1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
79 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
80 if (const MachineBasicBlock
*MBB
= MI
.getParent())
81 if (const MachineFunction
*MF
= MBB
->getParent())
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
88 static void tryToGetTargetInfo(const MachineInstr
&MI
,
89 const TargetRegisterInfo
*&TRI
,
90 const MachineRegisterInfo
*&MRI
,
91 const TargetIntrinsicInfo
*&IntrinsicInfo
,
92 const TargetInstrInfo
*&TII
) {
94 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
95 TRI
= MF
->getSubtarget().getRegisterInfo();
96 MRI
= &MF
->getRegInfo();
97 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
98 TII
= MF
->getSubtarget().getInstrInfo();
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
103 if (MCID
->ImplicitDefs
)
104 for (const MCPhysReg
*ImpDefs
= MCID
->getImplicitDefs(); *ImpDefs
;
106 addOperand(MF
, MachineOperand::CreateReg(*ImpDefs
, true, true));
107 if (MCID
->ImplicitUses
)
108 for (const MCPhysReg
*ImpUses
= MCID
->getImplicitUses(); *ImpUses
;
110 addOperand(MF
, MachineOperand::CreateReg(*ImpUses
, false, true));
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
116 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&tid
,
117 DebugLoc dl
, bool NoImp
)
118 : MCID(&tid
), debugLoc(std::move(dl
)) {
119 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
121 // Reserve space for the expected number of operands.
122 if (unsigned NumOps
= MCID
->getNumOperands() +
123 MCID
->getNumImplicitDefs() + MCID
->getNumImplicitUses()) {
124 CapOperands
= OperandCapacity::get(NumOps
);
125 Operands
= MF
.allocateOperandArray(CapOperands
);
129 addImplicitDefUseOperands(MF
);
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
135 : MCID(&MI
.getDesc()), Info(MI
.Info
), debugLoc(MI
.getDebugLoc()) {
136 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
138 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
139 Operands
= MF
.allocateOperandArray(CapOperands
);
142 for (const MachineOperand
&MO
: MI
.operands())
145 // Copy all the sensible flags.
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
152 MachineRegisterInfo
*MachineInstr::getRegInfo() {
153 if (MachineBasicBlock
*MBB
= getParent())
154 return &MBB
->getParent()->getRegInfo();
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists. This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
162 for (MachineOperand
&MO
: operands())
164 MRI
.removeRegOperandFromUseList(&MO
);
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists. This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
171 for (MachineOperand
&MO
: operands())
173 MRI
.addRegOperandToUseList(&MO
);
176 void MachineInstr::addOperand(const MachineOperand
&Op
) {
177 MachineBasicBlock
*MBB
= getParent();
178 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
179 MachineFunction
*MF
= MBB
->getParent();
180 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
187 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
189 return MRI
->moveOperands(Dst
, Src
, NumOps
);
191 // MachineOperand is a trivially copyable type so we can just use memmove.
192 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
195 /// addOperand - Add the specified operand to the instruction. If it is an
196 /// implicit operand, it is added to the end of the operand list. If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
200 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
202 // Check if we're adding one of our existing operands.
203 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
204 // This is unusual: MI->addOperand(MI->getOperand(i)).
205 // If adding Op requires reallocating or moving existing operands around,
206 // the Op reference could go stale. Support it by copying Op.
207 MachineOperand
CopyOp(Op
);
208 return addOperand(MF
, CopyOp
);
211 // Find the insert location for the new operand. Implicit registers go at
212 // the end, everything else goes before the implicit regs.
214 // FIXME: Allow mixed explicit and implicit operands on inline asm.
215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216 // implicit-defs, but they must not be moved around. See the FIXME in
218 unsigned OpNo
= getNumOperands();
219 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
220 if (!isImpReg
&& !isInlineAsm()) {
221 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
223 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
228 bool isDebugOp
= Op
.getType() == MachineOperand::MO_Metadata
||
229 Op
.getType() == MachineOperand::MO_MCSymbol
;
230 // OpNo now points as the desired insertion point. Unless this is a variadic
231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232 // RegMask operands go between the explicit and implicit operands.
233 assert((isImpReg
|| Op
.isRegMask() || MCID
->isVariadic() ||
234 OpNo
< MCID
->getNumOperands() || isDebugOp
) &&
235 "Trying to add an operand to a machine instr that is already done!");
238 MachineRegisterInfo
*MRI
= getRegInfo();
240 // Determine if the Operands array needs to be reallocated.
241 // Save the old capacity and operand array.
242 OperandCapacity OldCap
= CapOperands
;
243 MachineOperand
*OldOperands
= Operands
;
244 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
245 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
246 Operands
= MF
.allocateOperandArray(CapOperands
);
247 // Move the operands before the insertion point.
249 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
252 // Move the operands following the insertion point.
253 if (OpNo
!= NumOperands
)
254 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
258 // Deallocate the old operand array.
259 if (OldOperands
!= Operands
&& OldOperands
)
260 MF
.deallocateOperandArray(OldCap
, OldOperands
);
262 // Copy Op into place. It still needs to be inserted into the MRI use lists.
263 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
264 NewMO
->ParentMI
= this;
266 // When adding a register operand, tell MRI about it.
267 if (NewMO
->isReg()) {
268 // Ensure isOnRegUseList() returns false, regardless of Op's status.
269 NewMO
->Contents
.Reg
.Prev
= nullptr;
270 // Ignore existing ties. This is not a property that can be copied.
272 // Add the new operand to MRI, but only for instructions in an MBB.
274 MRI
->addRegOperandToUseList(NewMO
);
275 // The MCID operand information isn't accurate until we start adding
276 // explicit operands. The implicit operands are added first, then the
277 // explicits are inserted before them.
279 // Tie uses to defs as indicated in MCInstrDesc.
280 if (NewMO
->isUse()) {
281 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
283 tieOperands(DefIdx
, OpNo
);
285 // If the register operand is flagged as early, mark the operand as such.
286 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
287 NewMO
->setIsEarlyClobber(true);
292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
293 /// fewer operand than it started with.
295 void MachineInstr::RemoveOperand(unsigned OpNo
) {
296 assert(OpNo
< getNumOperands() && "Invalid operand number");
297 untieRegOperand(OpNo
);
300 // Moving tied operands would break the ties.
301 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
302 if (Operands
[i
].isReg())
303 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
306 MachineRegisterInfo
*MRI
= getRegInfo();
307 if (MRI
&& Operands
[OpNo
].isReg())
308 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
310 // Don't call the MachineOperand destructor. A lot of this code depends on
311 // MachineOperand having a trivial destructor anyway, and adding a call here
312 // wouldn't make it 'destructor-correct'.
314 if (unsigned N
= NumOperands
- 1 - OpNo
)
315 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
319 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
320 if (memoperands_empty())
323 // See if we can just drop all of our extra info.
324 if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
328 if (!getPostInstrSymbol()) {
329 Info
.set
<EIIK_PreInstrSymbol
>(getPreInstrSymbol());
332 if (!getPreInstrSymbol()) {
333 Info
.set
<EIIK_PostInstrSymbol
>(getPostInstrSymbol());
337 // Otherwise allocate a fresh extra info with just these symbols.
338 Info
.set
<EIIK_OutOfLine
>(
339 MF
.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
342 void MachineInstr::setMemRefs(MachineFunction
&MF
,
343 ArrayRef
<MachineMemOperand
*> MMOs
) {
349 // Try to store a single MMO inline.
350 if (MMOs
.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
351 Info
.set
<EIIK_MMO
>(MMOs
[0]);
355 // Otherwise create an extra info struct with all of our info.
356 Info
.set
<EIIK_OutOfLine
>(
357 MF
.createMIExtraInfo(MMOs
, getPreInstrSymbol(), getPostInstrSymbol()));
360 void MachineInstr::addMemOperand(MachineFunction
&MF
,
361 MachineMemOperand
*MO
) {
362 SmallVector
<MachineMemOperand
*, 2> MMOs
;
363 MMOs
.append(memoperands_begin(), memoperands_end());
365 setMemRefs(MF
, MMOs
);
368 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
370 // Nothing to do for a self-clone!
373 assert(&MF
== MI
.getMF() &&
374 "Invalid machine functions when cloning memory refrences!");
375 // See if we can just steal the extra info already allocated for the
376 // instruction. We can do this whenever the pre- and post-instruction symbols
377 // are the same (including null).
378 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
379 getPostInstrSymbol() == MI
.getPostInstrSymbol()) {
384 // Otherwise, fall back on a copy-based clone.
385 setMemRefs(MF
, MI
.memoperands());
388 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
390 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
391 ArrayRef
<MachineMemOperand
*> RHS
) {
392 if (LHS
.size() != RHS
.size())
395 auto LHSPointees
= make_pointee_range(LHS
);
396 auto RHSPointees
= make_pointee_range(RHS
);
397 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
398 RHSPointees
.begin());
401 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
402 ArrayRef
<const MachineInstr
*> MIs
) {
403 // Try handling easy numbers of MIs with simpler mechanisms.
408 if (MIs
.size() == 1) {
409 cloneMemRefs(MF
, *MIs
[0]);
412 // Because an empty memoperands list provides *no* information and must be
413 // handled conservatively (assuming the instruction can do anything), the only
414 // way to merge with it is to drop all other memoperands.
415 if (MIs
[0]->memoperands_empty()) {
420 // Handle the general case.
421 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
422 // Start with the first instruction.
423 assert(&MF
== MIs
[0]->getMF() &&
424 "Invalid machine functions when cloning memory references!");
425 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
426 // Now walk all the other instructions and accumulate any different MMOs.
427 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
428 assert(&MF
== MI
.getMF() &&
429 "Invalid machine functions when cloning memory references!");
431 // Skip MIs with identical operands to the first. This is a somewhat
432 // arbitrary hack but will catch common cases without being quadratic.
433 // TODO: We could fully implement merge semantics here if needed.
434 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
437 // Because an empty memoperands list provides *no* information and must be
438 // handled conservatively (assuming the instruction can do anything), the
439 // only way to merge with it is to drop all other memoperands.
440 if (MI
.memoperands_empty()) {
445 // Otherwise accumulate these into our temporary buffer of the merged state.
446 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
449 setMemRefs(MF
, MergedMMOs
);
452 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
453 MCSymbol
*OldSymbol
= getPreInstrSymbol();
454 if (OldSymbol
== Symbol
)
456 if (OldSymbol
&& !Symbol
) {
457 // We're removing a symbol rather than adding one. Try to clean up any
458 // extra info carried around.
459 if (Info
.is
<EIIK_PreInstrSymbol
>()) {
464 if (memoperands_empty()) {
465 assert(getPostInstrSymbol() &&
466 "Should never have only a single symbol allocated out-of-line!");
467 Info
.set
<EIIK_PostInstrSymbol
>(getPostInstrSymbol());
471 // Otherwise fallback on the generic update.
472 } else if (!Info
|| Info
.is
<EIIK_PreInstrSymbol
>()) {
473 // If we don't have any other extra info, we can store this inline.
474 Info
.set
<EIIK_PreInstrSymbol
>(Symbol
);
478 // Otherwise, allocate a full new set of extra info.
479 // FIXME: Maybe we should make the symbols in the extra info mutable?
480 Info
.set
<EIIK_OutOfLine
>(
481 MF
.createMIExtraInfo(memoperands(), Symbol
, getPostInstrSymbol()));
484 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
485 MCSymbol
*OldSymbol
= getPostInstrSymbol();
486 if (OldSymbol
== Symbol
)
488 if (OldSymbol
&& !Symbol
) {
489 // We're removing a symbol rather than adding one. Try to clean up any
490 // extra info carried around.
491 if (Info
.is
<EIIK_PostInstrSymbol
>()) {
496 if (memoperands_empty()) {
497 assert(getPreInstrSymbol() &&
498 "Should never have only a single symbol allocated out-of-line!");
499 Info
.set
<EIIK_PreInstrSymbol
>(getPreInstrSymbol());
503 // Otherwise fallback on the generic update.
504 } else if (!Info
|| Info
.is
<EIIK_PostInstrSymbol
>()) {
505 // If we don't have any other extra info, we can store this inline.
506 Info
.set
<EIIK_PostInstrSymbol
>(Symbol
);
510 // Otherwise, allocate a full new set of extra info.
511 // FIXME: Maybe we should make the symbols in the extra info mutable?
512 Info
.set
<EIIK_OutOfLine
>(
513 MF
.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol
));
516 void MachineInstr::cloneInstrSymbols(MachineFunction
&MF
,
517 const MachineInstr
&MI
) {
519 // Nothing to do for a self-clone!
522 assert(&MF
== MI
.getMF() &&
523 "Invalid machine functions when cloning instruction symbols!");
525 setPreInstrSymbol(MF
, MI
.getPreInstrSymbol());
526 setPostInstrSymbol(MF
, MI
.getPostInstrSymbol());
529 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
530 // For now, the just return the union of the flags. If the flags get more
531 // complicated over time, we might need more logic here.
532 return getFlags() | Other
.getFlags();
535 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction
&I
) {
536 uint16_t MIFlags
= 0;
537 // Copy the wrapping flags.
538 if (const OverflowingBinaryOperator
*OB
=
539 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
540 if (OB
->hasNoSignedWrap())
541 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
542 if (OB
->hasNoUnsignedWrap())
543 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
546 // Copy the exact flag.
547 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
549 MIFlags
|= MachineInstr::MIFlag::IsExact
;
551 // Copy the fast-math flags.
552 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
553 const FastMathFlags Flags
= FP
->getFastMathFlags();
555 MIFlags
|= MachineInstr::MIFlag::FmNoNans
;
557 MIFlags
|= MachineInstr::MIFlag::FmNoInfs
;
558 if (Flags
.noSignedZeros())
559 MIFlags
|= MachineInstr::MIFlag::FmNsz
;
560 if (Flags
.allowReciprocal())
561 MIFlags
|= MachineInstr::MIFlag::FmArcp
;
562 if (Flags
.allowContract())
563 MIFlags
|= MachineInstr::MIFlag::FmContract
;
564 if (Flags
.approxFunc())
565 MIFlags
|= MachineInstr::MIFlag::FmAfn
;
566 if (Flags
.allowReassoc())
567 MIFlags
|= MachineInstr::MIFlag::FmReassoc
;
573 void MachineInstr::copyIRFlags(const Instruction
&I
) {
574 Flags
= copyFlagsFromInstruction(I
);
577 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
578 assert(!isBundledWithPred() && "Must be called on bundle header");
579 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
580 if (MII
->getDesc().getFlags() & Mask
) {
581 if (Type
== AnyInBundle
)
584 if (Type
== AllInBundle
&& !MII
->isBundle())
587 // This was the last instruction in the bundle.
588 if (!MII
->isBundledWithSucc())
589 return Type
== AllInBundle
;
593 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
594 MICheckType Check
) const {
595 // If opcodes or number of operands are not the same then the two
596 // instructions are obviously not identical.
597 if (Other
.getOpcode() != getOpcode() ||
598 Other
.getNumOperands() != getNumOperands())
602 // We have passed the test above that both instructions have the same
603 // opcode, so we know that both instructions are bundles here. Let's compare
604 // MIs inside the bundle.
605 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
606 MachineBasicBlock::const_instr_iterator I1
= getIterator();
607 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
608 // Loop until we analysed the last intruction inside at least one of the
610 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
613 if (!I1
->isIdenticalTo(*I2
, Check
))
616 // If we've reached the end of just one of the two bundles, but not both,
617 // the instructions are not identical.
618 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
622 // Check operands to make sure they match.
623 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
624 const MachineOperand
&MO
= getOperand(i
);
625 const MachineOperand
&OMO
= Other
.getOperand(i
);
627 if (!MO
.isIdenticalTo(OMO
))
632 // Clients may or may not want to ignore defs when testing for equality.
633 // For example, machine CSE pass only cares about finding common
634 // subexpressions, so it's safe to ignore virtual register defs.
636 if (Check
== IgnoreDefs
)
638 else if (Check
== IgnoreVRegDefs
) {
639 if (!Register::isVirtualRegister(MO
.getReg()) ||
640 !Register::isVirtualRegister(OMO
.getReg()))
641 if (!MO
.isIdenticalTo(OMO
))
644 if (!MO
.isIdenticalTo(OMO
))
646 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
650 if (!MO
.isIdenticalTo(OMO
))
652 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
656 // If DebugLoc does not match then two debug instructions are not identical.
658 if (getDebugLoc() && Other
.getDebugLoc() &&
659 getDebugLoc() != Other
.getDebugLoc())
664 const MachineFunction
*MachineInstr::getMF() const {
665 return getParent()->getParent();
668 MachineInstr
*MachineInstr::removeFromParent() {
669 assert(getParent() && "Not embedded in a basic block!");
670 return getParent()->remove(this);
673 MachineInstr
*MachineInstr::removeFromBundle() {
674 assert(getParent() && "Not embedded in a basic block!");
675 return getParent()->remove_instr(this);
678 void MachineInstr::eraseFromParent() {
679 assert(getParent() && "Not embedded in a basic block!");
680 getParent()->erase(this);
683 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
684 assert(getParent() && "Not embedded in a basic block!");
685 MachineBasicBlock
*MBB
= getParent();
686 MachineFunction
*MF
= MBB
->getParent();
687 assert(MF
&& "Not embedded in a function!");
689 MachineInstr
*MI
= (MachineInstr
*)this;
690 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
692 for (const MachineOperand
&MO
: MI
->operands()) {
693 if (!MO
.isReg() || !MO
.isDef())
695 Register Reg
= MO
.getReg();
696 if (!Reg
.isVirtual())
698 MRI
.markUsesInDebugValueAsUndef(Reg
);
700 MI
->eraseFromParent();
703 void MachineInstr::eraseFromBundle() {
704 assert(getParent() && "Not embedded in a basic block!");
705 getParent()->erase_instr(this);
708 unsigned MachineInstr::getNumExplicitOperands() const {
709 unsigned NumOperands
= MCID
->getNumOperands();
710 if (!MCID
->isVariadic())
713 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
714 const MachineOperand
&MO
= getOperand(I
);
715 // The operands must always be in the following order:
716 // - explicit reg defs,
717 // - other explicit operands (reg uses, immediates, etc.),
718 // - implicit reg defs
719 // - implicit reg uses
720 if (MO
.isReg() && MO
.isImplicit())
727 unsigned MachineInstr::getNumExplicitDefs() const {
728 unsigned NumDefs
= MCID
->getNumDefs();
729 if (!MCID
->isVariadic())
732 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
733 const MachineOperand
&MO
= getOperand(I
);
734 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
741 void MachineInstr::bundleWithPred() {
742 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
743 setFlag(BundledPred
);
744 MachineBasicBlock::instr_iterator Pred
= getIterator();
746 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
747 Pred
->setFlag(BundledSucc
);
750 void MachineInstr::bundleWithSucc() {
751 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
752 setFlag(BundledSucc
);
753 MachineBasicBlock::instr_iterator Succ
= getIterator();
755 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
756 Succ
->setFlag(BundledPred
);
759 void MachineInstr::unbundleFromPred() {
760 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
761 clearFlag(BundledPred
);
762 MachineBasicBlock::instr_iterator Pred
= getIterator();
764 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
765 Pred
->clearFlag(BundledSucc
);
768 void MachineInstr::unbundleFromSucc() {
769 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
770 clearFlag(BundledSucc
);
771 MachineBasicBlock::instr_iterator Succ
= getIterator();
773 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
774 Succ
->clearFlag(BundledPred
);
777 bool MachineInstr::isStackAligningInlineAsm() const {
779 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
780 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
786 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
787 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
788 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
789 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
792 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
793 unsigned *GroupNo
) const {
794 assert(isInlineAsm() && "Expected an inline asm instruction");
795 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
797 // Ignore queries about the initial operands.
798 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
803 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
805 const MachineOperand
&FlagMO
= getOperand(i
);
806 // If we reach the implicit register operands, stop looking.
809 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
810 if (i
+ NumOps
> OpIdx
) {
820 const DILabel
*MachineInstr::getDebugLabel() const {
821 assert(isDebugLabel() && "not a DBG_LABEL");
822 return cast
<DILabel
>(getOperand(0).getMetadata());
825 const DILocalVariable
*MachineInstr::getDebugVariable() const {
826 assert(isDebugValue() && "not a DBG_VALUE");
827 return cast
<DILocalVariable
>(getOperand(2).getMetadata());
830 const DIExpression
*MachineInstr::getDebugExpression() const {
831 assert(isDebugValue() && "not a DBG_VALUE");
832 return cast
<DIExpression
>(getOperand(3).getMetadata());
835 const TargetRegisterClass
*
836 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
837 const TargetInstrInfo
*TII
,
838 const TargetRegisterInfo
*TRI
) const {
839 assert(getParent() && "Can't have an MBB reference here!");
840 assert(getMF() && "Can't have an MF reference here!");
841 const MachineFunction
&MF
= *getMF();
843 // Most opcodes have fixed constraints in their MCInstrDesc.
845 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
847 if (!getOperand(OpIdx
).isReg())
850 // For tied uses on inline asm, get the constraint from the def.
852 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
855 // Inline asm stores register class constraints in the flag word.
856 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
860 unsigned Flag
= getOperand(FlagIdx
).getImm();
862 if ((InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegUse
||
863 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDef
||
864 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDefEarlyClobber
) &&
865 InlineAsm::hasRegClassConstraint(Flag
, RCID
))
866 return TRI
->getRegClass(RCID
);
868 // Assume that all registers in a memory operand are pointers.
869 if (InlineAsm::getKind(Flag
) == InlineAsm::Kind_Mem
)
870 return TRI
->getPointerRegClass(MF
);
875 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
876 Register Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
877 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
878 // Check every operands inside the bundle if we have
881 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
883 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
884 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
886 // Otherwise, just check the current operands.
887 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
888 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
892 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
893 unsigned OpIdx
, Register Reg
, const TargetRegisterClass
*CurRC
,
894 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
895 assert(CurRC
&& "Invalid initial register class");
896 // Check if Reg is constrained by some of its use/def from MI.
897 const MachineOperand
&MO
= getOperand(OpIdx
);
898 if (!MO
.isReg() || MO
.getReg() != Reg
)
900 // If yes, accumulate the constraints through the operand.
901 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
904 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
905 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
906 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
907 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
908 const MachineOperand
&MO
= getOperand(OpIdx
);
910 "Cannot get register constraints for non-register operand");
911 assert(CurRC
&& "Invalid initial register class");
912 if (unsigned SubIdx
= MO
.getSubReg()) {
914 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
916 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
918 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
922 /// Return the number of instructions inside the MI bundle, not counting the
923 /// header instruction.
924 unsigned MachineInstr::getBundleSize() const {
925 MachineBasicBlock::const_instr_iterator I
= getIterator();
927 while (I
->isBundledWithSucc()) {
934 /// Returns true if the MachineInstr has an implicit-use operand of exactly
935 /// the given register (not considering sub/super-registers).
936 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg
) const {
937 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
938 const MachineOperand
&MO
= getOperand(i
);
939 if (MO
.isReg() && MO
.isUse() && MO
.isImplicit() && MO
.getReg() == Reg
)
945 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
946 /// the specific register or -1 if it is not found. It further tightens
947 /// the search criteria to a use that kills the register if isKill is true.
948 int MachineInstr::findRegisterUseOperandIdx(
949 Register Reg
, bool isKill
, const TargetRegisterInfo
*TRI
) const {
950 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
951 const MachineOperand
&MO
= getOperand(i
);
952 if (!MO
.isReg() || !MO
.isUse())
954 Register MOReg
= MO
.getReg();
957 if (MOReg
== Reg
|| (TRI
&& Reg
&& MOReg
&& TRI
->regsOverlap(MOReg
, Reg
)))
958 if (!isKill
|| MO
.isKill())
964 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
965 /// indicating if this instruction reads or writes Reg. This also considers
968 MachineInstr::readsWritesVirtualRegister(Register Reg
,
969 SmallVectorImpl
<unsigned> *Ops
) const {
970 bool PartDef
= false; // Partial redefine.
971 bool FullDef
= false; // Full define.
974 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
975 const MachineOperand
&MO
= getOperand(i
);
976 if (!MO
.isReg() || MO
.getReg() != Reg
)
981 Use
|= !MO
.isUndef();
982 else if (MO
.getSubReg() && !MO
.isUndef())
983 // A partial def undef doesn't count as reading the register.
988 // A partial redefine uses Reg unless there is also a full define.
989 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
992 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
993 /// the specified register or -1 if it is not found. If isDead is true, defs
994 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
995 /// also checks if there is a def of a super-register.
997 MachineInstr::findRegisterDefOperandIdx(Register Reg
, bool isDead
, bool Overlap
,
998 const TargetRegisterInfo
*TRI
) const {
999 bool isPhys
= Register::isPhysicalRegister(Reg
);
1000 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1001 const MachineOperand
&MO
= getOperand(i
);
1002 // Accept regmask operands when Overlap is set.
1003 // Ignore them when looking for a specific def operand (Overlap == false).
1004 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
1006 if (!MO
.isReg() || !MO
.isDef())
1008 Register MOReg
= MO
.getReg();
1009 bool Found
= (MOReg
== Reg
);
1010 if (!Found
&& TRI
&& isPhys
&& Register::isPhysicalRegister(MOReg
)) {
1012 Found
= TRI
->regsOverlap(MOReg
, Reg
);
1014 Found
= TRI
->isSubRegister(MOReg
, Reg
);
1016 if (Found
&& (!isDead
|| MO
.isDead()))
1022 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1023 /// operand list that is used to represent the predicate. It returns -1 if
1025 int MachineInstr::findFirstPredOperandIdx() const {
1026 // Don't call MCID.findFirstPredOperandIdx() because this variant
1027 // is sometimes called on an instruction that's not yet complete, and
1028 // so the number of operands is less than the MCID indicates. In
1029 // particular, the PTX target does this.
1030 const MCInstrDesc
&MCID
= getDesc();
1031 if (MCID
.isPredicable()) {
1032 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1033 if (MCID
.OpInfo
[i
].isPredicate())
1040 // MachineOperand::TiedTo is 4 bits wide.
1041 const unsigned TiedMax
= 15;
1043 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1045 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1046 /// field. TiedTo can have these values:
1048 /// 0: Operand is not tied to anything.
1049 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1050 /// TiedMax: Tied to an operand >= TiedMax-1.
1052 /// The tied def must be one of the first TiedMax operands on a normal
1053 /// instruction. INLINEASM instructions allow more tied defs.
1055 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1056 MachineOperand
&DefMO
= getOperand(DefIdx
);
1057 MachineOperand
&UseMO
= getOperand(UseIdx
);
1058 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1059 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1060 assert(!DefMO
.isTied() && "Def is already tied to another use");
1061 assert(!UseMO
.isTied() && "Use is already tied to another def");
1063 if (DefIdx
< TiedMax
)
1064 UseMO
.TiedTo
= DefIdx
+ 1;
1066 // Inline asm can use the group descriptors to find tied operands, but on
1067 // normal instruction, the tied def must be within the first TiedMax
1069 assert(isInlineAsm() && "DefIdx out of range");
1070 UseMO
.TiedTo
= TiedMax
;
1073 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1074 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1077 /// Given the index of a tied register operand, find the operand it is tied to.
1078 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1079 /// which must exist.
1080 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1081 const MachineOperand
&MO
= getOperand(OpIdx
);
1082 assert(MO
.isTied() && "Operand isn't tied");
1084 // Normally TiedTo is in range.
1085 if (MO
.TiedTo
< TiedMax
)
1086 return MO
.TiedTo
- 1;
1088 // Uses on normal instructions can be out of range.
1089 if (!isInlineAsm()) {
1090 // Normal tied defs must be in the 0..TiedMax-1 range.
1093 // MO is a def. Search for the tied use.
1094 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1095 const MachineOperand
&UseMO
= getOperand(i
);
1096 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1099 llvm_unreachable("Can't find tied use");
1102 // Now deal with inline asm by parsing the operand group descriptor flags.
1103 // Find the beginning of each operand group.
1104 SmallVector
<unsigned, 8> GroupIdx
;
1105 unsigned OpIdxGroup
= ~0u;
1107 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1109 const MachineOperand
&FlagMO
= getOperand(i
);
1110 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1111 unsigned CurGroup
= GroupIdx
.size();
1112 GroupIdx
.push_back(i
);
1113 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
1114 // OpIdx belongs to this operand group.
1115 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1116 OpIdxGroup
= CurGroup
;
1118 if (!InlineAsm::isUseOperandTiedToDef(FlagMO
.getImm(), TiedGroup
))
1120 // Operands in this group are tied to operands in TiedGroup which must be
1121 // earlier. Find the number of operands between the two groups.
1122 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1124 // OpIdx is a use tied to TiedGroup.
1125 if (OpIdxGroup
== CurGroup
)
1126 return OpIdx
- Delta
;
1128 // OpIdx is a def tied to this use group.
1129 if (OpIdxGroup
== TiedGroup
)
1130 return OpIdx
+ Delta
;
1132 llvm_unreachable("Invalid tied operand on inline asm");
1135 /// clearKillInfo - Clears kill flags on all operands.
1137 void MachineInstr::clearKillInfo() {
1138 for (MachineOperand
&MO
: operands()) {
1139 if (MO
.isReg() && MO
.isUse())
1140 MO
.setIsKill(false);
1144 void MachineInstr::substituteRegister(Register FromReg
, Register ToReg
,
1146 const TargetRegisterInfo
&RegInfo
) {
1147 if (Register::isPhysicalRegister(ToReg
)) {
1149 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1150 for (MachineOperand
&MO
: operands()) {
1151 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1153 MO
.substPhysReg(ToReg
, RegInfo
);
1156 for (MachineOperand
&MO
: operands()) {
1157 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1159 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1164 /// isSafeToMove - Return true if it is safe to move this instruction. If
1165 /// SawStore is set to true, it means that there is a store (or call) between
1166 /// the instruction's location and its intended destination.
1167 bool MachineInstr::isSafeToMove(AliasAnalysis
*AA
, bool &SawStore
) const {
1168 // Ignore stuff that we obviously can't move.
1170 // Treat volatile loads as stores. This is not strictly necessary for
1171 // volatiles, but it is required for atomic loads. It is not allowed to move
1172 // a load across an atomic load with Ordering > Monotonic.
1173 if (mayStore() || isCall() || isPHI() ||
1174 (mayLoad() && hasOrderedMemoryRef())) {
1179 if (isPosition() || isDebugInstr() || isTerminator() ||
1180 mayRaiseFPException() || hasUnmodeledSideEffects())
1183 // See if this instruction does a load. If so, we have to guarantee that the
1184 // loaded value doesn't change between the load and the its intended
1185 // destination. The check for isInvariantLoad gives the targe the chance to
1186 // classify the load as always returning a constant, e.g. a constant pool
1188 if (mayLoad() && !isDereferenceableInvariantLoad(AA
))
1189 // Otherwise, this is a real load. If there is a store between the load and
1190 // end of block, we can't move it.
1196 bool MachineInstr::mayAlias(AliasAnalysis
*AA
, const MachineInstr
&Other
,
1197 bool UseTBAA
) const {
1198 const MachineFunction
*MF
= getMF();
1199 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1200 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1202 // If neither instruction stores to memory, they can't alias in any
1203 // meaningful way, even if they read from the same address.
1204 if (!mayStore() && !Other
.mayStore())
1207 // Let the target decide if memory accesses cannot possibly overlap.
1208 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
, AA
))
1211 // FIXME: Need to handle multiple memory operands to support all targets.
1212 if (!hasOneMemOperand() || !Other
.hasOneMemOperand())
1215 MachineMemOperand
*MMOa
= *memoperands_begin();
1216 MachineMemOperand
*MMOb
= *Other
.memoperands_begin();
1218 // The following interface to AA is fashioned after DAGCombiner::isAlias
1219 // and operates with MachineMemOperand offset with some important
1221 // - LLVM fundamentally assumes flat address spaces.
1222 // - MachineOperand offset can *only* result from legalization and
1223 // cannot affect queries other than the trivial case of overlap
1225 // - These offsets never wrap and never step outside
1226 // of allocated objects.
1227 // - There should never be any negative offsets here.
1229 // FIXME: Modify API to hide this math from "user"
1230 // Even before we go to AA we can reason locally about some
1231 // memory objects. It can save compile time, and possibly catch some
1232 // corner cases not currently covered.
1234 int64_t OffsetA
= MMOa
->getOffset();
1235 int64_t OffsetB
= MMOb
->getOffset();
1236 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1238 uint64_t WidthA
= MMOa
->getSize();
1239 uint64_t WidthB
= MMOb
->getSize();
1240 bool KnownWidthA
= WidthA
!= MemoryLocation::UnknownSize
;
1241 bool KnownWidthB
= WidthB
!= MemoryLocation::UnknownSize
;
1243 const Value
*ValA
= MMOa
->getValue();
1244 const Value
*ValB
= MMOb
->getValue();
1245 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1247 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1248 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1249 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1251 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1253 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1258 if (!KnownWidthA
|| !KnownWidthB
)
1260 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1261 int64_t LowWidth
= (MinOffset
== OffsetA
) ? WidthA
: WidthB
;
1262 return (MinOffset
+ LowWidth
> MaxOffset
);
1271 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1272 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1274 int64_t OverlapA
= KnownWidthA
? WidthA
+ OffsetA
- MinOffset
1275 : MemoryLocation::UnknownSize
;
1276 int64_t OverlapB
= KnownWidthB
? WidthB
+ OffsetB
- MinOffset
1277 : MemoryLocation::UnknownSize
;
1279 AliasResult AAResult
= AA
->alias(
1280 MemoryLocation(ValA
, OverlapA
,
1281 UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1282 MemoryLocation(ValB
, OverlapB
,
1283 UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1285 return (AAResult
!= NoAlias
);
1288 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1289 /// or volatile memory reference, or if the information describing the memory
1290 /// reference is not available. Return false if it is known to have no ordered
1291 /// memory references.
1292 bool MachineInstr::hasOrderedMemoryRef() const {
1293 // An instruction known never to access memory won't have a volatile access.
1297 !hasUnmodeledSideEffects())
1300 // Otherwise, if the instruction has no memory reference information,
1301 // conservatively assume it wasn't preserved.
1302 if (memoperands_empty())
1305 // Check if any of our memory operands are ordered.
1306 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1307 return !MMO
->isUnordered();
1311 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1312 /// trap and is loading from a location whose value is invariant across a run of
1314 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis
*AA
) const {
1315 // If the instruction doesn't load at all, it isn't an invariant load.
1319 // If the instruction has lost its memoperands, conservatively assume that
1320 // it may not be an invariant load.
1321 if (memoperands_empty())
1324 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1326 for (MachineMemOperand
*MMO
: memoperands()) {
1327 if (!MMO
->isUnordered())
1328 // If the memory operand has ordering side effects, we can't move the
1329 // instruction. Such an instruction is technically an invariant load,
1330 // but the caller code would need updated to expect that.
1332 if (MMO
->isStore()) return false;
1333 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1336 // A load from a constant PseudoSourceValue is invariant.
1337 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue())
1338 if (PSV
->isConstant(&MFI
))
1341 if (const Value
*V
= MMO
->getValue()) {
1342 // If we have an AliasAnalysis, ask it whether the memory is constant.
1344 AA
->pointsToConstantMemory(
1345 MemoryLocation(V
, MMO
->getSize(), MMO
->getAAInfo())))
1349 // Otherwise assume conservatively.
1353 // Everything checks out.
1357 /// isConstantValuePHI - If the specified instruction is a PHI that always
1358 /// merges together the same virtual register, return the register, otherwise
1360 unsigned MachineInstr::isConstantValuePHI() const {
1363 assert(getNumOperands() >= 3 &&
1364 "It's illegal to have a PHI without source operands");
1366 Register Reg
= getOperand(1).getReg();
1367 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1368 if (getOperand(i
).getReg() != Reg
)
1373 bool MachineInstr::hasUnmodeledSideEffects() const {
1374 if (hasProperty(MCID::UnmodeledSideEffects
))
1376 if (isInlineAsm()) {
1377 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1378 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1385 bool MachineInstr::isLoadFoldBarrier() const {
1386 return mayStore() || isCall() || hasUnmodeledSideEffects();
1389 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1391 bool MachineInstr::allDefsAreDead() const {
1392 for (const MachineOperand
&MO
: operands()) {
1393 if (!MO
.isReg() || MO
.isUse())
1401 /// copyImplicitOps - Copy implicit register operands from specified
1402 /// instruction to this instruction.
1403 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1404 const MachineInstr
&MI
) {
1405 for (unsigned i
= MI
.getDesc().getNumOperands(), e
= MI
.getNumOperands();
1407 const MachineOperand
&MO
= MI
.getOperand(i
);
1408 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1413 bool MachineInstr::hasComplexRegisterTies() const {
1414 const MCInstrDesc
&MCID
= getDesc();
1415 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1416 const auto &Operand
= getOperand(I
);
1417 if (!Operand
.isReg() || Operand
.isDef())
1418 // Ignore the defined registers as MCID marks only the uses as tied.
1420 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1421 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1422 if (ExpectedTiedIdx
!= TiedIdx
)
1428 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1429 const MachineRegisterInfo
&MRI
) const {
1430 const MachineOperand
&Op
= getOperand(OpIdx
);
1434 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1435 return MRI
.getType(Op
.getReg());
1437 auto &OpInfo
= getDesc().OpInfo
[OpIdx
];
1438 if (!OpInfo
.isGenericType())
1439 return MRI
.getType(Op
.getReg());
1441 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1444 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1445 // Don't mark the type index printed if it wasn't actually printed: maybe
1446 // another operand with the same type index has an actual type attached:
1447 if (TypeToPrint
.isValid())
1448 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1459 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1460 bool SkipDebugLoc
, bool AddNewLine
,
1461 const TargetInstrInfo
*TII
) const {
1462 const Module
*M
= nullptr;
1463 const Function
*F
= nullptr;
1464 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1465 F
= &MF
->getFunction();
1468 TII
= MF
->getSubtarget().getInstrInfo();
1471 ModuleSlotTracker
MST(M
);
1473 MST
.incorporateFunction(*F
);
1474 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, AddNewLine
, TII
);
1477 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1478 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1479 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1480 // We can be a bit tidier if we know the MachineFunction.
1481 const MachineFunction
*MF
= nullptr;
1482 const TargetRegisterInfo
*TRI
= nullptr;
1483 const MachineRegisterInfo
*MRI
= nullptr;
1484 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1485 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1487 if (isCFIInstruction())
1488 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1490 SmallBitVector
PrintedTypes(8);
1491 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1492 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1493 if (!ShouldPrintRegisterTies
)
1495 const MachineOperand
&MO
= getOperand(OpIdx
);
1496 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1497 return findTiedOperandIdx(OpIdx
);
1500 unsigned StartOp
= 0;
1501 unsigned e
= getNumOperands();
1503 // Print explicitly defined operands on the left of an assignment syntax.
1504 while (StartOp
< e
) {
1505 const MachineOperand
&MO
= getOperand(StartOp
);
1506 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1512 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1513 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1514 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/false, IsStandalone
,
1515 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1522 if (getFlag(MachineInstr::FrameSetup
))
1523 OS
<< "frame-setup ";
1524 if (getFlag(MachineInstr::FrameDestroy
))
1525 OS
<< "frame-destroy ";
1526 if (getFlag(MachineInstr::FmNoNans
))
1528 if (getFlag(MachineInstr::FmNoInfs
))
1530 if (getFlag(MachineInstr::FmNsz
))
1532 if (getFlag(MachineInstr::FmArcp
))
1534 if (getFlag(MachineInstr::FmContract
))
1536 if (getFlag(MachineInstr::FmAfn
))
1538 if (getFlag(MachineInstr::FmReassoc
))
1540 if (getFlag(MachineInstr::NoUWrap
))
1542 if (getFlag(MachineInstr::NoSWrap
))
1544 if (getFlag(MachineInstr::IsExact
))
1546 if (getFlag(MachineInstr::FPExcept
))
1549 // Print the opcode name.
1551 OS
<< TII
->getName(getOpcode());
1558 // Print the rest of the operands.
1559 bool FirstOp
= true;
1560 unsigned AsmDescOp
= ~0u;
1561 unsigned AsmOpCount
= 0;
1563 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1564 // Print asm string.
1566 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1567 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1568 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1569 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1570 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1573 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1574 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1575 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1576 OS
<< " [sideeffect]";
1577 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1579 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1580 OS
<< " [maystore]";
1581 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1582 OS
<< " [isconvergent]";
1583 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1584 OS
<< " [alignstack]";
1585 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1586 OS
<< " [attdialect]";
1587 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1588 OS
<< " [inteldialect]";
1590 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1594 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1595 const MachineOperand
&MO
= getOperand(i
);
1597 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1600 if (isDebugValue() && MO
.isMetadata()) {
1601 // Pretty print DBG_VALUE instructions.
1602 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1603 if (DIV
&& !DIV
->getName().empty())
1604 OS
<< "!\"" << DIV
->getName() << '\"';
1606 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1607 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1608 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1609 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1611 } else if (isDebugLabel() && MO
.isMetadata()) {
1612 // Pretty print DBG_LABEL instructions.
1613 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1614 if (DIL
&& !DIL
->getName().empty())
1615 OS
<< "\"" << DIL
->getName() << '\"';
1617 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1618 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1619 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1620 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1622 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1623 // Pretty print the inline asm operand descriptor.
1624 OS
<< '$' << AsmOpCount
++;
1625 unsigned Flag
= MO
.getImm();
1626 switch (InlineAsm::getKind(Flag
)) {
1627 case InlineAsm::Kind_RegUse
: OS
<< ":[reguse"; break;
1628 case InlineAsm::Kind_RegDef
: OS
<< ":[regdef"; break;
1629 case InlineAsm::Kind_RegDefEarlyClobber
: OS
<< ":[regdef-ec"; break;
1630 case InlineAsm::Kind_Clobber
: OS
<< ":[clobber"; break;
1631 case InlineAsm::Kind_Imm
: OS
<< ":[imm"; break;
1632 case InlineAsm::Kind_Mem
: OS
<< ":[mem"; break;
1633 default: OS
<< ":[??" << InlineAsm::getKind(Flag
); break;
1637 if (!InlineAsm::isImmKind(Flag
) && !InlineAsm::isMemKind(Flag
) &&
1638 InlineAsm::hasRegClassConstraint(Flag
, RCID
)) {
1640 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1642 OS
<< ":RC" << RCID
;
1645 if (InlineAsm::isMemKind(Flag
)) {
1646 unsigned MCID
= InlineAsm::getMemoryConstraintID(Flag
);
1648 case InlineAsm::Constraint_es
: OS
<< ":es"; break;
1649 case InlineAsm::Constraint_i
: OS
<< ":i"; break;
1650 case InlineAsm::Constraint_m
: OS
<< ":m"; break;
1651 case InlineAsm::Constraint_o
: OS
<< ":o"; break;
1652 case InlineAsm::Constraint_v
: OS
<< ":v"; break;
1653 case InlineAsm::Constraint_Q
: OS
<< ":Q"; break;
1654 case InlineAsm::Constraint_R
: OS
<< ":R"; break;
1655 case InlineAsm::Constraint_S
: OS
<< ":S"; break;
1656 case InlineAsm::Constraint_T
: OS
<< ":T"; break;
1657 case InlineAsm::Constraint_Um
: OS
<< ":Um"; break;
1658 case InlineAsm::Constraint_Un
: OS
<< ":Un"; break;
1659 case InlineAsm::Constraint_Uq
: OS
<< ":Uq"; break;
1660 case InlineAsm::Constraint_Us
: OS
<< ":Us"; break;
1661 case InlineAsm::Constraint_Ut
: OS
<< ":Ut"; break;
1662 case InlineAsm::Constraint_Uv
: OS
<< ":Uv"; break;
1663 case InlineAsm::Constraint_Uy
: OS
<< ":Uy"; break;
1664 case InlineAsm::Constraint_X
: OS
<< ":X"; break;
1665 case InlineAsm::Constraint_Z
: OS
<< ":Z"; break;
1666 case InlineAsm::Constraint_ZC
: OS
<< ":ZC"; break;
1667 case InlineAsm::Constraint_Zy
: OS
<< ":Zy"; break;
1668 default: OS
<< ":?"; break;
1672 unsigned TiedTo
= 0;
1673 if (InlineAsm::isUseOperandTiedToDef(Flag
, TiedTo
))
1674 OS
<< " tiedto:$" << TiedTo
;
1678 // Compute the index of the next operand descriptor.
1679 AsmDescOp
+= 1 + InlineAsm::getNumOperandRegisters(Flag
);
1681 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1682 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1683 if (MO
.isImm() && isOperandSubregIdx(i
))
1684 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1686 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1687 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1691 // Print any optional symbols attached to this instruction as-if they were
1693 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1698 OS
<< " pre-instr-symbol ";
1699 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1701 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1706 OS
<< " post-instr-symbol ";
1707 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1710 if (!SkipDebugLoc
) {
1711 if (const DebugLoc
&DL
= getDebugLoc()) {
1714 OS
<< " debug-location ";
1715 DL
->printAsOperand(OS
, MST
);
1719 if (!memoperands_empty()) {
1720 SmallVector
<StringRef
, 0> SSNs
;
1721 const LLVMContext
*Context
= nullptr;
1722 std::unique_ptr
<LLVMContext
> CtxPtr
;
1723 const MachineFrameInfo
*MFI
= nullptr;
1724 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1725 MFI
= &MF
->getFrameInfo();
1726 Context
= &MF
->getFunction().getContext();
1728 CtxPtr
= std::make_unique
<LLVMContext
>();
1729 Context
= CtxPtr
.get();
1733 bool NeedComma
= false;
1734 for (const MachineMemOperand
*Op
: memoperands()) {
1737 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
1745 bool HaveSemi
= false;
1747 // Print debug location information.
1748 if (const DebugLoc
&DL
= getDebugLoc()) {
1757 // Print extra comments for DEBUG_VALUE.
1758 if (isDebugValue() && getOperand(e
- 2).isMetadata()) {
1763 auto *DV
= cast
<DILocalVariable
>(getOperand(e
- 2).getMetadata());
1764 OS
<< " line no:" << DV
->getLine();
1765 if (auto *InlinedAt
= debugLoc
->getInlinedAt()) {
1766 DebugLoc
InlinedAtDL(InlinedAt
);
1767 if (InlinedAtDL
&& MF
) {
1768 OS
<< " inlined @[ ";
1769 InlinedAtDL
.print(OS
);
1773 if (isIndirectDebugValue())
1782 bool MachineInstr::addRegisterKilled(Register IncomingReg
,
1783 const TargetRegisterInfo
*RegInfo
,
1784 bool AddIfNotFound
) {
1785 bool isPhysReg
= Register::isPhysicalRegister(IncomingReg
);
1786 bool hasAliases
= isPhysReg
&&
1787 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
1789 SmallVector
<unsigned,4> DeadOps
;
1790 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1791 MachineOperand
&MO
= getOperand(i
);
1792 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
1795 // DEBUG_VALUE nodes do not contribute to code generation and should
1796 // always be ignored. Failure to do so may result in trying to modify
1797 // KILL flags on DEBUG_VALUE nodes.
1801 Register Reg
= MO
.getReg();
1805 if (Reg
== IncomingReg
) {
1808 // The register is already marked kill.
1810 if (isPhysReg
&& isRegTiedToDefOperand(i
))
1811 // Two-address uses of physregs must not be marked kill.
1816 } else if (hasAliases
&& MO
.isKill() && Register::isPhysicalRegister(Reg
)) {
1817 // A super-register kill already exists.
1818 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
1820 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
1821 DeadOps
.push_back(i
);
1825 // Trim unneeded kill operands.
1826 while (!DeadOps
.empty()) {
1827 unsigned OpIdx
= DeadOps
.back();
1828 if (getOperand(OpIdx
).isImplicit() &&
1829 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1830 RemoveOperand(OpIdx
);
1832 getOperand(OpIdx
).setIsKill(false);
1836 // If not found, this means an alias of one of the operands is killed. Add a
1837 // new implicit operand if required.
1838 if (!Found
&& AddIfNotFound
) {
1839 addOperand(MachineOperand::CreateReg(IncomingReg
,
1848 void MachineInstr::clearRegisterKills(Register Reg
,
1849 const TargetRegisterInfo
*RegInfo
) {
1850 if (!Register::isPhysicalRegister(Reg
))
1852 for (MachineOperand
&MO
: operands()) {
1853 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
1855 Register OpReg
= MO
.getReg();
1856 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
1857 MO
.setIsKill(false);
1861 bool MachineInstr::addRegisterDead(Register Reg
,
1862 const TargetRegisterInfo
*RegInfo
,
1863 bool AddIfNotFound
) {
1864 bool isPhysReg
= Register::isPhysicalRegister(Reg
);
1865 bool hasAliases
= isPhysReg
&&
1866 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
1868 SmallVector
<unsigned,4> DeadOps
;
1869 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1870 MachineOperand
&MO
= getOperand(i
);
1871 if (!MO
.isReg() || !MO
.isDef())
1873 Register MOReg
= MO
.getReg();
1880 } else if (hasAliases
&& MO
.isDead() &&
1881 Register::isPhysicalRegister(MOReg
)) {
1882 // There exists a super-register that's marked dead.
1883 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
1885 if (RegInfo
->isSubRegister(Reg
, MOReg
))
1886 DeadOps
.push_back(i
);
1890 // Trim unneeded dead operands.
1891 while (!DeadOps
.empty()) {
1892 unsigned OpIdx
= DeadOps
.back();
1893 if (getOperand(OpIdx
).isImplicit() &&
1894 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1895 RemoveOperand(OpIdx
);
1897 getOperand(OpIdx
).setIsDead(false);
1901 // If not found, this means an alias of one of the operands is dead. Add a
1902 // new implicit operand if required.
1903 if (Found
|| !AddIfNotFound
)
1906 addOperand(MachineOperand::CreateReg(Reg
,
1914 void MachineInstr::clearRegisterDeads(Register Reg
) {
1915 for (MachineOperand
&MO
: operands()) {
1916 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
)
1918 MO
.setIsDead(false);
1922 void MachineInstr::setRegisterDefReadUndef(Register Reg
, bool IsUndef
) {
1923 for (MachineOperand
&MO
: operands()) {
1924 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
|| MO
.getSubReg() == 0)
1926 MO
.setIsUndef(IsUndef
);
1930 void MachineInstr::addRegisterDefined(Register Reg
,
1931 const TargetRegisterInfo
*RegInfo
) {
1932 if (Register::isPhysicalRegister(Reg
)) {
1933 MachineOperand
*MO
= findRegisterDefOperand(Reg
, false, false, RegInfo
);
1937 for (const MachineOperand
&MO
: operands()) {
1938 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isDef() &&
1939 MO
.getSubReg() == 0)
1943 addOperand(MachineOperand::CreateReg(Reg
,
1948 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<Register
> UsedRegs
,
1949 const TargetRegisterInfo
&TRI
) {
1950 bool HasRegMask
= false;
1951 for (MachineOperand
&MO
: operands()) {
1952 if (MO
.isRegMask()) {
1956 if (!MO
.isReg() || !MO
.isDef()) continue;
1957 Register Reg
= MO
.getReg();
1958 if (!Reg
.isPhysical())
1960 // If there are no uses, including partial uses, the def is dead.
1961 if (llvm::none_of(UsedRegs
,
1962 [&](MCRegister Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
1966 // This is a call with a register mask operand.
1967 // Mask clobbers are always dead, so add defs for the non-dead defines.
1969 for (ArrayRef
<Register
>::iterator I
= UsedRegs
.begin(), E
= UsedRegs
.end();
1971 addRegisterDefined(*I
, &TRI
);
1975 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
1976 // Build up a buffer of hash code components.
1977 SmallVector
<size_t, 8> HashComponents
;
1978 HashComponents
.reserve(MI
->getNumOperands() + 1);
1979 HashComponents
.push_back(MI
->getOpcode());
1980 for (const MachineOperand
&MO
: MI
->operands()) {
1981 if (MO
.isReg() && MO
.isDef() && Register::isVirtualRegister(MO
.getReg()))
1982 continue; // Skip virtual register defs.
1984 HashComponents
.push_back(hash_value(MO
));
1986 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
1989 void MachineInstr::emitError(StringRef Msg
) const {
1990 // Find the source location cookie.
1991 unsigned LocCookie
= 0;
1992 const MDNode
*LocMD
= nullptr;
1993 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
1994 if (getOperand(i
-1).isMetadata() &&
1995 (LocMD
= getOperand(i
-1).getMetadata()) &&
1996 LocMD
->getNumOperands() != 0) {
1997 if (const ConstantInt
*CI
=
1998 mdconst::dyn_extract
<ConstantInt
>(LocMD
->getOperand(0))) {
1999 LocCookie
= CI
->getZExtValue();
2005 if (const MachineBasicBlock
*MBB
= getParent())
2006 if (const MachineFunction
*MF
= MBB
->getParent())
2007 return MF
->getMMI().getModule()->getContext().emitError(LocCookie
, Msg
);
2008 report_fatal_error(Msg
);
2011 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2012 const MCInstrDesc
&MCID
, bool IsIndirect
,
2013 Register Reg
, const MDNode
*Variable
,
2014 const MDNode
*Expr
) {
2015 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2016 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2017 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2018 "Expected inlined-at fields to agree");
2019 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
, RegState::Debug
);
2023 MIB
.addReg(0U, RegState::Debug
);
2024 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2027 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2028 const MCInstrDesc
&MCID
, bool IsIndirect
,
2029 MachineOperand
&MO
, const MDNode
*Variable
,
2030 const MDNode
*Expr
) {
2031 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2032 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2033 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2034 "Expected inlined-at fields to agree");
2036 return BuildMI(MF
, DL
, MCID
, IsIndirect
, MO
.getReg(), Variable
, Expr
);
2038 auto MIB
= BuildMI(MF
, DL
, MCID
).add(MO
);
2042 MIB
.addReg(0U, RegState::Debug
);
2043 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2046 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2047 MachineBasicBlock::iterator I
,
2048 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2049 bool IsIndirect
, Register Reg
,
2050 const MDNode
*Variable
, const MDNode
*Expr
) {
2051 MachineFunction
&MF
= *BB
.getParent();
2052 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2054 return MachineInstrBuilder(MF
, MI
);
2057 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2058 MachineBasicBlock::iterator I
,
2059 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2060 bool IsIndirect
, MachineOperand
&MO
,
2061 const MDNode
*Variable
, const MDNode
*Expr
) {
2062 MachineFunction
&MF
= *BB
.getParent();
2063 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, MO
, Variable
, Expr
);
2065 return MachineInstrBuilder(MF
, *MI
);
2068 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2069 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2070 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
) {
2071 assert(MI
.getOperand(0).isReg() && "can't spill non-register");
2072 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2073 "Expected inlined-at fields to agree");
2075 const DIExpression
*Expr
= MI
.getDebugExpression();
2076 if (MI
.isIndirectDebugValue()) {
2077 assert(MI
.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2078 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefBefore
);
2083 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2084 MachineBasicBlock::iterator I
,
2085 const MachineInstr
&Orig
,
2087 const DIExpression
*Expr
= computeExprForSpill(Orig
);
2088 return BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc())
2089 .addFrameIndex(FrameIndex
)
2091 .addMetadata(Orig
.getDebugVariable())
2095 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
) {
2096 const DIExpression
*Expr
= computeExprForSpill(Orig
);
2097 Orig
.getOperand(0).ChangeToFrameIndex(FrameIndex
);
2098 Orig
.getOperand(1).ChangeToImmediate(0U);
2099 Orig
.getOperand(3).setMetadata(Expr
);
2102 void MachineInstr::collectDebugValues(
2103 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2104 MachineInstr
&MI
= *this;
2105 if (!MI
.getOperand(0).isReg())
2108 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2109 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2111 if (!DI
->isDebugValue())
2113 if (DI
->getOperand(0).isReg() &&
2114 DI
->getOperand(0).getReg() == MI
.getOperand(0).getReg())
2115 DbgValues
.push_back(&*DI
);
2119 void MachineInstr::changeDebugValuesDefReg(Register Reg
) {
2120 // Collect matching debug values.
2121 SmallVector
<MachineInstr
*, 2> DbgValues
;
2122 collectDebugValues(DbgValues
);
2124 // Propagate Reg to debug value instructions.
2125 for (auto *DBI
: DbgValues
)
2126 DBI
->getOperand(0).setReg(Reg
);
2129 using MMOList
= SmallVector
<const MachineMemOperand
*, 2>;
2131 static unsigned getSpillSlotSize(MMOList
&Accesses
,
2132 const MachineFrameInfo
&MFI
) {
2134 for (auto A
: Accesses
)
2135 if (MFI
.isSpillSlotObjectIndex(
2136 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
2138 Size
+= A
->getSize();
2143 MachineInstr::getSpillSize(const TargetInstrInfo
*TII
) const {
2145 if (TII
->isStoreToStackSlotPostFE(*this, FI
)) {
2146 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2147 if (MFI
.isSpillSlotObjectIndex(FI
))
2148 return (*memoperands_begin())->getSize();
2154 MachineInstr::getFoldedSpillSize(const TargetInstrInfo
*TII
) const {
2156 if (TII
->hasStoreToStackSlot(*this, Accesses
))
2157 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2162 MachineInstr::getRestoreSize(const TargetInstrInfo
*TII
) const {
2164 if (TII
->isLoadFromStackSlotPostFE(*this, FI
)) {
2165 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2166 if (MFI
.isSpillSlotObjectIndex(FI
))
2167 return (*memoperands_begin())->getSize();
2173 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo
*TII
) const {
2175 if (TII
->hasLoadFromStackSlot(*this, Accesses
))
2176 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());