[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / LiveRangeEdit.cpp
blobd03e11fae1be045c82aa406c506289e632603e8d
1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/LiveRangeEdit.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/CalcSpillWeights.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
25 #define DEBUG_TYPE "regalloc"
27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
31 void LiveRangeEdit::Delegate::anchor() { }
33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg,
34 bool createSubRanges) {
35 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36 if (VRM)
37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39 LiveInterval &LI = LIS.createEmptyInterval(VReg);
40 if (Parent && !Parent->isSpillable())
41 LI.markNotSpillable();
42 if (createSubRanges) {
43 // Create empty subranges if the OldReg's interval has them. Do not create
44 // the main range here---it will be constructed later after the subranges
45 // have been finalized.
46 LiveInterval &OldLI = LIS.getInterval(OldReg);
47 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
48 for (LiveInterval::SubRange &S : OldLI.subranges())
49 LI.createSubRange(Alloc, S.LaneMask);
51 return LI;
54 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
55 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
56 if (VRM) {
57 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
59 // FIXME: Getting the interval here actually computes it.
60 // In theory, this may not be what we want, but in practice
61 // the createEmptyIntervalFrom API is used when this is not
62 // the case. Generally speaking we just want to annotate the
63 // LiveInterval when it gets created but we cannot do that at
64 // the moment.
65 if (Parent && !Parent->isSpillable())
66 LIS.getInterval(VReg).markNotSpillable();
67 return VReg;
70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
71 const MachineInstr *DefMI,
72 AliasAnalysis *aa) {
73 assert(DefMI && "Missing instruction");
74 ScannedRemattable = true;
75 if (!TII.isTriviallyReMaterializable(*DefMI, aa))
76 return false;
77 Remattable.insert(VNI);
78 return true;
81 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
82 for (VNInfo *VNI : getParent().valnos) {
83 if (VNI->isUnused())
84 continue;
85 unsigned Original = VRM->getOriginal(getReg());
86 LiveInterval &OrigLI = LIS.getInterval(Original);
87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
88 if (!OrigVNI)
89 continue;
90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
91 if (!DefMI)
92 continue;
93 checkRematerializable(OrigVNI, DefMI, aa);
95 ScannedRemattable = true;
98 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
99 if (!ScannedRemattable)
100 scanRemattable(aa);
101 return !Remattable.empty();
104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
105 /// OrigIdx are also available with the same value at UseIdx.
106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
107 SlotIndex OrigIdx,
108 SlotIndex UseIdx) const {
109 OrigIdx = OrigIdx.getRegSlot(true);
110 UseIdx = UseIdx.getRegSlot(true);
111 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
112 const MachineOperand &MO = OrigMI->getOperand(i);
113 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
114 continue;
116 // We can't remat physreg uses, unless it is a constant.
117 if (Register::isPhysicalRegister(MO.getReg())) {
118 if (MRI.isConstantPhysReg(MO.getReg()))
119 continue;
120 return false;
123 LiveInterval &li = LIS.getInterval(MO.getReg());
124 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
125 if (!OVNI)
126 continue;
128 // Don't allow rematerialization immediately after the original def.
129 // It would be incorrect if OrigMI redefines the register.
130 // See PR14098.
131 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
132 return false;
134 if (OVNI != li.getVNInfoAt(UseIdx))
135 return false;
137 return true;
140 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
141 SlotIndex UseIdx, bool cheapAsAMove) {
142 assert(ScannedRemattable && "Call anyRematerializable first");
144 // Use scanRemattable info.
145 if (!Remattable.count(OrigVNI))
146 return false;
148 // No defining instruction provided.
149 SlotIndex DefIdx;
150 assert(RM.OrigMI && "No defining instruction for remattable value");
151 DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
153 // If only cheap remats were requested, bail out early.
154 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
155 return false;
157 // Verify that all used registers are available with the same values.
158 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
159 return false;
161 return true;
164 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
165 MachineBasicBlock::iterator MI,
166 unsigned DestReg,
167 const Remat &RM,
168 const TargetRegisterInfo &tri,
169 bool Late) {
170 assert(RM.OrigMI && "Invalid remat");
171 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
172 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
173 // to false anyway in case the isDead flag of RM.OrigMI's dest register
174 // is true.
175 (*--MI).getOperand(0).setIsDead(false);
176 Rematted.insert(RM.ParentVNI);
177 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
180 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
181 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
182 LIS.removeInterval(Reg);
185 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
186 SmallVectorImpl<MachineInstr*> &Dead) {
187 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
189 // Check that there is a single def and a single use.
190 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
191 MachineInstr *MI = MO.getParent();
192 if (MO.isDef()) {
193 if (DefMI && DefMI != MI)
194 return false;
195 if (!MI->canFoldAsLoad())
196 return false;
197 DefMI = MI;
198 } else if (!MO.isUndef()) {
199 if (UseMI && UseMI != MI)
200 return false;
201 // FIXME: Targets don't know how to fold subreg uses.
202 if (MO.getSubReg())
203 return false;
204 UseMI = MI;
207 if (!DefMI || !UseMI)
208 return false;
210 // Since we're moving the DefMI load, make sure we're not extending any live
211 // ranges.
212 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
213 LIS.getInstructionIndex(*UseMI)))
214 return false;
216 // We also need to make sure it is safe to move the load.
217 // Assume there are stores between DefMI and UseMI.
218 bool SawStore = true;
219 if (!DefMI->isSafeToMove(nullptr, SawStore))
220 return false;
222 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
223 << " into single use: " << *UseMI);
225 SmallVector<unsigned, 8> Ops;
226 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
227 return false;
229 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
230 if (!FoldMI)
231 return false;
232 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI);
233 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
234 if (UseMI->isCall())
235 UseMI->getMF()->updateCallSiteInfo(UseMI, FoldMI);
236 UseMI->eraseFromParent();
237 DefMI->addRegisterDead(LI->reg, nullptr);
238 Dead.push_back(DefMI);
239 ++NumDCEFoldedLoads;
240 return true;
243 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
244 const MachineOperand &MO) const {
245 const MachineInstr &MI = *MO.getParent();
246 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
247 if (LI.Query(Idx).isKill())
248 return true;
249 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
250 unsigned SubReg = MO.getSubReg();
251 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
252 for (const LiveInterval::SubRange &S : LI.subranges()) {
253 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
254 return true;
256 return false;
259 /// Find all live intervals that need to shrink, then remove the instruction.
260 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
261 AliasAnalysis *AA) {
262 assert(MI->allDefsAreDead() && "Def isn't really dead");
263 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
265 // Never delete a bundled instruction.
266 if (MI->isBundled()) {
267 return;
269 // Never delete inline asm.
270 if (MI->isInlineAsm()) {
271 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
272 return;
275 // Use the same criteria as DeadMachineInstructionElim.
276 bool SawStore = false;
277 if (!MI->isSafeToMove(nullptr, SawStore)) {
278 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
279 return;
282 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
284 // Collect virtual registers to be erased after MI is gone.
285 SmallVector<unsigned, 8> RegsToErase;
286 bool ReadsPhysRegs = false;
287 bool isOrigDef = false;
288 unsigned Dest;
289 // Only optimize rematerialize case when the instruction has one def, since
290 // otherwise we could leave some dead defs in the code. This case is
291 // extremely rare.
292 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
293 MI->getDesc().getNumDefs() == 1) {
294 Dest = MI->getOperand(0).getReg();
295 unsigned Original = VRM->getOriginal(Dest);
296 LiveInterval &OrigLI = LIS.getInterval(Original);
297 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
298 // The original live-range may have been shrunk to
299 // an empty live-range. It happens when it is dead, but
300 // we still keep it around to be able to rematerialize
301 // other values that depend on it.
302 if (OrigVNI)
303 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
306 // Check for live intervals that may shrink
307 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
308 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
309 if (!MOI->isReg())
310 continue;
311 Register Reg = MOI->getReg();
312 if (!Register::isVirtualRegister(Reg)) {
313 // Check if MI reads any unreserved physregs.
314 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
315 ReadsPhysRegs = true;
316 else if (MOI->isDef())
317 LIS.removePhysRegDefAt(Reg, Idx);
318 continue;
320 LiveInterval &LI = LIS.getInterval(Reg);
322 // Shrink read registers, unless it is likely to be expensive and
323 // unlikely to change anything. We typically don't want to shrink the
324 // PIC base register that has lots of uses everywhere.
325 // Always shrink COPY uses that probably come from live range splitting.
326 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
327 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
328 ToShrink.insert(&LI);
330 // Remove defined value.
331 if (MOI->isDef()) {
332 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
333 TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
334 LIS.removeVRegDefAt(LI, Idx);
335 if (LI.empty())
336 RegsToErase.push_back(Reg);
340 // Currently, we don't support DCE of physreg live ranges. If MI reads
341 // any unreserved physregs, don't erase the instruction, but turn it into
342 // a KILL instead. This way, the physreg live ranges don't end up
343 // dangling.
344 // FIXME: It would be better to have something like shrinkToUses() for
345 // physregs. That could potentially enable more DCE and it would free up
346 // the physreg. It would not happen often, though.
347 if (ReadsPhysRegs) {
348 MI->setDesc(TII.get(TargetOpcode::KILL));
349 // Remove all operands that aren't physregs.
350 for (unsigned i = MI->getNumOperands(); i; --i) {
351 const MachineOperand &MO = MI->getOperand(i-1);
352 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg()))
353 continue;
354 MI->RemoveOperand(i-1);
356 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
357 } else {
358 // If the dest of MI is an original reg and MI is reMaterializable,
359 // don't delete the inst. Replace the dest with a new reg, and keep
360 // the inst for remat of other siblings. The inst is saved in
361 // LiveRangeEdit::DeadRemats and will be deleted after all the
362 // allocations of the func are done.
363 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
364 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
365 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
366 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
367 pop_back();
368 DeadRemats->insert(MI);
369 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
370 MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
371 MI->getOperand(0).setIsDead(true);
372 } else {
373 if (TheDelegate)
374 TheDelegate->LRE_WillEraseInstruction(MI);
375 LIS.RemoveMachineInstrFromMaps(*MI);
376 MI->eraseFromParent();
377 ++NumDCEDeleted;
381 // Erase any virtregs that are now empty and unused. There may be <undef>
382 // uses around. Keep the empty live range in that case.
383 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
384 unsigned Reg = RegsToErase[i];
385 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
386 ToShrink.remove(&LIS.getInterval(Reg));
387 eraseVirtReg(Reg);
392 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
393 ArrayRef<unsigned> RegsBeingSpilled,
394 AliasAnalysis *AA) {
395 ToShrinkSet ToShrink;
397 for (;;) {
398 // Erase all dead defs.
399 while (!Dead.empty())
400 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
402 if (ToShrink.empty())
403 break;
405 // Shrink just one live interval. Then delete new dead defs.
406 LiveInterval *LI = ToShrink.back();
407 ToShrink.pop_back();
408 if (foldAsLoad(LI, Dead))
409 continue;
410 unsigned VReg = LI->reg;
411 if (TheDelegate)
412 TheDelegate->LRE_WillShrinkVirtReg(VReg);
413 if (!LIS.shrinkToUses(LI, &Dead))
414 continue;
416 // Don't create new intervals for a register being spilled.
417 // The new intervals would have to be spilled anyway so its not worth it.
418 // Also they currently aren't spilled so creating them and not spilling
419 // them results in incorrect code.
420 bool BeingSpilled = false;
421 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
422 if (VReg == RegsBeingSpilled[i]) {
423 BeingSpilled = true;
424 break;
428 if (BeingSpilled) continue;
430 // LI may have been separated, create new intervals.
431 LI->RenumberValues();
432 SmallVector<LiveInterval*, 8> SplitLIs;
433 LIS.splitSeparateComponents(*LI, SplitLIs);
434 if (!SplitLIs.empty())
435 ++NumFracRanges;
437 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
438 for (const LiveInterval *SplitLI : SplitLIs) {
439 // If LI is an original interval that hasn't been split yet, make the new
440 // intervals their own originals instead of referring to LI. The original
441 // interval must contain all the split products, and LI doesn't.
442 if (Original != VReg && Original != 0)
443 VRM->setIsSplitFromReg(SplitLI->reg, Original);
444 if (TheDelegate)
445 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
450 // Keep track of new virtual registers created via
451 // MachineRegisterInfo::createVirtualRegister.
452 void
453 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
455 if (VRM)
456 VRM->grow();
458 NewRegs.push_back(VReg);
461 void
462 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
463 const MachineLoopInfo &Loops,
464 const MachineBlockFrequencyInfo &MBFI) {
465 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
466 for (unsigned I = 0, Size = size(); I < Size; ++I) {
467 LiveInterval &LI = LIS.getInterval(get(I));
468 if (MRI.recomputeRegClass(LI.reg))
469 LLVM_DEBUG({
470 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
471 dbgs() << "Inflated " << printReg(LI.reg) << " to "
472 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
474 VRAI.calculateSpillWeightAndHint(LI);