[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / MachineBlockPlacement.cpp
blob58b3bf7b17ca61ece2591f063520b02d2a6607cc
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "block-placement"
75 STATISTIC(NumCondBranches, "Number of conditional branches");
76 STATISTIC(NumUncondBranches, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq,
78 "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq,
80 "Potential frequency of taking unconditional branches");
82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
83 cl::desc("Force the alignment of all "
84 "blocks in the function."),
85 cl::init(0), cl::Hidden);
87 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
88 "align-all-nofallthru-blocks",
89 cl::desc("Force the alignment of all "
90 "blocks that have no fall-through predecessors (i.e. don't add "
91 "nops that are executed)."),
92 cl::init(0), cl::Hidden);
94 // FIXME: Find a good default for this flag and remove the flag.
95 static cl::opt<unsigned> ExitBlockBias(
96 "block-placement-exit-block-bias",
97 cl::desc("Block frequency percentage a loop exit block needs "
98 "over the original exit to be considered the new exit."),
99 cl::init(0), cl::Hidden);
101 // Definition:
102 // - Outlining: placement of a basic block outside the chain or hot path.
104 static cl::opt<unsigned> LoopToColdBlockRatio(
105 "loop-to-cold-block-ratio",
106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
107 "(frequency of block) is greater than this ratio"),
108 cl::init(5), cl::Hidden);
110 static cl::opt<bool> ForceLoopColdBlock(
111 "force-loop-cold-block",
112 cl::desc("Force outlining cold blocks from loops."),
113 cl::init(false), cl::Hidden);
115 static cl::opt<bool>
116 PreciseRotationCost("precise-rotation-cost",
117 cl::desc("Model the cost of loop rotation more "
118 "precisely by using profile data."),
119 cl::init(false), cl::Hidden);
121 static cl::opt<bool>
122 ForcePreciseRotationCost("force-precise-rotation-cost",
123 cl::desc("Force the use of precise cost "
124 "loop rotation strategy."),
125 cl::init(false), cl::Hidden);
127 static cl::opt<unsigned> MisfetchCost(
128 "misfetch-cost",
129 cl::desc("Cost that models the probabilistic risk of an instruction "
130 "misfetch due to a jump comparing to falling through, whose cost "
131 "is zero."),
132 cl::init(1), cl::Hidden);
134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
135 cl::desc("Cost of jump instructions."),
136 cl::init(1), cl::Hidden);
137 static cl::opt<bool>
138 TailDupPlacement("tail-dup-placement",
139 cl::desc("Perform tail duplication during placement. "
140 "Creates more fallthrough opportunites in "
141 "outline branches."),
142 cl::init(true), cl::Hidden);
144 static cl::opt<bool>
145 BranchFoldPlacement("branch-fold-placement",
146 cl::desc("Perform branch folding during placement. "
147 "Reduces code size."),
148 cl::init(true), cl::Hidden);
150 // Heuristic for tail duplication.
151 static cl::opt<unsigned> TailDupPlacementThreshold(
152 "tail-dup-placement-threshold",
153 cl::desc("Instruction cutoff for tail duplication during layout. "
154 "Tail merging during layout is forced to have a threshold "
155 "that won't conflict."), cl::init(2),
156 cl::Hidden);
158 // Heuristic for aggressive tail duplication.
159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
160 "tail-dup-placement-aggressive-threshold",
161 cl::desc("Instruction cutoff for aggressive tail duplication during "
162 "layout. Used at -O3. Tail merging during layout is forced to "
163 "have a threshold that won't conflict."), cl::init(4),
164 cl::Hidden);
166 // Heuristic for tail duplication.
167 static cl::opt<unsigned> TailDupPlacementPenalty(
168 "tail-dup-placement-penalty",
169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
170 "Copying can increase fallthrough, but it also increases icache "
171 "pressure. This parameter controls the penalty to account for that. "
172 "Percent as integer."),
173 cl::init(2),
174 cl::Hidden);
176 // Heuristic for triangle chains.
177 static cl::opt<unsigned> TriangleChainCount(
178 "triangle-chain-count",
179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
180 "triangle tail duplication heuristic to kick in. 0 to disable."),
181 cl::init(2),
182 cl::Hidden);
184 extern cl::opt<unsigned> StaticLikelyProb;
185 extern cl::opt<unsigned> ProfileLikelyProb;
187 // Internal option used to control BFI display only after MBP pass.
188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
189 // -view-block-layout-with-bfi=
190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
192 // Command line option to specify the name of the function for CFG dump
193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
194 extern cl::opt<std::string> ViewBlockFreqFuncName;
196 namespace {
198 class BlockChain;
200 /// Type for our function-wide basic block -> block chain mapping.
201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
203 /// A chain of blocks which will be laid out contiguously.
205 /// This is the datastructure representing a chain of consecutive blocks that
206 /// are profitable to layout together in order to maximize fallthrough
207 /// probabilities and code locality. We also can use a block chain to represent
208 /// a sequence of basic blocks which have some external (correctness)
209 /// requirement for sequential layout.
211 /// Chains can be built around a single basic block and can be merged to grow
212 /// them. They participate in a block-to-chain mapping, which is updated
213 /// automatically as chains are merged together.
214 class BlockChain {
215 /// The sequence of blocks belonging to this chain.
217 /// This is the sequence of blocks for a particular chain. These will be laid
218 /// out in-order within the function.
219 SmallVector<MachineBasicBlock *, 4> Blocks;
221 /// A handle to the function-wide basic block to block chain mapping.
223 /// This is retained in each block chain to simplify the computation of child
224 /// block chains for SCC-formation and iteration. We store the edges to child
225 /// basic blocks, and map them back to their associated chains using this
226 /// structure.
227 BlockToChainMapType &BlockToChain;
229 public:
230 /// Construct a new BlockChain.
232 /// This builds a new block chain representing a single basic block in the
233 /// function. It also registers itself as the chain that block participates
234 /// in with the BlockToChain mapping.
235 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
236 : Blocks(1, BB), BlockToChain(BlockToChain) {
237 assert(BB && "Cannot create a chain with a null basic block");
238 BlockToChain[BB] = this;
241 /// Iterator over blocks within the chain.
242 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
243 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
245 /// Beginning of blocks within the chain.
246 iterator begin() { return Blocks.begin(); }
247 const_iterator begin() const { return Blocks.begin(); }
249 /// End of blocks within the chain.
250 iterator end() { return Blocks.end(); }
251 const_iterator end() const { return Blocks.end(); }
253 bool remove(MachineBasicBlock* BB) {
254 for(iterator i = begin(); i != end(); ++i) {
255 if (*i == BB) {
256 Blocks.erase(i);
257 return true;
260 return false;
263 /// Merge a block chain into this one.
265 /// This routine merges a block chain into this one. It takes care of forming
266 /// a contiguous sequence of basic blocks, updating the edge list, and
267 /// updating the block -> chain mapping. It does not free or tear down the
268 /// old chain, but the old chain's block list is no longer valid.
269 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
270 assert(BB && "Can't merge a null block.");
271 assert(!Blocks.empty() && "Can't merge into an empty chain.");
273 // Fast path in case we don't have a chain already.
274 if (!Chain) {
275 assert(!BlockToChain[BB] &&
276 "Passed chain is null, but BB has entry in BlockToChain.");
277 Blocks.push_back(BB);
278 BlockToChain[BB] = this;
279 return;
282 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
283 assert(Chain->begin() != Chain->end());
285 // Update the incoming blocks to point to this chain, and add them to the
286 // chain structure.
287 for (MachineBasicBlock *ChainBB : *Chain) {
288 Blocks.push_back(ChainBB);
289 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
290 BlockToChain[ChainBB] = this;
294 #ifndef NDEBUG
295 /// Dump the blocks in this chain.
296 LLVM_DUMP_METHOD void dump() {
297 for (MachineBasicBlock *MBB : *this)
298 MBB->dump();
300 #endif // NDEBUG
302 /// Count of predecessors of any block within the chain which have not
303 /// yet been scheduled. In general, we will delay scheduling this chain
304 /// until those predecessors are scheduled (or we find a sufficiently good
305 /// reason to override this heuristic.) Note that when forming loop chains,
306 /// blocks outside the loop are ignored and treated as if they were already
307 /// scheduled.
309 /// Note: This field is reinitialized multiple times - once for each loop,
310 /// and then once for the function as a whole.
311 unsigned UnscheduledPredecessors = 0;
314 class MachineBlockPlacement : public MachineFunctionPass {
315 /// A type for a block filter set.
316 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
318 /// Pair struct containing basic block and taildup profitability
319 struct BlockAndTailDupResult {
320 MachineBasicBlock *BB;
321 bool ShouldTailDup;
324 /// Triple struct containing edge weight and the edge.
325 struct WeightedEdge {
326 BlockFrequency Weight;
327 MachineBasicBlock *Src;
328 MachineBasicBlock *Dest;
331 /// work lists of blocks that are ready to be laid out
332 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
333 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
335 /// Edges that have already been computed as optimal.
336 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
338 /// Machine Function
339 MachineFunction *F;
341 /// A handle to the branch probability pass.
342 const MachineBranchProbabilityInfo *MBPI;
344 /// A handle to the function-wide block frequency pass.
345 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
347 /// A handle to the loop info.
348 MachineLoopInfo *MLI;
350 /// Preferred loop exit.
351 /// Member variable for convenience. It may be removed by duplication deep
352 /// in the call stack.
353 MachineBasicBlock *PreferredLoopExit;
355 /// A handle to the target's instruction info.
356 const TargetInstrInfo *TII;
358 /// A handle to the target's lowering info.
359 const TargetLoweringBase *TLI;
361 /// A handle to the post dominator tree.
362 MachinePostDominatorTree *MPDT;
364 /// Duplicator used to duplicate tails during placement.
366 /// Placement decisions can open up new tail duplication opportunities, but
367 /// since tail duplication affects placement decisions of later blocks, it
368 /// must be done inline.
369 TailDuplicator TailDup;
371 /// Allocator and owner of BlockChain structures.
373 /// We build BlockChains lazily while processing the loop structure of
374 /// a function. To reduce malloc traffic, we allocate them using this
375 /// slab-like allocator, and destroy them after the pass completes. An
376 /// important guarantee is that this allocator produces stable pointers to
377 /// the chains.
378 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
380 /// Function wide BasicBlock to BlockChain mapping.
382 /// This mapping allows efficiently moving from any given basic block to the
383 /// BlockChain it participates in, if any. We use it to, among other things,
384 /// allow implicitly defining edges between chains as the existing edges
385 /// between basic blocks.
386 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
388 #ifndef NDEBUG
389 /// The set of basic blocks that have terminators that cannot be fully
390 /// analyzed. These basic blocks cannot be re-ordered safely by
391 /// MachineBlockPlacement, and we must preserve physical layout of these
392 /// blocks and their successors through the pass.
393 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
394 #endif
396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
397 /// if the count goes to 0, add them to the appropriate work list.
398 void markChainSuccessors(
399 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
400 const BlockFilterSet *BlockFilter = nullptr);
402 /// Decrease the UnscheduledPredecessors count for a single block, and
403 /// if the count goes to 0, add them to the appropriate work list.
404 void markBlockSuccessors(
405 const BlockChain &Chain, const MachineBasicBlock *BB,
406 const MachineBasicBlock *LoopHeaderBB,
407 const BlockFilterSet *BlockFilter = nullptr);
409 BranchProbability
410 collectViableSuccessors(
411 const MachineBasicBlock *BB, const BlockChain &Chain,
412 const BlockFilterSet *BlockFilter,
413 SmallVector<MachineBasicBlock *, 4> &Successors);
414 bool shouldPredBlockBeOutlined(
415 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
416 const BlockChain &Chain, const BlockFilterSet *BlockFilter,
417 BranchProbability SuccProb, BranchProbability HotProb);
418 bool repeatedlyTailDuplicateBlock(
419 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
420 const MachineBasicBlock *LoopHeaderBB,
421 BlockChain &Chain, BlockFilterSet *BlockFilter,
422 MachineFunction::iterator &PrevUnplacedBlockIt);
423 bool maybeTailDuplicateBlock(
424 MachineBasicBlock *BB, MachineBasicBlock *LPred,
425 BlockChain &Chain, BlockFilterSet *BlockFilter,
426 MachineFunction::iterator &PrevUnplacedBlockIt,
427 bool &DuplicatedToLPred);
428 bool hasBetterLayoutPredecessor(
429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
430 const BlockChain &SuccChain, BranchProbability SuccProb,
431 BranchProbability RealSuccProb, const BlockChain &Chain,
432 const BlockFilterSet *BlockFilter);
433 BlockAndTailDupResult selectBestSuccessor(
434 const MachineBasicBlock *BB, const BlockChain &Chain,
435 const BlockFilterSet *BlockFilter);
436 MachineBasicBlock *selectBestCandidateBlock(
437 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
438 MachineBasicBlock *getFirstUnplacedBlock(
439 const BlockChain &PlacedChain,
440 MachineFunction::iterator &PrevUnplacedBlockIt,
441 const BlockFilterSet *BlockFilter);
443 /// Add a basic block to the work list if it is appropriate.
445 /// If the optional parameter BlockFilter is provided, only MBB
446 /// present in the set will be added to the worklist. If nullptr
447 /// is provided, no filtering occurs.
448 void fillWorkLists(const MachineBasicBlock *MBB,
449 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
450 const BlockFilterSet *BlockFilter);
452 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
453 BlockFilterSet *BlockFilter = nullptr);
454 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
455 const MachineBasicBlock *OldTop);
456 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
457 const BlockFilterSet &LoopBlockSet);
458 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
459 const BlockFilterSet &LoopBlockSet);
460 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
461 const MachineBasicBlock *OldTop,
462 const MachineBasicBlock *ExitBB,
463 const BlockFilterSet &LoopBlockSet);
464 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
465 const MachineLoop &L,
466 const BlockFilterSet &LoopBlockSet,
467 bool HasStaticProfileOnly = false);
468 MachineBasicBlock *findBestLoopTop(
469 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
470 MachineBasicBlock *findBestLoopTopNoProfile(
471 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
472 MachineBasicBlock *findBestLoopExit(
473 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
474 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
475 void buildLoopChains(const MachineLoop &L);
476 void rotateLoop(
477 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
478 const BlockFilterSet &LoopBlockSet);
479 void rotateLoopWithProfile(
480 BlockChain &LoopChain, const MachineLoop &L,
481 const BlockFilterSet &LoopBlockSet);
482 void buildCFGChains();
483 void optimizeBranches();
484 void alignBlocks();
485 /// Returns true if a block should be tail-duplicated to increase fallthrough
486 /// opportunities.
487 bool shouldTailDuplicate(MachineBasicBlock *BB);
488 /// Check the edge frequencies to see if tail duplication will increase
489 /// fallthroughs.
490 bool isProfitableToTailDup(
491 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
492 BranchProbability QProb,
493 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
495 /// Check for a trellis layout.
496 bool isTrellis(const MachineBasicBlock *BB,
497 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
498 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
500 /// Get the best successor given a trellis layout.
501 BlockAndTailDupResult getBestTrellisSuccessor(
502 const MachineBasicBlock *BB,
503 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
504 BranchProbability AdjustedSumProb, const BlockChain &Chain,
505 const BlockFilterSet *BlockFilter);
507 /// Get the best pair of non-conflicting edges.
508 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
509 const MachineBasicBlock *BB,
510 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
512 /// Returns true if a block can tail duplicate into all unplaced
513 /// predecessors. Filters based on loop.
514 bool canTailDuplicateUnplacedPreds(
515 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
516 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
518 /// Find chains of triangles to tail-duplicate where a global analysis works,
519 /// but a local analysis would not find them.
520 void precomputeTriangleChains();
522 public:
523 static char ID; // Pass identification, replacement for typeid
525 MachineBlockPlacement() : MachineFunctionPass(ID) {
526 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
529 bool runOnMachineFunction(MachineFunction &F) override;
531 bool allowTailDupPlacement() const {
532 assert(F);
533 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
536 void getAnalysisUsage(AnalysisUsage &AU) const override {
537 AU.addRequired<MachineBranchProbabilityInfo>();
538 AU.addRequired<MachineBlockFrequencyInfo>();
539 if (TailDupPlacement)
540 AU.addRequired<MachinePostDominatorTree>();
541 AU.addRequired<MachineLoopInfo>();
542 AU.addRequired<TargetPassConfig>();
543 MachineFunctionPass::getAnalysisUsage(AU);
547 } // end anonymous namespace
549 char MachineBlockPlacement::ID = 0;
551 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
553 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
554 "Branch Probability Basic Block Placement", false, false)
555 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
556 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
557 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
558 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
559 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
560 "Branch Probability Basic Block Placement", false, false)
562 #ifndef NDEBUG
563 /// Helper to print the name of a MBB.
565 /// Only used by debug logging.
566 static std::string getBlockName(const MachineBasicBlock *BB) {
567 std::string Result;
568 raw_string_ostream OS(Result);
569 OS << printMBBReference(*BB);
570 OS << " ('" << BB->getName() << "')";
571 OS.flush();
572 return Result;
574 #endif
576 /// Mark a chain's successors as having one fewer preds.
578 /// When a chain is being merged into the "placed" chain, this routine will
579 /// quickly walk the successors of each block in the chain and mark them as
580 /// having one fewer active predecessor. It also adds any successors of this
581 /// chain which reach the zero-predecessor state to the appropriate worklist.
582 void MachineBlockPlacement::markChainSuccessors(
583 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
584 const BlockFilterSet *BlockFilter) {
585 // Walk all the blocks in this chain, marking their successors as having
586 // a predecessor placed.
587 for (MachineBasicBlock *MBB : Chain) {
588 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
592 /// Mark a single block's successors as having one fewer preds.
594 /// Under normal circumstances, this is only called by markChainSuccessors,
595 /// but if a block that was to be placed is completely tail-duplicated away,
596 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
597 /// for just that block.
598 void MachineBlockPlacement::markBlockSuccessors(
599 const BlockChain &Chain, const MachineBasicBlock *MBB,
600 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
601 // Add any successors for which this is the only un-placed in-loop
602 // predecessor to the worklist as a viable candidate for CFG-neutral
603 // placement. No subsequent placement of this block will violate the CFG
604 // shape, so we get to use heuristics to choose a favorable placement.
605 for (MachineBasicBlock *Succ : MBB->successors()) {
606 if (BlockFilter && !BlockFilter->count(Succ))
607 continue;
608 BlockChain &SuccChain = *BlockToChain[Succ];
609 // Disregard edges within a fixed chain, or edges to the loop header.
610 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
611 continue;
613 // This is a cross-chain edge that is within the loop, so decrement the
614 // loop predecessor count of the destination chain.
615 if (SuccChain.UnscheduledPredecessors == 0 ||
616 --SuccChain.UnscheduledPredecessors > 0)
617 continue;
619 auto *NewBB = *SuccChain.begin();
620 if (NewBB->isEHPad())
621 EHPadWorkList.push_back(NewBB);
622 else
623 BlockWorkList.push_back(NewBB);
627 /// This helper function collects the set of successors of block
628 /// \p BB that are allowed to be its layout successors, and return
629 /// the total branch probability of edges from \p BB to those
630 /// blocks.
631 BranchProbability MachineBlockPlacement::collectViableSuccessors(
632 const MachineBasicBlock *BB, const BlockChain &Chain,
633 const BlockFilterSet *BlockFilter,
634 SmallVector<MachineBasicBlock *, 4> &Successors) {
635 // Adjust edge probabilities by excluding edges pointing to blocks that is
636 // either not in BlockFilter or is already in the current chain. Consider the
637 // following CFG:
639 // --->A
640 // | / \
641 // | B C
642 // | \ / \
643 // ----D E
645 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
646 // A->C is chosen as a fall-through, D won't be selected as a successor of C
647 // due to CFG constraint (the probability of C->D is not greater than
648 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
649 // when calculating the probability of C->D, D will be selected and we
650 // will get A C D B as the layout of this loop.
651 auto AdjustedSumProb = BranchProbability::getOne();
652 for (MachineBasicBlock *Succ : BB->successors()) {
653 bool SkipSucc = false;
654 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
655 SkipSucc = true;
656 } else {
657 BlockChain *SuccChain = BlockToChain[Succ];
658 if (SuccChain == &Chain) {
659 SkipSucc = true;
660 } else if (Succ != *SuccChain->begin()) {
661 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
662 << " -> Mid chain!\n");
663 continue;
666 if (SkipSucc)
667 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
668 else
669 Successors.push_back(Succ);
672 return AdjustedSumProb;
675 /// The helper function returns the branch probability that is adjusted
676 /// or normalized over the new total \p AdjustedSumProb.
677 static BranchProbability
678 getAdjustedProbability(BranchProbability OrigProb,
679 BranchProbability AdjustedSumProb) {
680 BranchProbability SuccProb;
681 uint32_t SuccProbN = OrigProb.getNumerator();
682 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
683 if (SuccProbN >= SuccProbD)
684 SuccProb = BranchProbability::getOne();
685 else
686 SuccProb = BranchProbability(SuccProbN, SuccProbD);
688 return SuccProb;
691 /// Check if \p BB has exactly the successors in \p Successors.
692 static bool
693 hasSameSuccessors(MachineBasicBlock &BB,
694 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
695 if (BB.succ_size() != Successors.size())
696 return false;
697 // We don't want to count self-loops
698 if (Successors.count(&BB))
699 return false;
700 for (MachineBasicBlock *Succ : BB.successors())
701 if (!Successors.count(Succ))
702 return false;
703 return true;
706 /// Check if a block should be tail duplicated to increase fallthrough
707 /// opportunities.
708 /// \p BB Block to check.
709 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
710 // Blocks with single successors don't create additional fallthrough
711 // opportunities. Don't duplicate them. TODO: When conditional exits are
712 // analyzable, allow them to be duplicated.
713 bool IsSimple = TailDup.isSimpleBB(BB);
715 if (BB->succ_size() == 1)
716 return false;
717 return TailDup.shouldTailDuplicate(IsSimple, *BB);
720 /// Compare 2 BlockFrequency's with a small penalty for \p A.
721 /// In order to be conservative, we apply a X% penalty to account for
722 /// increased icache pressure and static heuristics. For small frequencies
723 /// we use only the numerators to improve accuracy. For simplicity, we assume the
724 /// penalty is less than 100%
725 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
726 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
727 uint64_t EntryFreq) {
728 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
729 BlockFrequency Gain = A - B;
730 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
733 /// Check the edge frequencies to see if tail duplication will increase
734 /// fallthroughs. It only makes sense to call this function when
735 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
736 /// always locally profitable if we would have picked \p Succ without
737 /// considering duplication.
738 bool MachineBlockPlacement::isProfitableToTailDup(
739 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
740 BranchProbability QProb,
741 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
742 // We need to do a probability calculation to make sure this is profitable.
743 // First: does succ have a successor that post-dominates? This affects the
744 // calculation. The 2 relevant cases are:
745 // BB BB
746 // | \Qout | \Qout
747 // P| C |P C
748 // = C' = C'
749 // | /Qin | /Qin
750 // | / | /
751 // Succ Succ
752 // / \ | \ V
753 // U/ =V |U \
754 // / \ = D
755 // D E | /
756 // | /
757 // |/
758 // PDom
759 // '=' : Branch taken for that CFG edge
760 // In the second case, Placing Succ while duplicating it into C prevents the
761 // fallthrough of Succ into either D or PDom, because they now have C as an
762 // unplaced predecessor
764 // Start by figuring out which case we fall into
765 MachineBasicBlock *PDom = nullptr;
766 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
767 // Only scan the relevant successors
768 auto AdjustedSuccSumProb =
769 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
770 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
771 auto BBFreq = MBFI->getBlockFreq(BB);
772 auto SuccFreq = MBFI->getBlockFreq(Succ);
773 BlockFrequency P = BBFreq * PProb;
774 BlockFrequency Qout = BBFreq * QProb;
775 uint64_t EntryFreq = MBFI->getEntryFreq();
776 // If there are no more successors, it is profitable to copy, as it strictly
777 // increases fallthrough.
778 if (SuccSuccs.size() == 0)
779 return greaterWithBias(P, Qout, EntryFreq);
781 auto BestSuccSucc = BranchProbability::getZero();
782 // Find the PDom or the best Succ if no PDom exists.
783 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
784 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
785 if (Prob > BestSuccSucc)
786 BestSuccSucc = Prob;
787 if (PDom == nullptr)
788 if (MPDT->dominates(SuccSucc, Succ)) {
789 PDom = SuccSucc;
790 break;
793 // For the comparisons, we need to know Succ's best incoming edge that isn't
794 // from BB.
795 auto SuccBestPred = BlockFrequency(0);
796 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
797 if (SuccPred == Succ || SuccPred == BB
798 || BlockToChain[SuccPred] == &Chain
799 || (BlockFilter && !BlockFilter->count(SuccPred)))
800 continue;
801 auto Freq = MBFI->getBlockFreq(SuccPred)
802 * MBPI->getEdgeProbability(SuccPred, Succ);
803 if (Freq > SuccBestPred)
804 SuccBestPred = Freq;
806 // Qin is Succ's best unplaced incoming edge that isn't BB
807 BlockFrequency Qin = SuccBestPred;
808 // If it doesn't have a post-dominating successor, here is the calculation:
809 // BB BB
810 // | \Qout | \
811 // P| C | =
812 // = C' | C
813 // | /Qin | |
814 // | / | C' (+Succ)
815 // Succ Succ /|
816 // / \ | \/ |
817 // U/ =V | == |
818 // / \ | / \|
819 // D E D E
820 // '=' : Branch taken for that CFG edge
821 // Cost in the first case is: P + V
822 // For this calculation, we always assume P > Qout. If Qout > P
823 // The result of this function will be ignored at the caller.
824 // Let F = SuccFreq - Qin
825 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
827 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
828 BranchProbability UProb = BestSuccSucc;
829 BranchProbability VProb = AdjustedSuccSumProb - UProb;
830 BlockFrequency F = SuccFreq - Qin;
831 BlockFrequency V = SuccFreq * VProb;
832 BlockFrequency QinU = std::min(Qin, F) * UProb;
833 BlockFrequency BaseCost = P + V;
834 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
835 return greaterWithBias(BaseCost, DupCost, EntryFreq);
837 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
838 BranchProbability VProb = AdjustedSuccSumProb - UProb;
839 BlockFrequency U = SuccFreq * UProb;
840 BlockFrequency V = SuccFreq * VProb;
841 BlockFrequency F = SuccFreq - Qin;
842 // If there is a post-dominating successor, here is the calculation:
843 // BB BB BB BB
844 // | \Qout | \ | \Qout | \
845 // |P C | = |P C | =
846 // = C' |P C = C' |P C
847 // | /Qin | | | /Qin | |
848 // | / | C' (+Succ) | / | C' (+Succ)
849 // Succ Succ /| Succ Succ /|
850 // | \ V | \/ | | \ V | \/ |
851 // |U \ |U /\ =? |U = |U /\ |
852 // = D = = =?| | D | = =|
853 // | / |/ D | / |/ D
854 // | / | / | = | /
855 // |/ | / |/ | =
856 // Dom Dom Dom Dom
857 // '=' : Branch taken for that CFG edge
858 // The cost for taken branches in the first case is P + U
859 // Let F = SuccFreq - Qin
860 // The cost in the second case (assuming independence), given the layout:
861 // BB, Succ, (C+Succ), D, Dom or the layout:
862 // BB, Succ, D, Dom, (C+Succ)
863 // is Qout + max(F, Qin) * U + min(F, Qin)
864 // compare P + U vs Qout + P * U + Qin.
866 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
868 // For the 3rd case, the cost is P + 2 * V
869 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
870 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
871 if (UProb > AdjustedSuccSumProb / 2 &&
872 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
873 Chain, BlockFilter))
874 // Cases 3 & 4
875 return greaterWithBias(
876 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
877 EntryFreq);
878 // Cases 1 & 2
879 return greaterWithBias((P + U),
880 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
881 std::max(Qin, F) * UProb),
882 EntryFreq);
885 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
886 /// successors form the lower part of a trellis. A successor set S forms the
887 /// lower part of a trellis if all of the predecessors of S are either in S or
888 /// have all of S as successors. We ignore trellises where BB doesn't have 2
889 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
890 /// are very uncommon and complex to compute optimally. Allowing edges within S
891 /// is not strictly a trellis, but the same algorithm works, so we allow it.
892 bool MachineBlockPlacement::isTrellis(
893 const MachineBasicBlock *BB,
894 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
895 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
896 // Technically BB could form a trellis with branching factor higher than 2.
897 // But that's extremely uncommon.
898 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
899 return false;
901 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
902 BB->succ_end());
903 // To avoid reviewing the same predecessors twice.
904 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
906 for (MachineBasicBlock *Succ : ViableSuccs) {
907 int PredCount = 0;
908 for (auto SuccPred : Succ->predecessors()) {
909 // Allow triangle successors, but don't count them.
910 if (Successors.count(SuccPred)) {
911 // Make sure that it is actually a triangle.
912 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
913 if (!Successors.count(CheckSucc))
914 return false;
915 continue;
917 const BlockChain *PredChain = BlockToChain[SuccPred];
918 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
919 PredChain == &Chain || PredChain == BlockToChain[Succ])
920 continue;
921 ++PredCount;
922 // Perform the successor check only once.
923 if (!SeenPreds.insert(SuccPred).second)
924 continue;
925 if (!hasSameSuccessors(*SuccPred, Successors))
926 return false;
928 // If one of the successors has only BB as a predecessor, it is not a
929 // trellis.
930 if (PredCount < 1)
931 return false;
933 return true;
936 /// Pick the highest total weight pair of edges that can both be laid out.
937 /// The edges in \p Edges[0] are assumed to have a different destination than
938 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
939 /// the individual highest weight edges to the 2 different destinations, or in
940 /// case of a conflict, one of them should be replaced with a 2nd best edge.
941 std::pair<MachineBlockPlacement::WeightedEdge,
942 MachineBlockPlacement::WeightedEdge>
943 MachineBlockPlacement::getBestNonConflictingEdges(
944 const MachineBasicBlock *BB,
945 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
946 Edges) {
947 // Sort the edges, and then for each successor, find the best incoming
948 // predecessor. If the best incoming predecessors aren't the same,
949 // then that is clearly the best layout. If there is a conflict, one of the
950 // successors will have to fallthrough from the second best predecessor. We
951 // compare which combination is better overall.
953 // Sort for highest frequency.
954 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
956 llvm::stable_sort(Edges[0], Cmp);
957 llvm::stable_sort(Edges[1], Cmp);
958 auto BestA = Edges[0].begin();
959 auto BestB = Edges[1].begin();
960 // Arrange for the correct answer to be in BestA and BestB
961 // If the 2 best edges don't conflict, the answer is already there.
962 if (BestA->Src == BestB->Src) {
963 // Compare the total fallthrough of (Best + Second Best) for both pairs
964 auto SecondBestA = std::next(BestA);
965 auto SecondBestB = std::next(BestB);
966 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
967 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
968 if (BestAScore < BestBScore)
969 BestA = SecondBestA;
970 else
971 BestB = SecondBestB;
973 // Arrange for the BB edge to be in BestA if it exists.
974 if (BestB->Src == BB)
975 std::swap(BestA, BestB);
976 return std::make_pair(*BestA, *BestB);
979 /// Get the best successor from \p BB based on \p BB being part of a trellis.
980 /// We only handle trellises with 2 successors, so the algorithm is
981 /// straightforward: Find the best pair of edges that don't conflict. We find
982 /// the best incoming edge for each successor in the trellis. If those conflict,
983 /// we consider which of them should be replaced with the second best.
984 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
985 /// comes from \p BB, it will be in \p BestEdges[0]
986 MachineBlockPlacement::BlockAndTailDupResult
987 MachineBlockPlacement::getBestTrellisSuccessor(
988 const MachineBasicBlock *BB,
989 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
990 BranchProbability AdjustedSumProb, const BlockChain &Chain,
991 const BlockFilterSet *BlockFilter) {
993 BlockAndTailDupResult Result = {nullptr, false};
994 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
995 BB->succ_end());
997 // We assume size 2 because it's common. For general n, we would have to do
998 // the Hungarian algorithm, but it's not worth the complexity because more
999 // than 2 successors is fairly uncommon, and a trellis even more so.
1000 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1001 return Result;
1003 // Collect the edge frequencies of all edges that form the trellis.
1004 SmallVector<WeightedEdge, 8> Edges[2];
1005 int SuccIndex = 0;
1006 for (auto Succ : ViableSuccs) {
1007 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1008 // Skip any placed predecessors that are not BB
1009 if (SuccPred != BB)
1010 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1011 BlockToChain[SuccPred] == &Chain ||
1012 BlockToChain[SuccPred] == BlockToChain[Succ])
1013 continue;
1014 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1015 MBPI->getEdgeProbability(SuccPred, Succ);
1016 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1018 ++SuccIndex;
1021 // Pick the best combination of 2 edges from all the edges in the trellis.
1022 WeightedEdge BestA, BestB;
1023 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1025 if (BestA.Src != BB) {
1026 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1027 // we shouldn't choose any successor. We've already looked and there's a
1028 // better fallthrough edge for all the successors.
1029 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1030 return Result;
1033 // Did we pick the triangle edge? If tail-duplication is profitable, do
1034 // that instead. Otherwise merge the triangle edge now while we know it is
1035 // optimal.
1036 if (BestA.Dest == BestB.Src) {
1037 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1038 // would be better.
1039 MachineBasicBlock *Succ1 = BestA.Dest;
1040 MachineBasicBlock *Succ2 = BestB.Dest;
1041 // Check to see if tail-duplication would be profitable.
1042 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1043 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1044 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1045 Chain, BlockFilter)) {
1046 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1047 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1048 dbgs() << " Selected: " << getBlockName(Succ2)
1049 << ", probability: " << Succ2Prob
1050 << " (Tail Duplicate)\n");
1051 Result.BB = Succ2;
1052 Result.ShouldTailDup = true;
1053 return Result;
1056 // We have already computed the optimal edge for the other side of the
1057 // trellis.
1058 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1060 auto TrellisSucc = BestA.Dest;
1061 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1062 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1063 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1064 << ", probability: " << SuccProb << " (Trellis)\n");
1065 Result.BB = TrellisSucc;
1066 return Result;
1069 /// When the option allowTailDupPlacement() is on, this method checks if the
1070 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1071 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1072 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1073 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1074 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1075 if (!shouldTailDuplicate(Succ))
1076 return false;
1078 // For CFG checking.
1079 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1080 BB->succ_end());
1081 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1082 // Make sure all unplaced and unfiltered predecessors can be
1083 // tail-duplicated into.
1084 // Skip any blocks that are already placed or not in this loop.
1085 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1086 || BlockToChain[Pred] == &Chain)
1087 continue;
1088 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1089 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1090 // This will result in a trellis after tail duplication, so we don't
1091 // need to copy Succ into this predecessor. In the presence
1092 // of a trellis tail duplication can continue to be profitable.
1093 // For example:
1094 // A A
1095 // |\ |\
1096 // | \ | \
1097 // | C | C+BB
1098 // | / | |
1099 // |/ | |
1100 // BB => BB |
1101 // |\ |\/|
1102 // | \ |/\|
1103 // | D | D
1104 // | / | /
1105 // |/ |/
1106 // Succ Succ
1108 // After BB was duplicated into C, the layout looks like the one on the
1109 // right. BB and C now have the same successors. When considering
1110 // whether Succ can be duplicated into all its unplaced predecessors, we
1111 // ignore C.
1112 // We can do this because C already has a profitable fallthrough, namely
1113 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1114 // duplication and for this test.
1116 // This allows trellises to be laid out in 2 separate chains
1117 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1118 // because it allows the creation of 2 fallthrough paths with links
1119 // between them, and we correctly identify the best layout for these
1120 // CFGs. We want to extend trellises that the user created in addition
1121 // to trellises created by tail-duplication, so we just look for the
1122 // CFG.
1123 continue;
1124 return false;
1127 return true;
1130 /// Find chains of triangles where we believe it would be profitable to
1131 /// tail-duplicate them all, but a local analysis would not find them.
1132 /// There are 3 ways this can be profitable:
1133 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1134 /// longer chains)
1135 /// 2) The chains are statically correlated. Branch probabilities have a very
1136 /// U-shaped distribution.
1137 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1138 /// If the branches in a chain are likely to be from the same side of the
1139 /// distribution as their predecessor, but are independent at runtime, this
1140 /// transformation is profitable. (Because the cost of being wrong is a small
1141 /// fixed cost, unlike the standard triangle layout where the cost of being
1142 /// wrong scales with the # of triangles.)
1143 /// 3) The chains are dynamically correlated. If the probability that a previous
1144 /// branch was taken positively influences whether the next branch will be
1145 /// taken
1146 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1147 void MachineBlockPlacement::precomputeTriangleChains() {
1148 struct TriangleChain {
1149 std::vector<MachineBasicBlock *> Edges;
1151 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1152 : Edges({src, dst}) {}
1154 void append(MachineBasicBlock *dst) {
1155 assert(getKey()->isSuccessor(dst) &&
1156 "Attempting to append a block that is not a successor.");
1157 Edges.push_back(dst);
1160 unsigned count() const { return Edges.size() - 1; }
1162 MachineBasicBlock *getKey() const {
1163 return Edges.back();
1167 if (TriangleChainCount == 0)
1168 return;
1170 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1171 // Map from last block to the chain that contains it. This allows us to extend
1172 // chains as we find new triangles.
1173 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1174 for (MachineBasicBlock &BB : *F) {
1175 // If BB doesn't have 2 successors, it doesn't start a triangle.
1176 if (BB.succ_size() != 2)
1177 continue;
1178 MachineBasicBlock *PDom = nullptr;
1179 for (MachineBasicBlock *Succ : BB.successors()) {
1180 if (!MPDT->dominates(Succ, &BB))
1181 continue;
1182 PDom = Succ;
1183 break;
1185 // If BB doesn't have a post-dominating successor, it doesn't form a
1186 // triangle.
1187 if (PDom == nullptr)
1188 continue;
1189 // If PDom has a hint that it is low probability, skip this triangle.
1190 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1191 continue;
1192 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1193 // we're looking for.
1194 if (!shouldTailDuplicate(PDom))
1195 continue;
1196 bool CanTailDuplicate = true;
1197 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1198 // isn't the kind of triangle we're looking for.
1199 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1200 if (Pred == &BB)
1201 continue;
1202 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1203 CanTailDuplicate = false;
1204 break;
1207 // If we can't tail-duplicate PDom to its predecessors, then skip this
1208 // triangle.
1209 if (!CanTailDuplicate)
1210 continue;
1212 // Now we have an interesting triangle. Insert it if it's not part of an
1213 // existing chain.
1214 // Note: This cannot be replaced with a call insert() or emplace() because
1215 // the find key is BB, but the insert/emplace key is PDom.
1216 auto Found = TriangleChainMap.find(&BB);
1217 // If it is, remove the chain from the map, grow it, and put it back in the
1218 // map with the end as the new key.
1219 if (Found != TriangleChainMap.end()) {
1220 TriangleChain Chain = std::move(Found->second);
1221 TriangleChainMap.erase(Found);
1222 Chain.append(PDom);
1223 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1224 } else {
1225 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1226 assert(InsertResult.second && "Block seen twice.");
1227 (void)InsertResult;
1231 // Iterating over a DenseMap is safe here, because the only thing in the body
1232 // of the loop is inserting into another DenseMap (ComputedEdges).
1233 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1234 for (auto &ChainPair : TriangleChainMap) {
1235 TriangleChain &Chain = ChainPair.second;
1236 // Benchmarking has shown that due to branch correlation duplicating 2 or
1237 // more triangles is profitable, despite the calculations assuming
1238 // independence.
1239 if (Chain.count() < TriangleChainCount)
1240 continue;
1241 MachineBasicBlock *dst = Chain.Edges.back();
1242 Chain.Edges.pop_back();
1243 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1244 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1245 << getBlockName(dst)
1246 << " as pre-computed based on triangles.\n");
1248 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1249 assert(InsertResult.second && "Block seen twice.");
1250 (void)InsertResult;
1252 dst = src;
1257 // When profile is not present, return the StaticLikelyProb.
1258 // When profile is available, we need to handle the triangle-shape CFG.
1259 static BranchProbability getLayoutSuccessorProbThreshold(
1260 const MachineBasicBlock *BB) {
1261 if (!BB->getParent()->getFunction().hasProfileData())
1262 return BranchProbability(StaticLikelyProb, 100);
1263 if (BB->succ_size() == 2) {
1264 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1265 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1266 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1267 /* See case 1 below for the cost analysis. For BB->Succ to
1268 * be taken with smaller cost, the following needs to hold:
1269 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1270 * So the threshold T in the calculation below
1271 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1272 * So T / (1 - T) = 2, Yielding T = 2/3
1273 * Also adding user specified branch bias, we have
1274 * T = (2/3)*(ProfileLikelyProb/50)
1275 * = (2*ProfileLikelyProb)/150)
1277 return BranchProbability(2 * ProfileLikelyProb, 150);
1280 return BranchProbability(ProfileLikelyProb, 100);
1283 /// Checks to see if the layout candidate block \p Succ has a better layout
1284 /// predecessor than \c BB. If yes, returns true.
1285 /// \p SuccProb: The probability adjusted for only remaining blocks.
1286 /// Only used for logging
1287 /// \p RealSuccProb: The un-adjusted probability.
1288 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1289 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1290 /// considered
1291 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1292 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1293 const BlockChain &SuccChain, BranchProbability SuccProb,
1294 BranchProbability RealSuccProb, const BlockChain &Chain,
1295 const BlockFilterSet *BlockFilter) {
1297 // There isn't a better layout when there are no unscheduled predecessors.
1298 if (SuccChain.UnscheduledPredecessors == 0)
1299 return false;
1301 // There are two basic scenarios here:
1302 // -------------------------------------
1303 // Case 1: triangular shape CFG (if-then):
1304 // BB
1305 // | \
1306 // | \
1307 // | Pred
1308 // | /
1309 // Succ
1310 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1311 // set Succ as the layout successor of BB. Picking Succ as BB's
1312 // successor breaks the CFG constraints (FIXME: define these constraints).
1313 // With this layout, Pred BB
1314 // is forced to be outlined, so the overall cost will be cost of the
1315 // branch taken from BB to Pred, plus the cost of back taken branch
1316 // from Pred to Succ, as well as the additional cost associated
1317 // with the needed unconditional jump instruction from Pred To Succ.
1319 // The cost of the topological order layout is the taken branch cost
1320 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1321 // must hold:
1322 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1323 // < freq(BB->Succ) * taken_branch_cost.
1324 // Ignoring unconditional jump cost, we get
1325 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1326 // prob(BB->Succ) > 2 * prob(BB->Pred)
1328 // When real profile data is available, we can precisely compute the
1329 // probability threshold that is needed for edge BB->Succ to be considered.
1330 // Without profile data, the heuristic requires the branch bias to be
1331 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1332 // -----------------------------------------------------------------
1333 // Case 2: diamond like CFG (if-then-else):
1334 // S
1335 // / \
1336 // | \
1337 // BB Pred
1338 // \ /
1339 // Succ
1340 // ..
1342 // The current block is BB and edge BB->Succ is now being evaluated.
1343 // Note that edge S->BB was previously already selected because
1344 // prob(S->BB) > prob(S->Pred).
1345 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1346 // choose Pred, we will have a topological ordering as shown on the left
1347 // in the picture below. If we choose Succ, we have the solution as shown
1348 // on the right:
1350 // topo-order:
1352 // S----- ---S
1353 // | | | |
1354 // ---BB | | BB
1355 // | | | |
1356 // | Pred-- | Succ--
1357 // | | | |
1358 // ---Succ ---Pred--
1360 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1361 // = freq(S->Pred) + freq(S->BB)
1363 // If we have profile data (i.e, branch probabilities can be trusted), the
1364 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1365 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1366 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1367 // means the cost of topological order is greater.
1368 // When profile data is not available, however, we need to be more
1369 // conservative. If the branch prediction is wrong, breaking the topo-order
1370 // will actually yield a layout with large cost. For this reason, we need
1371 // strong biased branch at block S with Prob(S->BB) in order to select
1372 // BB->Succ. This is equivalent to looking the CFG backward with backward
1373 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1374 // profile data).
1375 // --------------------------------------------------------------------------
1376 // Case 3: forked diamond
1377 // S
1378 // / \
1379 // / \
1380 // BB Pred
1381 // | \ / |
1382 // | \ / |
1383 // | X |
1384 // | / \ |
1385 // | / \ |
1386 // S1 S2
1388 // The current block is BB and edge BB->S1 is now being evaluated.
1389 // As above S->BB was already selected because
1390 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1392 // topo-order:
1394 // S-------| ---S
1395 // | | | |
1396 // ---BB | | BB
1397 // | | | |
1398 // | Pred----| | S1----
1399 // | | | |
1400 // --(S1 or S2) ---Pred--
1401 // |
1402 // S2
1404 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1405 // + min(freq(Pred->S1), freq(Pred->S2))
1406 // Non-topo-order cost:
1407 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1408 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1409 // is 0. Then the non topo layout is better when
1410 // freq(S->Pred) < freq(BB->S1).
1411 // This is exactly what is checked below.
1412 // Note there are other shapes that apply (Pred may not be a single block,
1413 // but they all fit this general pattern.)
1414 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1416 // Make sure that a hot successor doesn't have a globally more
1417 // important predecessor.
1418 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1419 bool BadCFGConflict = false;
1421 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1422 if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1423 (BlockFilter && !BlockFilter->count(Pred)) ||
1424 BlockToChain[Pred] == &Chain ||
1425 // This check is redundant except for look ahead. This function is
1426 // called for lookahead by isProfitableToTailDup when BB hasn't been
1427 // placed yet.
1428 (Pred == BB))
1429 continue;
1430 // Do backward checking.
1431 // For all cases above, we need a backward checking to filter out edges that
1432 // are not 'strongly' biased.
1433 // BB Pred
1434 // \ /
1435 // Succ
1436 // We select edge BB->Succ if
1437 // freq(BB->Succ) > freq(Succ) * HotProb
1438 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1439 // HotProb
1440 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1441 // Case 1 is covered too, because the first equation reduces to:
1442 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1443 BlockFrequency PredEdgeFreq =
1444 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1445 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1446 BadCFGConflict = true;
1447 break;
1451 if (BadCFGConflict) {
1452 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1453 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1454 return true;
1457 return false;
1460 /// Select the best successor for a block.
1462 /// This looks across all successors of a particular block and attempts to
1463 /// select the "best" one to be the layout successor. It only considers direct
1464 /// successors which also pass the block filter. It will attempt to avoid
1465 /// breaking CFG structure, but cave and break such structures in the case of
1466 /// very hot successor edges.
1468 /// \returns The best successor block found, or null if none are viable, along
1469 /// with a boolean indicating if tail duplication is necessary.
1470 MachineBlockPlacement::BlockAndTailDupResult
1471 MachineBlockPlacement::selectBestSuccessor(
1472 const MachineBasicBlock *BB, const BlockChain &Chain,
1473 const BlockFilterSet *BlockFilter) {
1474 const BranchProbability HotProb(StaticLikelyProb, 100);
1476 BlockAndTailDupResult BestSucc = { nullptr, false };
1477 auto BestProb = BranchProbability::getZero();
1479 SmallVector<MachineBasicBlock *, 4> Successors;
1480 auto AdjustedSumProb =
1481 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1483 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1484 << "\n");
1486 // if we already precomputed the best successor for BB, return that if still
1487 // applicable.
1488 auto FoundEdge = ComputedEdges.find(BB);
1489 if (FoundEdge != ComputedEdges.end()) {
1490 MachineBasicBlock *Succ = FoundEdge->second.BB;
1491 ComputedEdges.erase(FoundEdge);
1492 BlockChain *SuccChain = BlockToChain[Succ];
1493 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1494 SuccChain != &Chain && Succ == *SuccChain->begin())
1495 return FoundEdge->second;
1498 // if BB is part of a trellis, Use the trellis to determine the optimal
1499 // fallthrough edges
1500 if (isTrellis(BB, Successors, Chain, BlockFilter))
1501 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1502 BlockFilter);
1504 // For blocks with CFG violations, we may be able to lay them out anyway with
1505 // tail-duplication. We keep this vector so we can perform the probability
1506 // calculations the minimum number of times.
1507 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1508 DupCandidates;
1509 for (MachineBasicBlock *Succ : Successors) {
1510 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1511 BranchProbability SuccProb =
1512 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1514 BlockChain &SuccChain = *BlockToChain[Succ];
1515 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1516 // predecessor that yields lower global cost.
1517 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1518 Chain, BlockFilter)) {
1519 // If tail duplication would make Succ profitable, place it.
1520 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1521 DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1522 continue;
1525 LLVM_DEBUG(
1526 dbgs() << " Candidate: " << getBlockName(Succ)
1527 << ", probability: " << SuccProb
1528 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1529 << "\n");
1531 if (BestSucc.BB && BestProb >= SuccProb) {
1532 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1533 continue;
1536 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1537 BestSucc.BB = Succ;
1538 BestProb = SuccProb;
1540 // Handle the tail duplication candidates in order of decreasing probability.
1541 // Stop at the first one that is profitable. Also stop if they are less
1542 // profitable than BestSucc. Position is important because we preserve it and
1543 // prefer first best match. Here we aren't comparing in order, so we capture
1544 // the position instead.
1545 llvm::stable_sort(DupCandidates,
1546 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1547 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1548 return std::get<0>(L) > std::get<0>(R);
1550 for (auto &Tup : DupCandidates) {
1551 BranchProbability DupProb;
1552 MachineBasicBlock *Succ;
1553 std::tie(DupProb, Succ) = Tup;
1554 if (DupProb < BestProb)
1555 break;
1556 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1557 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1558 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1559 << ", probability: " << DupProb
1560 << " (Tail Duplicate)\n");
1561 BestSucc.BB = Succ;
1562 BestSucc.ShouldTailDup = true;
1563 break;
1567 if (BestSucc.BB)
1568 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1570 return BestSucc;
1573 /// Select the best block from a worklist.
1575 /// This looks through the provided worklist as a list of candidate basic
1576 /// blocks and select the most profitable one to place. The definition of
1577 /// profitable only really makes sense in the context of a loop. This returns
1578 /// the most frequently visited block in the worklist, which in the case of
1579 /// a loop, is the one most desirable to be physically close to the rest of the
1580 /// loop body in order to improve i-cache behavior.
1582 /// \returns The best block found, or null if none are viable.
1583 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1584 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1585 // Once we need to walk the worklist looking for a candidate, cleanup the
1586 // worklist of already placed entries.
1587 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1588 // some code complexity) into the loop below.
1589 WorkList.erase(llvm::remove_if(WorkList,
1590 [&](MachineBasicBlock *BB) {
1591 return BlockToChain.lookup(BB) == &Chain;
1593 WorkList.end());
1595 if (WorkList.empty())
1596 return nullptr;
1598 bool IsEHPad = WorkList[0]->isEHPad();
1600 MachineBasicBlock *BestBlock = nullptr;
1601 BlockFrequency BestFreq;
1602 for (MachineBasicBlock *MBB : WorkList) {
1603 assert(MBB->isEHPad() == IsEHPad &&
1604 "EHPad mismatch between block and work list.");
1606 BlockChain &SuccChain = *BlockToChain[MBB];
1607 if (&SuccChain == &Chain)
1608 continue;
1610 assert(SuccChain.UnscheduledPredecessors == 0 &&
1611 "Found CFG-violating block");
1613 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1614 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1615 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1617 // For ehpad, we layout the least probable first as to avoid jumping back
1618 // from least probable landingpads to more probable ones.
1620 // FIXME: Using probability is probably (!) not the best way to achieve
1621 // this. We should probably have a more principled approach to layout
1622 // cleanup code.
1624 // The goal is to get:
1626 // +--------------------------+
1627 // | V
1628 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1630 // Rather than:
1632 // +-------------------------------------+
1633 // V |
1634 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1635 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1636 continue;
1638 BestBlock = MBB;
1639 BestFreq = CandidateFreq;
1642 return BestBlock;
1645 /// Retrieve the first unplaced basic block.
1647 /// This routine is called when we are unable to use the CFG to walk through
1648 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1649 /// We walk through the function's blocks in order, starting from the
1650 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1651 /// re-scanning the entire sequence on repeated calls to this routine.
1652 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1653 const BlockChain &PlacedChain,
1654 MachineFunction::iterator &PrevUnplacedBlockIt,
1655 const BlockFilterSet *BlockFilter) {
1656 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1657 ++I) {
1658 if (BlockFilter && !BlockFilter->count(&*I))
1659 continue;
1660 if (BlockToChain[&*I] != &PlacedChain) {
1661 PrevUnplacedBlockIt = I;
1662 // Now select the head of the chain to which the unplaced block belongs
1663 // as the block to place. This will force the entire chain to be placed,
1664 // and satisfies the requirements of merging chains.
1665 return *BlockToChain[&*I]->begin();
1668 return nullptr;
1671 void MachineBlockPlacement::fillWorkLists(
1672 const MachineBasicBlock *MBB,
1673 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1674 const BlockFilterSet *BlockFilter = nullptr) {
1675 BlockChain &Chain = *BlockToChain[MBB];
1676 if (!UpdatedPreds.insert(&Chain).second)
1677 return;
1679 assert(
1680 Chain.UnscheduledPredecessors == 0 &&
1681 "Attempting to place block with unscheduled predecessors in worklist.");
1682 for (MachineBasicBlock *ChainBB : Chain) {
1683 assert(BlockToChain[ChainBB] == &Chain &&
1684 "Block in chain doesn't match BlockToChain map.");
1685 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1686 if (BlockFilter && !BlockFilter->count(Pred))
1687 continue;
1688 if (BlockToChain[Pred] == &Chain)
1689 continue;
1690 ++Chain.UnscheduledPredecessors;
1694 if (Chain.UnscheduledPredecessors != 0)
1695 return;
1697 MachineBasicBlock *BB = *Chain.begin();
1698 if (BB->isEHPad())
1699 EHPadWorkList.push_back(BB);
1700 else
1701 BlockWorkList.push_back(BB);
1704 void MachineBlockPlacement::buildChain(
1705 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1706 BlockFilterSet *BlockFilter) {
1707 assert(HeadBB && "BB must not be null.\n");
1708 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1709 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1711 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1712 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1713 MachineBasicBlock *BB = *std::prev(Chain.end());
1714 while (true) {
1715 assert(BB && "null block found at end of chain in loop.");
1716 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1717 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1720 // Look for the best viable successor if there is one to place immediately
1721 // after this block.
1722 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1723 MachineBasicBlock* BestSucc = Result.BB;
1724 bool ShouldTailDup = Result.ShouldTailDup;
1725 if (allowTailDupPlacement())
1726 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1728 // If an immediate successor isn't available, look for the best viable
1729 // block among those we've identified as not violating the loop's CFG at
1730 // this point. This won't be a fallthrough, but it will increase locality.
1731 if (!BestSucc)
1732 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1733 if (!BestSucc)
1734 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1736 if (!BestSucc) {
1737 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1738 if (!BestSucc)
1739 break;
1741 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1742 "layout successor until the CFG reduces\n");
1745 // Placement may have changed tail duplication opportunities.
1746 // Check for that now.
1747 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1748 // If the chosen successor was duplicated into all its predecessors,
1749 // don't bother laying it out, just go round the loop again with BB as
1750 // the chain end.
1751 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1752 BlockFilter, PrevUnplacedBlockIt))
1753 continue;
1756 // Place this block, updating the datastructures to reflect its placement.
1757 BlockChain &SuccChain = *BlockToChain[BestSucc];
1758 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1759 // we selected a successor that didn't fit naturally into the CFG.
1760 SuccChain.UnscheduledPredecessors = 0;
1761 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1762 << getBlockName(BestSucc) << "\n");
1763 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1764 Chain.merge(BestSucc, &SuccChain);
1765 BB = *std::prev(Chain.end());
1768 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1769 << getBlockName(*Chain.begin()) << "\n");
1772 // If bottom of block BB has only one successor OldTop, in most cases it is
1773 // profitable to move it before OldTop, except the following case:
1775 // -->OldTop<-
1776 // | . |
1777 // | . |
1778 // | . |
1779 // ---Pred |
1780 // | |
1781 // BB-----
1783 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1784 // layout the other successor below it, so it can't reduce taken branch.
1785 // In this case we keep its original layout.
1786 bool
1787 MachineBlockPlacement::canMoveBottomBlockToTop(
1788 const MachineBasicBlock *BottomBlock,
1789 const MachineBasicBlock *OldTop) {
1790 if (BottomBlock->pred_size() != 1)
1791 return true;
1792 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1793 if (Pred->succ_size() != 2)
1794 return true;
1796 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1797 if (OtherBB == BottomBlock)
1798 OtherBB = *Pred->succ_rbegin();
1799 if (OtherBB == OldTop)
1800 return false;
1802 return true;
1805 // Find out the possible fall through frequence to the top of a loop.
1806 BlockFrequency
1807 MachineBlockPlacement::TopFallThroughFreq(
1808 const MachineBasicBlock *Top,
1809 const BlockFilterSet &LoopBlockSet) {
1810 BlockFrequency MaxFreq = 0;
1811 for (MachineBasicBlock *Pred : Top->predecessors()) {
1812 BlockChain *PredChain = BlockToChain[Pred];
1813 if (!LoopBlockSet.count(Pred) &&
1814 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1815 // Found a Pred block can be placed before Top.
1816 // Check if Top is the best successor of Pred.
1817 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1818 bool TopOK = true;
1819 for (MachineBasicBlock *Succ : Pred->successors()) {
1820 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1821 BlockChain *SuccChain = BlockToChain[Succ];
1822 // Check if Succ can be placed after Pred.
1823 // Succ should not be in any chain, or it is the head of some chain.
1824 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1825 (!SuccChain || Succ == *SuccChain->begin())) {
1826 TopOK = false;
1827 break;
1830 if (TopOK) {
1831 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1832 MBPI->getEdgeProbability(Pred, Top);
1833 if (EdgeFreq > MaxFreq)
1834 MaxFreq = EdgeFreq;
1838 return MaxFreq;
1841 // Compute the fall through gains when move NewTop before OldTop.
1843 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1844 // marked as "+" are increased fallthrough, this function computes
1846 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1848 // |
1849 // | -
1850 // V
1851 // --->OldTop
1852 // | .
1853 // | .
1854 // +| . +
1855 // | Pred --->
1856 // | |-
1857 // | V
1858 // --- NewTop <---
1859 // |-
1860 // V
1862 BlockFrequency
1863 MachineBlockPlacement::FallThroughGains(
1864 const MachineBasicBlock *NewTop,
1865 const MachineBasicBlock *OldTop,
1866 const MachineBasicBlock *ExitBB,
1867 const BlockFilterSet &LoopBlockSet) {
1868 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1869 BlockFrequency FallThrough2Exit = 0;
1870 if (ExitBB)
1871 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1872 MBPI->getEdgeProbability(NewTop, ExitBB);
1873 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1874 MBPI->getEdgeProbability(NewTop, OldTop);
1876 // Find the best Pred of NewTop.
1877 MachineBasicBlock *BestPred = nullptr;
1878 BlockFrequency FallThroughFromPred = 0;
1879 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1880 if (!LoopBlockSet.count(Pred))
1881 continue;
1882 BlockChain *PredChain = BlockToChain[Pred];
1883 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1884 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1885 MBPI->getEdgeProbability(Pred, NewTop);
1886 if (EdgeFreq > FallThroughFromPred) {
1887 FallThroughFromPred = EdgeFreq;
1888 BestPred = Pred;
1893 // If NewTop is not placed after Pred, another successor can be placed
1894 // after Pred.
1895 BlockFrequency NewFreq = 0;
1896 if (BestPred) {
1897 for (MachineBasicBlock *Succ : BestPred->successors()) {
1898 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1899 continue;
1900 if (ComputedEdges.find(Succ) != ComputedEdges.end())
1901 continue;
1902 BlockChain *SuccChain = BlockToChain[Succ];
1903 if ((SuccChain && (Succ != *SuccChain->begin())) ||
1904 (SuccChain == BlockToChain[BestPred]))
1905 continue;
1906 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1907 MBPI->getEdgeProbability(BestPred, Succ);
1908 if (EdgeFreq > NewFreq)
1909 NewFreq = EdgeFreq;
1911 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1912 MBPI->getEdgeProbability(BestPred, NewTop);
1913 if (NewFreq > OrigEdgeFreq) {
1914 // If NewTop is not the best successor of Pred, then Pred doesn't
1915 // fallthrough to NewTop. So there is no FallThroughFromPred and
1916 // NewFreq.
1917 NewFreq = 0;
1918 FallThroughFromPred = 0;
1922 BlockFrequency Result = 0;
1923 BlockFrequency Gains = BackEdgeFreq + NewFreq;
1924 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1925 FallThroughFromPred;
1926 if (Gains > Lost)
1927 Result = Gains - Lost;
1928 return Result;
1931 /// Helper function of findBestLoopTop. Find the best loop top block
1932 /// from predecessors of old top.
1934 /// Look for a block which is strictly better than the old top for laying
1935 /// out before the old top of the loop. This looks for only two patterns:
1937 /// 1. a block has only one successor, the old loop top
1939 /// Because such a block will always result in an unconditional jump,
1940 /// rotating it in front of the old top is always profitable.
1942 /// 2. a block has two successors, one is old top, another is exit
1943 /// and it has more than one predecessors
1945 /// If it is below one of its predecessors P, only P can fall through to
1946 /// it, all other predecessors need a jump to it, and another conditional
1947 /// jump to loop header. If it is moved before loop header, all its
1948 /// predecessors jump to it, then fall through to loop header. So all its
1949 /// predecessors except P can reduce one taken branch.
1950 /// At the same time, move it before old top increases the taken branch
1951 /// to loop exit block, so the reduced taken branch will be compared with
1952 /// the increased taken branch to the loop exit block.
1954 /// This pattern is enabled only when HasStaticProfileOnly is false.
1955 MachineBasicBlock *
1956 MachineBlockPlacement::findBestLoopTopHelper(
1957 MachineBasicBlock *OldTop,
1958 const MachineLoop &L,
1959 const BlockFilterSet &LoopBlockSet,
1960 bool HasStaticProfileOnly) {
1961 // Check that the header hasn't been fused with a preheader block due to
1962 // crazy branches. If it has, we need to start with the header at the top to
1963 // prevent pulling the preheader into the loop body.
1964 BlockChain &HeaderChain = *BlockToChain[OldTop];
1965 if (!LoopBlockSet.count(*HeaderChain.begin()))
1966 return OldTop;
1968 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
1969 << "\n");
1971 BlockFrequency BestGains = 0;
1972 MachineBasicBlock *BestPred = nullptr;
1973 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
1974 if (!LoopBlockSet.count(Pred))
1975 continue;
1976 if (Pred == L.getHeader())
1977 continue;
1978 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
1979 << Pred->succ_size() << " successors, ";
1980 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1981 if (Pred->succ_size() > 2)
1982 continue;
1984 if (!canMoveBottomBlockToTop(Pred, OldTop))
1985 continue;
1987 if (HasStaticProfileOnly) {
1988 // In plain mode we consider pattern 1 only.
1989 if (Pred->succ_size() > 1)
1990 continue;
1992 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1993 if (!BestPred || PredFreq > BestGains ||
1994 (!(PredFreq < BestGains) &&
1995 Pred->isLayoutSuccessor(OldTop))) {
1996 BestPred = Pred;
1997 BestGains = PredFreq;
1999 } else {
2000 // With profile information we also consider pattern 2.
2001 MachineBasicBlock *OtherBB = nullptr;
2002 if (Pred->succ_size() == 2) {
2003 OtherBB = *Pred->succ_begin();
2004 if (OtherBB == OldTop)
2005 OtherBB = *Pred->succ_rbegin();
2008 // And more sophisticated cost model.
2009 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2010 LoopBlockSet);
2011 if ((Gains > 0) && (Gains > BestGains ||
2012 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2013 BestPred = Pred;
2014 BestGains = Gains;
2019 // If no direct predecessor is fine, just use the loop header.
2020 if (!BestPred) {
2021 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2022 return OldTop;
2025 // Walk backwards through any straight line of predecessors.
2026 while (BestPred->pred_size() == 1 &&
2027 (*BestPred->pred_begin())->succ_size() == 1 &&
2028 *BestPred->pred_begin() != L.getHeader())
2029 BestPred = *BestPred->pred_begin();
2031 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2032 return BestPred;
2035 /// Find the best loop top block for layout in FDO mode.
2037 /// This function iteratively calls findBestLoopTopHelper, until no new better
2038 /// BB can be found.
2039 MachineBasicBlock *
2040 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2041 const BlockFilterSet &LoopBlockSet) {
2042 // Placing the latch block before the header may introduce an extra branch
2043 // that skips this block the first time the loop is executed, which we want
2044 // to avoid when optimising for size.
2045 // FIXME: in theory there is a case that does not introduce a new branch,
2046 // i.e. when the layout predecessor does not fallthrough to the loop header.
2047 // In practice this never happens though: there always seems to be a preheader
2048 // that can fallthrough and that is also placed before the header.
2049 if (F->getFunction().hasOptSize())
2050 return L.getHeader();
2052 MachineBasicBlock *OldTop = nullptr;
2053 MachineBasicBlock *NewTop = L.getHeader();
2054 while (NewTop != OldTop) {
2055 OldTop = NewTop;
2056 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2057 if (NewTop != OldTop)
2058 ComputedEdges[NewTop] = { OldTop, false };
2060 return NewTop;
2063 /// Find the best loop top block for layout in plain mode. It is less agressive
2064 /// than findBestLoopTop.
2066 /// Look for a block which is strictly better than the loop header for laying
2067 /// out at the top of the loop. This looks for one and only one pattern:
2068 /// a latch block with no conditional exit. This block will cause a conditional
2069 /// jump around it or will be the bottom of the loop if we lay it out in place,
2070 /// but if it doesn't end up at the bottom of the loop for any reason,
2071 /// rotation alone won't fix it. Because such a block will always result in an
2072 /// unconditional jump (for the backedge) rotating it in front of the loop
2073 /// header is always profitable.
2074 MachineBasicBlock *
2075 MachineBlockPlacement::findBestLoopTopNoProfile(
2076 const MachineLoop &L,
2077 const BlockFilterSet &LoopBlockSet) {
2078 // Placing the latch block before the header may introduce an extra branch
2079 // that skips this block the first time the loop is executed, which we want
2080 // to avoid when optimising for size.
2081 // FIXME: in theory there is a case that does not introduce a new branch,
2082 // i.e. when the layout predecessor does not fallthrough to the loop header.
2083 // In practice this never happens though: there always seems to be a preheader
2084 // that can fallthrough and that is also placed before the header.
2085 if (F->getFunction().hasOptSize())
2086 return L.getHeader();
2088 return findBestLoopTopHelper(L.getHeader(), L, LoopBlockSet, true);
2091 /// Find the best loop exiting block for layout.
2093 /// This routine implements the logic to analyze the loop looking for the best
2094 /// block to layout at the top of the loop. Typically this is done to maximize
2095 /// fallthrough opportunities.
2096 MachineBasicBlock *
2097 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2098 const BlockFilterSet &LoopBlockSet) {
2099 // We don't want to layout the loop linearly in all cases. If the loop header
2100 // is just a normal basic block in the loop, we want to look for what block
2101 // within the loop is the best one to layout at the top. However, if the loop
2102 // header has be pre-merged into a chain due to predecessors not having
2103 // analyzable branches, *and* the predecessor it is merged with is *not* part
2104 // of the loop, rotating the header into the middle of the loop will create
2105 // a non-contiguous range of blocks which is Very Bad. So start with the
2106 // header and only rotate if safe.
2107 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2108 if (!LoopBlockSet.count(*HeaderChain.begin()))
2109 return nullptr;
2111 BlockFrequency BestExitEdgeFreq;
2112 unsigned BestExitLoopDepth = 0;
2113 MachineBasicBlock *ExitingBB = nullptr;
2114 // If there are exits to outer loops, loop rotation can severely limit
2115 // fallthrough opportunities unless it selects such an exit. Keep a set of
2116 // blocks where rotating to exit with that block will reach an outer loop.
2117 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2119 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2120 << getBlockName(L.getHeader()) << "\n");
2121 for (MachineBasicBlock *MBB : L.getBlocks()) {
2122 BlockChain &Chain = *BlockToChain[MBB];
2123 // Ensure that this block is at the end of a chain; otherwise it could be
2124 // mid-way through an inner loop or a successor of an unanalyzable branch.
2125 if (MBB != *std::prev(Chain.end()))
2126 continue;
2128 // Now walk the successors. We need to establish whether this has a viable
2129 // exiting successor and whether it has a viable non-exiting successor.
2130 // We store the old exiting state and restore it if a viable looping
2131 // successor isn't found.
2132 MachineBasicBlock *OldExitingBB = ExitingBB;
2133 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2134 bool HasLoopingSucc = false;
2135 for (MachineBasicBlock *Succ : MBB->successors()) {
2136 if (Succ->isEHPad())
2137 continue;
2138 if (Succ == MBB)
2139 continue;
2140 BlockChain &SuccChain = *BlockToChain[Succ];
2141 // Don't split chains, either this chain or the successor's chain.
2142 if (&Chain == &SuccChain) {
2143 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2144 << getBlockName(Succ) << " (chain conflict)\n");
2145 continue;
2148 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2149 if (LoopBlockSet.count(Succ)) {
2150 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2151 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2152 HasLoopingSucc = true;
2153 continue;
2156 unsigned SuccLoopDepth = 0;
2157 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2158 SuccLoopDepth = ExitLoop->getLoopDepth();
2159 if (ExitLoop->contains(&L))
2160 BlocksExitingToOuterLoop.insert(MBB);
2163 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2164 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2165 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2166 << "] (";
2167 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2168 // Note that we bias this toward an existing layout successor to retain
2169 // incoming order in the absence of better information. The exit must have
2170 // a frequency higher than the current exit before we consider breaking
2171 // the layout.
2172 BranchProbability Bias(100 - ExitBlockBias, 100);
2173 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2174 ExitEdgeFreq > BestExitEdgeFreq ||
2175 (MBB->isLayoutSuccessor(Succ) &&
2176 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2177 BestExitEdgeFreq = ExitEdgeFreq;
2178 ExitingBB = MBB;
2182 if (!HasLoopingSucc) {
2183 // Restore the old exiting state, no viable looping successor was found.
2184 ExitingBB = OldExitingBB;
2185 BestExitEdgeFreq = OldBestExitEdgeFreq;
2188 // Without a candidate exiting block or with only a single block in the
2189 // loop, just use the loop header to layout the loop.
2190 if (!ExitingBB) {
2191 LLVM_DEBUG(
2192 dbgs() << " No other candidate exit blocks, using loop header\n");
2193 return nullptr;
2195 if (L.getNumBlocks() == 1) {
2196 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2197 return nullptr;
2200 // Also, if we have exit blocks which lead to outer loops but didn't select
2201 // one of them as the exiting block we are rotating toward, disable loop
2202 // rotation altogether.
2203 if (!BlocksExitingToOuterLoop.empty() &&
2204 !BlocksExitingToOuterLoop.count(ExitingBB))
2205 return nullptr;
2207 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2208 << "\n");
2209 return ExitingBB;
2212 /// Check if there is a fallthrough to loop header Top.
2214 /// 1. Look for a Pred that can be layout before Top.
2215 /// 2. Check if Top is the most possible successor of Pred.
2216 bool
2217 MachineBlockPlacement::hasViableTopFallthrough(
2218 const MachineBasicBlock *Top,
2219 const BlockFilterSet &LoopBlockSet) {
2220 for (MachineBasicBlock *Pred : Top->predecessors()) {
2221 BlockChain *PredChain = BlockToChain[Pred];
2222 if (!LoopBlockSet.count(Pred) &&
2223 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2224 // Found a Pred block can be placed before Top.
2225 // Check if Top is the best successor of Pred.
2226 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2227 bool TopOK = true;
2228 for (MachineBasicBlock *Succ : Pred->successors()) {
2229 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2230 BlockChain *SuccChain = BlockToChain[Succ];
2231 // Check if Succ can be placed after Pred.
2232 // Succ should not be in any chain, or it is the head of some chain.
2233 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2234 TopOK = false;
2235 break;
2238 if (TopOK)
2239 return true;
2242 return false;
2245 /// Attempt to rotate an exiting block to the bottom of the loop.
2247 /// Once we have built a chain, try to rotate it to line up the hot exit block
2248 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2249 /// branches. For example, if the loop has fallthrough into its header and out
2250 /// of its bottom already, don't rotate it.
2251 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2252 const MachineBasicBlock *ExitingBB,
2253 const BlockFilterSet &LoopBlockSet) {
2254 if (!ExitingBB)
2255 return;
2257 MachineBasicBlock *Top = *LoopChain.begin();
2258 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2260 // If ExitingBB is already the last one in a chain then nothing to do.
2261 if (Bottom == ExitingBB)
2262 return;
2264 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2266 // If the header has viable fallthrough, check whether the current loop
2267 // bottom is a viable exiting block. If so, bail out as rotating will
2268 // introduce an unnecessary branch.
2269 if (ViableTopFallthrough) {
2270 for (MachineBasicBlock *Succ : Bottom->successors()) {
2271 BlockChain *SuccChain = BlockToChain[Succ];
2272 if (!LoopBlockSet.count(Succ) &&
2273 (!SuccChain || Succ == *SuccChain->begin()))
2274 return;
2278 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2279 if (ExitIt == LoopChain.end())
2280 return;
2282 // Rotating a loop exit to the bottom when there is a fallthrough to top
2283 // trades the entry fallthrough for an exit fallthrough.
2284 // If there is no bottom->top edge, but the chosen exit block does have
2285 // a fallthrough, we break that fallthrough for nothing in return.
2287 // Let's consider an example. We have a built chain of basic blocks
2288 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2289 // By doing a rotation we get
2290 // Bk+1, ..., Bn, B1, ..., Bk
2291 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2292 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2293 // It might be compensated by fallthrough Bn -> B1.
2294 // So we have a condition to avoid creation of extra branch by loop rotation.
2295 // All below must be true to avoid loop rotation:
2296 // If there is a fallthrough to top (B1)
2297 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2298 // There is no fallthrough from bottom (Bn) to top (B1).
2299 // Please note that there is no exit fallthrough from Bn because we checked it
2300 // above.
2301 if (ViableTopFallthrough) {
2302 assert(std::next(ExitIt) != LoopChain.end() &&
2303 "Exit should not be last BB");
2304 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2305 if (ExitingBB->isSuccessor(NextBlockInChain))
2306 if (!Bottom->isSuccessor(Top))
2307 return;
2310 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2311 << " at bottom\n");
2312 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2315 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2317 /// With profile data, we can determine the cost in terms of missed fall through
2318 /// opportunities when rotating a loop chain and select the best rotation.
2319 /// Basically, there are three kinds of cost to consider for each rotation:
2320 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2321 /// the loop to the loop header.
2322 /// 2. The possibly missed fall through edges (if they exist) from the loop
2323 /// exits to BB out of the loop.
2324 /// 3. The missed fall through edge (if it exists) from the last BB to the
2325 /// first BB in the loop chain.
2326 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2327 /// We select the best rotation with the smallest cost.
2328 void MachineBlockPlacement::rotateLoopWithProfile(
2329 BlockChain &LoopChain, const MachineLoop &L,
2330 const BlockFilterSet &LoopBlockSet) {
2331 auto RotationPos = LoopChain.end();
2333 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2335 // A utility lambda that scales up a block frequency by dividing it by a
2336 // branch probability which is the reciprocal of the scale.
2337 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2338 unsigned Scale) -> BlockFrequency {
2339 if (Scale == 0)
2340 return 0;
2341 // Use operator / between BlockFrequency and BranchProbability to implement
2342 // saturating multiplication.
2343 return Freq / BranchProbability(1, Scale);
2346 // Compute the cost of the missed fall-through edge to the loop header if the
2347 // chain head is not the loop header. As we only consider natural loops with
2348 // single header, this computation can be done only once.
2349 BlockFrequency HeaderFallThroughCost(0);
2350 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2351 for (auto *Pred : ChainHeaderBB->predecessors()) {
2352 BlockChain *PredChain = BlockToChain[Pred];
2353 if (!LoopBlockSet.count(Pred) &&
2354 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2355 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2356 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2357 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2358 // If the predecessor has only an unconditional jump to the header, we
2359 // need to consider the cost of this jump.
2360 if (Pred->succ_size() == 1)
2361 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2362 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2366 // Here we collect all exit blocks in the loop, and for each exit we find out
2367 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2368 // as the sum of frequencies of exit edges we collect here, excluding the exit
2369 // edge from the tail of the loop chain.
2370 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2371 for (auto BB : LoopChain) {
2372 auto LargestExitEdgeProb = BranchProbability::getZero();
2373 for (auto *Succ : BB->successors()) {
2374 BlockChain *SuccChain = BlockToChain[Succ];
2375 if (!LoopBlockSet.count(Succ) &&
2376 (!SuccChain || Succ == *SuccChain->begin())) {
2377 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2378 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2381 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2382 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2383 ExitsWithFreq.emplace_back(BB, ExitFreq);
2387 // In this loop we iterate every block in the loop chain and calculate the
2388 // cost assuming the block is the head of the loop chain. When the loop ends,
2389 // we should have found the best candidate as the loop chain's head.
2390 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2391 EndIter = LoopChain.end();
2392 Iter != EndIter; Iter++, TailIter++) {
2393 // TailIter is used to track the tail of the loop chain if the block we are
2394 // checking (pointed by Iter) is the head of the chain.
2395 if (TailIter == LoopChain.end())
2396 TailIter = LoopChain.begin();
2398 auto TailBB = *TailIter;
2400 // Calculate the cost by putting this BB to the top.
2401 BlockFrequency Cost = 0;
2403 // If the current BB is the loop header, we need to take into account the
2404 // cost of the missed fall through edge from outside of the loop to the
2405 // header.
2406 if (Iter != LoopChain.begin())
2407 Cost += HeaderFallThroughCost;
2409 // Collect the loop exit cost by summing up frequencies of all exit edges
2410 // except the one from the chain tail.
2411 for (auto &ExitWithFreq : ExitsWithFreq)
2412 if (TailBB != ExitWithFreq.first)
2413 Cost += ExitWithFreq.second;
2415 // The cost of breaking the once fall-through edge from the tail to the top
2416 // of the loop chain. Here we need to consider three cases:
2417 // 1. If the tail node has only one successor, then we will get an
2418 // additional jmp instruction. So the cost here is (MisfetchCost +
2419 // JumpInstCost) * tail node frequency.
2420 // 2. If the tail node has two successors, then we may still get an
2421 // additional jmp instruction if the layout successor after the loop
2422 // chain is not its CFG successor. Note that the more frequently executed
2423 // jmp instruction will be put ahead of the other one. Assume the
2424 // frequency of those two branches are x and y, where x is the frequency
2425 // of the edge to the chain head, then the cost will be
2426 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2427 // 3. If the tail node has more than two successors (this rarely happens),
2428 // we won't consider any additional cost.
2429 if (TailBB->isSuccessor(*Iter)) {
2430 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2431 if (TailBB->succ_size() == 1)
2432 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2433 MisfetchCost + JumpInstCost);
2434 else if (TailBB->succ_size() == 2) {
2435 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2436 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2437 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2438 ? TailBBFreq * TailToHeadProb.getCompl()
2439 : TailToHeadFreq;
2440 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2441 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2445 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2446 << getBlockName(*Iter)
2447 << " to the top: " << Cost.getFrequency() << "\n");
2449 if (Cost < SmallestRotationCost) {
2450 SmallestRotationCost = Cost;
2451 RotationPos = Iter;
2455 if (RotationPos != LoopChain.end()) {
2456 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2457 << " to the top\n");
2458 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2462 /// Collect blocks in the given loop that are to be placed.
2464 /// When profile data is available, exclude cold blocks from the returned set;
2465 /// otherwise, collect all blocks in the loop.
2466 MachineBlockPlacement::BlockFilterSet
2467 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2468 BlockFilterSet LoopBlockSet;
2470 // Filter cold blocks off from LoopBlockSet when profile data is available.
2471 // Collect the sum of frequencies of incoming edges to the loop header from
2472 // outside. If we treat the loop as a super block, this is the frequency of
2473 // the loop. Then for each block in the loop, we calculate the ratio between
2474 // its frequency and the frequency of the loop block. When it is too small,
2475 // don't add it to the loop chain. If there are outer loops, then this block
2476 // will be merged into the first outer loop chain for which this block is not
2477 // cold anymore. This needs precise profile data and we only do this when
2478 // profile data is available.
2479 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2480 BlockFrequency LoopFreq(0);
2481 for (auto LoopPred : L.getHeader()->predecessors())
2482 if (!L.contains(LoopPred))
2483 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2484 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2486 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2487 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2488 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2489 continue;
2490 LoopBlockSet.insert(LoopBB);
2492 } else
2493 LoopBlockSet.insert(L.block_begin(), L.block_end());
2495 return LoopBlockSet;
2498 /// Forms basic block chains from the natural loop structures.
2500 /// These chains are designed to preserve the existing *structure* of the code
2501 /// as much as possible. We can then stitch the chains together in a way which
2502 /// both preserves the topological structure and minimizes taken conditional
2503 /// branches.
2504 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2505 // First recurse through any nested loops, building chains for those inner
2506 // loops.
2507 for (const MachineLoop *InnerLoop : L)
2508 buildLoopChains(*InnerLoop);
2510 assert(BlockWorkList.empty() &&
2511 "BlockWorkList not empty when starting to build loop chains.");
2512 assert(EHPadWorkList.empty() &&
2513 "EHPadWorkList not empty when starting to build loop chains.");
2514 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2516 // Check if we have profile data for this function. If yes, we will rotate
2517 // this loop by modeling costs more precisely which requires the profile data
2518 // for better layout.
2519 bool RotateLoopWithProfile =
2520 ForcePreciseRotationCost ||
2521 (PreciseRotationCost && F->getFunction().hasProfileData());
2523 // First check to see if there is an obviously preferable top block for the
2524 // loop. This will default to the header, but may end up as one of the
2525 // predecessors to the header if there is one which will result in strictly
2526 // fewer branches in the loop body.
2527 MachineBasicBlock *LoopTop =
2528 (RotateLoopWithProfile || F->getFunction().hasProfileData()) ?
2529 findBestLoopTop(L, LoopBlockSet) :
2530 findBestLoopTopNoProfile(L, LoopBlockSet);
2532 // If we selected just the header for the loop top, look for a potentially
2533 // profitable exit block in the event that rotating the loop can eliminate
2534 // branches by placing an exit edge at the bottom.
2536 // Loops are processed innermost to uttermost, make sure we clear
2537 // PreferredLoopExit before processing a new loop.
2538 PreferredLoopExit = nullptr;
2539 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2540 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
2542 BlockChain &LoopChain = *BlockToChain[LoopTop];
2544 // FIXME: This is a really lame way of walking the chains in the loop: we
2545 // walk the blocks, and use a set to prevent visiting a particular chain
2546 // twice.
2547 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2548 assert(LoopChain.UnscheduledPredecessors == 0 &&
2549 "LoopChain should not have unscheduled predecessors.");
2550 UpdatedPreds.insert(&LoopChain);
2552 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2553 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2555 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2557 if (RotateLoopWithProfile) {
2558 if (LoopTop == L.getHeader())
2559 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2560 } else
2561 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
2563 LLVM_DEBUG({
2564 // Crash at the end so we get all of the debugging output first.
2565 bool BadLoop = false;
2566 if (LoopChain.UnscheduledPredecessors) {
2567 BadLoop = true;
2568 dbgs() << "Loop chain contains a block without its preds placed!\n"
2569 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2570 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2572 for (MachineBasicBlock *ChainBB : LoopChain) {
2573 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2574 if (!LoopBlockSet.remove(ChainBB)) {
2575 // We don't mark the loop as bad here because there are real situations
2576 // where this can occur. For example, with an unanalyzable fallthrough
2577 // from a loop block to a non-loop block or vice versa.
2578 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2579 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2580 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2581 << " Bad block: " << getBlockName(ChainBB) << "\n";
2585 if (!LoopBlockSet.empty()) {
2586 BadLoop = true;
2587 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2588 dbgs() << "Loop contains blocks never placed into a chain!\n"
2589 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2590 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2591 << " Bad block: " << getBlockName(LoopBB) << "\n";
2593 assert(!BadLoop && "Detected problems with the placement of this loop.");
2596 BlockWorkList.clear();
2597 EHPadWorkList.clear();
2600 void MachineBlockPlacement::buildCFGChains() {
2601 // Ensure that every BB in the function has an associated chain to simplify
2602 // the assumptions of the remaining algorithm.
2603 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2604 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2605 ++FI) {
2606 MachineBasicBlock *BB = &*FI;
2607 BlockChain *Chain =
2608 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2609 // Also, merge any blocks which we cannot reason about and must preserve
2610 // the exact fallthrough behavior for.
2611 while (true) {
2612 Cond.clear();
2613 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2614 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2615 break;
2617 MachineFunction::iterator NextFI = std::next(FI);
2618 MachineBasicBlock *NextBB = &*NextFI;
2619 // Ensure that the layout successor is a viable block, as we know that
2620 // fallthrough is a possibility.
2621 assert(NextFI != FE && "Can't fallthrough past the last block.");
2622 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2623 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2624 << "\n");
2625 Chain->merge(NextBB, nullptr);
2626 #ifndef NDEBUG
2627 BlocksWithUnanalyzableExits.insert(&*BB);
2628 #endif
2629 FI = NextFI;
2630 BB = NextBB;
2634 // Build any loop-based chains.
2635 PreferredLoopExit = nullptr;
2636 for (MachineLoop *L : *MLI)
2637 buildLoopChains(*L);
2639 assert(BlockWorkList.empty() &&
2640 "BlockWorkList should be empty before building final chain.");
2641 assert(EHPadWorkList.empty() &&
2642 "EHPadWorkList should be empty before building final chain.");
2644 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2645 for (MachineBasicBlock &MBB : *F)
2646 fillWorkLists(&MBB, UpdatedPreds);
2648 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2649 buildChain(&F->front(), FunctionChain);
2651 #ifndef NDEBUG
2652 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2653 #endif
2654 LLVM_DEBUG({
2655 // Crash at the end so we get all of the debugging output first.
2656 bool BadFunc = false;
2657 FunctionBlockSetType FunctionBlockSet;
2658 for (MachineBasicBlock &MBB : *F)
2659 FunctionBlockSet.insert(&MBB);
2661 for (MachineBasicBlock *ChainBB : FunctionChain)
2662 if (!FunctionBlockSet.erase(ChainBB)) {
2663 BadFunc = true;
2664 dbgs() << "Function chain contains a block not in the function!\n"
2665 << " Bad block: " << getBlockName(ChainBB) << "\n";
2668 if (!FunctionBlockSet.empty()) {
2669 BadFunc = true;
2670 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2671 dbgs() << "Function contains blocks never placed into a chain!\n"
2672 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2674 assert(!BadFunc && "Detected problems with the block placement.");
2677 // Splice the blocks into place.
2678 MachineFunction::iterator InsertPos = F->begin();
2679 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2680 for (MachineBasicBlock *ChainBB : FunctionChain) {
2681 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2682 : " ... ")
2683 << getBlockName(ChainBB) << "\n");
2684 if (InsertPos != MachineFunction::iterator(ChainBB))
2685 F->splice(InsertPos, ChainBB);
2686 else
2687 ++InsertPos;
2689 // Update the terminator of the previous block.
2690 if (ChainBB == *FunctionChain.begin())
2691 continue;
2692 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2694 // FIXME: It would be awesome of updateTerminator would just return rather
2695 // than assert when the branch cannot be analyzed in order to remove this
2696 // boiler plate.
2697 Cond.clear();
2698 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2700 #ifndef NDEBUG
2701 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2702 // Given the exact block placement we chose, we may actually not _need_ to
2703 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2704 // do that at this point is a bug.
2705 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2706 !PrevBB->canFallThrough()) &&
2707 "Unexpected block with un-analyzable fallthrough!");
2708 Cond.clear();
2709 TBB = FBB = nullptr;
2711 #endif
2713 // The "PrevBB" is not yet updated to reflect current code layout, so,
2714 // o. it may fall-through to a block without explicit "goto" instruction
2715 // before layout, and no longer fall-through it after layout; or
2716 // o. just opposite.
2718 // analyzeBranch() may return erroneous value for FBB when these two
2719 // situations take place. For the first scenario FBB is mistakenly set NULL;
2720 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2721 // mistakenly pointing to "*BI".
2722 // Thus, if the future change needs to use FBB before the layout is set, it
2723 // has to correct FBB first by using the code similar to the following:
2725 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2726 // PrevBB->updateTerminator();
2727 // Cond.clear();
2728 // TBB = FBB = nullptr;
2729 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2730 // // FIXME: This should never take place.
2731 // TBB = FBB = nullptr;
2732 // }
2733 // }
2734 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2735 PrevBB->updateTerminator();
2738 // Fixup the last block.
2739 Cond.clear();
2740 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2741 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2742 F->back().updateTerminator();
2744 BlockWorkList.clear();
2745 EHPadWorkList.clear();
2748 void MachineBlockPlacement::optimizeBranches() {
2749 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2750 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2752 // Now that all the basic blocks in the chain have the proper layout,
2753 // make a final call to AnalyzeBranch with AllowModify set.
2754 // Indeed, the target may be able to optimize the branches in a way we
2755 // cannot because all branches may not be analyzable.
2756 // E.g., the target may be able to remove an unconditional branch to
2757 // a fallthrough when it occurs after predicated terminators.
2758 SmallVector<MachineBasicBlock*, 4> EmptyBB;
2759 for (MachineBasicBlock *ChainBB : FunctionChain) {
2760 Cond.clear();
2761 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2762 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2763 // If PrevBB has a two-way branch, try to re-order the branches
2764 // such that we branch to the successor with higher probability first.
2765 if (TBB && !Cond.empty() && FBB &&
2766 MBPI->getEdgeProbability(ChainBB, FBB) >
2767 MBPI->getEdgeProbability(ChainBB, TBB) &&
2768 !TII->reverseBranchCondition(Cond)) {
2769 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2770 << getBlockName(ChainBB) << "\n");
2771 LLVM_DEBUG(dbgs() << " Edge probability: "
2772 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2773 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2774 DebugLoc dl; // FIXME: this is nowhere
2775 TII->removeBranch(*ChainBB);
2776 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2777 ChainBB->updateTerminator();
2778 } else if (Cond.empty() && TBB && ChainBB != TBB && !TBB->empty() &&
2779 !TBB->canFallThrough()) {
2780 // When ChainBB is unconditional branch to the TBB, and TBB has no
2781 // fallthrough predecessor and fallthrough successor, try to merge
2782 // ChainBB and TBB. This is legal under the one of following conditions:
2783 // 1. ChainBB is empty except for an unconditional branch.
2784 // 2. TBB has only one predecessor.
2785 MachineFunction::iterator I(TBB);
2786 if (((TBB == &*F->begin()) || !std::prev(I)->canFallThrough()) &&
2787 (TailDup.isSimpleBB(ChainBB) || (TBB->pred_size() == 1))) {
2788 TII->removeBranch(*ChainBB);
2789 ChainBB->removeSuccessor(TBB);
2791 // Update the CFG.
2792 while (!TBB->pred_empty()) {
2793 MachineBasicBlock *Pred = *(TBB->pred_end() - 1);
2794 Pred->ReplaceUsesOfBlockWith(TBB, ChainBB);
2797 while (!TBB->succ_empty()) {
2798 MachineBasicBlock *Succ = *(TBB->succ_end() - 1);
2799 ChainBB->addSuccessor(Succ, MBPI->getEdgeProbability(TBB, Succ));
2800 TBB->removeSuccessor(Succ);
2803 // Move all the instructions of TBB to ChainBB.
2804 ChainBB->splice(ChainBB->end(), TBB, TBB->begin(), TBB->end());
2805 EmptyBB.push_back(TBB);
2811 for (auto BB: EmptyBB) {
2812 MLI->removeBlock(BB);
2813 FunctionChain.remove(BB);
2814 BlockToChain.erase(BB);
2815 F->erase(BB);
2819 void MachineBlockPlacement::alignBlocks() {
2820 // Walk through the backedges of the function now that we have fully laid out
2821 // the basic blocks and align the destination of each backedge. We don't rely
2822 // exclusively on the loop info here so that we can align backedges in
2823 // unnatural CFGs and backedges that were introduced purely because of the
2824 // loop rotations done during this layout pass.
2825 if (F->getFunction().hasMinSize() ||
2826 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2827 return;
2828 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2829 if (FunctionChain.begin() == FunctionChain.end())
2830 return; // Empty chain.
2832 const BranchProbability ColdProb(1, 5); // 20%
2833 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2834 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2835 for (MachineBasicBlock *ChainBB : FunctionChain) {
2836 if (ChainBB == *FunctionChain.begin())
2837 continue;
2839 // Don't align non-looping basic blocks. These are unlikely to execute
2840 // enough times to matter in practice. Note that we'll still handle
2841 // unnatural CFGs inside of a natural outer loop (the common case) and
2842 // rotated loops.
2843 MachineLoop *L = MLI->getLoopFor(ChainBB);
2844 if (!L)
2845 continue;
2847 unsigned Align = TLI->getPrefLoopAlignment(L);
2848 if (!Align)
2849 continue; // Don't care about loop alignment.
2851 // If the block is cold relative to the function entry don't waste space
2852 // aligning it.
2853 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2854 if (Freq < WeightedEntryFreq)
2855 continue;
2857 // If the block is cold relative to its loop header, don't align it
2858 // regardless of what edges into the block exist.
2859 MachineBasicBlock *LoopHeader = L->getHeader();
2860 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2861 if (Freq < (LoopHeaderFreq * ColdProb))
2862 continue;
2864 // Check for the existence of a non-layout predecessor which would benefit
2865 // from aligning this block.
2866 MachineBasicBlock *LayoutPred =
2867 &*std::prev(MachineFunction::iterator(ChainBB));
2869 // Force alignment if all the predecessors are jumps. We already checked
2870 // that the block isn't cold above.
2871 if (!LayoutPred->isSuccessor(ChainBB)) {
2872 ChainBB->setAlignment(Align);
2873 continue;
2876 // Align this block if the layout predecessor's edge into this block is
2877 // cold relative to the block. When this is true, other predecessors make up
2878 // all of the hot entries into the block and thus alignment is likely to be
2879 // important.
2880 BranchProbability LayoutProb =
2881 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2882 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2883 if (LayoutEdgeFreq <= (Freq * ColdProb))
2884 ChainBB->setAlignment(Align);
2888 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2889 /// it was duplicated into its chain predecessor and removed.
2890 /// \p BB - Basic block that may be duplicated.
2892 /// \p LPred - Chosen layout predecessor of \p BB.
2893 /// Updated to be the chain end if LPred is removed.
2894 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2895 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2896 /// Used to identify which blocks to update predecessor
2897 /// counts.
2898 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2899 /// chosen in the given order due to unnatural CFG
2900 /// only needed if \p BB is removed and
2901 /// \p PrevUnplacedBlockIt pointed to \p BB.
2902 /// @return true if \p BB was removed.
2903 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2904 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2905 const MachineBasicBlock *LoopHeaderBB,
2906 BlockChain &Chain, BlockFilterSet *BlockFilter,
2907 MachineFunction::iterator &PrevUnplacedBlockIt) {
2908 bool Removed, DuplicatedToLPred;
2909 bool DuplicatedToOriginalLPred;
2910 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2911 PrevUnplacedBlockIt,
2912 DuplicatedToLPred);
2913 if (!Removed)
2914 return false;
2915 DuplicatedToOriginalLPred = DuplicatedToLPred;
2916 // Iteratively try to duplicate again. It can happen that a block that is
2917 // duplicated into is still small enough to be duplicated again.
2918 // No need to call markBlockSuccessors in this case, as the blocks being
2919 // duplicated from here on are already scheduled.
2920 // Note that DuplicatedToLPred always implies Removed.
2921 while (DuplicatedToLPred) {
2922 assert(Removed && "Block must have been removed to be duplicated into its "
2923 "layout predecessor.");
2924 MachineBasicBlock *DupBB, *DupPred;
2925 // The removal callback causes Chain.end() to be updated when a block is
2926 // removed. On the first pass through the loop, the chain end should be the
2927 // same as it was on function entry. On subsequent passes, because we are
2928 // duplicating the block at the end of the chain, if it is removed the
2929 // chain will have shrunk by one block.
2930 BlockChain::iterator ChainEnd = Chain.end();
2931 DupBB = *(--ChainEnd);
2932 // Now try to duplicate again.
2933 if (ChainEnd == Chain.begin())
2934 break;
2935 DupPred = *std::prev(ChainEnd);
2936 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2937 PrevUnplacedBlockIt,
2938 DuplicatedToLPred);
2940 // If BB was duplicated into LPred, it is now scheduled. But because it was
2941 // removed, markChainSuccessors won't be called for its chain. Instead we
2942 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2943 // at the end because repeating the tail duplication can increase the number
2944 // of unscheduled predecessors.
2945 LPred = *std::prev(Chain.end());
2946 if (DuplicatedToOriginalLPred)
2947 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2948 return true;
2951 /// Tail duplicate \p BB into (some) predecessors if profitable.
2952 /// \p BB - Basic block that may be duplicated
2953 /// \p LPred - Chosen layout predecessor of \p BB
2954 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2955 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2956 /// Used to identify which blocks to update predecessor
2957 /// counts.
2958 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2959 /// chosen in the given order due to unnatural CFG
2960 /// only needed if \p BB is removed and
2961 /// \p PrevUnplacedBlockIt pointed to \p BB.
2962 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2963 /// only be true if the block was removed.
2964 /// \return - True if the block was duplicated into all preds and removed.
2965 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2966 MachineBasicBlock *BB, MachineBasicBlock *LPred,
2967 BlockChain &Chain, BlockFilterSet *BlockFilter,
2968 MachineFunction::iterator &PrevUnplacedBlockIt,
2969 bool &DuplicatedToLPred) {
2970 DuplicatedToLPred = false;
2971 if (!shouldTailDuplicate(BB))
2972 return false;
2974 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2975 << "\n");
2977 // This has to be a callback because none of it can be done after
2978 // BB is deleted.
2979 bool Removed = false;
2980 auto RemovalCallback =
2981 [&](MachineBasicBlock *RemBB) {
2982 // Signal to outer function
2983 Removed = true;
2985 // Conservative default.
2986 bool InWorkList = true;
2987 // Remove from the Chain and Chain Map
2988 if (BlockToChain.count(RemBB)) {
2989 BlockChain *Chain = BlockToChain[RemBB];
2990 InWorkList = Chain->UnscheduledPredecessors == 0;
2991 Chain->remove(RemBB);
2992 BlockToChain.erase(RemBB);
2995 // Handle the unplaced block iterator
2996 if (&(*PrevUnplacedBlockIt) == RemBB) {
2997 PrevUnplacedBlockIt++;
3000 // Handle the Work Lists
3001 if (InWorkList) {
3002 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3003 if (RemBB->isEHPad())
3004 RemoveList = EHPadWorkList;
3005 RemoveList.erase(
3006 llvm::remove_if(RemoveList,
3007 [RemBB](MachineBasicBlock *BB) {
3008 return BB == RemBB;
3010 RemoveList.end());
3013 // Handle the filter set
3014 if (BlockFilter) {
3015 BlockFilter->remove(RemBB);
3018 // Remove the block from loop info.
3019 MLI->removeBlock(RemBB);
3020 if (RemBB == PreferredLoopExit)
3021 PreferredLoopExit = nullptr;
3023 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3024 << getBlockName(RemBB) << "\n");
3026 auto RemovalCallbackRef =
3027 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3029 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3030 bool IsSimple = TailDup.isSimpleBB(BB);
3031 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
3032 &DuplicatedPreds, &RemovalCallbackRef);
3034 // Update UnscheduledPredecessors to reflect tail-duplication.
3035 DuplicatedToLPred = false;
3036 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3037 // We're only looking for unscheduled predecessors that match the filter.
3038 BlockChain* PredChain = BlockToChain[Pred];
3039 if (Pred == LPred)
3040 DuplicatedToLPred = true;
3041 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3042 || PredChain == &Chain)
3043 continue;
3044 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3045 if (BlockFilter && !BlockFilter->count(NewSucc))
3046 continue;
3047 BlockChain *NewChain = BlockToChain[NewSucc];
3048 if (NewChain != &Chain && NewChain != PredChain)
3049 NewChain->UnscheduledPredecessors++;
3052 return Removed;
3055 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3056 if (skipFunction(MF.getFunction()))
3057 return false;
3059 // Check for single-block functions and skip them.
3060 if (std::next(MF.begin()) == MF.end())
3061 return false;
3063 F = &MF;
3064 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3065 MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
3066 getAnalysis<MachineBlockFrequencyInfo>());
3067 MLI = &getAnalysis<MachineLoopInfo>();
3068 TII = MF.getSubtarget().getInstrInfo();
3069 TLI = MF.getSubtarget().getTargetLowering();
3070 MPDT = nullptr;
3072 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3073 // there are no MachineLoops.
3074 PreferredLoopExit = nullptr;
3076 assert(BlockToChain.empty() &&
3077 "BlockToChain map should be empty before starting placement.");
3078 assert(ComputedEdges.empty() &&
3079 "Computed Edge map should be empty before starting placement.");
3081 unsigned TailDupSize = TailDupPlacementThreshold;
3082 // If only the aggressive threshold is explicitly set, use it.
3083 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3084 TailDupPlacementThreshold.getNumOccurrences() == 0)
3085 TailDupSize = TailDupPlacementAggressiveThreshold;
3087 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3088 // For aggressive optimization, we can adjust some thresholds to be less
3089 // conservative.
3090 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3091 // At O3 we should be more willing to copy blocks for tail duplication. This
3092 // increases size pressure, so we only do it at O3
3093 // Do this unless only the regular threshold is explicitly set.
3094 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3095 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3096 TailDupSize = TailDupPlacementAggressiveThreshold;
3099 if (allowTailDupPlacement()) {
3100 MPDT = &getAnalysis<MachinePostDominatorTree>();
3101 if (MF.getFunction().hasOptSize())
3102 TailDupSize = 1;
3103 bool PreRegAlloc = false;
3104 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
3105 precomputeTriangleChains();
3108 buildCFGChains();
3110 // Changing the layout can create new tail merging opportunities.
3111 // TailMerge can create jump into if branches that make CFG irreducible for
3112 // HW that requires structured CFG.
3113 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3114 PassConfig->getEnableTailMerge() &&
3115 BranchFoldPlacement;
3116 // No tail merging opportunities if the block number is less than four.
3117 if (MF.size() > 3 && EnableTailMerge) {
3118 unsigned TailMergeSize = TailDupSize + 1;
3119 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3120 *MBPI, TailMergeSize);
3122 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3123 getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
3124 /*AfterPlacement=*/true)) {
3125 // Redo the layout if tail merging creates/removes/moves blocks.
3126 BlockToChain.clear();
3127 ComputedEdges.clear();
3128 // Must redo the post-dominator tree if blocks were changed.
3129 if (MPDT)
3130 MPDT->runOnMachineFunction(MF);
3131 ChainAllocator.DestroyAll();
3132 buildCFGChains();
3136 // optimizeBranches() may change the blocks, but we haven't updated the
3137 // post-dominator tree. Because the post-dominator tree won't be used after
3138 // this function and this pass don't preserve the post-dominator tree.
3139 optimizeBranches();
3140 alignBlocks();
3142 BlockToChain.clear();
3143 ComputedEdges.clear();
3144 ChainAllocator.DestroyAll();
3146 if (AlignAllBlock)
3147 // Align all of the blocks in the function to a specific alignment.
3148 for (MachineBasicBlock &MBB : MF)
3149 MBB.setAlignment(AlignAllBlock);
3150 else if (AlignAllNonFallThruBlocks) {
3151 // Align all of the blocks that have no fall-through predecessors to a
3152 // specific alignment.
3153 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3154 auto LayoutPred = std::prev(MBI);
3155 if (!LayoutPred->isSuccessor(&*MBI))
3156 MBI->setAlignment(AlignAllNonFallThruBlocks);
3159 if (ViewBlockLayoutWithBFI != GVDT_None &&
3160 (ViewBlockFreqFuncName.empty() ||
3161 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3162 MBFI->view("MBP." + MF.getName(), false);
3166 // We always return true as we have no way to track whether the final order
3167 // differs from the original order.
3168 return true;
3171 namespace {
3173 /// A pass to compute block placement statistics.
3175 /// A separate pass to compute interesting statistics for evaluating block
3176 /// placement. This is separate from the actual placement pass so that they can
3177 /// be computed in the absence of any placement transformations or when using
3178 /// alternative placement strategies.
3179 class MachineBlockPlacementStats : public MachineFunctionPass {
3180 /// A handle to the branch probability pass.
3181 const MachineBranchProbabilityInfo *MBPI;
3183 /// A handle to the function-wide block frequency pass.
3184 const MachineBlockFrequencyInfo *MBFI;
3186 public:
3187 static char ID; // Pass identification, replacement for typeid
3189 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3190 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3193 bool runOnMachineFunction(MachineFunction &F) override;
3195 void getAnalysisUsage(AnalysisUsage &AU) const override {
3196 AU.addRequired<MachineBranchProbabilityInfo>();
3197 AU.addRequired<MachineBlockFrequencyInfo>();
3198 AU.setPreservesAll();
3199 MachineFunctionPass::getAnalysisUsage(AU);
3203 } // end anonymous namespace
3205 char MachineBlockPlacementStats::ID = 0;
3207 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3209 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3210 "Basic Block Placement Stats", false, false)
3211 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3212 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3213 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3214 "Basic Block Placement Stats", false, false)
3216 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3217 // Check for single-block functions and skip them.
3218 if (std::next(F.begin()) == F.end())
3219 return false;
3221 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3222 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3224 for (MachineBasicBlock &MBB : F) {
3225 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3226 Statistic &NumBranches =
3227 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3228 Statistic &BranchTakenFreq =
3229 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3230 for (MachineBasicBlock *Succ : MBB.successors()) {
3231 // Skip if this successor is a fallthrough.
3232 if (MBB.isLayoutSuccessor(Succ))
3233 continue;
3235 BlockFrequency EdgeFreq =
3236 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3237 ++NumBranches;
3238 BranchTakenFreq += EdgeFreq.getFrequency();
3242 return false;