[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / MachinePipeliner.cpp
blob584b2a1eaec6dfd48326176e18d10f15577fe75a
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/CodeGen/DFAPacketizer.h"
47 #include "llvm/CodeGen/LiveIntervals.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineMemOperand.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachinePipeliner.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/RegisterPressure.h"
60 #include "llvm/CodeGen/ScheduleDAG.h"
61 #include "llvm/CodeGen/ScheduleDAGMutation.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/Config/llvm-config.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/DebugLoc.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/MC/LaneBitmask.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCInstrItineraries.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <deque>
84 #include <functional>
85 #include <iterator>
86 #include <map>
87 #include <memory>
88 #include <tuple>
89 #include <utility>
90 #include <vector>
92 using namespace llvm;
94 #define DEBUG_TYPE "pipeliner"
96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
97 STATISTIC(NumPipelined, "Number of loops software pipelined");
98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
99 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
100 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
101 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
102 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
103 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
104 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
105 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
106 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
108 /// A command line option to turn software pipelining on or off.
109 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
110 cl::ZeroOrMore,
111 cl::desc("Enable Software Pipelining"));
113 /// A command line option to enable SWP at -Os.
114 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
115 cl::desc("Enable SWP at Os."), cl::Hidden,
116 cl::init(false));
118 /// A command line argument to limit minimum initial interval for pipelining.
119 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
120 cl::desc("Size limit for the MII."),
121 cl::Hidden, cl::init(27));
123 /// A command line argument to limit the number of stages in the pipeline.
124 static cl::opt<int>
125 SwpMaxStages("pipeliner-max-stages",
126 cl::desc("Maximum stages allowed in the generated scheduled."),
127 cl::Hidden, cl::init(3));
129 /// A command line option to disable the pruning of chain dependences due to
130 /// an unrelated Phi.
131 static cl::opt<bool>
132 SwpPruneDeps("pipeliner-prune-deps",
133 cl::desc("Prune dependences between unrelated Phi nodes."),
134 cl::Hidden, cl::init(true));
136 /// A command line option to disable the pruning of loop carried order
137 /// dependences.
138 static cl::opt<bool>
139 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
140 cl::desc("Prune loop carried order dependences."),
141 cl::Hidden, cl::init(true));
143 #ifndef NDEBUG
144 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
145 #endif
147 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
148 cl::ReallyHidden, cl::init(false),
149 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
151 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
152 cl::init(false));
153 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
154 cl::init(false));
156 namespace llvm {
158 // A command line option to enable the CopyToPhi DAG mutation.
159 cl::opt<bool>
160 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
161 cl::init(true), cl::ZeroOrMore,
162 cl::desc("Enable CopyToPhi DAG Mutation"));
164 } // end namespace llvm
166 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
167 char MachinePipeliner::ID = 0;
168 #ifndef NDEBUG
169 int MachinePipeliner::NumTries = 0;
170 #endif
171 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
173 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
174 "Modulo Software Pipelining", false, false)
175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
176 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
177 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
178 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
179 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
180 "Modulo Software Pipelining", false, false)
182 /// The "main" function for implementing Swing Modulo Scheduling.
183 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
184 if (skipFunction(mf.getFunction()))
185 return false;
187 if (!EnableSWP)
188 return false;
190 if (mf.getFunction().getAttributes().hasAttribute(
191 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
192 !EnableSWPOptSize.getPosition())
193 return false;
195 if (!mf.getSubtarget().enableMachinePipeliner())
196 return false;
198 // Cannot pipeline loops without instruction itineraries if we are using
199 // DFA for the pipeliner.
200 if (mf.getSubtarget().useDFAforSMS() &&
201 (!mf.getSubtarget().getInstrItineraryData() ||
202 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
203 return false;
205 MF = &mf;
206 MLI = &getAnalysis<MachineLoopInfo>();
207 MDT = &getAnalysis<MachineDominatorTree>();
208 TII = MF->getSubtarget().getInstrInfo();
209 RegClassInfo.runOnMachineFunction(*MF);
211 for (auto &L : *MLI)
212 scheduleLoop(*L);
214 return false;
217 /// Attempt to perform the SMS algorithm on the specified loop. This function is
218 /// the main entry point for the algorithm. The function identifies candidate
219 /// loops, calculates the minimum initiation interval, and attempts to schedule
220 /// the loop.
221 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
222 bool Changed = false;
223 for (auto &InnerLoop : L)
224 Changed |= scheduleLoop(*InnerLoop);
226 #ifndef NDEBUG
227 // Stop trying after reaching the limit (if any).
228 int Limit = SwpLoopLimit;
229 if (Limit >= 0) {
230 if (NumTries >= SwpLoopLimit)
231 return Changed;
232 NumTries++;
234 #endif
236 setPragmaPipelineOptions(L);
237 if (!canPipelineLoop(L)) {
238 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
239 return Changed;
242 ++NumTrytoPipeline;
244 Changed = swingModuloScheduler(L);
246 return Changed;
249 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
250 MachineBasicBlock *LBLK = L.getTopBlock();
252 if (LBLK == nullptr)
253 return;
255 const BasicBlock *BBLK = LBLK->getBasicBlock();
256 if (BBLK == nullptr)
257 return;
259 const Instruction *TI = BBLK->getTerminator();
260 if (TI == nullptr)
261 return;
263 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
264 if (LoopID == nullptr)
265 return;
267 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
268 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
270 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
271 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
273 if (MD == nullptr)
274 continue;
276 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
278 if (S == nullptr)
279 continue;
281 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
282 assert(MD->getNumOperands() == 2 &&
283 "Pipeline initiation interval hint metadata should have two operands.");
284 II_setByPragma =
285 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
286 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
287 } else if (S->getString() == "llvm.loop.pipeline.disable") {
288 disabledByPragma = true;
293 /// Return true if the loop can be software pipelined. The algorithm is
294 /// restricted to loops with a single basic block. Make sure that the
295 /// branch in the loop can be analyzed.
296 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
297 if (L.getNumBlocks() != 1)
298 return false;
300 if (disabledByPragma)
301 return false;
303 // Check if the branch can't be understood because we can't do pipelining
304 // if that's the case.
305 LI.TBB = nullptr;
306 LI.FBB = nullptr;
307 LI.BrCond.clear();
308 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
309 LLVM_DEBUG(
310 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n");
311 NumFailBranch++;
312 return false;
315 LI.LoopInductionVar = nullptr;
316 LI.LoopCompare = nullptr;
317 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) {
318 LLVM_DEBUG(
319 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n");
320 NumFailLoop++;
321 return false;
324 if (!L.getLoopPreheader()) {
325 LLVM_DEBUG(
326 dbgs() << "Preheader not found, can NOT pipeline current Loop\n");
327 NumFailPreheader++;
328 return false;
331 // Remove any subregisters from inputs to phi nodes.
332 preprocessPhiNodes(*L.getHeader());
333 return true;
336 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
337 MachineRegisterInfo &MRI = MF->getRegInfo();
338 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
340 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
341 MachineOperand &DefOp = PI.getOperand(0);
342 assert(DefOp.getSubReg() == 0);
343 auto *RC = MRI.getRegClass(DefOp.getReg());
345 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
346 MachineOperand &RegOp = PI.getOperand(i);
347 if (RegOp.getSubReg() == 0)
348 continue;
350 // If the operand uses a subregister, replace it with a new register
351 // without subregisters, and generate a copy to the new register.
352 Register NewReg = MRI.createVirtualRegister(RC);
353 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
354 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
355 const DebugLoc &DL = PredB.findDebugLoc(At);
356 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
357 .addReg(RegOp.getReg(), getRegState(RegOp),
358 RegOp.getSubReg());
359 Slots.insertMachineInstrInMaps(*Copy);
360 RegOp.setReg(NewReg);
361 RegOp.setSubReg(0);
366 /// The SMS algorithm consists of the following main steps:
367 /// 1. Computation and analysis of the dependence graph.
368 /// 2. Ordering of the nodes (instructions).
369 /// 3. Attempt to Schedule the loop.
370 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
371 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
373 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
374 II_setByPragma);
376 MachineBasicBlock *MBB = L.getHeader();
377 // The kernel should not include any terminator instructions. These
378 // will be added back later.
379 SMS.startBlock(MBB);
381 // Compute the number of 'real' instructions in the basic block by
382 // ignoring terminators.
383 unsigned size = MBB->size();
384 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
385 E = MBB->instr_end();
386 I != E; ++I, --size)
389 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
390 SMS.schedule();
391 SMS.exitRegion();
393 SMS.finishBlock();
394 return SMS.hasNewSchedule();
397 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
398 if (II_setByPragma > 0)
399 MII = II_setByPragma;
400 else
401 MII = std::max(ResMII, RecMII);
404 void SwingSchedulerDAG::setMAX_II() {
405 if (II_setByPragma > 0)
406 MAX_II = II_setByPragma;
407 else
408 MAX_II = MII + 10;
411 /// We override the schedule function in ScheduleDAGInstrs to implement the
412 /// scheduling part of the Swing Modulo Scheduling algorithm.
413 void SwingSchedulerDAG::schedule() {
414 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
415 buildSchedGraph(AA);
416 addLoopCarriedDependences(AA);
417 updatePhiDependences();
418 Topo.InitDAGTopologicalSorting();
419 changeDependences();
420 postprocessDAG();
421 LLVM_DEBUG(dump());
423 NodeSetType NodeSets;
424 findCircuits(NodeSets);
425 NodeSetType Circuits = NodeSets;
427 // Calculate the MII.
428 unsigned ResMII = calculateResMII();
429 unsigned RecMII = calculateRecMII(NodeSets);
431 fuseRecs(NodeSets);
433 // This flag is used for testing and can cause correctness problems.
434 if (SwpIgnoreRecMII)
435 RecMII = 0;
437 setMII(ResMII, RecMII);
438 setMAX_II();
440 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
441 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
443 // Can't schedule a loop without a valid MII.
444 if (MII == 0) {
445 LLVM_DEBUG(
446 dbgs()
447 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n");
448 NumFailZeroMII++;
449 return;
452 // Don't pipeline large loops.
453 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
454 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
455 << ", we don't pipleline large loops\n");
456 NumFailLargeMaxMII++;
457 return;
460 computeNodeFunctions(NodeSets);
462 registerPressureFilter(NodeSets);
464 colocateNodeSets(NodeSets);
466 checkNodeSets(NodeSets);
468 LLVM_DEBUG({
469 for (auto &I : NodeSets) {
470 dbgs() << " Rec NodeSet ";
471 I.dump();
475 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
477 groupRemainingNodes(NodeSets);
479 removeDuplicateNodes(NodeSets);
481 LLVM_DEBUG({
482 for (auto &I : NodeSets) {
483 dbgs() << " NodeSet ";
484 I.dump();
488 computeNodeOrder(NodeSets);
490 // check for node order issues
491 checkValidNodeOrder(Circuits);
493 SMSchedule Schedule(Pass.MF);
494 Scheduled = schedulePipeline(Schedule);
496 if (!Scheduled){
497 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
498 NumFailNoSchedule++;
499 return;
502 unsigned numStages = Schedule.getMaxStageCount();
503 // No need to generate pipeline if there are no overlapped iterations.
504 if (numStages == 0) {
505 LLVM_DEBUG(
506 dbgs() << "No overlapped iterations, no need to generate pipeline\n");
507 NumFailZeroStage++;
508 return;
510 // Check that the maximum stage count is less than user-defined limit.
511 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
512 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
513 << " : too many stages, abort\n");
514 NumFailLargeMaxStage++;
515 return;
518 generatePipelinedLoop(Schedule);
519 ++NumPipelined;
522 /// Clean up after the software pipeliner runs.
523 void SwingSchedulerDAG::finishBlock() {
524 for (MachineInstr *I : NewMIs)
525 MF.DeleteMachineInstr(I);
526 NewMIs.clear();
528 // Call the superclass.
529 ScheduleDAGInstrs::finishBlock();
532 /// Return the register values for the operands of a Phi instruction.
533 /// This function assume the instruction is a Phi.
534 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
535 unsigned &InitVal, unsigned &LoopVal) {
536 assert(Phi.isPHI() && "Expecting a Phi.");
538 InitVal = 0;
539 LoopVal = 0;
540 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
541 if (Phi.getOperand(i + 1).getMBB() != Loop)
542 InitVal = Phi.getOperand(i).getReg();
543 else
544 LoopVal = Phi.getOperand(i).getReg();
546 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
549 /// Return the Phi register value that comes from the incoming block.
550 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
551 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
552 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
553 return Phi.getOperand(i).getReg();
554 return 0;
557 /// Return the Phi register value that comes the loop block.
558 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
559 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
560 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
561 return Phi.getOperand(i).getReg();
562 return 0;
565 /// Return true if SUb can be reached from SUa following the chain edges.
566 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
567 SmallPtrSet<SUnit *, 8> Visited;
568 SmallVector<SUnit *, 8> Worklist;
569 Worklist.push_back(SUa);
570 while (!Worklist.empty()) {
571 const SUnit *SU = Worklist.pop_back_val();
572 for (auto &SI : SU->Succs) {
573 SUnit *SuccSU = SI.getSUnit();
574 if (SI.getKind() == SDep::Order) {
575 if (Visited.count(SuccSU))
576 continue;
577 if (SuccSU == SUb)
578 return true;
579 Worklist.push_back(SuccSU);
580 Visited.insert(SuccSU);
584 return false;
587 /// Return true if the instruction causes a chain between memory
588 /// references before and after it.
589 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
590 return MI.isCall() || MI.mayRaiseFPException() ||
591 MI.hasUnmodeledSideEffects() ||
592 (MI.hasOrderedMemoryRef() &&
593 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
596 /// Return the underlying objects for the memory references of an instruction.
597 /// This function calls the code in ValueTracking, but first checks that the
598 /// instruction has a memory operand.
599 static void getUnderlyingObjects(const MachineInstr *MI,
600 SmallVectorImpl<const Value *> &Objs,
601 const DataLayout &DL) {
602 if (!MI->hasOneMemOperand())
603 return;
604 MachineMemOperand *MM = *MI->memoperands_begin();
605 if (!MM->getValue())
606 return;
607 GetUnderlyingObjects(MM->getValue(), Objs, DL);
608 for (const Value *V : Objs) {
609 if (!isIdentifiedObject(V)) {
610 Objs.clear();
611 return;
613 Objs.push_back(V);
617 /// Add a chain edge between a load and store if the store can be an
618 /// alias of the load on a subsequent iteration, i.e., a loop carried
619 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
620 /// but that code doesn't create loop carried dependences.
621 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
622 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
623 Value *UnknownValue =
624 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
625 for (auto &SU : SUnits) {
626 MachineInstr &MI = *SU.getInstr();
627 if (isDependenceBarrier(MI, AA))
628 PendingLoads.clear();
629 else if (MI.mayLoad()) {
630 SmallVector<const Value *, 4> Objs;
631 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
632 if (Objs.empty())
633 Objs.push_back(UnknownValue);
634 for (auto V : Objs) {
635 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
636 SUs.push_back(&SU);
638 } else if (MI.mayStore()) {
639 SmallVector<const Value *, 4> Objs;
640 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
641 if (Objs.empty())
642 Objs.push_back(UnknownValue);
643 for (auto V : Objs) {
644 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
645 PendingLoads.find(V);
646 if (I == PendingLoads.end())
647 continue;
648 for (auto Load : I->second) {
649 if (isSuccOrder(Load, &SU))
650 continue;
651 MachineInstr &LdMI = *Load->getInstr();
652 // First, perform the cheaper check that compares the base register.
653 // If they are the same and the load offset is less than the store
654 // offset, then mark the dependence as loop carried potentially.
655 const MachineOperand *BaseOp1, *BaseOp2;
656 int64_t Offset1, Offset2;
657 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
658 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
659 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
660 (int)Offset1 < (int)Offset2) {
661 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
662 "What happened to the chain edge?");
663 SDep Dep(Load, SDep::Barrier);
664 Dep.setLatency(1);
665 SU.addPred(Dep);
666 continue;
669 // Second, the more expensive check that uses alias analysis on the
670 // base registers. If they alias, and the load offset is less than
671 // the store offset, the mark the dependence as loop carried.
672 if (!AA) {
673 SDep Dep(Load, SDep::Barrier);
674 Dep.setLatency(1);
675 SU.addPred(Dep);
676 continue;
678 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
679 MachineMemOperand *MMO2 = *MI.memoperands_begin();
680 if (!MMO1->getValue() || !MMO2->getValue()) {
681 SDep Dep(Load, SDep::Barrier);
682 Dep.setLatency(1);
683 SU.addPred(Dep);
684 continue;
686 if (MMO1->getValue() == MMO2->getValue() &&
687 MMO1->getOffset() <= MMO2->getOffset()) {
688 SDep Dep(Load, SDep::Barrier);
689 Dep.setLatency(1);
690 SU.addPred(Dep);
691 continue;
693 AliasResult AAResult = AA->alias(
694 MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
695 MMO1->getAAInfo()),
696 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
697 MMO2->getAAInfo()));
699 if (AAResult != NoAlias) {
700 SDep Dep(Load, SDep::Barrier);
701 Dep.setLatency(1);
702 SU.addPred(Dep);
710 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
711 /// processes dependences for PHIs. This function adds true dependences
712 /// from a PHI to a use, and a loop carried dependence from the use to the
713 /// PHI. The loop carried dependence is represented as an anti dependence
714 /// edge. This function also removes chain dependences between unrelated
715 /// PHIs.
716 void SwingSchedulerDAG::updatePhiDependences() {
717 SmallVector<SDep, 4> RemoveDeps;
718 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
720 // Iterate over each DAG node.
721 for (SUnit &I : SUnits) {
722 RemoveDeps.clear();
723 // Set to true if the instruction has an operand defined by a Phi.
724 unsigned HasPhiUse = 0;
725 unsigned HasPhiDef = 0;
726 MachineInstr *MI = I.getInstr();
727 // Iterate over each operand, and we process the definitions.
728 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
729 MOE = MI->operands_end();
730 MOI != MOE; ++MOI) {
731 if (!MOI->isReg())
732 continue;
733 Register Reg = MOI->getReg();
734 if (MOI->isDef()) {
735 // If the register is used by a Phi, then create an anti dependence.
736 for (MachineRegisterInfo::use_instr_iterator
737 UI = MRI.use_instr_begin(Reg),
738 UE = MRI.use_instr_end();
739 UI != UE; ++UI) {
740 MachineInstr *UseMI = &*UI;
741 SUnit *SU = getSUnit(UseMI);
742 if (SU != nullptr && UseMI->isPHI()) {
743 if (!MI->isPHI()) {
744 SDep Dep(SU, SDep::Anti, Reg);
745 Dep.setLatency(1);
746 I.addPred(Dep);
747 } else {
748 HasPhiDef = Reg;
749 // Add a chain edge to a dependent Phi that isn't an existing
750 // predecessor.
751 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
752 I.addPred(SDep(SU, SDep::Barrier));
756 } else if (MOI->isUse()) {
757 // If the register is defined by a Phi, then create a true dependence.
758 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
759 if (DefMI == nullptr)
760 continue;
761 SUnit *SU = getSUnit(DefMI);
762 if (SU != nullptr && DefMI->isPHI()) {
763 if (!MI->isPHI()) {
764 SDep Dep(SU, SDep::Data, Reg);
765 Dep.setLatency(0);
766 ST.adjustSchedDependency(SU, &I, Dep);
767 I.addPred(Dep);
768 } else {
769 HasPhiUse = Reg;
770 // Add a chain edge to a dependent Phi that isn't an existing
771 // predecessor.
772 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
773 I.addPred(SDep(SU, SDep::Barrier));
778 // Remove order dependences from an unrelated Phi.
779 if (!SwpPruneDeps)
780 continue;
781 for (auto &PI : I.Preds) {
782 MachineInstr *PMI = PI.getSUnit()->getInstr();
783 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
784 if (I.getInstr()->isPHI()) {
785 if (PMI->getOperand(0).getReg() == HasPhiUse)
786 continue;
787 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
788 continue;
790 RemoveDeps.push_back(PI);
793 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
794 I.removePred(RemoveDeps[i]);
798 /// Iterate over each DAG node and see if we can change any dependences
799 /// in order to reduce the recurrence MII.
800 void SwingSchedulerDAG::changeDependences() {
801 // See if an instruction can use a value from the previous iteration.
802 // If so, we update the base and offset of the instruction and change
803 // the dependences.
804 for (SUnit &I : SUnits) {
805 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
806 int64_t NewOffset = 0;
807 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
808 NewOffset))
809 continue;
811 // Get the MI and SUnit for the instruction that defines the original base.
812 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
813 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
814 if (!DefMI)
815 continue;
816 SUnit *DefSU = getSUnit(DefMI);
817 if (!DefSU)
818 continue;
819 // Get the MI and SUnit for the instruction that defins the new base.
820 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
821 if (!LastMI)
822 continue;
823 SUnit *LastSU = getSUnit(LastMI);
824 if (!LastSU)
825 continue;
827 if (Topo.IsReachable(&I, LastSU))
828 continue;
830 // Remove the dependence. The value now depends on a prior iteration.
831 SmallVector<SDep, 4> Deps;
832 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
833 ++P)
834 if (P->getSUnit() == DefSU)
835 Deps.push_back(*P);
836 for (int i = 0, e = Deps.size(); i != e; i++) {
837 Topo.RemovePred(&I, Deps[i].getSUnit());
838 I.removePred(Deps[i]);
840 // Remove the chain dependence between the instructions.
841 Deps.clear();
842 for (auto &P : LastSU->Preds)
843 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
844 Deps.push_back(P);
845 for (int i = 0, e = Deps.size(); i != e; i++) {
846 Topo.RemovePred(LastSU, Deps[i].getSUnit());
847 LastSU->removePred(Deps[i]);
850 // Add a dependence between the new instruction and the instruction
851 // that defines the new base.
852 SDep Dep(&I, SDep::Anti, NewBase);
853 Topo.AddPred(LastSU, &I);
854 LastSU->addPred(Dep);
856 // Remember the base and offset information so that we can update the
857 // instruction during code generation.
858 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
862 namespace {
864 // FuncUnitSorter - Comparison operator used to sort instructions by
865 // the number of functional unit choices.
866 struct FuncUnitSorter {
867 const InstrItineraryData *InstrItins;
868 const MCSubtargetInfo *STI;
869 DenseMap<unsigned, unsigned> Resources;
871 FuncUnitSorter(const TargetSubtargetInfo &TSI)
872 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
874 // Compute the number of functional unit alternatives needed
875 // at each stage, and take the minimum value. We prioritize the
876 // instructions by the least number of choices first.
877 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
878 unsigned SchedClass = Inst->getDesc().getSchedClass();
879 unsigned min = UINT_MAX;
880 if (InstrItins && !InstrItins->isEmpty()) {
881 for (const InstrStage &IS :
882 make_range(InstrItins->beginStage(SchedClass),
883 InstrItins->endStage(SchedClass))) {
884 unsigned funcUnits = IS.getUnits();
885 unsigned numAlternatives = countPopulation(funcUnits);
886 if (numAlternatives < min) {
887 min = numAlternatives;
888 F = funcUnits;
891 return min;
893 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
894 const MCSchedClassDesc *SCDesc =
895 STI->getSchedModel().getSchedClassDesc(SchedClass);
896 if (!SCDesc->isValid())
897 // No valid Schedule Class Desc for schedClass, should be
898 // Pseudo/PostRAPseudo
899 return min;
901 for (const MCWriteProcResEntry &PRE :
902 make_range(STI->getWriteProcResBegin(SCDesc),
903 STI->getWriteProcResEnd(SCDesc))) {
904 if (!PRE.Cycles)
905 continue;
906 const MCProcResourceDesc *ProcResource =
907 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
908 unsigned NumUnits = ProcResource->NumUnits;
909 if (NumUnits < min) {
910 min = NumUnits;
911 F = PRE.ProcResourceIdx;
914 return min;
916 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
919 // Compute the critical resources needed by the instruction. This
920 // function records the functional units needed by instructions that
921 // must use only one functional unit. We use this as a tie breaker
922 // for computing the resource MII. The instrutions that require
923 // the same, highly used, functional unit have high priority.
924 void calcCriticalResources(MachineInstr &MI) {
925 unsigned SchedClass = MI.getDesc().getSchedClass();
926 if (InstrItins && !InstrItins->isEmpty()) {
927 for (const InstrStage &IS :
928 make_range(InstrItins->beginStage(SchedClass),
929 InstrItins->endStage(SchedClass))) {
930 unsigned FuncUnits = IS.getUnits();
931 if (countPopulation(FuncUnits) == 1)
932 Resources[FuncUnits]++;
934 return;
936 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
937 const MCSchedClassDesc *SCDesc =
938 STI->getSchedModel().getSchedClassDesc(SchedClass);
939 if (!SCDesc->isValid())
940 // No valid Schedule Class Desc for schedClass, should be
941 // Pseudo/PostRAPseudo
942 return;
944 for (const MCWriteProcResEntry &PRE :
945 make_range(STI->getWriteProcResBegin(SCDesc),
946 STI->getWriteProcResEnd(SCDesc))) {
947 if (!PRE.Cycles)
948 continue;
949 Resources[PRE.ProcResourceIdx]++;
951 return;
953 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
956 /// Return true if IS1 has less priority than IS2.
957 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
958 unsigned F1 = 0, F2 = 0;
959 unsigned MFUs1 = minFuncUnits(IS1, F1);
960 unsigned MFUs2 = minFuncUnits(IS2, F2);
961 if (MFUs1 == MFUs2)
962 return Resources.lookup(F1) < Resources.lookup(F2);
963 return MFUs1 > MFUs2;
967 } // end anonymous namespace
969 /// Calculate the resource constrained minimum initiation interval for the
970 /// specified loop. We use the DFA to model the resources needed for
971 /// each instruction, and we ignore dependences. A different DFA is created
972 /// for each cycle that is required. When adding a new instruction, we attempt
973 /// to add it to each existing DFA, until a legal space is found. If the
974 /// instruction cannot be reserved in an existing DFA, we create a new one.
975 unsigned SwingSchedulerDAG::calculateResMII() {
977 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
978 SmallVector<ResourceManager*, 8> Resources;
979 MachineBasicBlock *MBB = Loop.getHeader();
980 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
982 // Sort the instructions by the number of available choices for scheduling,
983 // least to most. Use the number of critical resources as the tie breaker.
984 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
985 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
986 E = MBB->getFirstTerminator();
987 I != E; ++I)
988 FUS.calcCriticalResources(*I);
989 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
990 FuncUnitOrder(FUS);
992 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
993 E = MBB->getFirstTerminator();
994 I != E; ++I)
995 FuncUnitOrder.push(&*I);
997 while (!FuncUnitOrder.empty()) {
998 MachineInstr *MI = FuncUnitOrder.top();
999 FuncUnitOrder.pop();
1000 if (TII->isZeroCost(MI->getOpcode()))
1001 continue;
1002 // Attempt to reserve the instruction in an existing DFA. At least one
1003 // DFA is needed for each cycle.
1004 unsigned NumCycles = getSUnit(MI)->Latency;
1005 unsigned ReservedCycles = 0;
1006 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1007 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1008 LLVM_DEBUG({
1009 dbgs() << "Trying to reserve resource for " << NumCycles
1010 << " cycles for \n";
1011 MI->dump();
1013 for (unsigned C = 0; C < NumCycles; ++C)
1014 while (RI != RE) {
1015 if ((*RI)->canReserveResources(*MI)) {
1016 (*RI)->reserveResources(*MI);
1017 ++ReservedCycles;
1018 break;
1020 RI++;
1022 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1023 << ", NumCycles:" << NumCycles << "\n");
1024 // Add new DFAs, if needed, to reserve resources.
1025 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1026 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1027 << "NewResource created to reserve resources"
1028 << "\n");
1029 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1030 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1031 NewResource->reserveResources(*MI);
1032 Resources.push_back(NewResource);
1035 int Resmii = Resources.size();
1036 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n");
1037 // Delete the memory for each of the DFAs that were created earlier.
1038 for (ResourceManager *RI : Resources) {
1039 ResourceManager *D = RI;
1040 delete D;
1042 Resources.clear();
1043 return Resmii;
1046 /// Calculate the recurrence-constrainted minimum initiation interval.
1047 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1048 /// for each circuit. The II needs to satisfy the inequality
1049 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1050 /// II that satisfies the inequality, and the RecMII is the maximum
1051 /// of those values.
1052 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1053 unsigned RecMII = 0;
1055 for (NodeSet &Nodes : NodeSets) {
1056 if (Nodes.empty())
1057 continue;
1059 unsigned Delay = Nodes.getLatency();
1060 unsigned Distance = 1;
1062 // ii = ceil(delay / distance)
1063 unsigned CurMII = (Delay + Distance - 1) / Distance;
1064 Nodes.setRecMII(CurMII);
1065 if (CurMII > RecMII)
1066 RecMII = CurMII;
1069 return RecMII;
1072 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1073 /// but we do this to find the circuits, and then change them back.
1074 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1075 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1076 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1077 SUnit *SU = &SUnits[i];
1078 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1079 IP != EP; ++IP) {
1080 if (IP->getKind() != SDep::Anti)
1081 continue;
1082 DepsAdded.push_back(std::make_pair(SU, *IP));
1085 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1086 E = DepsAdded.end();
1087 I != E; ++I) {
1088 // Remove this anti dependency and add one in the reverse direction.
1089 SUnit *SU = I->first;
1090 SDep &D = I->second;
1091 SUnit *TargetSU = D.getSUnit();
1092 unsigned Reg = D.getReg();
1093 unsigned Lat = D.getLatency();
1094 SU->removePred(D);
1095 SDep Dep(SU, SDep::Anti, Reg);
1096 Dep.setLatency(Lat);
1097 TargetSU->addPred(Dep);
1101 /// Create the adjacency structure of the nodes in the graph.
1102 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1103 SwingSchedulerDAG *DAG) {
1104 BitVector Added(SUnits.size());
1105 DenseMap<int, int> OutputDeps;
1106 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1107 Added.reset();
1108 // Add any successor to the adjacency matrix and exclude duplicates.
1109 for (auto &SI : SUnits[i].Succs) {
1110 // Only create a back-edge on the first and last nodes of a dependence
1111 // chain. This records any chains and adds them later.
1112 if (SI.getKind() == SDep::Output) {
1113 int N = SI.getSUnit()->NodeNum;
1114 int BackEdge = i;
1115 auto Dep = OutputDeps.find(BackEdge);
1116 if (Dep != OutputDeps.end()) {
1117 BackEdge = Dep->second;
1118 OutputDeps.erase(Dep);
1120 OutputDeps[N] = BackEdge;
1122 // Do not process a boundary node, an artificial node.
1123 // A back-edge is processed only if it goes to a Phi.
1124 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1125 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1126 continue;
1127 int N = SI.getSUnit()->NodeNum;
1128 if (!Added.test(N)) {
1129 AdjK[i].push_back(N);
1130 Added.set(N);
1133 // A chain edge between a store and a load is treated as a back-edge in the
1134 // adjacency matrix.
1135 for (auto &PI : SUnits[i].Preds) {
1136 if (!SUnits[i].getInstr()->mayStore() ||
1137 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1138 continue;
1139 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1140 int N = PI.getSUnit()->NodeNum;
1141 if (!Added.test(N)) {
1142 AdjK[i].push_back(N);
1143 Added.set(N);
1148 // Add back-edges in the adjacency matrix for the output dependences.
1149 for (auto &OD : OutputDeps)
1150 if (!Added.test(OD.second)) {
1151 AdjK[OD.first].push_back(OD.second);
1152 Added.set(OD.second);
1156 /// Identify an elementary circuit in the dependence graph starting at the
1157 /// specified node.
1158 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1159 bool HasBackedge) {
1160 SUnit *SV = &SUnits[V];
1161 bool F = false;
1162 Stack.insert(SV);
1163 Blocked.set(V);
1165 for (auto W : AdjK[V]) {
1166 if (NumPaths > MaxPaths)
1167 break;
1168 if (W < S)
1169 continue;
1170 if (W == S) {
1171 if (!HasBackedge)
1172 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1173 F = true;
1174 ++NumPaths;
1175 break;
1176 } else if (!Blocked.test(W)) {
1177 if (circuit(W, S, NodeSets,
1178 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1179 F = true;
1183 if (F)
1184 unblock(V);
1185 else {
1186 for (auto W : AdjK[V]) {
1187 if (W < S)
1188 continue;
1189 if (B[W].count(SV) == 0)
1190 B[W].insert(SV);
1193 Stack.pop_back();
1194 return F;
1197 /// Unblock a node in the circuit finding algorithm.
1198 void SwingSchedulerDAG::Circuits::unblock(int U) {
1199 Blocked.reset(U);
1200 SmallPtrSet<SUnit *, 4> &BU = B[U];
1201 while (!BU.empty()) {
1202 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1203 assert(SI != BU.end() && "Invalid B set.");
1204 SUnit *W = *SI;
1205 BU.erase(W);
1206 if (Blocked.test(W->NodeNum))
1207 unblock(W->NodeNum);
1211 /// Identify all the elementary circuits in the dependence graph using
1212 /// Johnson's circuit algorithm.
1213 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1214 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1215 // but we do this to find the circuits, and then change them back.
1216 swapAntiDependences(SUnits);
1218 Circuits Cir(SUnits, Topo);
1219 // Create the adjacency structure.
1220 Cir.createAdjacencyStructure(this);
1221 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1222 Cir.reset();
1223 Cir.circuit(i, i, NodeSets);
1226 // Change the dependences back so that we've created a DAG again.
1227 swapAntiDependences(SUnits);
1230 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1231 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1232 // additional copies that are needed across iterations. An artificial dependence
1233 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1235 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1236 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1237 // PHI-------True-Dep------> USEOfPhi
1239 // The mutation creates
1240 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1242 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1243 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1244 // late to avoid additional copies across iterations. The possible scheduling
1245 // order would be
1246 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1248 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1249 for (SUnit &SU : DAG->SUnits) {
1250 // Find the COPY/REG_SEQUENCE instruction.
1251 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1252 continue;
1254 // Record the loop carried PHIs.
1255 SmallVector<SUnit *, 4> PHISUs;
1256 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1257 SmallVector<SUnit *, 4> SrcSUs;
1259 for (auto &Dep : SU.Preds) {
1260 SUnit *TmpSU = Dep.getSUnit();
1261 MachineInstr *TmpMI = TmpSU->getInstr();
1262 SDep::Kind DepKind = Dep.getKind();
1263 // Save the loop carried PHI.
1264 if (DepKind == SDep::Anti && TmpMI->isPHI())
1265 PHISUs.push_back(TmpSU);
1266 // Save the source of COPY/REG_SEQUENCE.
1267 // If the source has no pre-decessors, we will end up creating cycles.
1268 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1269 SrcSUs.push_back(TmpSU);
1272 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1273 continue;
1275 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1276 // SUnit to the container.
1277 SmallVector<SUnit *, 8> UseSUs;
1278 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1279 for (auto &Dep : (*I)->Succs) {
1280 if (Dep.getKind() != SDep::Data)
1281 continue;
1283 SUnit *TmpSU = Dep.getSUnit();
1284 MachineInstr *TmpMI = TmpSU->getInstr();
1285 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1286 PHISUs.push_back(TmpSU);
1287 continue;
1289 UseSUs.push_back(TmpSU);
1293 if (UseSUs.size() == 0)
1294 continue;
1296 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1297 // Add the artificial dependencies if it does not form a cycle.
1298 for (auto I : UseSUs) {
1299 for (auto Src : SrcSUs) {
1300 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1301 Src->addPred(SDep(I, SDep::Artificial));
1302 SDAG->Topo.AddPred(Src, I);
1309 /// Return true for DAG nodes that we ignore when computing the cost functions.
1310 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1311 /// in the calculation of the ASAP, ALAP, etc functions.
1312 static bool ignoreDependence(const SDep &D, bool isPred) {
1313 if (D.isArtificial())
1314 return true;
1315 return D.getKind() == SDep::Anti && isPred;
1318 /// Compute several functions need to order the nodes for scheduling.
1319 /// ASAP - Earliest time to schedule a node.
1320 /// ALAP - Latest time to schedule a node.
1321 /// MOV - Mobility function, difference between ALAP and ASAP.
1322 /// D - Depth of each node.
1323 /// H - Height of each node.
1324 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1325 ScheduleInfo.resize(SUnits.size());
1327 LLVM_DEBUG({
1328 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1329 E = Topo.end();
1330 I != E; ++I) {
1331 const SUnit &SU = SUnits[*I];
1332 dumpNode(SU);
1336 int maxASAP = 0;
1337 // Compute ASAP and ZeroLatencyDepth.
1338 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1339 E = Topo.end();
1340 I != E; ++I) {
1341 int asap = 0;
1342 int zeroLatencyDepth = 0;
1343 SUnit *SU = &SUnits[*I];
1344 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1345 EP = SU->Preds.end();
1346 IP != EP; ++IP) {
1347 SUnit *pred = IP->getSUnit();
1348 if (IP->getLatency() == 0)
1349 zeroLatencyDepth =
1350 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1351 if (ignoreDependence(*IP, true))
1352 continue;
1353 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1354 getDistance(pred, SU, *IP) * MII));
1356 maxASAP = std::max(maxASAP, asap);
1357 ScheduleInfo[*I].ASAP = asap;
1358 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1361 // Compute ALAP, ZeroLatencyHeight, and MOV.
1362 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1363 E = Topo.rend();
1364 I != E; ++I) {
1365 int alap = maxASAP;
1366 int zeroLatencyHeight = 0;
1367 SUnit *SU = &SUnits[*I];
1368 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1369 ES = SU->Succs.end();
1370 IS != ES; ++IS) {
1371 SUnit *succ = IS->getSUnit();
1372 if (IS->getLatency() == 0)
1373 zeroLatencyHeight =
1374 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1375 if (ignoreDependence(*IS, true))
1376 continue;
1377 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1378 getDistance(SU, succ, *IS) * MII));
1381 ScheduleInfo[*I].ALAP = alap;
1382 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1385 // After computing the node functions, compute the summary for each node set.
1386 for (NodeSet &I : NodeSets)
1387 I.computeNodeSetInfo(this);
1389 LLVM_DEBUG({
1390 for (unsigned i = 0; i < SUnits.size(); i++) {
1391 dbgs() << "\tNode " << i << ":\n";
1392 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1393 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1394 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1395 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1396 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1397 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1398 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1403 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1404 /// as the predecessors of the elements of NodeOrder that are not also in
1405 /// NodeOrder.
1406 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1407 SmallSetVector<SUnit *, 8> &Preds,
1408 const NodeSet *S = nullptr) {
1409 Preds.clear();
1410 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1411 I != E; ++I) {
1412 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1413 PI != PE; ++PI) {
1414 if (S && S->count(PI->getSUnit()) == 0)
1415 continue;
1416 if (ignoreDependence(*PI, true))
1417 continue;
1418 if (NodeOrder.count(PI->getSUnit()) == 0)
1419 Preds.insert(PI->getSUnit());
1421 // Back-edges are predecessors with an anti-dependence.
1422 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1423 ES = (*I)->Succs.end();
1424 IS != ES; ++IS) {
1425 if (IS->getKind() != SDep::Anti)
1426 continue;
1427 if (S && S->count(IS->getSUnit()) == 0)
1428 continue;
1429 if (NodeOrder.count(IS->getSUnit()) == 0)
1430 Preds.insert(IS->getSUnit());
1433 return !Preds.empty();
1436 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1437 /// as the successors of the elements of NodeOrder that are not also in
1438 /// NodeOrder.
1439 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1440 SmallSetVector<SUnit *, 8> &Succs,
1441 const NodeSet *S = nullptr) {
1442 Succs.clear();
1443 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1444 I != E; ++I) {
1445 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1446 SI != SE; ++SI) {
1447 if (S && S->count(SI->getSUnit()) == 0)
1448 continue;
1449 if (ignoreDependence(*SI, false))
1450 continue;
1451 if (NodeOrder.count(SI->getSUnit()) == 0)
1452 Succs.insert(SI->getSUnit());
1454 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1455 PE = (*I)->Preds.end();
1456 PI != PE; ++PI) {
1457 if (PI->getKind() != SDep::Anti)
1458 continue;
1459 if (S && S->count(PI->getSUnit()) == 0)
1460 continue;
1461 if (NodeOrder.count(PI->getSUnit()) == 0)
1462 Succs.insert(PI->getSUnit());
1465 return !Succs.empty();
1468 /// Return true if there is a path from the specified node to any of the nodes
1469 /// in DestNodes. Keep track and return the nodes in any path.
1470 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1471 SetVector<SUnit *> &DestNodes,
1472 SetVector<SUnit *> &Exclude,
1473 SmallPtrSet<SUnit *, 8> &Visited) {
1474 if (Cur->isBoundaryNode())
1475 return false;
1476 if (Exclude.count(Cur) != 0)
1477 return false;
1478 if (DestNodes.count(Cur) != 0)
1479 return true;
1480 if (!Visited.insert(Cur).second)
1481 return Path.count(Cur) != 0;
1482 bool FoundPath = false;
1483 for (auto &SI : Cur->Succs)
1484 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1485 for (auto &PI : Cur->Preds)
1486 if (PI.getKind() == SDep::Anti)
1487 FoundPath |=
1488 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1489 if (FoundPath)
1490 Path.insert(Cur);
1491 return FoundPath;
1494 /// Return true if Set1 is a subset of Set2.
1495 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1496 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1497 if (Set2.count(*I) == 0)
1498 return false;
1499 return true;
1502 /// Compute the live-out registers for the instructions in a node-set.
1503 /// The live-out registers are those that are defined in the node-set,
1504 /// but not used. Except for use operands of Phis.
1505 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1506 NodeSet &NS) {
1507 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1508 MachineRegisterInfo &MRI = MF.getRegInfo();
1509 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1510 SmallSet<unsigned, 4> Uses;
1511 for (SUnit *SU : NS) {
1512 const MachineInstr *MI = SU->getInstr();
1513 if (MI->isPHI())
1514 continue;
1515 for (const MachineOperand &MO : MI->operands())
1516 if (MO.isReg() && MO.isUse()) {
1517 Register Reg = MO.getReg();
1518 if (Register::isVirtualRegister(Reg))
1519 Uses.insert(Reg);
1520 else if (MRI.isAllocatable(Reg))
1521 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1522 Uses.insert(*Units);
1525 for (SUnit *SU : NS)
1526 for (const MachineOperand &MO : SU->getInstr()->operands())
1527 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1528 Register Reg = MO.getReg();
1529 if (Register::isVirtualRegister(Reg)) {
1530 if (!Uses.count(Reg))
1531 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1532 LaneBitmask::getNone()));
1533 } else if (MRI.isAllocatable(Reg)) {
1534 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1535 if (!Uses.count(*Units))
1536 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1537 LaneBitmask::getNone()));
1540 RPTracker.addLiveRegs(LiveOutRegs);
1543 /// A heuristic to filter nodes in recurrent node-sets if the register
1544 /// pressure of a set is too high.
1545 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1546 for (auto &NS : NodeSets) {
1547 // Skip small node-sets since they won't cause register pressure problems.
1548 if (NS.size() <= 2)
1549 continue;
1550 IntervalPressure RecRegPressure;
1551 RegPressureTracker RecRPTracker(RecRegPressure);
1552 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1553 computeLiveOuts(MF, RecRPTracker, NS);
1554 RecRPTracker.closeBottom();
1556 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1557 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1558 return A->NodeNum > B->NodeNum;
1561 for (auto &SU : SUnits) {
1562 // Since we're computing the register pressure for a subset of the
1563 // instructions in a block, we need to set the tracker for each
1564 // instruction in the node-set. The tracker is set to the instruction
1565 // just after the one we're interested in.
1566 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1567 RecRPTracker.setPos(std::next(CurInstI));
1569 RegPressureDelta RPDelta;
1570 ArrayRef<PressureChange> CriticalPSets;
1571 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1572 CriticalPSets,
1573 RecRegPressure.MaxSetPressure);
1574 if (RPDelta.Excess.isValid()) {
1575 LLVM_DEBUG(
1576 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1577 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1578 << ":" << RPDelta.Excess.getUnitInc());
1579 NS.setExceedPressure(SU);
1580 break;
1582 RecRPTracker.recede();
1587 /// A heuristic to colocate node sets that have the same set of
1588 /// successors.
1589 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1590 unsigned Colocate = 0;
1591 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1592 NodeSet &N1 = NodeSets[i];
1593 SmallSetVector<SUnit *, 8> S1;
1594 if (N1.empty() || !succ_L(N1, S1))
1595 continue;
1596 for (int j = i + 1; j < e; ++j) {
1597 NodeSet &N2 = NodeSets[j];
1598 if (N1.compareRecMII(N2) != 0)
1599 continue;
1600 SmallSetVector<SUnit *, 8> S2;
1601 if (N2.empty() || !succ_L(N2, S2))
1602 continue;
1603 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1604 N1.setColocate(++Colocate);
1605 N2.setColocate(Colocate);
1606 break;
1612 /// Check if the existing node-sets are profitable. If not, then ignore the
1613 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1614 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1615 /// then it's best to try to schedule all instructions together instead of
1616 /// starting with the recurrent node-sets.
1617 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1618 // Look for loops with a large MII.
1619 if (MII < 17)
1620 return;
1621 // Check if the node-set contains only a simple add recurrence.
1622 for (auto &NS : NodeSets) {
1623 if (NS.getRecMII() > 2)
1624 return;
1625 if (NS.getMaxDepth() > MII)
1626 return;
1628 NodeSets.clear();
1629 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1630 return;
1633 /// Add the nodes that do not belong to a recurrence set into groups
1634 /// based upon connected componenets.
1635 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1636 SetVector<SUnit *> NodesAdded;
1637 SmallPtrSet<SUnit *, 8> Visited;
1638 // Add the nodes that are on a path between the previous node sets and
1639 // the current node set.
1640 for (NodeSet &I : NodeSets) {
1641 SmallSetVector<SUnit *, 8> N;
1642 // Add the nodes from the current node set to the previous node set.
1643 if (succ_L(I, N)) {
1644 SetVector<SUnit *> Path;
1645 for (SUnit *NI : N) {
1646 Visited.clear();
1647 computePath(NI, Path, NodesAdded, I, Visited);
1649 if (!Path.empty())
1650 I.insert(Path.begin(), Path.end());
1652 // Add the nodes from the previous node set to the current node set.
1653 N.clear();
1654 if (succ_L(NodesAdded, N)) {
1655 SetVector<SUnit *> Path;
1656 for (SUnit *NI : N) {
1657 Visited.clear();
1658 computePath(NI, Path, I, NodesAdded, Visited);
1660 if (!Path.empty())
1661 I.insert(Path.begin(), Path.end());
1663 NodesAdded.insert(I.begin(), I.end());
1666 // Create a new node set with the connected nodes of any successor of a node
1667 // in a recurrent set.
1668 NodeSet NewSet;
1669 SmallSetVector<SUnit *, 8> N;
1670 if (succ_L(NodesAdded, N))
1671 for (SUnit *I : N)
1672 addConnectedNodes(I, NewSet, NodesAdded);
1673 if (!NewSet.empty())
1674 NodeSets.push_back(NewSet);
1676 // Create a new node set with the connected nodes of any predecessor of a node
1677 // in a recurrent set.
1678 NewSet.clear();
1679 if (pred_L(NodesAdded, N))
1680 for (SUnit *I : N)
1681 addConnectedNodes(I, NewSet, NodesAdded);
1682 if (!NewSet.empty())
1683 NodeSets.push_back(NewSet);
1685 // Create new nodes sets with the connected nodes any remaining node that
1686 // has no predecessor.
1687 for (unsigned i = 0; i < SUnits.size(); ++i) {
1688 SUnit *SU = &SUnits[i];
1689 if (NodesAdded.count(SU) == 0) {
1690 NewSet.clear();
1691 addConnectedNodes(SU, NewSet, NodesAdded);
1692 if (!NewSet.empty())
1693 NodeSets.push_back(NewSet);
1698 /// Add the node to the set, and add all of its connected nodes to the set.
1699 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1700 SetVector<SUnit *> &NodesAdded) {
1701 NewSet.insert(SU);
1702 NodesAdded.insert(SU);
1703 for (auto &SI : SU->Succs) {
1704 SUnit *Successor = SI.getSUnit();
1705 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1706 addConnectedNodes(Successor, NewSet, NodesAdded);
1708 for (auto &PI : SU->Preds) {
1709 SUnit *Predecessor = PI.getSUnit();
1710 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1711 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1715 /// Return true if Set1 contains elements in Set2. The elements in common
1716 /// are returned in a different container.
1717 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1718 SmallSetVector<SUnit *, 8> &Result) {
1719 Result.clear();
1720 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1721 SUnit *SU = Set1[i];
1722 if (Set2.count(SU) != 0)
1723 Result.insert(SU);
1725 return !Result.empty();
1728 /// Merge the recurrence node sets that have the same initial node.
1729 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1730 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1731 ++I) {
1732 NodeSet &NI = *I;
1733 for (NodeSetType::iterator J = I + 1; J != E;) {
1734 NodeSet &NJ = *J;
1735 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1736 if (NJ.compareRecMII(NI) > 0)
1737 NI.setRecMII(NJ.getRecMII());
1738 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1739 ++NII)
1740 I->insert(*NII);
1741 NodeSets.erase(J);
1742 E = NodeSets.end();
1743 } else {
1744 ++J;
1750 /// Remove nodes that have been scheduled in previous NodeSets.
1751 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1752 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1753 ++I)
1754 for (NodeSetType::iterator J = I + 1; J != E;) {
1755 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1757 if (J->empty()) {
1758 NodeSets.erase(J);
1759 E = NodeSets.end();
1760 } else {
1761 ++J;
1766 /// Compute an ordered list of the dependence graph nodes, which
1767 /// indicates the order that the nodes will be scheduled. This is a
1768 /// two-level algorithm. First, a partial order is created, which
1769 /// consists of a list of sets ordered from highest to lowest priority.
1770 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1771 SmallSetVector<SUnit *, 8> R;
1772 NodeOrder.clear();
1774 for (auto &Nodes : NodeSets) {
1775 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1776 OrderKind Order;
1777 SmallSetVector<SUnit *, 8> N;
1778 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1779 R.insert(N.begin(), N.end());
1780 Order = BottomUp;
1781 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1782 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1783 R.insert(N.begin(), N.end());
1784 Order = TopDown;
1785 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1786 } else if (isIntersect(N, Nodes, R)) {
1787 // If some of the successors are in the existing node-set, then use the
1788 // top-down ordering.
1789 Order = TopDown;
1790 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1791 } else if (NodeSets.size() == 1) {
1792 for (auto &N : Nodes)
1793 if (N->Succs.size() == 0)
1794 R.insert(N);
1795 Order = BottomUp;
1796 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1797 } else {
1798 // Find the node with the highest ASAP.
1799 SUnit *maxASAP = nullptr;
1800 for (SUnit *SU : Nodes) {
1801 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1802 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1803 maxASAP = SU;
1805 R.insert(maxASAP);
1806 Order = BottomUp;
1807 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1810 while (!R.empty()) {
1811 if (Order == TopDown) {
1812 // Choose the node with the maximum height. If more than one, choose
1813 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1814 // choose the node with the lowest MOV.
1815 while (!R.empty()) {
1816 SUnit *maxHeight = nullptr;
1817 for (SUnit *I : R) {
1818 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1819 maxHeight = I;
1820 else if (getHeight(I) == getHeight(maxHeight) &&
1821 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1822 maxHeight = I;
1823 else if (getHeight(I) == getHeight(maxHeight) &&
1824 getZeroLatencyHeight(I) ==
1825 getZeroLatencyHeight(maxHeight) &&
1826 getMOV(I) < getMOV(maxHeight))
1827 maxHeight = I;
1829 NodeOrder.insert(maxHeight);
1830 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1831 R.remove(maxHeight);
1832 for (const auto &I : maxHeight->Succs) {
1833 if (Nodes.count(I.getSUnit()) == 0)
1834 continue;
1835 if (NodeOrder.count(I.getSUnit()) != 0)
1836 continue;
1837 if (ignoreDependence(I, false))
1838 continue;
1839 R.insert(I.getSUnit());
1841 // Back-edges are predecessors with an anti-dependence.
1842 for (const auto &I : maxHeight->Preds) {
1843 if (I.getKind() != SDep::Anti)
1844 continue;
1845 if (Nodes.count(I.getSUnit()) == 0)
1846 continue;
1847 if (NodeOrder.count(I.getSUnit()) != 0)
1848 continue;
1849 R.insert(I.getSUnit());
1852 Order = BottomUp;
1853 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1854 SmallSetVector<SUnit *, 8> N;
1855 if (pred_L(NodeOrder, N, &Nodes))
1856 R.insert(N.begin(), N.end());
1857 } else {
1858 // Choose the node with the maximum depth. If more than one, choose
1859 // the node with the maximum ZeroLatencyDepth. If still more than one,
1860 // choose the node with the lowest MOV.
1861 while (!R.empty()) {
1862 SUnit *maxDepth = nullptr;
1863 for (SUnit *I : R) {
1864 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1865 maxDepth = I;
1866 else if (getDepth(I) == getDepth(maxDepth) &&
1867 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1868 maxDepth = I;
1869 else if (getDepth(I) == getDepth(maxDepth) &&
1870 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1871 getMOV(I) < getMOV(maxDepth))
1872 maxDepth = I;
1874 NodeOrder.insert(maxDepth);
1875 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1876 R.remove(maxDepth);
1877 if (Nodes.isExceedSU(maxDepth)) {
1878 Order = TopDown;
1879 R.clear();
1880 R.insert(Nodes.getNode(0));
1881 break;
1883 for (const auto &I : maxDepth->Preds) {
1884 if (Nodes.count(I.getSUnit()) == 0)
1885 continue;
1886 if (NodeOrder.count(I.getSUnit()) != 0)
1887 continue;
1888 R.insert(I.getSUnit());
1890 // Back-edges are predecessors with an anti-dependence.
1891 for (const auto &I : maxDepth->Succs) {
1892 if (I.getKind() != SDep::Anti)
1893 continue;
1894 if (Nodes.count(I.getSUnit()) == 0)
1895 continue;
1896 if (NodeOrder.count(I.getSUnit()) != 0)
1897 continue;
1898 R.insert(I.getSUnit());
1901 Order = TopDown;
1902 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1903 SmallSetVector<SUnit *, 8> N;
1904 if (succ_L(NodeOrder, N, &Nodes))
1905 R.insert(N.begin(), N.end());
1908 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1911 LLVM_DEBUG({
1912 dbgs() << "Node order: ";
1913 for (SUnit *I : NodeOrder)
1914 dbgs() << " " << I->NodeNum << " ";
1915 dbgs() << "\n";
1919 /// Process the nodes in the computed order and create the pipelined schedule
1920 /// of the instructions, if possible. Return true if a schedule is found.
1921 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1923 if (NodeOrder.empty()){
1924 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1925 return false;
1928 bool scheduleFound = false;
1929 unsigned II = 0;
1930 // Keep increasing II until a valid schedule is found.
1931 for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
1932 Schedule.reset();
1933 Schedule.setInitiationInterval(II);
1934 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1936 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1937 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1938 do {
1939 SUnit *SU = *NI;
1941 // Compute the schedule time for the instruction, which is based
1942 // upon the scheduled time for any predecessors/successors.
1943 int EarlyStart = INT_MIN;
1944 int LateStart = INT_MAX;
1945 // These values are set when the size of the schedule window is limited
1946 // due to chain dependences.
1947 int SchedEnd = INT_MAX;
1948 int SchedStart = INT_MIN;
1949 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1950 II, this);
1951 LLVM_DEBUG({
1952 dbgs() << "\n";
1953 dbgs() << "Inst (" << SU->NodeNum << ") ";
1954 SU->getInstr()->dump();
1955 dbgs() << "\n";
1957 LLVM_DEBUG({
1958 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
1959 LateStart, SchedEnd, SchedStart);
1962 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
1963 SchedStart > LateStart)
1964 scheduleFound = false;
1965 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
1966 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
1967 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1968 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
1969 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
1970 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
1971 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
1972 SchedEnd =
1973 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
1974 // When scheduling a Phi it is better to start at the late cycle and go
1975 // backwards. The default order may insert the Phi too far away from
1976 // its first dependence.
1977 if (SU->getInstr()->isPHI())
1978 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
1979 else
1980 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1981 } else {
1982 int FirstCycle = Schedule.getFirstCycle();
1983 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
1984 FirstCycle + getASAP(SU) + II - 1, II);
1986 // Even if we find a schedule, make sure the schedule doesn't exceed the
1987 // allowable number of stages. We keep trying if this happens.
1988 if (scheduleFound)
1989 if (SwpMaxStages > -1 &&
1990 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
1991 scheduleFound = false;
1993 LLVM_DEBUG({
1994 if (!scheduleFound)
1995 dbgs() << "\tCan't schedule\n";
1997 } while (++NI != NE && scheduleFound);
1999 // If a schedule is found, check if it is a valid schedule too.
2000 if (scheduleFound)
2001 scheduleFound = Schedule.isValidSchedule(this);
2004 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
2005 << ")\n");
2007 if (scheduleFound)
2008 Schedule.finalizeSchedule(this);
2009 else
2010 Schedule.reset();
2012 return scheduleFound && Schedule.getMaxStageCount() > 0;
2015 /// Given a schedule for the loop, generate a new version of the loop,
2016 /// and replace the old version. This function generates a prolog
2017 /// that contains the initial iterations in the pipeline, and kernel
2018 /// loop, and the epilogue that contains the code for the final
2019 /// iterations.
2020 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2021 // Create a new basic block for the kernel and add it to the CFG.
2022 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2024 unsigned MaxStageCount = Schedule.getMaxStageCount();
2026 // Remember the registers that are used in different stages. The index is
2027 // the iteration, or stage, that the instruction is scheduled in. This is
2028 // a map between register names in the original block and the names created
2029 // in each stage of the pipelined loop.
2030 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2031 InstrMapTy InstrMap;
2033 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2035 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2036 assert(PreheaderBB != nullptr &&
2037 "Need to add code to handle loops w/o preheader");
2038 // Generate the prolog instructions that set up the pipeline.
2039 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2040 MF.insert(BB->getIterator(), KernelBB);
2042 // Rearrange the instructions to generate the new, pipelined loop,
2043 // and update register names as needed.
2044 for (int Cycle = Schedule.getFirstCycle(),
2045 LastCycle = Schedule.getFinalCycle();
2046 Cycle <= LastCycle; ++Cycle) {
2047 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2048 // This inner loop schedules each instruction in the cycle.
2049 for (SUnit *CI : CycleInstrs) {
2050 if (CI->getInstr()->isPHI())
2051 continue;
2052 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2053 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2054 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2055 KernelBB->push_back(NewMI);
2056 InstrMap[NewMI] = CI->getInstr();
2060 // Copy any terminator instructions to the new kernel, and update
2061 // names as needed.
2062 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2063 E = BB->instr_end();
2064 I != E; ++I) {
2065 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2066 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2067 KernelBB->push_back(NewMI);
2068 InstrMap[NewMI] = &*I;
2071 KernelBB->transferSuccessors(BB);
2072 KernelBB->replaceSuccessor(BB, KernelBB);
2074 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2075 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2076 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2077 InstrMap, MaxStageCount, MaxStageCount, false);
2079 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2081 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2082 // Generate the epilog instructions to complete the pipeline.
2083 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2084 PrologBBs);
2086 // We need this step because the register allocation doesn't handle some
2087 // situations well, so we insert copies to help out.
2088 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2090 // Remove dead instructions due to loop induction variables.
2091 removeDeadInstructions(KernelBB, EpilogBBs);
2093 // Add branches between prolog and epilog blocks.
2094 addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2096 // Remove the original loop since it's no longer referenced.
2097 for (auto &I : *BB)
2098 LIS.RemoveMachineInstrFromMaps(I);
2099 BB->clear();
2100 BB->eraseFromParent();
2102 delete[] VRMap;
2105 /// Generate the pipeline prolog code.
2106 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2107 MachineBasicBlock *KernelBB,
2108 ValueMapTy *VRMap,
2109 MBBVectorTy &PrologBBs) {
2110 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2111 assert(PreheaderBB != nullptr &&
2112 "Need to add code to handle loops w/o preheader");
2113 MachineBasicBlock *PredBB = PreheaderBB;
2114 InstrMapTy InstrMap;
2116 // Generate a basic block for each stage, not including the last stage,
2117 // which will be generated in the kernel. Each basic block may contain
2118 // instructions from multiple stages/iterations.
2119 for (unsigned i = 0; i < LastStage; ++i) {
2120 // Create and insert the prolog basic block prior to the original loop
2121 // basic block. The original loop is removed later.
2122 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2123 PrologBBs.push_back(NewBB);
2124 MF.insert(BB->getIterator(), NewBB);
2125 NewBB->transferSuccessors(PredBB);
2126 PredBB->addSuccessor(NewBB);
2127 PredBB = NewBB;
2129 // Generate instructions for each appropriate stage. Process instructions
2130 // in original program order.
2131 for (int StageNum = i; StageNum >= 0; --StageNum) {
2132 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2133 BBE = BB->getFirstTerminator();
2134 BBI != BBE; ++BBI) {
2135 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2136 if (BBI->isPHI())
2137 continue;
2138 MachineInstr *NewMI =
2139 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2140 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2141 VRMap);
2142 NewBB->push_back(NewMI);
2143 InstrMap[NewMI] = &*BBI;
2147 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2148 LLVM_DEBUG({
2149 dbgs() << "prolog:\n";
2150 NewBB->dump();
2154 PredBB->replaceSuccessor(BB, KernelBB);
2156 // Check if we need to remove the branch from the preheader to the original
2157 // loop, and replace it with a branch to the new loop.
2158 unsigned numBranches = TII->removeBranch(*PreheaderBB);
2159 if (numBranches) {
2160 SmallVector<MachineOperand, 0> Cond;
2161 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
2165 /// Generate the pipeline epilog code. The epilog code finishes the iterations
2166 /// that were started in either the prolog or the kernel. We create a basic
2167 /// block for each stage that needs to complete.
2168 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2169 MachineBasicBlock *KernelBB,
2170 ValueMapTy *VRMap,
2171 MBBVectorTy &EpilogBBs,
2172 MBBVectorTy &PrologBBs) {
2173 // We need to change the branch from the kernel to the first epilog block, so
2174 // this call to analyze branch uses the kernel rather than the original BB.
2175 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2176 SmallVector<MachineOperand, 4> Cond;
2177 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2178 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2179 if (checkBranch)
2180 return;
2182 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2183 if (*LoopExitI == KernelBB)
2184 ++LoopExitI;
2185 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2186 MachineBasicBlock *LoopExitBB = *LoopExitI;
2188 MachineBasicBlock *PredBB = KernelBB;
2189 MachineBasicBlock *EpilogStart = LoopExitBB;
2190 InstrMapTy InstrMap;
2192 // Generate a basic block for each stage, not including the last stage,
2193 // which was generated for the kernel. Each basic block may contain
2194 // instructions from multiple stages/iterations.
2195 int EpilogStage = LastStage + 1;
2196 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2197 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2198 EpilogBBs.push_back(NewBB);
2199 MF.insert(BB->getIterator(), NewBB);
2201 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2202 NewBB->addSuccessor(LoopExitBB);
2204 if (EpilogStart == LoopExitBB)
2205 EpilogStart = NewBB;
2207 // Add instructions to the epilog depending on the current block.
2208 // Process instructions in original program order.
2209 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2210 for (auto &BBI : *BB) {
2211 if (BBI.isPHI())
2212 continue;
2213 MachineInstr *In = &BBI;
2214 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2215 // Instructions with memoperands in the epilog are updated with
2216 // conservative values.
2217 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
2218 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2219 NewBB->push_back(NewMI);
2220 InstrMap[NewMI] = In;
2224 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2225 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2226 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2227 InstrMap, LastStage, EpilogStage, i == 1);
2228 PredBB = NewBB;
2230 LLVM_DEBUG({
2231 dbgs() << "epilog:\n";
2232 NewBB->dump();
2236 // Fix any Phi nodes in the loop exit block.
2237 for (MachineInstr &MI : *LoopExitBB) {
2238 if (!MI.isPHI())
2239 break;
2240 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2241 MachineOperand &MO = MI.getOperand(i);
2242 if (MO.getMBB() == BB)
2243 MO.setMBB(PredBB);
2247 // Create a branch to the new epilog from the kernel.
2248 // Remove the original branch and add a new branch to the epilog.
2249 TII->removeBranch(*KernelBB);
2250 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2251 // Add a branch to the loop exit.
2252 if (EpilogBBs.size() > 0) {
2253 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2254 SmallVector<MachineOperand, 4> Cond1;
2255 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2259 /// Replace all uses of FromReg that appear outside the specified
2260 /// basic block with ToReg.
2261 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2262 MachineBasicBlock *MBB,
2263 MachineRegisterInfo &MRI,
2264 LiveIntervals &LIS) {
2265 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2266 E = MRI.use_end();
2267 I != E;) {
2268 MachineOperand &O = *I;
2269 ++I;
2270 if (O.getParent()->getParent() != MBB)
2271 O.setReg(ToReg);
2273 if (!LIS.hasInterval(ToReg))
2274 LIS.createEmptyInterval(ToReg);
2277 /// Return true if the register has a use that occurs outside the
2278 /// specified loop.
2279 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2280 MachineRegisterInfo &MRI) {
2281 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2282 E = MRI.use_end();
2283 I != E; ++I)
2284 if (I->getParent()->getParent() != BB)
2285 return true;
2286 return false;
2289 /// Generate Phis for the specific block in the generated pipelined code.
2290 /// This function looks at the Phis from the original code to guide the
2291 /// creation of new Phis.
2292 void SwingSchedulerDAG::generateExistingPhis(
2293 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2294 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2295 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2296 bool IsLast) {
2297 // Compute the stage number for the initial value of the Phi, which
2298 // comes from the prolog. The prolog to use depends on to which kernel/
2299 // epilog that we're adding the Phi.
2300 unsigned PrologStage = 0;
2301 unsigned PrevStage = 0;
2302 bool InKernel = (LastStageNum == CurStageNum);
2303 if (InKernel) {
2304 PrologStage = LastStageNum - 1;
2305 PrevStage = CurStageNum;
2306 } else {
2307 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2308 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2311 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2312 BBE = BB->getFirstNonPHI();
2313 BBI != BBE; ++BBI) {
2314 Register Def = BBI->getOperand(0).getReg();
2316 unsigned InitVal = 0;
2317 unsigned LoopVal = 0;
2318 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2320 unsigned PhiOp1 = 0;
2321 // The Phi value from the loop body typically is defined in the loop, but
2322 // not always. So, we need to check if the value is defined in the loop.
2323 unsigned PhiOp2 = LoopVal;
2324 if (VRMap[LastStageNum].count(LoopVal))
2325 PhiOp2 = VRMap[LastStageNum][LoopVal];
2327 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2328 int LoopValStage =
2329 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2330 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2331 if (NumStages == 0) {
2332 // We don't need to generate a Phi anymore, but we need to rename any uses
2333 // of the Phi value.
2334 unsigned NewReg = VRMap[PrevStage][LoopVal];
2335 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2336 Def, InitVal, NewReg);
2337 if (VRMap[CurStageNum].count(LoopVal))
2338 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2340 // Adjust the number of Phis needed depending on the number of prologs left,
2341 // and the distance from where the Phi is first scheduled. The number of
2342 // Phis cannot exceed the number of prolog stages. Each stage can
2343 // potentially define two values.
2344 unsigned MaxPhis = PrologStage + 2;
2345 if (!InKernel && (int)PrologStage <= LoopValStage)
2346 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2347 unsigned NumPhis = std::min(NumStages, MaxPhis);
2349 unsigned NewReg = 0;
2350 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2351 // In the epilog, we may need to look back one stage to get the correct
2352 // Phi name because the epilog and prolog blocks execute the same stage.
2353 // The correct name is from the previous block only when the Phi has
2354 // been completely scheduled prior to the epilog, and Phi value is not
2355 // needed in multiple stages.
2356 int StageDiff = 0;
2357 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2358 NumPhis == 1)
2359 StageDiff = 1;
2360 // Adjust the computations below when the phi and the loop definition
2361 // are scheduled in different stages.
2362 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2363 StageDiff = StageScheduled - LoopValStage;
2364 for (unsigned np = 0; np < NumPhis; ++np) {
2365 // If the Phi hasn't been scheduled, then use the initial Phi operand
2366 // value. Otherwise, use the scheduled version of the instruction. This
2367 // is a little complicated when a Phi references another Phi.
2368 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2369 PhiOp1 = InitVal;
2370 // Check if the Phi has already been scheduled in a prolog stage.
2371 else if (PrologStage >= AccessStage + StageDiff + np &&
2372 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2373 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2374 // Check if the Phi has already been scheduled, but the loop instruction
2375 // is either another Phi, or doesn't occur in the loop.
2376 else if (PrologStage >= AccessStage + StageDiff + np) {
2377 // If the Phi references another Phi, we need to examine the other
2378 // Phi to get the correct value.
2379 PhiOp1 = LoopVal;
2380 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2381 int Indirects = 1;
2382 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2383 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2384 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2385 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2386 else
2387 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2388 InstOp1 = MRI.getVRegDef(PhiOp1);
2389 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2390 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2391 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2392 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2393 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2394 break;
2396 ++Indirects;
2398 } else
2399 PhiOp1 = InitVal;
2400 // If this references a generated Phi in the kernel, get the Phi operand
2401 // from the incoming block.
2402 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2403 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2404 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2406 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2407 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2408 // In the epilog, a map lookup is needed to get the value from the kernel,
2409 // or previous epilog block. How is does this depends on if the
2410 // instruction is scheduled in the previous block.
2411 if (!InKernel) {
2412 int StageDiffAdj = 0;
2413 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2414 StageDiffAdj = StageScheduled - LoopValStage;
2415 // Use the loop value defined in the kernel, unless the kernel
2416 // contains the last definition of the Phi.
2417 if (np == 0 && PrevStage == LastStageNum &&
2418 (StageScheduled != 0 || LoopValStage != 0) &&
2419 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2420 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2421 // Use the value defined by the Phi. We add one because we switch
2422 // from looking at the loop value to the Phi definition.
2423 else if (np > 0 && PrevStage == LastStageNum &&
2424 VRMap[PrevStage - np + 1].count(Def))
2425 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2426 // Use the loop value defined in the kernel.
2427 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
2428 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2429 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2430 // Use the value defined by the Phi, unless we're generating the first
2431 // epilog and the Phi refers to a Phi in a different stage.
2432 else if (VRMap[PrevStage - np].count(Def) &&
2433 (!LoopDefIsPhi || (PrevStage != LastStageNum) || (LoopValStage == StageScheduled)))
2434 PhiOp2 = VRMap[PrevStage - np][Def];
2437 // Check if we can reuse an existing Phi. This occurs when a Phi
2438 // references another Phi, and the other Phi is scheduled in an
2439 // earlier stage. We can try to reuse an existing Phi up until the last
2440 // stage of the current Phi.
2441 if (LoopDefIsPhi) {
2442 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
2443 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2444 int StageDiff = (StageScheduled - LoopValStage);
2445 LVNumStages -= StageDiff;
2446 // Make sure the loop value Phi has been processed already.
2447 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2448 NewReg = PhiOp2;
2449 unsigned ReuseStage = CurStageNum;
2450 if (Schedule.isLoopCarried(this, *PhiInst))
2451 ReuseStage -= LVNumStages;
2452 // Check if the Phi to reuse has been generated yet. If not, then
2453 // there is nothing to reuse.
2454 if (VRMap[ReuseStage - np].count(LoopVal)) {
2455 NewReg = VRMap[ReuseStage - np][LoopVal];
2457 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2458 &*BBI, Def, NewReg);
2459 // Update the map with the new Phi name.
2460 VRMap[CurStageNum - np][Def] = NewReg;
2461 PhiOp2 = NewReg;
2462 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2463 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2465 if (IsLast && np == NumPhis - 1)
2466 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2467 continue;
2471 if (InKernel && StageDiff > 0 &&
2472 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2473 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2476 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2477 NewReg = MRI.createVirtualRegister(RC);
2479 MachineInstrBuilder NewPhi =
2480 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2481 TII->get(TargetOpcode::PHI), NewReg);
2482 NewPhi.addReg(PhiOp1).addMBB(BB1);
2483 NewPhi.addReg(PhiOp2).addMBB(BB2);
2484 if (np == 0)
2485 InstrMap[NewPhi] = &*BBI;
2487 // We define the Phis after creating the new pipelined code, so
2488 // we need to rename the Phi values in scheduled instructions.
2490 unsigned PrevReg = 0;
2491 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2492 PrevReg = VRMap[PrevStage - np][LoopVal];
2493 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2494 Def, NewReg, PrevReg);
2495 // If the Phi has been scheduled, use the new name for rewriting.
2496 if (VRMap[CurStageNum - np].count(Def)) {
2497 unsigned R = VRMap[CurStageNum - np][Def];
2498 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2499 R, NewReg);
2502 // Check if we need to rename any uses that occurs after the loop. The
2503 // register to replace depends on whether the Phi is scheduled in the
2504 // epilog.
2505 if (IsLast && np == NumPhis - 1)
2506 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2508 // In the kernel, a dependent Phi uses the value from this Phi.
2509 if (InKernel)
2510 PhiOp2 = NewReg;
2512 // Update the map with the new Phi name.
2513 VRMap[CurStageNum - np][Def] = NewReg;
2516 while (NumPhis++ < NumStages) {
2517 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2518 &*BBI, Def, NewReg, 0);
2521 // Check if we need to rename a Phi that has been eliminated due to
2522 // scheduling.
2523 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2524 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2528 /// Generate Phis for the specified block in the generated pipelined code.
2529 /// These are new Phis needed because the definition is scheduled after the
2530 /// use in the pipelined sequence.
2531 void SwingSchedulerDAG::generatePhis(
2532 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2533 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2534 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2535 bool IsLast) {
2536 // Compute the stage number that contains the initial Phi value, and
2537 // the Phi from the previous stage.
2538 unsigned PrologStage = 0;
2539 unsigned PrevStage = 0;
2540 unsigned StageDiff = CurStageNum - LastStageNum;
2541 bool InKernel = (StageDiff == 0);
2542 if (InKernel) {
2543 PrologStage = LastStageNum - 1;
2544 PrevStage = CurStageNum;
2545 } else {
2546 PrologStage = LastStageNum - StageDiff;
2547 PrevStage = LastStageNum + StageDiff - 1;
2550 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2551 BBE = BB->instr_end();
2552 BBI != BBE; ++BBI) {
2553 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2554 MachineOperand &MO = BBI->getOperand(i);
2555 if (!MO.isReg() || !MO.isDef() ||
2556 !Register::isVirtualRegister(MO.getReg()))
2557 continue;
2559 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2560 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2561 Register Def = MO.getReg();
2562 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2563 // An instruction scheduled in stage 0 and is used after the loop
2564 // requires a phi in the epilog for the last definition from either
2565 // the kernel or prolog.
2566 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2567 hasUseAfterLoop(Def, BB, MRI))
2568 NumPhis = 1;
2569 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2570 continue;
2572 unsigned PhiOp2 = VRMap[PrevStage][Def];
2573 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2574 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2575 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2576 // The number of Phis can't exceed the number of prolog stages. The
2577 // prolog stage number is zero based.
2578 if (NumPhis > PrologStage + 1 - StageScheduled)
2579 NumPhis = PrologStage + 1 - StageScheduled;
2580 for (unsigned np = 0; np < NumPhis; ++np) {
2581 unsigned PhiOp1 = VRMap[PrologStage][Def];
2582 if (np <= PrologStage)
2583 PhiOp1 = VRMap[PrologStage - np][Def];
2584 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2585 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2586 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2587 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2588 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2590 if (!InKernel)
2591 PhiOp2 = VRMap[PrevStage - np][Def];
2593 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2594 Register NewReg = MRI.createVirtualRegister(RC);
2596 MachineInstrBuilder NewPhi =
2597 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2598 TII->get(TargetOpcode::PHI), NewReg);
2599 NewPhi.addReg(PhiOp1).addMBB(BB1);
2600 NewPhi.addReg(PhiOp2).addMBB(BB2);
2601 if (np == 0)
2602 InstrMap[NewPhi] = &*BBI;
2604 // Rewrite uses and update the map. The actions depend upon whether
2605 // we generating code for the kernel or epilog blocks.
2606 if (InKernel) {
2607 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2608 &*BBI, PhiOp1, NewReg);
2609 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2610 &*BBI, PhiOp2, NewReg);
2612 PhiOp2 = NewReg;
2613 VRMap[PrevStage - np - 1][Def] = NewReg;
2614 } else {
2615 VRMap[CurStageNum - np][Def] = NewReg;
2616 if (np == NumPhis - 1)
2617 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2618 &*BBI, Def, NewReg);
2620 if (IsLast && np == NumPhis - 1)
2621 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2627 /// Remove instructions that generate values with no uses.
2628 /// Typically, these are induction variable operations that generate values
2629 /// used in the loop itself. A dead instruction has a definition with
2630 /// no uses, or uses that occur in the original loop only.
2631 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2632 MBBVectorTy &EpilogBBs) {
2633 // For each epilog block, check that the value defined by each instruction
2634 // is used. If not, delete it.
2635 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2636 MBE = EpilogBBs.rend();
2637 MBB != MBE; ++MBB)
2638 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2639 ME = (*MBB)->instr_rend();
2640 MI != ME;) {
2641 // From DeadMachineInstructionElem. Don't delete inline assembly.
2642 if (MI->isInlineAsm()) {
2643 ++MI;
2644 continue;
2646 bool SawStore = false;
2647 // Check if it's safe to remove the instruction due to side effects.
2648 // We can, and want to, remove Phis here.
2649 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2650 ++MI;
2651 continue;
2653 bool used = true;
2654 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2655 MOE = MI->operands_end();
2656 MOI != MOE; ++MOI) {
2657 if (!MOI->isReg() || !MOI->isDef())
2658 continue;
2659 Register reg = MOI->getReg();
2660 // Assume physical registers are used, unless they are marked dead.
2661 if (Register::isPhysicalRegister(reg)) {
2662 used = !MOI->isDead();
2663 if (used)
2664 break;
2665 continue;
2667 unsigned realUses = 0;
2668 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2669 EI = MRI.use_end();
2670 UI != EI; ++UI) {
2671 // Check if there are any uses that occur only in the original
2672 // loop. If so, that's not a real use.
2673 if (UI->getParent()->getParent() != BB) {
2674 realUses++;
2675 used = true;
2676 break;
2679 if (realUses > 0)
2680 break;
2681 used = false;
2683 if (!used) {
2684 LIS.RemoveMachineInstrFromMaps(*MI);
2685 MI++->eraseFromParent();
2686 continue;
2688 ++MI;
2690 // In the kernel block, check if we can remove a Phi that generates a value
2691 // used in an instruction removed in the epilog block.
2692 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2693 BBE = KernelBB->getFirstNonPHI();
2694 BBI != BBE;) {
2695 MachineInstr *MI = &*BBI;
2696 ++BBI;
2697 Register reg = MI->getOperand(0).getReg();
2698 if (MRI.use_begin(reg) == MRI.use_end()) {
2699 LIS.RemoveMachineInstrFromMaps(*MI);
2700 MI->eraseFromParent();
2705 /// For loop carried definitions, we split the lifetime of a virtual register
2706 /// that has uses past the definition in the next iteration. A copy with a new
2707 /// virtual register is inserted before the definition, which helps with
2708 /// generating a better register assignment.
2710 /// v1 = phi(a, v2) v1 = phi(a, v2)
2711 /// v2 = phi(b, v3) v2 = phi(b, v3)
2712 /// v3 = .. v4 = copy v1
2713 /// .. = V1 v3 = ..
2714 /// .. = v4
2715 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2716 MBBVectorTy &EpilogBBs,
2717 SMSchedule &Schedule) {
2718 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2719 for (auto &PHI : KernelBB->phis()) {
2720 Register Def = PHI.getOperand(0).getReg();
2721 // Check for any Phi definition that used as an operand of another Phi
2722 // in the same block.
2723 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2724 E = MRI.use_instr_end();
2725 I != E; ++I) {
2726 if (I->isPHI() && I->getParent() == KernelBB) {
2727 // Get the loop carried definition.
2728 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
2729 if (!LCDef)
2730 continue;
2731 MachineInstr *MI = MRI.getVRegDef(LCDef);
2732 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2733 continue;
2734 // Search through the rest of the block looking for uses of the Phi
2735 // definition. If one occurs, then split the lifetime.
2736 unsigned SplitReg = 0;
2737 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2738 KernelBB->instr_end()))
2739 if (BBJ.readsRegister(Def)) {
2740 // We split the lifetime when we find the first use.
2741 if (SplitReg == 0) {
2742 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2743 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2744 TII->get(TargetOpcode::COPY), SplitReg)
2745 .addReg(Def);
2747 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2749 if (!SplitReg)
2750 continue;
2751 // Search through each of the epilog blocks for any uses to be renamed.
2752 for (auto &Epilog : EpilogBBs)
2753 for (auto &I : *Epilog)
2754 if (I.readsRegister(Def))
2755 I.substituteRegister(Def, SplitReg, 0, *TRI);
2756 break;
2762 /// Remove the incoming block from the Phis in a basic block.
2763 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2764 for (MachineInstr &MI : *BB) {
2765 if (!MI.isPHI())
2766 break;
2767 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2768 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2769 MI.RemoveOperand(i + 1);
2770 MI.RemoveOperand(i);
2771 break;
2776 /// Create branches from each prolog basic block to the appropriate epilog
2777 /// block. These edges are needed if the loop ends before reaching the
2778 /// kernel.
2779 void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB,
2780 MBBVectorTy &PrologBBs,
2781 MachineBasicBlock *KernelBB,
2782 MBBVectorTy &EpilogBBs,
2783 SMSchedule &Schedule, ValueMapTy *VRMap) {
2784 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2785 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2786 MachineInstr *Cmp = Pass.LI.LoopCompare;
2787 MachineBasicBlock *LastPro = KernelBB;
2788 MachineBasicBlock *LastEpi = KernelBB;
2790 // Start from the blocks connected to the kernel and work "out"
2791 // to the first prolog and the last epilog blocks.
2792 SmallVector<MachineInstr *, 4> PrevInsts;
2793 unsigned MaxIter = PrologBBs.size() - 1;
2794 unsigned LC = UINT_MAX;
2795 unsigned LCMin = UINT_MAX;
2796 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2797 // Add branches to the prolog that go to the corresponding
2798 // epilog, and the fall-thru prolog/kernel block.
2799 MachineBasicBlock *Prolog = PrologBBs[j];
2800 MachineBasicBlock *Epilog = EpilogBBs[i];
2801 // We've executed one iteration, so decrement the loop count and check for
2802 // the loop end.
2803 SmallVector<MachineOperand, 4> Cond;
2804 // Check if the LOOP0 has already been removed. If so, then there is no need
2805 // to reduce the trip count.
2806 if (LC != 0)
2807 LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond,
2808 PrevInsts, j, MaxIter);
2810 // Record the value of the first trip count, which is used to determine if
2811 // branches and blocks can be removed for constant trip counts.
2812 if (LCMin == UINT_MAX)
2813 LCMin = LC;
2815 unsigned numAdded = 0;
2816 if (Register::isVirtualRegister(LC)) {
2817 Prolog->addSuccessor(Epilog);
2818 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
2819 } else if (j >= LCMin) {
2820 Prolog->addSuccessor(Epilog);
2821 Prolog->removeSuccessor(LastPro);
2822 LastEpi->removeSuccessor(Epilog);
2823 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
2824 removePhis(Epilog, LastEpi);
2825 // Remove the blocks that are no longer referenced.
2826 if (LastPro != LastEpi) {
2827 LastEpi->clear();
2828 LastEpi->eraseFromParent();
2830 LastPro->clear();
2831 LastPro->eraseFromParent();
2832 } else {
2833 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
2834 removePhis(Epilog, Prolog);
2836 LastPro = Prolog;
2837 LastEpi = Epilog;
2838 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
2839 E = Prolog->instr_rend();
2840 I != E && numAdded > 0; ++I, --numAdded)
2841 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
2845 /// Return true if we can compute the amount the instruction changes
2846 /// during each iteration. Set Delta to the amount of the change.
2847 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2848 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2849 const MachineOperand *BaseOp;
2850 int64_t Offset;
2851 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
2852 return false;
2854 if (!BaseOp->isReg())
2855 return false;
2857 Register BaseReg = BaseOp->getReg();
2859 MachineRegisterInfo &MRI = MF.getRegInfo();
2860 // Check if there is a Phi. If so, get the definition in the loop.
2861 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2862 if (BaseDef && BaseDef->isPHI()) {
2863 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2864 BaseDef = MRI.getVRegDef(BaseReg);
2866 if (!BaseDef)
2867 return false;
2869 int D = 0;
2870 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2871 return false;
2873 Delta = D;
2874 return true;
2877 /// Update the memory operand with a new offset when the pipeliner
2878 /// generates a new copy of the instruction that refers to a
2879 /// different memory location.
2880 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
2881 MachineInstr &OldMI, unsigned Num) {
2882 if (Num == 0)
2883 return;
2884 // If the instruction has memory operands, then adjust the offset
2885 // when the instruction appears in different stages.
2886 if (NewMI.memoperands_empty())
2887 return;
2888 SmallVector<MachineMemOperand *, 2> NewMMOs;
2889 for (MachineMemOperand *MMO : NewMI.memoperands()) {
2890 // TODO: Figure out whether isAtomic is really necessary (see D57601).
2891 if (MMO->isVolatile() || MMO->isAtomic() ||
2892 (MMO->isInvariant() && MMO->isDereferenceable()) ||
2893 (!MMO->getValue())) {
2894 NewMMOs.push_back(MMO);
2895 continue;
2897 unsigned Delta;
2898 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
2899 int64_t AdjOffset = Delta * Num;
2900 NewMMOs.push_back(
2901 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
2902 } else {
2903 NewMMOs.push_back(
2904 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
2907 NewMI.setMemRefs(MF, NewMMOs);
2910 /// Clone the instruction for the new pipelined loop and update the
2911 /// memory operands, if needed.
2912 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
2913 unsigned CurStageNum,
2914 unsigned InstStageNum) {
2915 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2916 // Check for tied operands in inline asm instructions. This should be handled
2917 // elsewhere, but I'm not sure of the best solution.
2918 if (OldMI->isInlineAsm())
2919 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
2920 const auto &MO = OldMI->getOperand(i);
2921 if (MO.isReg() && MO.isUse())
2922 break;
2923 unsigned UseIdx;
2924 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
2925 NewMI->tieOperands(i, UseIdx);
2927 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2928 return NewMI;
2931 /// Clone the instruction for the new pipelined loop. If needed, this
2932 /// function updates the instruction using the values saved in the
2933 /// InstrChanges structure.
2934 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
2935 unsigned CurStageNum,
2936 unsigned InstStageNum,
2937 SMSchedule &Schedule) {
2938 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2939 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2940 InstrChanges.find(getSUnit(OldMI));
2941 if (It != InstrChanges.end()) {
2942 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2943 unsigned BasePos, OffsetPos;
2944 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
2945 return nullptr;
2946 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
2947 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
2948 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
2949 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
2950 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2952 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2953 return NewMI;
2956 /// Update the machine instruction with new virtual registers. This
2957 /// function may change the defintions and/or uses.
2958 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
2959 unsigned CurStageNum,
2960 unsigned InstrStageNum,
2961 SMSchedule &Schedule,
2962 ValueMapTy *VRMap) {
2963 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
2964 MachineOperand &MO = NewMI->getOperand(i);
2965 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2966 continue;
2967 Register reg = MO.getReg();
2968 if (MO.isDef()) {
2969 // Create a new virtual register for the definition.
2970 const TargetRegisterClass *RC = MRI.getRegClass(reg);
2971 Register NewReg = MRI.createVirtualRegister(RC);
2972 MO.setReg(NewReg);
2973 VRMap[CurStageNum][reg] = NewReg;
2974 if (LastDef)
2975 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
2976 } else if (MO.isUse()) {
2977 MachineInstr *Def = MRI.getVRegDef(reg);
2978 // Compute the stage that contains the last definition for instruction.
2979 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
2980 unsigned StageNum = CurStageNum;
2981 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
2982 // Compute the difference in stages between the defintion and the use.
2983 unsigned StageDiff = (InstrStageNum - DefStageNum);
2984 // Make an adjustment to get the last definition.
2985 StageNum -= StageDiff;
2987 if (VRMap[StageNum].count(reg))
2988 MO.setReg(VRMap[StageNum][reg]);
2993 /// Return the instruction in the loop that defines the register.
2994 /// If the definition is a Phi, then follow the Phi operand to
2995 /// the instruction in the loop.
2996 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2997 SmallPtrSet<MachineInstr *, 8> Visited;
2998 MachineInstr *Def = MRI.getVRegDef(Reg);
2999 while (Def->isPHI()) {
3000 if (!Visited.insert(Def).second)
3001 break;
3002 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3003 if (Def->getOperand(i + 1).getMBB() == BB) {
3004 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3005 break;
3008 return Def;
3011 /// Return the new name for the value from the previous stage.
3012 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3013 unsigned LoopVal, unsigned LoopStage,
3014 ValueMapTy *VRMap,
3015 MachineBasicBlock *BB) {
3016 unsigned PrevVal = 0;
3017 if (StageNum > PhiStage) {
3018 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3019 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3020 // The name is defined in the previous stage.
3021 PrevVal = VRMap[StageNum - 1][LoopVal];
3022 else if (VRMap[StageNum].count(LoopVal))
3023 // The previous name is defined in the current stage when the instruction
3024 // order is swapped.
3025 PrevVal = VRMap[StageNum][LoopVal];
3026 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
3027 // The loop value hasn't yet been scheduled.
3028 PrevVal = LoopVal;
3029 else if (StageNum == PhiStage + 1)
3030 // The loop value is another phi, which has not been scheduled.
3031 PrevVal = getInitPhiReg(*LoopInst, BB);
3032 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3033 // The loop value is another phi, which has been scheduled.
3034 PrevVal =
3035 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3036 LoopStage, VRMap, BB);
3038 return PrevVal;
3041 /// Rewrite the Phi values in the specified block to use the mappings
3042 /// from the initial operand. Once the Phi is scheduled, we switch
3043 /// to using the loop value instead of the Phi value, so those names
3044 /// do not need to be rewritten.
3045 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3046 unsigned StageNum,
3047 SMSchedule &Schedule,
3048 ValueMapTy *VRMap,
3049 InstrMapTy &InstrMap) {
3050 for (auto &PHI : BB->phis()) {
3051 unsigned InitVal = 0;
3052 unsigned LoopVal = 0;
3053 getPhiRegs(PHI, BB, InitVal, LoopVal);
3054 Register PhiDef = PHI.getOperand(0).getReg();
3056 unsigned PhiStage =
3057 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3058 unsigned LoopStage =
3059 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3060 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3061 if (NumPhis > StageNum)
3062 NumPhis = StageNum;
3063 for (unsigned np = 0; np <= NumPhis; ++np) {
3064 unsigned NewVal =
3065 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3066 if (!NewVal)
3067 NewVal = InitVal;
3068 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
3069 PhiDef, NewVal);
3074 /// Rewrite a previously scheduled instruction to use the register value
3075 /// from the new instruction. Make sure the instruction occurs in the
3076 /// basic block, and we don't change the uses in the new instruction.
3077 void SwingSchedulerDAG::rewriteScheduledInstr(
3078 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3079 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3080 unsigned NewReg, unsigned PrevReg) {
3081 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3082 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3083 // Rewrite uses that have been scheduled already to use the new
3084 // Phi register.
3085 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3086 EI = MRI.use_end();
3087 UI != EI;) {
3088 MachineOperand &UseOp = *UI;
3089 MachineInstr *UseMI = UseOp.getParent();
3090 ++UI;
3091 if (UseMI->getParent() != BB)
3092 continue;
3093 if (UseMI->isPHI()) {
3094 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3095 continue;
3096 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3097 continue;
3099 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3100 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3101 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3102 int StageSched = Schedule.stageScheduled(OrigMISU);
3103 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3104 unsigned ReplaceReg = 0;
3105 // This is the stage for the scheduled instruction.
3106 if (StagePhi == StageSched && Phi->isPHI()) {
3107 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3108 if (PrevReg && InProlog)
3109 ReplaceReg = PrevReg;
3110 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3111 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3112 ReplaceReg = PrevReg;
3113 else
3114 ReplaceReg = NewReg;
3116 // The scheduled instruction occurs before the scheduled Phi, and the
3117 // Phi is not loop carried.
3118 if (!InProlog && StagePhi + 1 == StageSched &&
3119 !Schedule.isLoopCarried(this, *Phi))
3120 ReplaceReg = NewReg;
3121 if (StagePhi > StageSched && Phi->isPHI())
3122 ReplaceReg = NewReg;
3123 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3124 ReplaceReg = NewReg;
3125 if (ReplaceReg) {
3126 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3127 UseOp.setReg(ReplaceReg);
3132 /// Check if we can change the instruction to use an offset value from the
3133 /// previous iteration. If so, return true and set the base and offset values
3134 /// so that we can rewrite the load, if necessary.
3135 /// v1 = Phi(v0, v3)
3136 /// v2 = load v1, 0
3137 /// v3 = post_store v1, 4, x
3138 /// This function enables the load to be rewritten as v2 = load v3, 4.
3139 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3140 unsigned &BasePos,
3141 unsigned &OffsetPos,
3142 unsigned &NewBase,
3143 int64_t &Offset) {
3144 // Get the load instruction.
3145 if (TII->isPostIncrement(*MI))
3146 return false;
3147 unsigned BasePosLd, OffsetPosLd;
3148 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
3149 return false;
3150 Register BaseReg = MI->getOperand(BasePosLd).getReg();
3152 // Look for the Phi instruction.
3153 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
3154 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3155 if (!Phi || !Phi->isPHI())
3156 return false;
3157 // Get the register defined in the loop block.
3158 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3159 if (!PrevReg)
3160 return false;
3162 // Check for the post-increment load/store instruction.
3163 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3164 if (!PrevDef || PrevDef == MI)
3165 return false;
3167 if (!TII->isPostIncrement(*PrevDef))
3168 return false;
3170 unsigned BasePos1 = 0, OffsetPos1 = 0;
3171 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
3172 return false;
3174 // Make sure that the instructions do not access the same memory location in
3175 // the next iteration.
3176 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3177 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3178 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3179 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3180 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3181 MF.DeleteMachineInstr(NewMI);
3182 if (!Disjoint)
3183 return false;
3185 // Set the return value once we determine that we return true.
3186 BasePos = BasePosLd;
3187 OffsetPos = OffsetPosLd;
3188 NewBase = PrevReg;
3189 Offset = StoreOffset;
3190 return true;
3193 /// Apply changes to the instruction if needed. The changes are need
3194 /// to improve the scheduling and depend up on the final schedule.
3195 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3196 SMSchedule &Schedule) {
3197 SUnit *SU = getSUnit(MI);
3198 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3199 InstrChanges.find(SU);
3200 if (It != InstrChanges.end()) {
3201 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3202 unsigned BasePos, OffsetPos;
3203 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3204 return;
3205 Register BaseReg = MI->getOperand(BasePos).getReg();
3206 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3207 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3208 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3209 int BaseStageNum = Schedule.stageScheduled(SU);
3210 int BaseCycleNum = Schedule.cycleScheduled(SU);
3211 if (BaseStageNum < DefStageNum) {
3212 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3213 int OffsetDiff = DefStageNum - BaseStageNum;
3214 if (DefCycleNum < BaseCycleNum) {
3215 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3216 if (OffsetDiff > 0)
3217 --OffsetDiff;
3219 int64_t NewOffset =
3220 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3221 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3222 SU->setInstr(NewMI);
3223 MISUnitMap[NewMI] = SU;
3224 NewMIs.insert(NewMI);
3229 /// Return true for an order or output dependence that is loop carried
3230 /// potentially. A dependence is loop carried if the destination defines a valu
3231 /// that may be used or defined by the source in a subsequent iteration.
3232 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3233 bool isSucc) {
3234 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3235 Dep.isArtificial())
3236 return false;
3238 if (!SwpPruneLoopCarried)
3239 return true;
3241 if (Dep.getKind() == SDep::Output)
3242 return true;
3244 MachineInstr *SI = Source->getInstr();
3245 MachineInstr *DI = Dep.getSUnit()->getInstr();
3246 if (!isSucc)
3247 std::swap(SI, DI);
3248 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3250 // Assume ordered loads and stores may have a loop carried dependence.
3251 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3252 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
3253 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3254 return true;
3256 // Only chain dependences between a load and store can be loop carried.
3257 if (!DI->mayStore() || !SI->mayLoad())
3258 return false;
3260 unsigned DeltaS, DeltaD;
3261 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3262 return true;
3264 const MachineOperand *BaseOpS, *BaseOpD;
3265 int64_t OffsetS, OffsetD;
3266 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3267 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
3268 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
3269 return true;
3271 if (!BaseOpS->isIdenticalTo(*BaseOpD))
3272 return true;
3274 // Check that the base register is incremented by a constant value for each
3275 // iteration.
3276 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
3277 if (!Def || !Def->isPHI())
3278 return true;
3279 unsigned InitVal = 0;
3280 unsigned LoopVal = 0;
3281 getPhiRegs(*Def, BB, InitVal, LoopVal);
3282 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3283 int D = 0;
3284 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3285 return true;
3287 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3288 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3290 // This is the main test, which checks the offset values and the loop
3291 // increment value to determine if the accesses may be loop carried.
3292 if (AccessSizeS == MemoryLocation::UnknownSize ||
3293 AccessSizeD == MemoryLocation::UnknownSize)
3294 return true;
3296 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
3297 return true;
3299 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
3302 void SwingSchedulerDAG::postprocessDAG() {
3303 for (auto &M : Mutations)
3304 M->apply(this);
3307 /// Try to schedule the node at the specified StartCycle and continue
3308 /// until the node is schedule or the EndCycle is reached. This function
3309 /// returns true if the node is scheduled. This routine may search either
3310 /// forward or backward for a place to insert the instruction based upon
3311 /// the relative values of StartCycle and EndCycle.
3312 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3313 bool forward = true;
3314 LLVM_DEBUG({
3315 dbgs() << "Trying to insert node between " << StartCycle << " and "
3316 << EndCycle << " II: " << II << "\n";
3318 if (StartCycle > EndCycle)
3319 forward = false;
3321 // The terminating condition depends on the direction.
3322 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3323 for (int curCycle = StartCycle; curCycle != termCycle;
3324 forward ? ++curCycle : --curCycle) {
3326 // Add the already scheduled instructions at the specified cycle to the
3327 // DFA.
3328 ProcItinResources.clearResources();
3329 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3330 checkCycle <= LastCycle; checkCycle += II) {
3331 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3333 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3334 E = cycleInstrs.end();
3335 I != E; ++I) {
3336 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3337 continue;
3338 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
3339 "These instructions have already been scheduled.");
3340 ProcItinResources.reserveResources(*(*I)->getInstr());
3343 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3344 ProcItinResources.canReserveResources(*SU->getInstr())) {
3345 LLVM_DEBUG({
3346 dbgs() << "\tinsert at cycle " << curCycle << " ";
3347 SU->getInstr()->dump();
3350 ScheduledInstrs[curCycle].push_back(SU);
3351 InstrToCycle.insert(std::make_pair(SU, curCycle));
3352 if (curCycle > LastCycle)
3353 LastCycle = curCycle;
3354 if (curCycle < FirstCycle)
3355 FirstCycle = curCycle;
3356 return true;
3358 LLVM_DEBUG({
3359 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3360 SU->getInstr()->dump();
3363 return false;
3366 // Return the cycle of the earliest scheduled instruction in the chain.
3367 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3368 SmallPtrSet<SUnit *, 8> Visited;
3369 SmallVector<SDep, 8> Worklist;
3370 Worklist.push_back(Dep);
3371 int EarlyCycle = INT_MAX;
3372 while (!Worklist.empty()) {
3373 const SDep &Cur = Worklist.pop_back_val();
3374 SUnit *PrevSU = Cur.getSUnit();
3375 if (Visited.count(PrevSU))
3376 continue;
3377 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3378 if (it == InstrToCycle.end())
3379 continue;
3380 EarlyCycle = std::min(EarlyCycle, it->second);
3381 for (const auto &PI : PrevSU->Preds)
3382 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3383 Worklist.push_back(PI);
3384 Visited.insert(PrevSU);
3386 return EarlyCycle;
3389 // Return the cycle of the latest scheduled instruction in the chain.
3390 int SMSchedule::latestCycleInChain(const SDep &Dep) {
3391 SmallPtrSet<SUnit *, 8> Visited;
3392 SmallVector<SDep, 8> Worklist;
3393 Worklist.push_back(Dep);
3394 int LateCycle = INT_MIN;
3395 while (!Worklist.empty()) {
3396 const SDep &Cur = Worklist.pop_back_val();
3397 SUnit *SuccSU = Cur.getSUnit();
3398 if (Visited.count(SuccSU))
3399 continue;
3400 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3401 if (it == InstrToCycle.end())
3402 continue;
3403 LateCycle = std::max(LateCycle, it->second);
3404 for (const auto &SI : SuccSU->Succs)
3405 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
3406 Worklist.push_back(SI);
3407 Visited.insert(SuccSU);
3409 return LateCycle;
3412 /// If an instruction has a use that spans multiple iterations, then
3413 /// return true. These instructions are characterized by having a back-ege
3414 /// to a Phi, which contains a reference to another Phi.
3415 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3416 for (auto &P : SU->Preds)
3417 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3418 for (auto &S : P.getSUnit()->Succs)
3419 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
3420 return P.getSUnit();
3421 return nullptr;
3424 /// Compute the scheduling start slot for the instruction. The start slot
3425 /// depends on any predecessor or successor nodes scheduled already.
3426 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3427 int *MinEnd, int *MaxStart, int II,
3428 SwingSchedulerDAG *DAG) {
3429 // Iterate over each instruction that has been scheduled already. The start
3430 // slot computation depends on whether the previously scheduled instruction
3431 // is a predecessor or successor of the specified instruction.
3432 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3434 // Iterate over each instruction in the current cycle.
3435 for (SUnit *I : getInstructions(cycle)) {
3436 // Because we're processing a DAG for the dependences, we recognize
3437 // the back-edge in recurrences by anti dependences.
3438 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3439 const SDep &Dep = SU->Preds[i];
3440 if (Dep.getSUnit() == I) {
3441 if (!DAG->isBackedge(SU, Dep)) {
3442 int EarlyStart = cycle + Dep.getLatency() -
3443 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3444 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3445 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
3446 int End = earliestCycleInChain(Dep) + (II - 1);
3447 *MinEnd = std::min(*MinEnd, End);
3449 } else {
3450 int LateStart = cycle - Dep.getLatency() +
3451 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3452 *MinLateStart = std::min(*MinLateStart, LateStart);
3455 // For instruction that requires multiple iterations, make sure that
3456 // the dependent instruction is not scheduled past the definition.
3457 SUnit *BE = multipleIterations(I, DAG);
3458 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3459 !SU->isPred(I))
3460 *MinLateStart = std::min(*MinLateStart, cycle);
3462 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
3463 if (SU->Succs[i].getSUnit() == I) {
3464 const SDep &Dep = SU->Succs[i];
3465 if (!DAG->isBackedge(SU, Dep)) {
3466 int LateStart = cycle - Dep.getLatency() +
3467 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3468 *MinLateStart = std::min(*MinLateStart, LateStart);
3469 if (DAG->isLoopCarriedDep(SU, Dep)) {
3470 int Start = latestCycleInChain(Dep) + 1 - II;
3471 *MaxStart = std::max(*MaxStart, Start);
3473 } else {
3474 int EarlyStart = cycle + Dep.getLatency() -
3475 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3476 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3484 /// Order the instructions within a cycle so that the definitions occur
3485 /// before the uses. Returns true if the instruction is added to the start
3486 /// of the list, or false if added to the end.
3487 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3488 std::deque<SUnit *> &Insts) {
3489 MachineInstr *MI = SU->getInstr();
3490 bool OrderBeforeUse = false;
3491 bool OrderAfterDef = false;
3492 bool OrderBeforeDef = false;
3493 unsigned MoveDef = 0;
3494 unsigned MoveUse = 0;
3495 int StageInst1 = stageScheduled(SU);
3497 unsigned Pos = 0;
3498 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3499 ++I, ++Pos) {
3500 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3501 MachineOperand &MO = MI->getOperand(i);
3502 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
3503 continue;
3505 Register Reg = MO.getReg();
3506 unsigned BasePos, OffsetPos;
3507 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3508 if (MI->getOperand(BasePos).getReg() == Reg)
3509 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3510 Reg = NewReg;
3511 bool Reads, Writes;
3512 std::tie(Reads, Writes) =
3513 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3514 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3515 OrderBeforeUse = true;
3516 if (MoveUse == 0)
3517 MoveUse = Pos;
3518 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3519 // Add the instruction after the scheduled instruction.
3520 OrderAfterDef = true;
3521 MoveDef = Pos;
3522 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3523 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3524 OrderBeforeUse = true;
3525 if (MoveUse == 0)
3526 MoveUse = Pos;
3527 } else {
3528 OrderAfterDef = true;
3529 MoveDef = Pos;
3531 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3532 OrderBeforeUse = true;
3533 if (MoveUse == 0)
3534 MoveUse = Pos;
3535 if (MoveUse != 0) {
3536 OrderAfterDef = true;
3537 MoveDef = Pos - 1;
3539 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3540 // Add the instruction before the scheduled instruction.
3541 OrderBeforeUse = true;
3542 if (MoveUse == 0)
3543 MoveUse = Pos;
3544 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3545 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3546 if (MoveUse == 0) {
3547 OrderBeforeDef = true;
3548 MoveUse = Pos;
3552 // Check for order dependences between instructions. Make sure the source
3553 // is ordered before the destination.
3554 for (auto &S : SU->Succs) {
3555 if (S.getSUnit() != *I)
3556 continue;
3557 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3558 OrderBeforeUse = true;
3559 if (Pos < MoveUse)
3560 MoveUse = Pos;
3562 // We did not handle HW dependences in previous for loop,
3563 // and we normally set Latency = 0 for Anti deps,
3564 // so may have nodes in same cycle with Anti denpendent on HW regs.
3565 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
3566 OrderBeforeUse = true;
3567 if ((MoveUse == 0) || (Pos < MoveUse))
3568 MoveUse = Pos;
3571 for (auto &P : SU->Preds) {
3572 if (P.getSUnit() != *I)
3573 continue;
3574 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3575 OrderAfterDef = true;
3576 MoveDef = Pos;
3581 // A circular dependence.
3582 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3583 OrderBeforeUse = false;
3585 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3586 // to a loop-carried dependence.
3587 if (OrderBeforeDef)
3588 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3590 // The uncommon case when the instruction order needs to be updated because
3591 // there is both a use and def.
3592 if (OrderBeforeUse && OrderAfterDef) {
3593 SUnit *UseSU = Insts.at(MoveUse);
3594 SUnit *DefSU = Insts.at(MoveDef);
3595 if (MoveUse > MoveDef) {
3596 Insts.erase(Insts.begin() + MoveUse);
3597 Insts.erase(Insts.begin() + MoveDef);
3598 } else {
3599 Insts.erase(Insts.begin() + MoveDef);
3600 Insts.erase(Insts.begin() + MoveUse);
3602 orderDependence(SSD, UseSU, Insts);
3603 orderDependence(SSD, SU, Insts);
3604 orderDependence(SSD, DefSU, Insts);
3605 return;
3607 // Put the new instruction first if there is a use in the list. Otherwise,
3608 // put it at the end of the list.
3609 if (OrderBeforeUse)
3610 Insts.push_front(SU);
3611 else
3612 Insts.push_back(SU);
3615 /// Return true if the scheduled Phi has a loop carried operand.
3616 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3617 if (!Phi.isPHI())
3618 return false;
3619 assert(Phi.isPHI() && "Expecting a Phi.");
3620 SUnit *DefSU = SSD->getSUnit(&Phi);
3621 unsigned DefCycle = cycleScheduled(DefSU);
3622 int DefStage = stageScheduled(DefSU);
3624 unsigned InitVal = 0;
3625 unsigned LoopVal = 0;
3626 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3627 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3628 if (!UseSU)
3629 return true;
3630 if (UseSU->getInstr()->isPHI())
3631 return true;
3632 unsigned LoopCycle = cycleScheduled(UseSU);
3633 int LoopStage = stageScheduled(UseSU);
3634 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3637 /// Return true if the instruction is a definition that is loop carried
3638 /// and defines the use on the next iteration.
3639 /// v1 = phi(v2, v3)
3640 /// (Def) v3 = op v1
3641 /// (MO) = v1
3642 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
3643 /// register.
3644 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3645 MachineInstr *Def, MachineOperand &MO) {
3646 if (!MO.isReg())
3647 return false;
3648 if (Def->isPHI())
3649 return false;
3650 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3651 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3652 return false;
3653 if (!isLoopCarried(SSD, *Phi))
3654 return false;
3655 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3656 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3657 MachineOperand &DMO = Def->getOperand(i);
3658 if (!DMO.isReg() || !DMO.isDef())
3659 continue;
3660 if (DMO.getReg() == LoopReg)
3661 return true;
3663 return false;
3666 // Check if the generated schedule is valid. This function checks if
3667 // an instruction that uses a physical register is scheduled in a
3668 // different stage than the definition. The pipeliner does not handle
3669 // physical register values that may cross a basic block boundary.
3670 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3671 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3672 SUnit &SU = SSD->SUnits[i];
3673 if (!SU.hasPhysRegDefs)
3674 continue;
3675 int StageDef = stageScheduled(&SU);
3676 assert(StageDef != -1 && "Instruction should have been scheduled.");
3677 for (auto &SI : SU.Succs)
3678 if (SI.isAssignedRegDep())
3679 if (Register::isPhysicalRegister(SI.getReg()))
3680 if (stageScheduled(SI.getSUnit()) != StageDef)
3681 return false;
3683 return true;
3686 /// A property of the node order in swing-modulo-scheduling is
3687 /// that for nodes outside circuits the following holds:
3688 /// none of them is scheduled after both a successor and a
3689 /// predecessor.
3690 /// The method below checks whether the property is met.
3691 /// If not, debug information is printed and statistics information updated.
3692 /// Note that we do not use an assert statement.
3693 /// The reason is that although an invalid node oder may prevent
3694 /// the pipeliner from finding a pipelined schedule for arbitrary II,
3695 /// it does not lead to the generation of incorrect code.
3696 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3698 // a sorted vector that maps each SUnit to its index in the NodeOrder
3699 typedef std::pair<SUnit *, unsigned> UnitIndex;
3700 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3702 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3703 Indices.push_back(std::make_pair(NodeOrder[i], i));
3705 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3706 return std::get<0>(i1) < std::get<0>(i2);
3709 // sort, so that we can perform a binary search
3710 llvm::sort(Indices, CompareKey);
3712 bool Valid = true;
3713 (void)Valid;
3714 // for each SUnit in the NodeOrder, check whether
3715 // it appears after both a successor and a predecessor
3716 // of the SUnit. If this is the case, and the SUnit
3717 // is not part of circuit, then the NodeOrder is not
3718 // valid.
3719 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3720 SUnit *SU = NodeOrder[i];
3721 unsigned Index = i;
3723 bool PredBefore = false;
3724 bool SuccBefore = false;
3726 SUnit *Succ;
3727 SUnit *Pred;
3728 (void)Succ;
3729 (void)Pred;
3731 for (SDep &PredEdge : SU->Preds) {
3732 SUnit *PredSU = PredEdge.getSUnit();
3733 unsigned PredIndex = std::get<1>(
3734 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
3735 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3736 PredBefore = true;
3737 Pred = PredSU;
3738 break;
3742 for (SDep &SuccEdge : SU->Succs) {
3743 SUnit *SuccSU = SuccEdge.getSUnit();
3744 // Do not process a boundary node, it was not included in NodeOrder,
3745 // hence not in Indices either, call to std::lower_bound() below will
3746 // return Indices.end().
3747 if (SuccSU->isBoundaryNode())
3748 continue;
3749 unsigned SuccIndex = std::get<1>(
3750 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
3751 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3752 SuccBefore = true;
3753 Succ = SuccSU;
3754 break;
3758 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3759 // instructions in circuits are allowed to be scheduled
3760 // after both a successor and predecessor.
3761 bool InCircuit = llvm::any_of(
3762 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3763 if (InCircuit)
3764 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
3765 else {
3766 Valid = false;
3767 NumNodeOrderIssues++;
3768 LLVM_DEBUG(dbgs() << "Predecessor ";);
3770 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3771 << " are scheduled before node " << SU->NodeNum
3772 << "\n";);
3776 LLVM_DEBUG({
3777 if (!Valid)
3778 dbgs() << "Invalid node order found!\n";
3782 /// Attempt to fix the degenerate cases when the instruction serialization
3783 /// causes the register lifetimes to overlap. For example,
3784 /// p' = store_pi(p, b)
3785 /// = load p, offset
3786 /// In this case p and p' overlap, which means that two registers are needed.
3787 /// Instead, this function changes the load to use p' and updates the offset.
3788 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3789 unsigned OverlapReg = 0;
3790 unsigned NewBaseReg = 0;
3791 for (SUnit *SU : Instrs) {
3792 MachineInstr *MI = SU->getInstr();
3793 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3794 const MachineOperand &MO = MI->getOperand(i);
3795 // Look for an instruction that uses p. The instruction occurs in the
3796 // same cycle but occurs later in the serialized order.
3797 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3798 // Check that the instruction appears in the InstrChanges structure,
3799 // which contains instructions that can have the offset updated.
3800 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3801 InstrChanges.find(SU);
3802 if (It != InstrChanges.end()) {
3803 unsigned BasePos, OffsetPos;
3804 // Update the base register and adjust the offset.
3805 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
3806 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3807 NewMI->getOperand(BasePos).setReg(NewBaseReg);
3808 int64_t NewOffset =
3809 MI->getOperand(OffsetPos).getImm() - It->second.second;
3810 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3811 SU->setInstr(NewMI);
3812 MISUnitMap[NewMI] = SU;
3813 NewMIs.insert(NewMI);
3816 OverlapReg = 0;
3817 NewBaseReg = 0;
3818 break;
3820 // Look for an instruction of the form p' = op(p), which uses and defines
3821 // two virtual registers that get allocated to the same physical register.
3822 unsigned TiedUseIdx = 0;
3823 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3824 // OverlapReg is p in the example above.
3825 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3826 // NewBaseReg is p' in the example above.
3827 NewBaseReg = MI->getOperand(i).getReg();
3828 break;
3834 /// After the schedule has been formed, call this function to combine
3835 /// the instructions from the different stages/cycles. That is, this
3836 /// function creates a schedule that represents a single iteration.
3837 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3838 // Move all instructions to the first stage from later stages.
3839 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3840 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3841 ++stage) {
3842 std::deque<SUnit *> &cycleInstrs =
3843 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3844 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3845 E = cycleInstrs.rend();
3846 I != E; ++I)
3847 ScheduledInstrs[cycle].push_front(*I);
3850 // Iterate over the definitions in each instruction, and compute the
3851 // stage difference for each use. Keep the maximum value.
3852 for (auto &I : InstrToCycle) {
3853 int DefStage = stageScheduled(I.first);
3854 MachineInstr *MI = I.first->getInstr();
3855 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3856 MachineOperand &Op = MI->getOperand(i);
3857 if (!Op.isReg() || !Op.isDef())
3858 continue;
3860 Register Reg = Op.getReg();
3861 unsigned MaxDiff = 0;
3862 bool PhiIsSwapped = false;
3863 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3864 EI = MRI.use_end();
3865 UI != EI; ++UI) {
3866 MachineOperand &UseOp = *UI;
3867 MachineInstr *UseMI = UseOp.getParent();
3868 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3869 int UseStage = stageScheduled(SUnitUse);
3870 unsigned Diff = 0;
3871 if (UseStage != -1 && UseStage >= DefStage)
3872 Diff = UseStage - DefStage;
3873 if (MI->isPHI()) {
3874 if (isLoopCarried(SSD, *MI))
3875 ++Diff;
3876 else
3877 PhiIsSwapped = true;
3879 MaxDiff = std::max(Diff, MaxDiff);
3881 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3885 // Erase all the elements in the later stages. Only one iteration should
3886 // remain in the scheduled list, and it contains all the instructions.
3887 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3888 ScheduledInstrs.erase(cycle);
3890 // Change the registers in instruction as specified in the InstrChanges
3891 // map. We need to use the new registers to create the correct order.
3892 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3893 SUnit *SU = &SSD->SUnits[i];
3894 SSD->applyInstrChange(SU->getInstr(), *this);
3897 // Reorder the instructions in each cycle to fix and improve the
3898 // generated code.
3899 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3900 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3901 std::deque<SUnit *> newOrderPhi;
3902 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3903 SUnit *SU = cycleInstrs[i];
3904 if (SU->getInstr()->isPHI())
3905 newOrderPhi.push_back(SU);
3907 std::deque<SUnit *> newOrderI;
3908 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3909 SUnit *SU = cycleInstrs[i];
3910 if (!SU->getInstr()->isPHI())
3911 orderDependence(SSD, SU, newOrderI);
3913 // Replace the old order with the new order.
3914 cycleInstrs.swap(newOrderPhi);
3915 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3916 SSD->fixupRegisterOverlaps(cycleInstrs);
3919 LLVM_DEBUG(dump(););
3922 void NodeSet::print(raw_ostream &os) const {
3923 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3924 << " depth " << MaxDepth << " col " << Colocate << "\n";
3925 for (const auto &I : Nodes)
3926 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
3927 os << "\n";
3930 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3931 /// Print the schedule information to the given output.
3932 void SMSchedule::print(raw_ostream &os) const {
3933 // Iterate over each cycle.
3934 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3935 // Iterate over each instruction in the cycle.
3936 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3937 for (SUnit *CI : cycleInstrs->second) {
3938 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3939 os << "(" << CI->NodeNum << ") ";
3940 CI->getInstr()->print(os);
3941 os << "\n";
3946 /// Utility function used for debugging to print the schedule.
3947 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
3948 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3950 #endif
3952 void ResourceManager::initProcResourceVectors(
3953 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3954 unsigned ProcResourceID = 0;
3956 // We currently limit the resource kinds to 64 and below so that we can use
3957 // uint64_t for Masks
3958 assert(SM.getNumProcResourceKinds() < 64 &&
3959 "Too many kinds of resources, unsupported");
3960 // Create a unique bitmask for every processor resource unit.
3961 // Skip resource at index 0, since it always references 'InvalidUnit'.
3962 Masks.resize(SM.getNumProcResourceKinds());
3963 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3964 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3965 if (Desc.SubUnitsIdxBegin)
3966 continue;
3967 Masks[I] = 1ULL << ProcResourceID;
3968 ProcResourceID++;
3970 // Create a unique bitmask for every processor resource group.
3971 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3972 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3973 if (!Desc.SubUnitsIdxBegin)
3974 continue;
3975 Masks[I] = 1ULL << ProcResourceID;
3976 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3977 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3978 ProcResourceID++;
3980 LLVM_DEBUG({
3981 if (SwpShowResMask) {
3982 dbgs() << "ProcResourceDesc:\n";
3983 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3984 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3985 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3986 ProcResource->Name, I, Masks[I],
3987 ProcResource->NumUnits);
3989 dbgs() << " -----------------\n";
3994 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3996 LLVM_DEBUG({
3997 if (SwpDebugResource)
3998 dbgs() << "canReserveResources:\n";
4000 if (UseDFA)
4001 return DFAResources->canReserveResources(MID);
4003 unsigned InsnClass = MID->getSchedClass();
4004 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
4005 if (!SCDesc->isValid()) {
4006 LLVM_DEBUG({
4007 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
4008 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
4010 return true;
4013 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
4014 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
4015 for (; I != E; ++I) {
4016 if (!I->Cycles)
4017 continue;
4018 const MCProcResourceDesc *ProcResource =
4019 SM.getProcResource(I->ProcResourceIdx);
4020 unsigned NumUnits = ProcResource->NumUnits;
4021 LLVM_DEBUG({
4022 if (SwpDebugResource)
4023 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
4024 ProcResource->Name, I->ProcResourceIdx,
4025 ProcResourceCount[I->ProcResourceIdx], NumUnits,
4026 I->Cycles);
4028 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
4029 return false;
4031 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
4032 return true;
4035 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
4036 LLVM_DEBUG({
4037 if (SwpDebugResource)
4038 dbgs() << "reserveResources:\n";
4040 if (UseDFA)
4041 return DFAResources->reserveResources(MID);
4043 unsigned InsnClass = MID->getSchedClass();
4044 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
4045 if (!SCDesc->isValid()) {
4046 LLVM_DEBUG({
4047 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
4048 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
4050 return;
4052 for (const MCWriteProcResEntry &PRE :
4053 make_range(STI->getWriteProcResBegin(SCDesc),
4054 STI->getWriteProcResEnd(SCDesc))) {
4055 if (!PRE.Cycles)
4056 continue;
4057 ++ProcResourceCount[PRE.ProcResourceIdx];
4058 LLVM_DEBUG({
4059 if (SwpDebugResource) {
4060 const MCProcResourceDesc *ProcResource =
4061 SM.getProcResource(PRE.ProcResourceIdx);
4062 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
4063 ProcResource->Name, PRE.ProcResourceIdx,
4064 ProcResourceCount[PRE.ProcResourceIdx],
4065 ProcResource->NumUnits, PRE.Cycles);
4069 LLVM_DEBUG({
4070 if (SwpDebugResource)
4071 dbgs() << "reserveResources: done!\n\n";
4075 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
4076 return canReserveResources(&MI.getDesc());
4079 void ResourceManager::reserveResources(const MachineInstr &MI) {
4080 return reserveResources(&MI.getDesc());
4083 void ResourceManager::clearResources() {
4084 if (UseDFA)
4085 return DFAResources->clearResources();
4086 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);