[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / RegAllocFast.cpp
blob44d0233604e7c0183a75d2645e8a35d184850360
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/MC/MCInstrDesc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <tuple>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "regalloc"
54 STATISTIC(NumStores, "Number of stores added");
55 STATISTIC(NumLoads , "Number of loads added");
56 STATISTIC(NumCoalesced, "Number of copies coalesced");
58 static RegisterRegAlloc
59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
61 namespace {
63 class RegAllocFast : public MachineFunctionPass {
64 public:
65 static char ID;
67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
69 private:
70 MachineFrameInfo *MFI;
71 MachineRegisterInfo *MRI;
72 const TargetRegisterInfo *TRI;
73 const TargetInstrInfo *TII;
74 RegisterClassInfo RegClassInfo;
76 /// Basic block currently being allocated.
77 MachineBasicBlock *MBB;
79 /// Maps virtual regs to the frame index where these values are spilled.
80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
82 /// Everything we know about a live virtual register.
83 struct LiveReg {
84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
85 unsigned VirtReg; ///< Virtual register number.
86 MCPhysReg PhysReg = 0; ///< Currently held here.
87 unsigned short LastOpNum = 0; ///< OpNum on LastUse.
88 bool Dirty = false; ///< Register needs spill.
90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
92 unsigned getSparseSetIndex() const {
93 return Register::virtReg2Index(VirtReg);
97 using LiveRegMap = SparseSet<LiveReg>;
98 /// This map contains entries for each virtual register that is currently
99 /// available in a physical register.
100 LiveRegMap LiveVirtRegs;
102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
104 /// Has a bit set for every virtual register for which it was determined
105 /// that it is alive across blocks.
106 BitVector MayLiveAcrossBlocks;
108 /// State of a physical register.
109 enum RegState {
110 /// A disabled register is not available for allocation, but an alias may
111 /// be in use. A register can only be moved out of the disabled state if
112 /// all aliases are disabled.
113 regDisabled,
115 /// A free register is not currently in use and can be allocated
116 /// immediately without checking aliases.
117 regFree,
119 /// A reserved register has been assigned explicitly (e.g., setting up a
120 /// call parameter), and it remains reserved until it is used.
121 regReserved
123 /// A register state may also be a virtual register number, indication
124 /// that the physical register is currently allocated to a virtual
125 /// register. In that case, LiveVirtRegs contains the inverse mapping.
128 /// Maps each physical register to a RegState enum or a virtual register.
129 std::vector<unsigned> PhysRegState;
131 SmallVector<unsigned, 16> VirtDead;
132 SmallVector<MachineInstr *, 32> Coalesced;
134 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
135 /// Set of register units that are used in the current instruction, and so
136 /// cannot be allocated.
137 RegUnitSet UsedInInstr;
139 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
141 /// Mark a physreg as used in this instruction.
142 void markRegUsedInInstr(MCPhysReg PhysReg) {
143 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
144 UsedInInstr.insert(*Units);
147 /// Check if a physreg or any of its aliases are used in this instruction.
148 bool isRegUsedInInstr(MCPhysReg PhysReg) const {
149 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
150 if (UsedInInstr.count(*Units))
151 return true;
152 return false;
155 enum : unsigned {
156 spillClean = 50,
157 spillDirty = 100,
158 spillPrefBonus = 20,
159 spillImpossible = ~0u
162 public:
163 StringRef getPassName() const override { return "Fast Register Allocator"; }
165 void getAnalysisUsage(AnalysisUsage &AU) const override {
166 AU.setPreservesCFG();
167 MachineFunctionPass::getAnalysisUsage(AU);
170 MachineFunctionProperties getRequiredProperties() const override {
171 return MachineFunctionProperties().set(
172 MachineFunctionProperties::Property::NoPHIs);
175 MachineFunctionProperties getSetProperties() const override {
176 return MachineFunctionProperties().set(
177 MachineFunctionProperties::Property::NoVRegs);
180 private:
181 bool runOnMachineFunction(MachineFunction &MF) override;
183 void allocateBasicBlock(MachineBasicBlock &MBB);
184 void allocateInstruction(MachineInstr &MI);
185 void handleDebugValue(MachineInstr &MI);
186 void handleThroughOperands(MachineInstr &MI,
187 SmallVectorImpl<unsigned> &VirtDead);
188 bool isLastUseOfLocalReg(const MachineOperand &MO) const;
190 void addKillFlag(const LiveReg &LRI);
191 void killVirtReg(LiveReg &LR);
192 void killVirtReg(unsigned VirtReg);
193 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
194 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
196 void usePhysReg(MachineOperand &MO);
197 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
198 RegState NewState);
199 unsigned calcSpillCost(MCPhysReg PhysReg) const;
200 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
202 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
203 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
206 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
207 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
210 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
211 void allocVirtRegUndef(MachineOperand &MO);
212 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
213 unsigned Hint);
214 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
215 unsigned Hint);
216 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
217 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
219 unsigned traceCopies(unsigned VirtReg) const;
220 unsigned traceCopyChain(unsigned Reg) const;
222 int getStackSpaceFor(unsigned VirtReg);
223 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
224 MCPhysReg AssignedReg, bool Kill);
225 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
226 MCPhysReg PhysReg);
228 bool mayLiveOut(unsigned VirtReg);
229 bool mayLiveIn(unsigned VirtReg);
231 void dumpState();
234 } // end anonymous namespace
236 char RegAllocFast::ID = 0;
238 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
239 false)
241 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
242 PhysRegState[PhysReg] = NewState;
245 /// This allocates space for the specified virtual register to be held on the
246 /// stack.
247 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
248 // Find the location Reg would belong...
249 int SS = StackSlotForVirtReg[VirtReg];
250 // Already has space allocated?
251 if (SS != -1)
252 return SS;
254 // Allocate a new stack object for this spill location...
255 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
256 unsigned Size = TRI->getSpillSize(RC);
257 unsigned Align = TRI->getSpillAlignment(RC);
258 int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
260 // Assign the slot.
261 StackSlotForVirtReg[VirtReg] = FrameIdx;
262 return FrameIdx;
265 /// Returns false if \p VirtReg is known to not live out of the current block.
266 bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
267 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
268 // Cannot be live-out if there are no successors.
269 return !MBB->succ_empty();
272 // If this block loops back to itself, it would be necessary to check whether
273 // the use comes after the def.
274 if (MBB->isSuccessor(MBB)) {
275 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
276 return true;
279 // See if the first \p Limit uses of the register are all in the current
280 // block.
281 static const unsigned Limit = 8;
282 unsigned C = 0;
283 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
284 if (UseInst.getParent() != MBB || ++C >= Limit) {
285 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
286 // Cannot be live-out if there are no successors.
287 return !MBB->succ_empty();
291 return false;
294 /// Returns false if \p VirtReg is known to not be live into the current block.
295 bool RegAllocFast::mayLiveIn(unsigned VirtReg) {
296 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
297 return !MBB->pred_empty();
299 // See if the first \p Limit def of the register are all in the current block.
300 static const unsigned Limit = 8;
301 unsigned C = 0;
302 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
303 if (DefInst.getParent() != MBB || ++C >= Limit) {
304 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
305 return !MBB->pred_empty();
309 return false;
312 /// Insert spill instruction for \p AssignedReg before \p Before. Update
313 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
314 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
315 MCPhysReg AssignedReg, bool Kill) {
316 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
317 << " in " << printReg(AssignedReg, TRI));
318 int FI = getStackSpaceFor(VirtReg);
319 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
321 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
322 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
323 ++NumStores;
325 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
326 // identify spilled location as the place to find corresponding variable's
327 // value.
328 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
329 for (MachineInstr *DBG : LRIDbgValues) {
330 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
331 assert(NewDV->getParent() == MBB && "dangling parent pointer");
332 (void)NewDV;
333 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
335 // Now this register is spilled there is should not be any DBG_VALUE
336 // pointing to this register because they are all pointing to spilled value
337 // now.
338 LRIDbgValues.clear();
341 /// Insert reload instruction for \p PhysReg before \p Before.
342 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
343 MCPhysReg PhysReg) {
344 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
345 << printReg(PhysReg, TRI) << '\n');
346 int FI = getStackSpaceFor(VirtReg);
347 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
348 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
349 ++NumLoads;
352 /// Return true if MO is the only remaining reference to its virtual register,
353 /// and it is guaranteed to be a block-local register.
354 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
355 // If the register has ever been spilled or reloaded, we conservatively assume
356 // it is a global register used in multiple blocks.
357 if (StackSlotForVirtReg[MO.getReg()] != -1)
358 return false;
360 // Check that the use/def chain has exactly one operand - MO.
361 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
362 if (&*I != &MO)
363 return false;
364 return ++I == MRI->reg_nodbg_end();
367 /// Set kill flags on last use of a virtual register.
368 void RegAllocFast::addKillFlag(const LiveReg &LR) {
369 if (!LR.LastUse) return;
370 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
371 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
372 if (MO.getReg() == LR.PhysReg)
373 MO.setIsKill();
374 // else, don't do anything we are problably redefining a
375 // subreg of this register and given we don't track which
376 // lanes are actually dead, we cannot insert a kill flag here.
377 // Otherwise we may end up in a situation like this:
378 // ... = (MO) physreg:sub1, implicit killed physreg
379 // ... <== Here we would allow later pass to reuse physreg:sub1
380 // which is potentially wrong.
381 // LR:sub0 = ...
382 // ... = LR.sub1 <== This is going to use physreg:sub1
386 /// Mark virtreg as no longer available.
387 void RegAllocFast::killVirtReg(LiveReg &LR) {
388 addKillFlag(LR);
389 assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
390 "Broken RegState mapping");
391 setPhysRegState(LR.PhysReg, regFree);
392 LR.PhysReg = 0;
395 /// Mark virtreg as no longer available.
396 void RegAllocFast::killVirtReg(unsigned VirtReg) {
397 assert(Register::isVirtualRegister(VirtReg) &&
398 "killVirtReg needs a virtual register");
399 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
400 if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
401 killVirtReg(*LRI);
404 /// This method spills the value specified by VirtReg into the corresponding
405 /// stack slot if needed.
406 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
407 unsigned VirtReg) {
408 assert(Register::isVirtualRegister(VirtReg) &&
409 "Spilling a physical register is illegal!");
410 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
411 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
412 "Spilling unmapped virtual register");
413 spillVirtReg(MI, *LRI);
416 /// Do the actual work of spilling.
417 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
418 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
420 if (LR.Dirty) {
421 // If this physreg is used by the instruction, we want to kill it on the
422 // instruction, not on the spill.
423 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
424 LR.Dirty = false;
426 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
428 if (SpillKill)
429 LR.LastUse = nullptr; // Don't kill register again
431 killVirtReg(LR);
434 /// Spill all dirty virtregs without killing them.
435 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
436 if (LiveVirtRegs.empty())
437 return;
438 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
439 // of spilling here is deterministic, if arbitrary.
440 for (LiveReg &LR : LiveVirtRegs) {
441 if (!LR.PhysReg)
442 continue;
443 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
444 continue;
445 spillVirtReg(MI, LR);
447 LiveVirtRegs.clear();
450 /// Handle the direct use of a physical register. Check that the register is
451 /// not used by a virtreg. Kill the physreg, marking it free. This may add
452 /// implicit kills to MO->getParent() and invalidate MO.
453 void RegAllocFast::usePhysReg(MachineOperand &MO) {
454 // Ignore undef uses.
455 if (MO.isUndef())
456 return;
458 Register PhysReg = MO.getReg();
459 assert(Register::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand");
461 markRegUsedInInstr(PhysReg);
462 switch (PhysRegState[PhysReg]) {
463 case regDisabled:
464 break;
465 case regReserved:
466 PhysRegState[PhysReg] = regFree;
467 LLVM_FALLTHROUGH;
468 case regFree:
469 MO.setIsKill();
470 return;
471 default:
472 // The physreg was allocated to a virtual register. That means the value we
473 // wanted has been clobbered.
474 llvm_unreachable("Instruction uses an allocated register");
477 // Maybe a superregister is reserved?
478 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
479 MCPhysReg Alias = *AI;
480 switch (PhysRegState[Alias]) {
481 case regDisabled:
482 break;
483 case regReserved:
484 // Either PhysReg is a subregister of Alias and we mark the
485 // whole register as free, or PhysReg is the superregister of
486 // Alias and we mark all the aliases as disabled before freeing
487 // PhysReg.
488 // In the latter case, since PhysReg was disabled, this means that
489 // its value is defined only by physical sub-registers. This check
490 // is performed by the assert of the default case in this loop.
491 // Note: The value of the superregister may only be partial
492 // defined, that is why regDisabled is a valid state for aliases.
493 assert((TRI->isSuperRegister(PhysReg, Alias) ||
494 TRI->isSuperRegister(Alias, PhysReg)) &&
495 "Instruction is not using a subregister of a reserved register");
496 LLVM_FALLTHROUGH;
497 case regFree:
498 if (TRI->isSuperRegister(PhysReg, Alias)) {
499 // Leave the superregister in the working set.
500 setPhysRegState(Alias, regFree);
501 MO.getParent()->addRegisterKilled(Alias, TRI, true);
502 return;
504 // Some other alias was in the working set - clear it.
505 setPhysRegState(Alias, regDisabled);
506 break;
507 default:
508 llvm_unreachable("Instruction uses an alias of an allocated register");
512 // All aliases are disabled, bring register into working set.
513 setPhysRegState(PhysReg, regFree);
514 MO.setIsKill();
517 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
518 /// similar to defineVirtReg except the physreg is reserved instead of
519 /// allocated.
520 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
521 MCPhysReg PhysReg, RegState NewState) {
522 markRegUsedInInstr(PhysReg);
523 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
524 case regDisabled:
525 break;
526 default:
527 spillVirtReg(MI, VirtReg);
528 LLVM_FALLTHROUGH;
529 case regFree:
530 case regReserved:
531 setPhysRegState(PhysReg, NewState);
532 return;
535 // This is a disabled register, disable all aliases.
536 setPhysRegState(PhysReg, NewState);
537 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
538 MCPhysReg Alias = *AI;
539 switch (unsigned VirtReg = PhysRegState[Alias]) {
540 case regDisabled:
541 break;
542 default:
543 spillVirtReg(MI, VirtReg);
544 LLVM_FALLTHROUGH;
545 case regFree:
546 case regReserved:
547 setPhysRegState(Alias, regDisabled);
548 if (TRI->isSuperRegister(PhysReg, Alias))
549 return;
550 break;
555 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
556 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
557 /// disabled - it can be allocated directly.
558 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
559 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
560 if (isRegUsedInInstr(PhysReg)) {
561 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
562 << " is already used in instr.\n");
563 return spillImpossible;
565 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
566 case regDisabled:
567 break;
568 case regFree:
569 return 0;
570 case regReserved:
571 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
572 << printReg(PhysReg, TRI) << " is reserved already.\n");
573 return spillImpossible;
574 default: {
575 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
576 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
577 "Missing VirtReg entry");
578 return LRI->Dirty ? spillDirty : spillClean;
582 // This is a disabled register, add up cost of aliases.
583 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
584 unsigned Cost = 0;
585 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
586 MCPhysReg Alias = *AI;
587 switch (unsigned VirtReg = PhysRegState[Alias]) {
588 case regDisabled:
589 break;
590 case regFree:
591 ++Cost;
592 break;
593 case regReserved:
594 return spillImpossible;
595 default: {
596 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
597 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
598 "Missing VirtReg entry");
599 Cost += LRI->Dirty ? spillDirty : spillClean;
600 break;
604 return Cost;
607 /// This method updates local state so that we know that PhysReg is the
608 /// proper container for VirtReg now. The physical register must not be used
609 /// for anything else when this is called.
610 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
611 unsigned VirtReg = LR.VirtReg;
612 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
613 << printReg(PhysReg, TRI) << '\n');
614 assert(LR.PhysReg == 0 && "Already assigned a physreg");
615 assert(PhysReg != 0 && "Trying to assign no register");
616 LR.PhysReg = PhysReg;
617 setPhysRegState(PhysReg, VirtReg);
620 static bool isCoalescable(const MachineInstr &MI) {
621 return MI.isFullCopy();
624 unsigned RegAllocFast::traceCopyChain(unsigned Reg) const {
625 static const unsigned ChainLengthLimit = 3;
626 unsigned C = 0;
627 do {
628 if (Register::isPhysicalRegister(Reg))
629 return Reg;
630 assert(Register::isVirtualRegister(Reg));
632 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
633 if (!VRegDef || !isCoalescable(*VRegDef))
634 return 0;
635 Reg = VRegDef->getOperand(1).getReg();
636 } while (++C <= ChainLengthLimit);
637 return 0;
640 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
641 /// chain of copies to check whether we reach a physical register we can
642 /// coalesce with.
643 unsigned RegAllocFast::traceCopies(unsigned VirtReg) const {
644 static const unsigned DefLimit = 3;
645 unsigned C = 0;
646 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
647 if (isCoalescable(MI)) {
648 Register Reg = MI.getOperand(1).getReg();
649 Reg = traceCopyChain(Reg);
650 if (Reg != 0)
651 return Reg;
654 if (++C >= DefLimit)
655 break;
657 return 0;
660 /// Allocates a physical register for VirtReg.
661 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) {
662 const unsigned VirtReg = LR.VirtReg;
664 assert(Register::isVirtualRegister(VirtReg) &&
665 "Can only allocate virtual registers");
667 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
668 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
669 << " in class " << TRI->getRegClassName(&RC)
670 << " with hint " << printReg(Hint0, TRI) << '\n');
672 // Take hint when possible.
673 if (Register::isPhysicalRegister(Hint0) && MRI->isAllocatable(Hint0) &&
674 RC.contains(Hint0)) {
675 // Ignore the hint if we would have to spill a dirty register.
676 unsigned Cost = calcSpillCost(Hint0);
677 if (Cost < spillDirty) {
678 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
679 << '\n');
680 if (Cost)
681 definePhysReg(MI, Hint0, regFree);
682 assignVirtToPhysReg(LR, Hint0);
683 return;
684 } else {
685 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
686 << "occupied\n");
688 } else {
689 Hint0 = 0;
692 // Try other hint.
693 unsigned Hint1 = traceCopies(VirtReg);
694 if (Register::isPhysicalRegister(Hint1) && MRI->isAllocatable(Hint1) &&
695 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) {
696 // Ignore the hint if we would have to spill a dirty register.
697 unsigned Cost = calcSpillCost(Hint1);
698 if (Cost < spillDirty) {
699 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
700 << '\n');
701 if (Cost)
702 definePhysReg(MI, Hint1, regFree);
703 assignVirtToPhysReg(LR, Hint1);
704 return;
705 } else {
706 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
707 << "occupied\n");
709 } else {
710 Hint1 = 0;
713 MCPhysReg BestReg = 0;
714 unsigned BestCost = spillImpossible;
715 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
716 for (MCPhysReg PhysReg : AllocationOrder) {
717 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
718 unsigned Cost = calcSpillCost(PhysReg);
719 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
720 // Immediate take a register with cost 0.
721 if (Cost == 0) {
722 assignVirtToPhysReg(LR, PhysReg);
723 return;
726 if (PhysReg == Hint1 || PhysReg == Hint0)
727 Cost -= spillPrefBonus;
729 if (Cost < BestCost) {
730 BestReg = PhysReg;
731 BestCost = Cost;
735 if (!BestReg) {
736 // Nothing we can do: Report an error and keep going with an invalid
737 // allocation.
738 if (MI.isInlineAsm())
739 MI.emitError("inline assembly requires more registers than available");
740 else
741 MI.emitError("ran out of registers during register allocation");
742 definePhysReg(MI, *AllocationOrder.begin(), regFree);
743 assignVirtToPhysReg(LR, *AllocationOrder.begin());
744 return;
747 definePhysReg(MI, BestReg, regFree);
748 assignVirtToPhysReg(LR, BestReg);
751 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
752 assert(MO.isUndef() && "expected undef use");
753 Register VirtReg = MO.getReg();
754 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
756 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
757 MCPhysReg PhysReg;
758 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
759 PhysReg = LRI->PhysReg;
760 } else {
761 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
762 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
763 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
764 PhysReg = AllocationOrder[0];
767 unsigned SubRegIdx = MO.getSubReg();
768 if (SubRegIdx != 0) {
769 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
770 MO.setSubReg(0);
772 MO.setReg(PhysReg);
773 MO.setIsRenamable(true);
776 /// Allocates a register for VirtReg and mark it as dirty.
777 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
778 unsigned VirtReg, unsigned Hint) {
779 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
780 LiveRegMap::iterator LRI;
781 bool New;
782 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
783 if (!LRI->PhysReg) {
784 // If there is no hint, peek at the only use of this register.
785 if ((!Hint || !Register::isPhysicalRegister(Hint)) &&
786 MRI->hasOneNonDBGUse(VirtReg)) {
787 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
788 // It's a copy, use the destination register as a hint.
789 if (UseMI.isCopyLike())
790 Hint = UseMI.getOperand(0).getReg();
792 allocVirtReg(MI, *LRI, Hint);
793 } else if (LRI->LastUse) {
794 // Redefining a live register - kill at the last use, unless it is this
795 // instruction defining VirtReg multiple times.
796 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
797 addKillFlag(*LRI);
799 assert(LRI->PhysReg && "Register not assigned");
800 LRI->LastUse = &MI;
801 LRI->LastOpNum = OpNum;
802 LRI->Dirty = true;
803 markRegUsedInInstr(LRI->PhysReg);
804 return LRI->PhysReg;
807 /// Make sure VirtReg is available in a physreg and return it.
808 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
809 unsigned OpNum,
810 unsigned VirtReg,
811 unsigned Hint) {
812 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register");
813 LiveRegMap::iterator LRI;
814 bool New;
815 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
816 MachineOperand &MO = MI.getOperand(OpNum);
817 if (!LRI->PhysReg) {
818 allocVirtReg(MI, *LRI, Hint);
819 reload(MI, VirtReg, LRI->PhysReg);
820 } else if (LRI->Dirty) {
821 if (isLastUseOfLocalReg(MO)) {
822 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
823 if (MO.isUse())
824 MO.setIsKill();
825 else
826 MO.setIsDead();
827 } else if (MO.isKill()) {
828 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
829 MO.setIsKill(false);
830 } else if (MO.isDead()) {
831 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
832 MO.setIsDead(false);
834 } else if (MO.isKill()) {
835 // We must remove kill flags from uses of reloaded registers because the
836 // register would be killed immediately, and there might be a second use:
837 // %foo = OR killed %x, %x
838 // This would cause a second reload of %x into a different register.
839 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
840 MO.setIsKill(false);
841 } else if (MO.isDead()) {
842 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
843 MO.setIsDead(false);
845 assert(LRI->PhysReg && "Register not assigned");
846 LRI->LastUse = &MI;
847 LRI->LastOpNum = OpNum;
848 markRegUsedInInstr(LRI->PhysReg);
849 return *LRI;
852 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
853 /// may invalidate any operand pointers. Return true if the operand kills its
854 /// register.
855 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
856 MCPhysReg PhysReg) {
857 bool Dead = MO.isDead();
858 if (!MO.getSubReg()) {
859 MO.setReg(PhysReg);
860 MO.setIsRenamable(true);
861 return MO.isKill() || Dead;
864 // Handle subregister index.
865 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
866 MO.setIsRenamable(true);
867 MO.setSubReg(0);
869 // A kill flag implies killing the full register. Add corresponding super
870 // register kill.
871 if (MO.isKill()) {
872 MI.addRegisterKilled(PhysReg, TRI, true);
873 return true;
876 // A <def,read-undef> of a sub-register requires an implicit def of the full
877 // register.
878 if (MO.isDef() && MO.isUndef())
879 MI.addRegisterDefined(PhysReg, TRI);
881 return Dead;
884 // Handles special instruction operand like early clobbers and tied ops when
885 // there are additional physreg defines.
886 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
887 SmallVectorImpl<unsigned> &VirtDead) {
888 LLVM_DEBUG(dbgs() << "Scanning for through registers:");
889 SmallSet<unsigned, 8> ThroughRegs;
890 for (const MachineOperand &MO : MI.operands()) {
891 if (!MO.isReg()) continue;
892 Register Reg = MO.getReg();
893 if (!Register::isVirtualRegister(Reg))
894 continue;
895 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
896 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
897 if (ThroughRegs.insert(Reg).second)
898 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
902 // If any physreg defines collide with preallocated through registers,
903 // we must spill and reallocate.
904 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
905 for (const MachineOperand &MO : MI.operands()) {
906 if (!MO.isReg() || !MO.isDef()) continue;
907 Register Reg = MO.getReg();
908 if (!Reg || !Register::isPhysicalRegister(Reg))
909 continue;
910 markRegUsedInInstr(Reg);
911 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
912 if (ThroughRegs.count(PhysRegState[*AI]))
913 definePhysReg(MI, *AI, regFree);
917 SmallVector<unsigned, 8> PartialDefs;
918 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
919 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
920 MachineOperand &MO = MI.getOperand(I);
921 if (!MO.isReg()) continue;
922 Register Reg = MO.getReg();
923 if (!Register::isVirtualRegister(Reg))
924 continue;
925 if (MO.isUse()) {
926 if (!MO.isTied()) continue;
927 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
928 << ") is tied to operand " << MI.findTiedOperandIdx(I)
929 << ".\n");
930 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
931 MCPhysReg PhysReg = LR.PhysReg;
932 setPhysReg(MI, MO, PhysReg);
933 // Note: we don't update the def operand yet. That would cause the normal
934 // def-scan to attempt spilling.
935 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
936 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
937 // Reload the register, but don't assign to the operand just yet.
938 // That would confuse the later phys-def processing pass.
939 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
940 PartialDefs.push_back(LR.PhysReg);
944 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
945 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
946 const MachineOperand &MO = MI.getOperand(I);
947 if (!MO.isReg()) continue;
948 Register Reg = MO.getReg();
949 if (!Register::isVirtualRegister(Reg))
950 continue;
951 if (!MO.isEarlyClobber())
952 continue;
953 // Note: defineVirtReg may invalidate MO.
954 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
955 if (setPhysReg(MI, MI.getOperand(I), PhysReg))
956 VirtDead.push_back(Reg);
959 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
960 UsedInInstr.clear();
961 for (const MachineOperand &MO : MI.operands()) {
962 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
963 Register Reg = MO.getReg();
964 if (!Reg || !Register::isPhysicalRegister(Reg))
965 continue;
966 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
967 << " as used in instr\n");
968 markRegUsedInInstr(Reg);
971 // Also mark PartialDefs as used to avoid reallocation.
972 for (unsigned PartialDef : PartialDefs)
973 markRegUsedInInstr(PartialDef);
976 #ifndef NDEBUG
977 void RegAllocFast::dumpState() {
978 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
979 if (PhysRegState[Reg] == regDisabled) continue;
980 dbgs() << " " << printReg(Reg, TRI);
981 switch(PhysRegState[Reg]) {
982 case regFree:
983 break;
984 case regReserved:
985 dbgs() << "*";
986 break;
987 default: {
988 dbgs() << '=' << printReg(PhysRegState[Reg]);
989 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
990 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
991 "Missing VirtReg entry");
992 if (LRI->Dirty)
993 dbgs() << "*";
994 assert(LRI->PhysReg == Reg && "Bad inverse map");
995 break;
999 dbgs() << '\n';
1000 // Check that LiveVirtRegs is the inverse.
1001 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
1002 e = LiveVirtRegs.end(); i != e; ++i) {
1003 if (!i->PhysReg)
1004 continue;
1005 assert(Register::isVirtualRegister(i->VirtReg) && "Bad map key");
1006 assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value");
1007 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
1010 #endif
1012 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1013 const MCInstrDesc &MCID = MI.getDesc();
1015 // If this is a copy, we may be able to coalesce.
1016 unsigned CopySrcReg = 0;
1017 unsigned CopyDstReg = 0;
1018 unsigned CopySrcSub = 0;
1019 unsigned CopyDstSub = 0;
1020 if (MI.isCopy()) {
1021 CopyDstReg = MI.getOperand(0).getReg();
1022 CopySrcReg = MI.getOperand(1).getReg();
1023 CopyDstSub = MI.getOperand(0).getSubReg();
1024 CopySrcSub = MI.getOperand(1).getSubReg();
1027 // Track registers used by instruction.
1028 UsedInInstr.clear();
1030 // First scan.
1031 // Mark physreg uses and early clobbers as used.
1032 // Find the end of the virtreg operands
1033 unsigned VirtOpEnd = 0;
1034 bool hasTiedOps = false;
1035 bool hasEarlyClobbers = false;
1036 bool hasPartialRedefs = false;
1037 bool hasPhysDefs = false;
1038 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1039 MachineOperand &MO = MI.getOperand(i);
1040 // Make sure MRI knows about registers clobbered by regmasks.
1041 if (MO.isRegMask()) {
1042 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
1043 continue;
1045 if (!MO.isReg()) continue;
1046 Register Reg = MO.getReg();
1047 if (!Reg) continue;
1048 if (Register::isVirtualRegister(Reg)) {
1049 VirtOpEnd = i+1;
1050 if (MO.isUse()) {
1051 hasTiedOps = hasTiedOps ||
1052 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
1053 } else {
1054 if (MO.isEarlyClobber())
1055 hasEarlyClobbers = true;
1056 if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
1057 hasPartialRedefs = true;
1059 continue;
1061 if (!MRI->isAllocatable(Reg)) continue;
1062 if (MO.isUse()) {
1063 usePhysReg(MO);
1064 } else if (MO.isEarlyClobber()) {
1065 definePhysReg(MI, Reg,
1066 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
1067 hasEarlyClobbers = true;
1068 } else
1069 hasPhysDefs = true;
1072 // The instruction may have virtual register operands that must be allocated
1073 // the same register at use-time and def-time: early clobbers and tied
1074 // operands. If there are also physical defs, these registers must avoid
1075 // both physical defs and uses, making them more constrained than normal
1076 // operands.
1077 // Similarly, if there are multiple defs and tied operands, we must make
1078 // sure the same register is allocated to uses and defs.
1079 // We didn't detect inline asm tied operands above, so just make this extra
1080 // pass for all inline asm.
1081 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
1082 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
1083 handleThroughOperands(MI, VirtDead);
1084 // Don't attempt coalescing when we have funny stuff going on.
1085 CopyDstReg = 0;
1086 // Pretend we have early clobbers so the use operands get marked below.
1087 // This is not necessary for the common case of a single tied use.
1088 hasEarlyClobbers = true;
1091 // Second scan.
1092 // Allocate virtreg uses.
1093 bool HasUndefUse = false;
1094 for (unsigned I = 0; I != VirtOpEnd; ++I) {
1095 MachineOperand &MO = MI.getOperand(I);
1096 if (!MO.isReg()) continue;
1097 Register Reg = MO.getReg();
1098 if (!Register::isVirtualRegister(Reg))
1099 continue;
1100 if (MO.isUse()) {
1101 if (MO.isUndef()) {
1102 HasUndefUse = true;
1103 // There is no need to allocate a register for an undef use.
1104 continue;
1107 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1108 // the def block (removing the vreg uses).
1109 mayLiveIn(Reg);
1111 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
1112 MCPhysReg PhysReg = LR.PhysReg;
1113 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
1114 if (setPhysReg(MI, MO, PhysReg))
1115 killVirtReg(LR);
1119 // Allocate undef operands. This is a separate step because in a situation
1120 // like ` = OP undef %X, %X` both operands need the same register assign
1121 // so we should perform the normal assignment first.
1122 if (HasUndefUse) {
1123 for (MachineOperand &MO : MI.uses()) {
1124 if (!MO.isReg() || !MO.isUse())
1125 continue;
1126 Register Reg = MO.getReg();
1127 if (!Register::isVirtualRegister(Reg))
1128 continue;
1130 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1131 allocVirtRegUndef(MO);
1135 // Track registers defined by instruction - early clobbers and tied uses at
1136 // this point.
1137 UsedInInstr.clear();
1138 if (hasEarlyClobbers) {
1139 for (const MachineOperand &MO : MI.operands()) {
1140 if (!MO.isReg()) continue;
1141 Register Reg = MO.getReg();
1142 if (!Reg || !Register::isPhysicalRegister(Reg))
1143 continue;
1144 // Look for physreg defs and tied uses.
1145 if (!MO.isDef() && !MO.isTied()) continue;
1146 markRegUsedInInstr(Reg);
1150 unsigned DefOpEnd = MI.getNumOperands();
1151 if (MI.isCall()) {
1152 // Spill all virtregs before a call. This serves one purpose: If an
1153 // exception is thrown, the landing pad is going to expect to find
1154 // registers in their spill slots.
1155 // Note: although this is appealing to just consider all definitions
1156 // as call-clobbered, this is not correct because some of those
1157 // definitions may be used later on and we do not want to reuse
1158 // those for virtual registers in between.
1159 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1160 spillAll(MI, /*OnlyLiveOut*/ false);
1163 // Third scan.
1164 // Mark all physreg defs as used before allocating virtreg defs.
1165 for (unsigned I = 0; I != DefOpEnd; ++I) {
1166 const MachineOperand &MO = MI.getOperand(I);
1167 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1168 continue;
1169 Register Reg = MO.getReg();
1171 if (!Reg || !Register::isPhysicalRegister(Reg) || !MRI->isAllocatable(Reg))
1172 continue;
1173 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1176 // Fourth scan.
1177 // Allocate defs and collect dead defs.
1178 for (unsigned I = 0; I != DefOpEnd; ++I) {
1179 const MachineOperand &MO = MI.getOperand(I);
1180 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1181 continue;
1182 Register Reg = MO.getReg();
1184 // We have already dealt with phys regs in the previous scan.
1185 if (Register::isPhysicalRegister(Reg))
1186 continue;
1187 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
1188 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
1189 VirtDead.push_back(Reg);
1190 CopyDstReg = 0; // cancel coalescing;
1191 } else
1192 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1195 // Kill dead defs after the scan to ensure that multiple defs of the same
1196 // register are allocated identically. We didn't need to do this for uses
1197 // because we are crerating our own kill flags, and they are always at the
1198 // last use.
1199 for (unsigned VirtReg : VirtDead)
1200 killVirtReg(VirtReg);
1201 VirtDead.clear();
1203 LLVM_DEBUG(dbgs() << "<< " << MI);
1204 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1205 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1206 Coalesced.push_back(&MI);
1210 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1211 MachineOperand &MO = MI.getOperand(0);
1213 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1214 // mostly constants and frame indices.
1215 if (!MO.isReg())
1216 return;
1217 Register Reg = MO.getReg();
1218 if (!Register::isVirtualRegister(Reg))
1219 return;
1221 // See if this virtual register has already been allocated to a physical
1222 // register or spilled to a stack slot.
1223 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1224 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1225 setPhysReg(MI, MO, LRI->PhysReg);
1226 } else {
1227 int SS = StackSlotForVirtReg[Reg];
1228 if (SS != -1) {
1229 // Modify DBG_VALUE now that the value is in a spill slot.
1230 updateDbgValueForSpill(MI, SS);
1231 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
1232 return;
1235 // We can't allocate a physreg for a DebugValue, sorry!
1236 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1237 MO.setReg(0);
1240 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1241 // that future spills of Reg will have DBG_VALUEs.
1242 LiveDbgValueMap[Reg].push_back(&MI);
1245 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1246 this->MBB = &MBB;
1247 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1249 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
1250 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1252 MachineBasicBlock::iterator MII = MBB.begin();
1254 // Add live-in registers as live.
1255 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
1256 if (MRI->isAllocatable(LI.PhysReg))
1257 definePhysReg(MII, LI.PhysReg, regReserved);
1259 VirtDead.clear();
1260 Coalesced.clear();
1262 // Otherwise, sequentially allocate each instruction in the MBB.
1263 for (MachineInstr &MI : MBB) {
1264 LLVM_DEBUG(
1265 dbgs() << "\n>> " << MI << "Regs:";
1266 dumpState()
1269 // Special handling for debug values. Note that they are not allowed to
1270 // affect codegen of the other instructions in any way.
1271 if (MI.isDebugValue()) {
1272 handleDebugValue(MI);
1273 continue;
1276 allocateInstruction(MI);
1279 // Spill all physical registers holding virtual registers now.
1280 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1281 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);
1283 // Erase all the coalesced copies. We are delaying it until now because
1284 // LiveVirtRegs might refer to the instrs.
1285 for (MachineInstr *MI : Coalesced)
1286 MBB.erase(MI);
1287 NumCoalesced += Coalesced.size();
1289 LLVM_DEBUG(MBB.dump());
1292 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1293 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1294 << "********** Function: " << MF.getName() << '\n');
1295 MRI = &MF.getRegInfo();
1296 const TargetSubtargetInfo &STI = MF.getSubtarget();
1297 TRI = STI.getRegisterInfo();
1298 TII = STI.getInstrInfo();
1299 MFI = &MF.getFrameInfo();
1300 MRI->freezeReservedRegs(MF);
1301 RegClassInfo.runOnMachineFunction(MF);
1302 UsedInInstr.clear();
1303 UsedInInstr.setUniverse(TRI->getNumRegUnits());
1305 // initialize the virtual->physical register map to have a 'null'
1306 // mapping for all virtual registers
1307 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1308 StackSlotForVirtReg.resize(NumVirtRegs);
1309 LiveVirtRegs.setUniverse(NumVirtRegs);
1310 MayLiveAcrossBlocks.clear();
1311 MayLiveAcrossBlocks.resize(NumVirtRegs);
1313 // Loop over all of the basic blocks, eliminating virtual register references
1314 for (MachineBasicBlock &MBB : MF)
1315 allocateBasicBlock(MBB);
1317 // All machine operands and other references to virtual registers have been
1318 // replaced. Remove the virtual registers.
1319 MRI->clearVirtRegs();
1321 StackSlotForVirtReg.clear();
1322 LiveDbgValueMap.clear();
1323 return true;
1326 FunctionPass *llvm::createFastRegisterAllocator() {
1327 return new RegAllocFast();