB = getNextBlock(*BBI.BB);
1598 auto NewNext = BBNext + BBCvt * CvtNext;
1599 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1600 if (NewTrueBBIter != BBI.BB->succ_end())
1601 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1603 auto NewFalse = BBCvt * CvtFalse;
1604 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1605 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1608 // Merge in the 'false' block if the 'false' block has no other
1609 // predecessors. Otherwise, add an unconditional branch to 'false'.
1610 bool FalseBBDead = false;
1611 bool IterIfcvt = true;
1612 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1613 if (!isFallThrough) {
1614 // Only merge them if the true block does not fallthrough to the false
1615 // block. By not merging them, we make it possible to iteratively
1616 // ifcvt the blocks.
1617 if (!HasEarlyExit &&
1618 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1619 !NextMBB.hasAddressTaken()) {
1620 MergeBlocks(BBI, *NextBBI);
1621 FalseBBDead = true;
1622 } else {
1623 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1624 BBI.HasFallThrough = false;
1626 // Mixed predicated and unpredicated code. This cannot be iteratively
1627 // predicated.
1628 IterIfcvt = false;
1631 // Update block info. BB can be iteratively if-converted.
1632 if (!IterIfcvt)
1633 BBI.IsDone = true;
1634 InvalidatePreds(*BBI.BB);
1635 CvtBBI->IsDone = true;
1636 if (FalseBBDead)
1637 NextBBI->IsDone = true;
1639 // FIXME: Must maintain LiveIns.
1640 return true;
1643 /// Common code shared between diamond conversions.
1644 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1645 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1646 /// and FalseBBI
1647 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1648 /// and \p FalseBBI
1649 /// \p RemoveBranch - Remove the common branch of the two blocks before
1650 /// predicating. Only false for unanalyzable fallthrough
1651 /// cases. The caller will replace the branch if necessary.
1652 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1653 /// unanalyzable fallthrough
1654 bool IfConverter::IfConvertDiamondCommon(
1655 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1656 unsigned NumDups1, unsigned NumDups2,
1657 bool TClobbersPred, bool FClobbersPred,
1658 bool RemoveBranch, bool MergeAddEdges) {
1660 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1661 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1662 // Something has changed. It's no longer safe to predicate these blocks.
1663 BBI.IsAnalyzed = false;
1664 TrueBBI.IsAnalyzed = false;
1665 FalseBBI.IsAnalyzed = false;
1666 return false;
1669 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1670 // Conservatively abort if-conversion if either BB has its address taken.
1671 return false;
1673 // Put the predicated instructions from the 'true' block before the
1674 // instructions from the 'false' block, unless the true block would clobber
1675 // the predicate, in which case, do the opposite.
1676 BBInfo *BBI1 = &TrueBBI;
1677 BBInfo *BBI2 = &FalseBBI;
1678 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1679 if (TII->reverseBranchCondition(RevCond))
1680 llvm_unreachable("Unable to reverse branch condition!");
1681 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1682 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1684 // Figure out the more profitable ordering.
1685 bool DoSwap = false;
1686 if (TClobbersPred && !FClobbersPred)
1687 DoSwap = true;
1688 else if (!TClobbersPred && !FClobbersPred) {
1689 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1690 DoSwap = true;
1691 } else if (TClobbersPred && FClobbersPred)
1692 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1693 if (DoSwap) {
1694 std::swap(BBI1, BBI2);
1695 std::swap(Cond1, Cond2);
1698 // Remove the conditional branch from entry to the blocks.
1699 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1701 MachineBasicBlock &MBB1 = *BBI1->BB;
1702 MachineBasicBlock &MBB2 = *BBI2->BB;
1704 // Initialize the Redefs:
1705 // - BB2 live-in regs need implicit uses before being redefined by BB1
1706 // instructions.
1707 // - BB1 live-out regs need implicit uses before being redefined by BB2
1708 // instructions. We start with BB1 live-ins so we have the live-out regs
1709 // after tracking the BB1 instructions.
1710 Redefs.init(*TRI);
1711 if (MRI->tracksLiveness()) {
1712 Redefs.addLiveIns(MBB1);
1713 Redefs.addLiveIns(MBB2);
1716 // Remove the duplicated instructions at the beginnings of both paths.
1717 // Skip dbg_value instructions.
1718 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1719 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1720 BBI1->NonPredSize -= NumDups1;
1721 BBI2->NonPredSize -= NumDups1;
1723 // Skip past the dups on each side separately since there may be
1724 // differing dbg_value entries. NumDups1 can include a "return"
1725 // instruction, if it's not marked as "branch".
1726 for (unsigned i = 0; i < NumDups1; ++DI1) {
1727 if (DI1 == MBB1.end())
1728 break;
1729 if (!DI1->isDebugInstr())
1730 ++i;
1732 while (NumDups1 != 0) {
1733 ++DI2;
1734 if (DI2 == MBB2.end())
1735 break;
1736 if (!DI2->isDebugInstr())
1737 --NumDups1;
1740 if (MRI->tracksLiveness()) {
1741 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1742 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1743 Redefs.stepForward(MI, Dummy);
1747 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1748 MBB2.erase(MBB2.begin(), DI2);
1750 // The branches have been checked to match, so it is safe to remove the
1751 // branch in BB1 and rely on the copy in BB2. The complication is that
1752 // the blocks may end with a return instruction, which may or may not
1753 // be marked as "branch". If it's not, then it could be included in
1754 // "dups1", leaving the blocks potentially empty after moving the common
1755 // duplicates.
1756 #ifndef NDEBUG
1757 // Unanalyzable branches must match exactly. Check that now.
1758 if (!BBI1->IsBrAnalyzable)
1759 verifySameBranchInstructions(&MBB1, &MBB2);
1760 #endif
1761 BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
1762 // Remove duplicated instructions.
1763 DI1 = MBB1.end();
1764 for (unsigned i = 0; i != NumDups2; ) {
1765 // NumDups2 only counted non-dbg_value instructions, so this won't
1766 // run off the head of the list.
1767 assert(DI1 != MBB1.begin());
1768 --DI1;
1769 // skip dbg_value instructions
1770 if (!DI1->isDebugInstr())
1771 ++i;
1773 MBB1.erase(DI1, MBB1.end());
1775 DI2 = BBI2->BB->end();
1776 // The branches have been checked to match. Skip over the branch in the false
1777 // block so that we don't try to predicate it.
1778 if (RemoveBranch)
1779 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1780 else {
1781 // Make DI2 point to the end of the range where the common "tail"
1782 // instructions could be found.
1783 while (DI2 != MBB2.begin()) {
1784 MachineBasicBlock::iterator Prev = std::prev(DI2);
1785 if (!Prev->isBranch() && !Prev->isDebugInstr())
1786 break;
1787 DI2 = Prev;
1790 while (NumDups2 != 0) {
1791 // NumDups2 only counted non-dbg_value instructions, so this won't
1792 // run off the head of the list.
1793 assert(DI2 != MBB2.begin());
1794 --DI2;
1795 // skip dbg_value instructions
1796 if (!DI2->isDebugInstr())
1797 --NumDups2;
1800 // Remember which registers would later be defined by the false block.
1801 // This allows us not to predicate instructions in the true block that would
1802 // later be re-defined. That is, rather than
1803 // subeq r0, r1, #1
1804 // addne r0, r1, #1
1805 // generate:
1806 // sub r0, r1, #1
1807 // addne r0, r1, #1
1808 SmallSet<MCPhysReg, 4> RedefsByFalse;
1809 SmallSet<MCPhysReg, 4> ExtUses;
1810 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1811 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1812 if (FI.isDebugInstr())
1813 continue;
1814 SmallVector<MCPhysReg, 4> Defs;
1815 for (const MachineOperand &MO : FI.operands()) {
1816 if (!MO.isReg())
1817 continue;
1818 Register Reg = MO.getReg();
1819 if (!Reg)
1820 continue;
1821 if (MO.isDef()) {
1822 Defs.push_back(Reg);
1823 } else if (!RedefsByFalse.count(Reg)) {
1824 // These are defined before ctrl flow reach the 'false' instructions.
1825 // They cannot be modified by the 'true' instructions.
1826 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1827 SubRegs.isValid(); ++SubRegs)
1828 ExtUses.insert(*SubRegs);
1832 for (MCPhysReg Reg : Defs) {
1833 if (!ExtUses.count(Reg)) {
1834 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1835 SubRegs.isValid(); ++SubRegs)
1836 RedefsByFalse.insert(*SubRegs);
1842 // Predicate the 'true' block.
1843 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1845 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1846 // a non-predicated in BBI2, then we don't want to predicate the one from
1847 // BBI2. The reason is that if we merged these blocks, we would end up with
1848 // two predicated terminators in the same block.
1849 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1850 // predicate them either. They were checked to be identical, and so the
1851 // same branch would happen regardless of which path was taken.
1852 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1853 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1854 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1855 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1856 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1857 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1858 --DI2;
1861 // Predicate the 'false' block.
1862 PredicateBlock(*BBI2, DI2, *Cond2);
1864 // Merge the true block into the entry of the diamond.
1865 MergeBlocks(BBI, *BBI1, MergeAddEdges);
1866 MergeBlocks(BBI, *BBI2, MergeAddEdges);
1867 return true;
1870 /// If convert an almost-diamond sub-CFG where the true
1871 /// and false blocks share a common tail.
1872 bool IfConverter::IfConvertForkedDiamond(
1873 BBInfo &BBI, IfcvtKind Kind,
1874 unsigned NumDups1, unsigned NumDups2,
1875 bool TClobbersPred, bool FClobbersPred) {
1876 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1877 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1879 // Save the debug location for later.
1880 DebugLoc dl;
1881 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1882 if (TIE != TrueBBI.BB->end())
1883 dl = TIE->getDebugLoc();
1884 // Removing branches from both blocks is safe, because we have already
1885 // determined that both blocks have the same branch instructions. The branch
1886 // will be added back at the end, unpredicated.
1887 if (!IfConvertDiamondCommon(
1888 BBI, TrueBBI, FalseBBI,
1889 NumDups1, NumDups2,
1890 TClobbersPred, FClobbersPred,
1891 /* RemoveBranch */ true, /* MergeAddEdges */ true))
1892 return false;
1894 // Add back the branch.
1895 // Debug location saved above when removing the branch from BBI2
1896 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1897 TrueBBI.BrCond, dl);
1899 // Update block info.
1900 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1901 InvalidatePreds(*BBI.BB);
1903 // FIXME: Must maintain LiveIns.
1904 return true;
1907 /// If convert a diamond sub-CFG.
1908 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1909 unsigned NumDups1, unsigned NumDups2,
1910 bool TClobbersPred, bool FClobbersPred) {
1911 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1912 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1913 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1915 // True block must fall through or end with an unanalyzable terminator.
1916 if (!TailBB) {
1917 if (blockAlwaysFallThrough(TrueBBI))
1918 TailBB = FalseBBI.TrueBB;
1919 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1922 if (!IfConvertDiamondCommon(
1923 BBI, TrueBBI, FalseBBI,
1924 NumDups1, NumDups2,
1925 TClobbersPred, FClobbersPred,
1926 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1927 /* MergeAddEdges */ TailBB == nullptr))
1928 return false;
1930 // If the if-converted block falls through or unconditionally branches into
1931 // the tail block, and the tail block does not have other predecessors, then
1932 // fold the tail block in as well. Otherwise, unless it falls through to the
1933 // tail, add a unconditional branch to it.
1934 if (TailBB) {
1935 // We need to remove the edges to the true and false blocks manually since
1936 // we didn't let IfConvertDiamondCommon update the CFG.
1937 BBI.BB->removeSuccessor(TrueBBI.BB);
1938 BBI.BB->removeSuccessor(FalseBBI.BB, true);
1940 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1941 bool CanMergeTail = !TailBBI.HasFallThrough &&
1942 !TailBBI.BB->hasAddressTaken();
1943 // The if-converted block can still have a predicated terminator
1944 // (e.g. a predicated return). If that is the case, we cannot merge
1945 // it with the tail block.
1946 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1947 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1948 CanMergeTail = false;
1949 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1950 // check if there are any other predecessors besides those.
1951 unsigned NumPreds = TailBB->pred_size();
1952 if (NumPreds > 1)
1953 CanMergeTail = false;
1954 else if (NumPreds == 1 && CanMergeTail) {
1955 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1956 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1957 CanMergeTail = false;
1959 if (CanMergeTail) {
1960 MergeBlocks(BBI, TailBBI);
1961 TailBBI.IsDone = true;
1962 } else {
1963 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1964 InsertUncondBranch(*BBI.BB, *TailBB, TII);
1965 BBI.HasFallThrough = false;
1969 // Update block info.
1970 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1971 InvalidatePreds(*BBI.BB);
1973 // FIXME: Must maintain LiveIns.
1974 return true;
1977 static bool MaySpeculate(const MachineInstr &MI,
1978 SmallSet<MCPhysReg, 4> &LaterRedefs) {
1979 bool SawStore = true;
1980 if (!MI.isSafeToMove(nullptr, SawStore))
1981 return false;
1983 for (const MachineOperand &MO : MI.operands()) {
1984 if (!MO.isReg())
1985 continue;
1986 Register Reg = MO.getReg();
1987 if (!Reg)
1988 continue;
1989 if (MO.isDef() && !LaterRedefs.count(Reg))
1990 return false;
1993 return true;
1996 /// Predicate instructions from the start of the block to the specified end with
1997 /// the specified condition.
1998 void IfConverter::PredicateBlock(BBInfo &BBI,
1999 MachineBasicBlock::iterator E,
2000 SmallVectorImpl<MachineOperand> &Cond,
2001 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2002 bool AnyUnpred = false;
2003 bool MaySpec = LaterRedefs != nullptr;
2004 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2005 if (I.isDebugInstr() || TII->isPredicated(I))
2006 continue;
2007 // It may be possible not to predicate an instruction if it's the 'true'
2008 // side of a diamond and the 'false' side may re-define the instruction's
2009 // defs.
2010 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2011 AnyUnpred = true;
2012 continue;
2014 // If any instruction is predicated, then every instruction after it must
2015 // be predicated.
2016 MaySpec = false;
2017 if (!TII->PredicateInstruction(I, Cond)) {
2018 #ifndef NDEBUG
2019 dbgs() << "Unable to predicate " << I << "!\n";
2020 #endif
2021 llvm_unreachable(nullptr);
2024 // If the predicated instruction now redefines a register as the result of
2025 // if-conversion, add an implicit kill.
2026 UpdatePredRedefs(I, Redefs);
2029 BBI.Predicate.append(Cond.begin(), Cond.end());
2031 BBI.IsAnalyzed = false;
2032 BBI.NonPredSize = 0;
2034 ++NumIfConvBBs;
2035 if (AnyUnpred)
2036 ++NumUnpred;
2039 /// Copy and predicate instructions from source BB to the destination block.
2040 /// Skip end of block branches if IgnoreBr is true.
2041 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2042 SmallVectorImpl<MachineOperand> &Cond,
2043 bool IgnoreBr) {
2044 MachineFunction &MF = *ToBBI.BB->getParent();
2046 MachineBasicBlock &FromMBB = *FromBBI.BB;
2047 for (MachineInstr &I : FromMBB) {
2048 // Do not copy the end of the block branches.
2049 if (IgnoreBr && I.isBranch())
2050 break;
2052 MachineInstr *MI = MF.CloneMachineInstr(&I);
2053 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2054 ToBBI.NonPredSize++;
2055 unsigned ExtraPredCost = TII->getPredicationCost(I);
2056 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2057 if (NumCycles > 1)
2058 ToBBI.ExtraCost += NumCycles-1;
2059 ToBBI.ExtraCost2 += ExtraPredCost;
2061 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2062 if (!TII->PredicateInstruction(*MI, Cond)) {
2063 #ifndef NDEBUG
2064 dbgs() << "Unable to predicate " << I << "!\n";
2065 #endif
2066 llvm_unreachable(nullptr);
2070 // If the predicated instruction now redefines a register as the result of
2071 // if-conversion, add an implicit kill.
2072 UpdatePredRedefs(*MI, Redefs);
2075 if (!IgnoreBr) {
2076 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2077 FromMBB.succ_end());
2078 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2079 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2081 for (MachineBasicBlock *Succ : Succs) {
2082 // Fallthrough edge can't be transferred.
2083 if (Succ == FallThrough)
2084 continue;
2085 ToBBI.BB->addSuccessor(Succ);
2089 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2090 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2092 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2093 ToBBI.IsAnalyzed = false;
2095 ++NumDupBBs;
2098 /// Move all instructions from FromBB to the end of ToBB. This will leave
2099 /// FromBB as an empty block, so remove all of its successor edges except for
2100 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2101 /// being moved, add those successor edges to ToBBI and remove the old edge
2102 /// from ToBBI to FromBBI.
2103 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2104 MachineBasicBlock &FromMBB = *FromBBI.BB;
2105 assert(!FromMBB.hasAddressTaken() &&
2106 "Removing a BB whose address is taken!");
2108 // In case FromMBB contains terminators (e.g. return instruction),
2109 // first move the non-terminator instructions, then the terminators.
2110 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2111 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2112 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2114 // If FromBB has non-predicated terminator we should copy it at the end.
2115 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2116 ToTI = ToBBI.BB->end();
2117 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2119 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2120 // unknown probabilities into known ones.
2121 // FIXME: This usage is too tricky and in the future we would like to
2122 // eliminate all unknown probabilities in MBB.
2123 if (ToBBI.IsBrAnalyzable)
2124 ToBBI.BB->normalizeSuccProbs();
2126 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2127 FromMBB.succ_end());
2128 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2129 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2130 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2131 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2132 auto To2FromProb = BranchProbability::getZero();
2133 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2134 // Remove the old edge but remember the edge probability so we can calculate
2135 // the correct weights on the new edges being added further down.
2136 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2137 ToBBI.BB->removeSuccessor(&FromMBB);
2140 for (MachineBasicBlock *Succ : FromSuccs) {
2141 // Fallthrough edge can't be transferred.
2142 if (Succ == FallThrough)
2143 continue;
2145 auto NewProb = BranchProbability::getZero();
2146 if (AddEdges) {
2147 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2148 // which is a portion of the edge probability from FromMBB to Succ. The
2149 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2150 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2151 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2153 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2154 // only happens when if-converting a diamond CFG and FromMBB is the
2155 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2156 // could just use the probabilities on FromMBB's out-edges when adding
2157 // new successors.
2158 if (!To2FromProb.isZero())
2159 NewProb *= To2FromProb;
2162 FromMBB.removeSuccessor(Succ);
2164 if (AddEdges) {
2165 // If the edge from ToBBI.BB to Succ already exists, update the
2166 // probability of this edge by adding NewProb to it. An example is shown
2167 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2168 // don't have to set C as A's successor as it already is. We only need to
2169 // update the edge probability on A->C. Note that B will not be
2170 // immediately removed from A's successors. It is possible that B->D is
2171 // not removed either if D is a fallthrough of B. Later the edge A->D
2172 // (generated here) and B->D will be combined into one edge. To maintain
2173 // correct edge probability of this combined edge, we need to set the edge
2174 // probability of A->B to zero, which is already done above. The edge
2175 // probability on A->D is calculated by scaling the original probability
2176 // on A->B by the probability of B->D.
2178 // Before ifcvt: After ifcvt (assume B->D is kept):
2180 // A A
2181 // /| /|\
2182 // / B / B|
2183 // | /| | ||
2184 // |/ | | |/
2185 // C D C D
2187 if (ToBBI.BB->isSuccessor(Succ))
2188 ToBBI.BB->setSuccProbability(
2189 find(ToBBI.BB->successors(), Succ),
2190 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2191 else
2192 ToBBI.BB->addSuccessor(Succ, NewProb);
2196 // Move the now empty FromMBB out of the way to the end of the function so
2197 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2198 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2199 if (Last != &FromMBB)
2200 FromMBB.moveAfter(Last);
2202 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2203 // we've done above.
2204 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2205 ToBBI.BB->normalizeSuccProbs();
2207 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2208 FromBBI.Predicate.clear();
2210 ToBBI.NonPredSize += FromBBI.NonPredSize;
2211 ToBBI.ExtraCost += FromBBI.ExtraCost;
2212 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2213 FromBBI.NonPredSize = 0;
2214 FromBBI.ExtraCost = 0;
2215 FromBBI.ExtraCost2 = 0;
2217 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2218 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2219 ToBBI.IsAnalyzed = false;
2220 FromBBI.IsAnalyzed = false;
2223 FunctionPass *
2224 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2225 return new IfConverter(std::move(Ftor));