[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / MachineFunction.cpp
blobb771dd1a35156189bc37f449b9a8e1cf658749a5
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
77 using namespace llvm;
79 #define DEBUG_TYPE "codegen"
81 static cl::opt<unsigned>
82 AlignAllFunctions("align-all-functions",
83 cl::desc("Force the alignment of all functions."),
84 cl::init(0), cl::Hidden);
86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
87 using P = MachineFunctionProperties::Property;
89 switch(Prop) {
90 case P::FailedISel: return "FailedISel";
91 case P::IsSSA: return "IsSSA";
92 case P::Legalized: return "Legalized";
93 case P::NoPHIs: return "NoPHIs";
94 case P::NoVRegs: return "NoVRegs";
95 case P::RegBankSelected: return "RegBankSelected";
96 case P::Selected: return "Selected";
97 case P::TracksLiveness: return "TracksLiveness";
99 llvm_unreachable("Invalid machine function property");
102 // Pin the vtable to this file.
103 void MachineFunction::Delegate::anchor() {}
105 void MachineFunctionProperties::print(raw_ostream &OS) const {
106 const char *Separator = "";
107 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
108 if (!Properties[I])
109 continue;
110 OS << Separator << getPropertyName(static_cast<Property>(I));
111 Separator = ", ";
115 //===----------------------------------------------------------------------===//
116 // MachineFunction implementation
117 //===----------------------------------------------------------------------===//
119 // Out-of-line virtual method.
120 MachineFunctionInfo::~MachineFunctionInfo() = default;
122 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
123 MBB->getParent()->DeleteMachineBasicBlock(MBB);
126 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
127 const Function &F) {
128 if (F.hasFnAttribute(Attribute::StackAlignment))
129 return F.getFnStackAlignment();
130 return STI->getFrameLowering()->getStackAlignment();
133 MachineFunction::MachineFunction(const Function &F,
134 const LLVMTargetMachine &Target,
135 const TargetSubtargetInfo &STI,
136 unsigned FunctionNum, MachineModuleInfo &mmi)
137 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
138 FunctionNumber = FunctionNum;
139 init();
142 void MachineFunction::handleInsertion(MachineInstr &MI) {
143 if (TheDelegate)
144 TheDelegate->MF_HandleInsertion(MI);
147 void MachineFunction::handleRemoval(MachineInstr &MI) {
148 if (TheDelegate)
149 TheDelegate->MF_HandleRemoval(MI);
152 void MachineFunction::init() {
153 // Assume the function starts in SSA form with correct liveness.
154 Properties.set(MachineFunctionProperties::Property::IsSSA);
155 Properties.set(MachineFunctionProperties::Property::TracksLiveness);
156 if (STI->getRegisterInfo())
157 RegInfo = new (Allocator) MachineRegisterInfo(this);
158 else
159 RegInfo = nullptr;
161 MFInfo = nullptr;
162 // We can realign the stack if the target supports it and the user hasn't
163 // explicitly asked us not to.
164 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
165 !F.hasFnAttribute("no-realign-stack");
166 FrameInfo = new (Allocator) MachineFrameInfo(
167 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
168 /*ForcedRealign=*/CanRealignSP &&
169 F.hasFnAttribute(Attribute::StackAlignment));
171 if (F.hasFnAttribute(Attribute::StackAlignment))
172 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
174 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
175 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
177 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
178 // FIXME: Use Function::hasOptSize().
179 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
180 Alignment = std::max(Alignment,
181 STI->getTargetLowering()->getPrefFunctionAlignment());
183 if (AlignAllFunctions)
184 Alignment = AlignAllFunctions;
186 JumpTableInfo = nullptr;
188 if (isFuncletEHPersonality(classifyEHPersonality(
189 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
190 WinEHInfo = new (Allocator) WinEHFuncInfo();
193 if (isScopedEHPersonality(classifyEHPersonality(
194 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
195 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
198 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
199 "Can't create a MachineFunction using a Module with a "
200 "Target-incompatible DataLayout attached\n");
202 PSVManager =
203 std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
204 getInstrInfo()));
207 MachineFunction::~MachineFunction() {
208 clear();
211 void MachineFunction::clear() {
212 Properties.reset();
213 // Don't call destructors on MachineInstr and MachineOperand. All of their
214 // memory comes from the BumpPtrAllocator which is about to be purged.
216 // Do call MachineBasicBlock destructors, it contains std::vectors.
217 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
218 I->Insts.clearAndLeakNodesUnsafely();
219 MBBNumbering.clear();
221 InstructionRecycler.clear(Allocator);
222 OperandRecycler.clear(Allocator);
223 BasicBlockRecycler.clear(Allocator);
224 CodeViewAnnotations.clear();
225 VariableDbgInfos.clear();
226 if (RegInfo) {
227 RegInfo->~MachineRegisterInfo();
228 Allocator.Deallocate(RegInfo);
230 if (MFInfo) {
231 MFInfo->~MachineFunctionInfo();
232 Allocator.Deallocate(MFInfo);
235 FrameInfo->~MachineFrameInfo();
236 Allocator.Deallocate(FrameInfo);
238 ConstantPool->~MachineConstantPool();
239 Allocator.Deallocate(ConstantPool);
241 if (JumpTableInfo) {
242 JumpTableInfo->~MachineJumpTableInfo();
243 Allocator.Deallocate(JumpTableInfo);
246 if (WinEHInfo) {
247 WinEHInfo->~WinEHFuncInfo();
248 Allocator.Deallocate(WinEHInfo);
251 if (WasmEHInfo) {
252 WasmEHInfo->~WasmEHFuncInfo();
253 Allocator.Deallocate(WasmEHInfo);
257 const DataLayout &MachineFunction::getDataLayout() const {
258 return F.getParent()->getDataLayout();
261 /// Get the JumpTableInfo for this function.
262 /// If it does not already exist, allocate one.
263 MachineJumpTableInfo *MachineFunction::
264 getOrCreateJumpTableInfo(unsigned EntryKind) {
265 if (JumpTableInfo) return JumpTableInfo;
267 JumpTableInfo = new (Allocator)
268 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
269 return JumpTableInfo;
272 /// Should we be emitting segmented stack stuff for the function
273 bool MachineFunction::shouldSplitStack() const {
274 return getFunction().hasFnAttribute("split-stack");
277 LLVM_NODISCARD unsigned
278 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
279 FrameInstructions.push_back(Inst);
280 return FrameInstructions.size() - 1;
283 /// This discards all of the MachineBasicBlock numbers and recomputes them.
284 /// This guarantees that the MBB numbers are sequential, dense, and match the
285 /// ordering of the blocks within the function. If a specific MachineBasicBlock
286 /// is specified, only that block and those after it are renumbered.
287 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
288 if (empty()) { MBBNumbering.clear(); return; }
289 MachineFunction::iterator MBBI, E = end();
290 if (MBB == nullptr)
291 MBBI = begin();
292 else
293 MBBI = MBB->getIterator();
295 // Figure out the block number this should have.
296 unsigned BlockNo = 0;
297 if (MBBI != begin())
298 BlockNo = std::prev(MBBI)->getNumber() + 1;
300 for (; MBBI != E; ++MBBI, ++BlockNo) {
301 if (MBBI->getNumber() != (int)BlockNo) {
302 // Remove use of the old number.
303 if (MBBI->getNumber() != -1) {
304 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
305 "MBB number mismatch!");
306 MBBNumbering[MBBI->getNumber()] = nullptr;
309 // If BlockNo is already taken, set that block's number to -1.
310 if (MBBNumbering[BlockNo])
311 MBBNumbering[BlockNo]->setNumber(-1);
313 MBBNumbering[BlockNo] = &*MBBI;
314 MBBI->setNumber(BlockNo);
318 // Okay, all the blocks are renumbered. If we have compactified the block
319 // numbering, shrink MBBNumbering now.
320 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
321 MBBNumbering.resize(BlockNo);
324 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
325 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
326 const DebugLoc &DL,
327 bool NoImp) {
328 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
329 MachineInstr(*this, MCID, DL, NoImp);
332 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
333 /// identical in all ways except the instruction has no parent, prev, or next.
334 MachineInstr *
335 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
336 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
337 MachineInstr(*this, *Orig);
340 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
341 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
342 MachineInstr *FirstClone = nullptr;
343 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
344 while (true) {
345 MachineInstr *Cloned = CloneMachineInstr(&*I);
346 MBB.insert(InsertBefore, Cloned);
347 if (FirstClone == nullptr) {
348 FirstClone = Cloned;
349 } else {
350 Cloned->bundleWithPred();
353 if (!I->isBundledWithSucc())
354 break;
355 ++I;
357 return *FirstClone;
360 /// Delete the given MachineInstr.
362 /// This function also serves as the MachineInstr destructor - the real
363 /// ~MachineInstr() destructor must be empty.
364 void
365 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
366 // Verify that a call site info is at valid state. This assertion should
367 // be triggered during the implementation of support for the
368 // call site info of a new architecture. If the assertion is triggered,
369 // back trace will tell where to insert a call to updateCallSiteInfo().
370 assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
371 CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
372 "Call site info was not updated!");
373 // Strip it for parts. The operand array and the MI object itself are
374 // independently recyclable.
375 if (MI->Operands)
376 deallocateOperandArray(MI->CapOperands, MI->Operands);
377 // Don't call ~MachineInstr() which must be trivial anyway because
378 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
379 // destructors.
380 InstructionRecycler.Deallocate(Allocator, MI);
383 /// Allocate a new MachineBasicBlock. Use this instead of
384 /// `new MachineBasicBlock'.
385 MachineBasicBlock *
386 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
387 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
388 MachineBasicBlock(*this, bb);
391 /// Delete the given MachineBasicBlock.
392 void
393 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
394 assert(MBB->getParent() == this && "MBB parent mismatch!");
395 MBB->~MachineBasicBlock();
396 BasicBlockRecycler.Deallocate(Allocator, MBB);
399 MachineMemOperand *MachineFunction::getMachineMemOperand(
400 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
401 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
402 SyncScope::ID SSID, AtomicOrdering Ordering,
403 AtomicOrdering FailureOrdering) {
404 return new (Allocator)
405 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
406 SSID, Ordering, FailureOrdering);
409 MachineMemOperand *
410 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
411 int64_t Offset, uint64_t Size) {
412 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
414 // If there is no pointer value, the offset isn't tracked so we need to adjust
415 // the base alignment.
416 unsigned Align = PtrInfo.V.isNull()
417 ? MinAlign(MMO->getBaseAlignment(), Offset)
418 : MMO->getBaseAlignment();
420 return new (Allocator)
421 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
422 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
423 MMO->getOrdering(), MMO->getFailureOrdering());
426 MachineMemOperand *
427 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
428 const AAMDNodes &AAInfo) {
429 MachinePointerInfo MPI = MMO->getValue() ?
430 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
431 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
433 return new (Allocator)
434 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
435 MMO->getBaseAlignment(), AAInfo,
436 MMO->getRanges(), MMO->getSyncScopeID(),
437 MMO->getOrdering(), MMO->getFailureOrdering());
440 MachineMemOperand *
441 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
442 MachineMemOperand::Flags Flags) {
443 return new (Allocator) MachineMemOperand(
444 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
445 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
446 MMO->getOrdering(), MMO->getFailureOrdering());
449 MachineInstr::ExtraInfo *
450 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
451 MCSymbol *PreInstrSymbol,
452 MCSymbol *PostInstrSymbol) {
453 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
454 PostInstrSymbol);
457 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
458 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
459 llvm::copy(Name, Dest);
460 Dest[Name.size()] = 0;
461 return Dest;
464 uint32_t *MachineFunction::allocateRegMask() {
465 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
466 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
467 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
468 memset(Mask, 0, Size * sizeof(Mask[0]));
469 return Mask;
472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
473 LLVM_DUMP_METHOD void MachineFunction::dump() const {
474 print(dbgs());
476 #endif
478 StringRef MachineFunction::getName() const {
479 return getFunction().getName();
482 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
483 OS << "# Machine code for function " << getName() << ": ";
484 getProperties().print(OS);
485 OS << '\n';
487 // Print Frame Information
488 FrameInfo->print(*this, OS);
490 // Print JumpTable Information
491 if (JumpTableInfo)
492 JumpTableInfo->print(OS);
494 // Print Constant Pool
495 ConstantPool->print(OS);
497 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
499 if (RegInfo && !RegInfo->livein_empty()) {
500 OS << "Function Live Ins: ";
501 for (MachineRegisterInfo::livein_iterator
502 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
503 OS << printReg(I->first, TRI);
504 if (I->second)
505 OS << " in " << printReg(I->second, TRI);
506 if (std::next(I) != E)
507 OS << ", ";
509 OS << '\n';
512 ModuleSlotTracker MST(getFunction().getParent());
513 MST.incorporateFunction(getFunction());
514 for (const auto &BB : *this) {
515 OS << '\n';
516 // If we print the whole function, print it at its most verbose level.
517 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
520 OS << "\n# End machine code for function " << getName() << ".\n\n";
523 namespace llvm {
525 template<>
526 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
527 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
529 static std::string getGraphName(const MachineFunction *F) {
530 return ("CFG for '" + F->getName() + "' function").str();
533 std::string getNodeLabel(const MachineBasicBlock *Node,
534 const MachineFunction *Graph) {
535 std::string OutStr;
537 raw_string_ostream OSS(OutStr);
539 if (isSimple()) {
540 OSS << printMBBReference(*Node);
541 if (const BasicBlock *BB = Node->getBasicBlock())
542 OSS << ": " << BB->getName();
543 } else
544 Node->print(OSS);
547 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
549 // Process string output to make it nicer...
550 for (unsigned i = 0; i != OutStr.length(); ++i)
551 if (OutStr[i] == '\n') { // Left justify
552 OutStr[i] = '\\';
553 OutStr.insert(OutStr.begin()+i+1, 'l');
555 return OutStr;
559 } // end namespace llvm
561 void MachineFunction::viewCFG() const
563 #ifndef NDEBUG
564 ViewGraph(this, "mf" + getName());
565 #else
566 errs() << "MachineFunction::viewCFG is only available in debug builds on "
567 << "systems with Graphviz or gv!\n";
568 #endif // NDEBUG
571 void MachineFunction::viewCFGOnly() const
573 #ifndef NDEBUG
574 ViewGraph(this, "mf" + getName(), true);
575 #else
576 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
577 << "systems with Graphviz or gv!\n";
578 #endif // NDEBUG
581 /// Add the specified physical register as a live-in value and
582 /// create a corresponding virtual register for it.
583 unsigned MachineFunction::addLiveIn(unsigned PReg,
584 const TargetRegisterClass *RC) {
585 MachineRegisterInfo &MRI = getRegInfo();
586 unsigned VReg = MRI.getLiveInVirtReg(PReg);
587 if (VReg) {
588 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
589 (void)VRegRC;
590 // A physical register can be added several times.
591 // Between two calls, the register class of the related virtual register
592 // may have been constrained to match some operation constraints.
593 // In that case, check that the current register class includes the
594 // physical register and is a sub class of the specified RC.
595 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
596 RC->hasSubClassEq(VRegRC))) &&
597 "Register class mismatch!");
598 return VReg;
600 VReg = MRI.createVirtualRegister(RC);
601 MRI.addLiveIn(PReg, VReg);
602 return VReg;
605 /// Return the MCSymbol for the specified non-empty jump table.
606 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
607 /// normal 'L' label is returned.
608 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
609 bool isLinkerPrivate) const {
610 const DataLayout &DL = getDataLayout();
611 assert(JumpTableInfo && "No jump tables");
612 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
614 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
615 : DL.getPrivateGlobalPrefix();
616 SmallString<60> Name;
617 raw_svector_ostream(Name)
618 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
619 return Ctx.getOrCreateSymbol(Name);
622 /// Return a function-local symbol to represent the PIC base.
623 MCSymbol *MachineFunction::getPICBaseSymbol() const {
624 const DataLayout &DL = getDataLayout();
625 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
626 Twine(getFunctionNumber()) + "$pb");
629 /// \name Exception Handling
630 /// \{
632 LandingPadInfo &
633 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
634 unsigned N = LandingPads.size();
635 for (unsigned i = 0; i < N; ++i) {
636 LandingPadInfo &LP = LandingPads[i];
637 if (LP.LandingPadBlock == LandingPad)
638 return LP;
641 LandingPads.push_back(LandingPadInfo(LandingPad));
642 return LandingPads[N];
645 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
646 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
647 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
648 LP.BeginLabels.push_back(BeginLabel);
649 LP.EndLabels.push_back(EndLabel);
652 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
653 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
654 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
655 LP.LandingPadLabel = LandingPadLabel;
657 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
658 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
659 if (const auto *PF =
660 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
661 getMMI().addPersonality(PF);
663 if (LPI->isCleanup())
664 addCleanup(LandingPad);
666 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
667 // correct, but we need to do it this way because of how the DWARF EH
668 // emitter processes the clauses.
669 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
670 Value *Val = LPI->getClause(I - 1);
671 if (LPI->isCatch(I - 1)) {
672 addCatchTypeInfo(LandingPad,
673 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
674 } else {
675 // Add filters in a list.
676 auto *CVal = cast<Constant>(Val);
677 SmallVector<const GlobalValue *, 4> FilterList;
678 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
679 II != IE; ++II)
680 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
682 addFilterTypeInfo(LandingPad, FilterList);
686 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
687 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
688 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
689 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
692 } else {
693 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
696 return LandingPadLabel;
699 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
700 ArrayRef<const GlobalValue *> TyInfo) {
701 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
702 for (unsigned N = TyInfo.size(); N; --N)
703 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
706 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
707 ArrayRef<const GlobalValue *> TyInfo) {
708 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
709 std::vector<unsigned> IdsInFilter(TyInfo.size());
710 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
711 IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
712 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
715 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
716 bool TidyIfNoBeginLabels) {
717 for (unsigned i = 0; i != LandingPads.size(); ) {
718 LandingPadInfo &LandingPad = LandingPads[i];
719 if (LandingPad.LandingPadLabel &&
720 !LandingPad.LandingPadLabel->isDefined() &&
721 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
722 LandingPad.LandingPadLabel = nullptr;
724 // Special case: we *should* emit LPs with null LP MBB. This indicates
725 // "nounwind" case.
726 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
727 LandingPads.erase(LandingPads.begin() + i);
728 continue;
731 if (TidyIfNoBeginLabels) {
732 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
733 MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
734 MCSymbol *EndLabel = LandingPad.EndLabels[j];
735 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
736 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
737 continue;
739 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
740 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
741 --j;
742 --e;
745 // Remove landing pads with no try-ranges.
746 if (LandingPads[i].BeginLabels.empty()) {
747 LandingPads.erase(LandingPads.begin() + i);
748 continue;
752 // If there is no landing pad, ensure that the list of typeids is empty.
753 // If the only typeid is a cleanup, this is the same as having no typeids.
754 if (!LandingPad.LandingPadBlock ||
755 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
756 LandingPad.TypeIds.clear();
757 ++i;
761 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
762 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
763 LP.TypeIds.push_back(0);
766 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
767 const Function *Filter,
768 const BlockAddress *RecoverBA) {
769 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
770 SEHHandler Handler;
771 Handler.FilterOrFinally = Filter;
772 Handler.RecoverBA = RecoverBA;
773 LP.SEHHandlers.push_back(Handler);
776 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
777 const Function *Cleanup) {
778 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
779 SEHHandler Handler;
780 Handler.FilterOrFinally = Cleanup;
781 Handler.RecoverBA = nullptr;
782 LP.SEHHandlers.push_back(Handler);
785 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
786 ArrayRef<unsigned> Sites) {
787 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
790 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
791 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
792 if (TypeInfos[i] == TI) return i + 1;
794 TypeInfos.push_back(TI);
795 return TypeInfos.size();
798 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
799 // If the new filter coincides with the tail of an existing filter, then
800 // re-use the existing filter. Folding filters more than this requires
801 // re-ordering filters and/or their elements - probably not worth it.
802 for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
803 E = FilterEnds.end(); I != E; ++I) {
804 unsigned i = *I, j = TyIds.size();
806 while (i && j)
807 if (FilterIds[--i] != TyIds[--j])
808 goto try_next;
810 if (!j)
811 // The new filter coincides with range [i, end) of the existing filter.
812 return -(1 + i);
814 try_next:;
817 // Add the new filter.
818 int FilterID = -(1 + FilterIds.size());
819 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
820 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
821 FilterEnds.push_back(FilterIds.size());
822 FilterIds.push_back(0); // terminator
823 return FilterID;
826 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I,
827 const MDNode *MD) {
828 MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true);
829 MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true);
830 I->setPreInstrSymbol(*this, BeginLabel);
831 I->setPostInstrSymbol(*this, EndLabel);
833 const DIType *DI = dyn_cast<DIType>(MD);
834 CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI));
837 void MachineFunction::updateCallSiteInfo(const MachineInstr *Old,
838 const MachineInstr *New) {
839 if (!Target.Options.EnableDebugEntryValues || Old == New)
840 return;
842 assert(Old->isCall() && (!New || New->isCall()) &&
843 "Call site info referes only to call instructions!");
844 CallSiteInfoMap::iterator CSIt = CallSitesInfo.find(Old);
845 if (CSIt == CallSitesInfo.end())
846 return;
847 CallSiteInfo CSInfo = std::move(CSIt->second);
848 CallSitesInfo.erase(CSIt);
849 if (New)
850 CallSitesInfo[New] = CSInfo;
853 /// \}
855 //===----------------------------------------------------------------------===//
856 // MachineJumpTableInfo implementation
857 //===----------------------------------------------------------------------===//
859 /// Return the size of each entry in the jump table.
860 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
861 // The size of a jump table entry is 4 bytes unless the entry is just the
862 // address of a block, in which case it is the pointer size.
863 switch (getEntryKind()) {
864 case MachineJumpTableInfo::EK_BlockAddress:
865 return TD.getPointerSize();
866 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
867 return 8;
868 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
869 case MachineJumpTableInfo::EK_LabelDifference32:
870 case MachineJumpTableInfo::EK_Custom32:
871 return 4;
872 case MachineJumpTableInfo::EK_Inline:
873 return 0;
875 llvm_unreachable("Unknown jump table encoding!");
878 /// Return the alignment of each entry in the jump table.
879 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
880 // The alignment of a jump table entry is the alignment of int32 unless the
881 // entry is just the address of a block, in which case it is the pointer
882 // alignment.
883 switch (getEntryKind()) {
884 case MachineJumpTableInfo::EK_BlockAddress:
885 return TD.getPointerABIAlignment(0);
886 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
887 return TD.getABIIntegerTypeAlignment(64);
888 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
889 case MachineJumpTableInfo::EK_LabelDifference32:
890 case MachineJumpTableInfo::EK_Custom32:
891 return TD.getABIIntegerTypeAlignment(32);
892 case MachineJumpTableInfo::EK_Inline:
893 return 1;
895 llvm_unreachable("Unknown jump table encoding!");
898 /// Create a new jump table entry in the jump table info.
899 unsigned MachineJumpTableInfo::createJumpTableIndex(
900 const std::vector<MachineBasicBlock*> &DestBBs) {
901 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
902 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
903 return JumpTables.size()-1;
906 /// If Old is the target of any jump tables, update the jump tables to branch
907 /// to New instead.
908 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
909 MachineBasicBlock *New) {
910 assert(Old != New && "Not making a change?");
911 bool MadeChange = false;
912 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
913 ReplaceMBBInJumpTable(i, Old, New);
914 return MadeChange;
917 /// If Old is a target of the jump tables, update the jump table to branch to
918 /// New instead.
919 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
920 MachineBasicBlock *Old,
921 MachineBasicBlock *New) {
922 assert(Old != New && "Not making a change?");
923 bool MadeChange = false;
924 MachineJumpTableEntry &JTE = JumpTables[Idx];
925 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
926 if (JTE.MBBs[j] == Old) {
927 JTE.MBBs[j] = New;
928 MadeChange = true;
930 return MadeChange;
933 void MachineJumpTableInfo::print(raw_ostream &OS) const {
934 if (JumpTables.empty()) return;
936 OS << "Jump Tables:\n";
938 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
939 OS << printJumpTableEntryReference(i) << ':';
940 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
941 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
942 if (i != e)
943 OS << '\n';
946 OS << '\n';
949 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
950 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
951 #endif
953 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
954 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
957 //===----------------------------------------------------------------------===//
958 // MachineConstantPool implementation
959 //===----------------------------------------------------------------------===//
961 void MachineConstantPoolValue::anchor() {}
963 Type *MachineConstantPoolEntry::getType() const {
964 if (isMachineConstantPoolEntry())
965 return Val.MachineCPVal->getType();
966 return Val.ConstVal->getType();
969 bool MachineConstantPoolEntry::needsRelocation() const {
970 if (isMachineConstantPoolEntry())
971 return true;
972 return Val.ConstVal->needsRelocation();
975 SectionKind
976 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
977 if (needsRelocation())
978 return SectionKind::getReadOnlyWithRel();
979 switch (DL->getTypeAllocSize(getType())) {
980 case 4:
981 return SectionKind::getMergeableConst4();
982 case 8:
983 return SectionKind::getMergeableConst8();
984 case 16:
985 return SectionKind::getMergeableConst16();
986 case 32:
987 return SectionKind::getMergeableConst32();
988 default:
989 return SectionKind::getReadOnly();
993 MachineConstantPool::~MachineConstantPool() {
994 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
995 // so keep track of which we've deleted to avoid double deletions.
996 DenseSet<MachineConstantPoolValue*> Deleted;
997 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
998 if (Constants[i].isMachineConstantPoolEntry()) {
999 Deleted.insert(Constants[i].Val.MachineCPVal);
1000 delete Constants[i].Val.MachineCPVal;
1002 for (DenseSet<MachineConstantPoolValue*>::iterator I =
1003 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1004 I != E; ++I) {
1005 if (Deleted.count(*I) == 0)
1006 delete *I;
1010 /// Test whether the given two constants can be allocated the same constant pool
1011 /// entry.
1012 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1013 const DataLayout &DL) {
1014 // Handle the trivial case quickly.
1015 if (A == B) return true;
1017 // If they have the same type but weren't the same constant, quickly
1018 // reject them.
1019 if (A->getType() == B->getType()) return false;
1021 // We can't handle structs or arrays.
1022 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1023 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1024 return false;
1026 // For now, only support constants with the same size.
1027 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1028 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1029 return false;
1031 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1033 // Try constant folding a bitcast of both instructions to an integer. If we
1034 // get two identical ConstantInt's, then we are good to share them. We use
1035 // the constant folding APIs to do this so that we get the benefit of
1036 // DataLayout.
1037 if (isa<PointerType>(A->getType()))
1038 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1039 const_cast<Constant *>(A), IntTy, DL);
1040 else if (A->getType() != IntTy)
1041 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1042 IntTy, DL);
1043 if (isa<PointerType>(B->getType()))
1044 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1045 const_cast<Constant *>(B), IntTy, DL);
1046 else if (B->getType() != IntTy)
1047 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1048 IntTy, DL);
1050 return A == B;
1053 /// Create a new entry in the constant pool or return an existing one.
1054 /// User must specify the log2 of the minimum required alignment for the object.
1055 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1056 unsigned Alignment) {
1057 assert(Alignment && "Alignment must be specified!");
1058 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1060 // Check to see if we already have this constant.
1062 // FIXME, this could be made much more efficient for large constant pools.
1063 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1064 if (!Constants[i].isMachineConstantPoolEntry() &&
1065 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1066 if ((unsigned)Constants[i].getAlignment() < Alignment)
1067 Constants[i].Alignment = Alignment;
1068 return i;
1071 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1072 return Constants.size()-1;
1075 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1076 unsigned Alignment) {
1077 assert(Alignment && "Alignment must be specified!");
1078 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1080 // Check to see if we already have this constant.
1082 // FIXME, this could be made much more efficient for large constant pools.
1083 int Idx = V->getExistingMachineCPValue(this, Alignment);
1084 if (Idx != -1) {
1085 MachineCPVsSharingEntries.insert(V);
1086 return (unsigned)Idx;
1089 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1090 return Constants.size()-1;
1093 void MachineConstantPool::print(raw_ostream &OS) const {
1094 if (Constants.empty()) return;
1096 OS << "Constant Pool:\n";
1097 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1098 OS << " cp#" << i << ": ";
1099 if (Constants[i].isMachineConstantPoolEntry())
1100 Constants[i].Val.MachineCPVal->print(OS);
1101 else
1102 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1103 OS << ", align=" << Constants[i].getAlignment();
1104 OS << "\n";
1108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1109 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1110 #endif