1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the DAGTypeLegalizer class. This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
26 //===----------------------------------------------------------------------===//
27 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
28 /// value types the target machine can handle are left. This involves promoting
29 /// small sizes to large sizes or splitting up large values into small values.
31 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer
{
32 const TargetLowering
&TLI
;
35 /// This pass uses the NodeId on the SDNodes to hold information about the
36 /// state of the node. The enum has all the values.
38 /// All operands have been processed, so this node is ready to be handled.
41 /// This is a new node, not before seen, that was created in the process of
42 /// legalizing some other node.
45 /// This node's ID needs to be set to the number of its unprocessed
49 /// This is a node that has already been processed.
52 // 1+ - This is a node which has this many unprocessed operands.
56 /// This is a bitvector that contains two bits for each simple value type,
57 /// where the two bits correspond to the LegalizeAction enum from
58 /// TargetLowering. This can be queried with "getTypeAction(VT)".
59 TargetLowering::ValueTypeActionImpl ValueTypeActions
;
61 /// Return how we should legalize values of this type.
62 TargetLowering::LegalizeTypeAction
getTypeAction(EVT VT
) const {
63 return TLI
.getTypeAction(*DAG
.getContext(), VT
);
66 /// Return true if this type is legal on this target.
67 bool isTypeLegal(EVT VT
) const {
68 return TLI
.getTypeAction(*DAG
.getContext(), VT
) == TargetLowering::TypeLegal
;
71 /// Return true if this is a simple legal type.
72 bool isSimpleLegalType(EVT VT
) const {
73 return VT
.isSimple() && TLI
.isTypeLegal(VT
);
76 /// Return true if this type can be passed in registers.
77 /// For example, x86_64's f128, should to be legally in registers
78 /// and only some operations converted to library calls or integer
79 /// bitwise operations.
80 bool isLegalInHWReg(EVT VT
) const {
81 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
82 return VT
== NVT
&& isSimpleLegalType(VT
);
85 EVT
getSetCCResultType(EVT VT
) const {
86 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
89 /// Pretend all of this node's results are legal.
90 bool IgnoreNodeResults(SDNode
*N
) const {
91 return N
->getOpcode() == ISD::TargetConstant
||
92 N
->getOpcode() == ISD::Register
;
95 // Bijection from SDValue to unique id. As each created node gets a
96 // new id we do not need to worry about reuse expunging. Should we
97 // run out of ids, we can do a one time expensive compactifcation.
98 typedef unsigned TableId
;
100 TableId NextValueId
= 1;
102 SmallDenseMap
<SDValue
, TableId
, 8> ValueToIdMap
;
103 SmallDenseMap
<TableId
, SDValue
, 8> IdToValueMap
;
105 /// For integer nodes that are below legal width, this map indicates what
106 /// promoted value to use.
107 SmallDenseMap
<TableId
, TableId
, 8> PromotedIntegers
;
109 /// For integer nodes that need to be expanded this map indicates which
110 /// operands are the expanded version of the input.
111 SmallDenseMap
<TableId
, std::pair
<TableId
, TableId
>, 8> ExpandedIntegers
;
113 /// For floating-point nodes converted to integers of the same size, this map
114 /// indicates the converted value to use.
115 SmallDenseMap
<TableId
, TableId
, 8> SoftenedFloats
;
117 /// For floating-point nodes that have a smaller precision than the smallest
118 /// supported precision, this map indicates what promoted value to use.
119 SmallDenseMap
<TableId
, TableId
, 8> PromotedFloats
;
121 /// For float nodes that need to be expanded this map indicates which operands
122 /// are the expanded version of the input.
123 SmallDenseMap
<TableId
, std::pair
<TableId
, TableId
>, 8> ExpandedFloats
;
125 /// For nodes that are <1 x ty>, this map indicates the scalar value of type
127 SmallDenseMap
<TableId
, TableId
, 8> ScalarizedVectors
;
129 /// For nodes that need to be split this map indicates which operands are the
130 /// expanded version of the input.
131 SmallDenseMap
<TableId
, std::pair
<TableId
, TableId
>, 8> SplitVectors
;
133 /// For vector nodes that need to be widened, indicates the widened value to
135 SmallDenseMap
<TableId
, TableId
, 8> WidenedVectors
;
137 /// For values that have been replaced with another, indicates the replacement
139 SmallDenseMap
<TableId
, TableId
, 8> ReplacedValues
;
141 /// This defines a worklist of nodes to process. In order to be pushed onto
142 /// this worklist, all operands of a node must have already been processed.
143 SmallVector
<SDNode
*, 128> Worklist
;
145 TableId
getTableId(SDValue V
) {
146 assert(V
.getNode() && "Getting TableId on SDValue()");
148 auto I
= ValueToIdMap
.find(V
);
149 if (I
!= ValueToIdMap
.end()) {
150 // replace if there's been a shift.
152 assert(I
->second
&& "All Ids should be nonzero");
155 // Add if it's not there.
156 ValueToIdMap
.insert(std::make_pair(V
, NextValueId
));
157 IdToValueMap
.insert(std::make_pair(NextValueId
, V
));
159 assert(NextValueId
!= 0 &&
160 "Ran out of Ids. Increase id type size or add compactification");
161 return NextValueId
- 1;
164 const SDValue
&getSDValue(TableId
&Id
) {
166 assert(Id
&& "TableId should be non-zero");
167 return IdToValueMap
[Id
];
171 explicit DAGTypeLegalizer(SelectionDAG
&dag
)
172 : TLI(dag
.getTargetLoweringInfo()), DAG(dag
),
173 ValueTypeActions(TLI
.getValueTypeActions()) {
174 static_assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
,
175 "Too many value types for ValueTypeActions to hold!");
178 /// This is the main entry point for the type legalizer. This does a
179 /// top-down traversal of the dag, legalizing types as it goes. Returns
180 /// "true" if it made any changes.
183 void NoteDeletion(SDNode
*Old
, SDNode
*New
) {
184 for (unsigned i
= 0, e
= Old
->getNumValues(); i
!= e
; ++i
) {
185 TableId NewId
= getTableId(SDValue(New
, i
));
186 TableId OldId
= getTableId(SDValue(Old
, i
));
189 ReplacedValues
[OldId
] = NewId
;
191 // Delete Node from tables.
192 ValueToIdMap
.erase(SDValue(Old
, i
));
193 IdToValueMap
.erase(OldId
);
194 PromotedIntegers
.erase(OldId
);
195 ExpandedIntegers
.erase(OldId
);
196 SoftenedFloats
.erase(OldId
);
197 PromotedFloats
.erase(OldId
);
198 ExpandedFloats
.erase(OldId
);
199 ScalarizedVectors
.erase(OldId
);
200 SplitVectors
.erase(OldId
);
201 WidenedVectors
.erase(OldId
);
205 SelectionDAG
&getDAG() const { return DAG
; }
208 SDNode
*AnalyzeNewNode(SDNode
*N
);
209 void AnalyzeNewValue(SDValue
&Val
);
210 void PerformExpensiveChecks();
211 void RemapId(TableId
&Id
);
212 void RemapValue(SDValue
&V
);
215 SDValue
BitConvertToInteger(SDValue Op
);
216 SDValue
BitConvertVectorToIntegerVector(SDValue Op
);
217 SDValue
CreateStackStoreLoad(SDValue Op
, EVT DestVT
);
218 bool CustomLowerNode(SDNode
*N
, EVT VT
, bool LegalizeResult
);
219 bool CustomWidenLowerNode(SDNode
*N
, EVT VT
);
221 /// Replace each result of the given MERGE_VALUES node with the corresponding
222 /// input operand, except for the result 'ResNo', for which the corresponding
223 /// input operand is returned.
224 SDValue
DisintegrateMERGE_VALUES(SDNode
*N
, unsigned ResNo
);
226 SDValue
JoinIntegers(SDValue Lo
, SDValue Hi
);
227 SDValue
LibCallify(RTLIB::Libcall LC
, SDNode
*N
, bool isSigned
);
229 std::pair
<SDValue
, SDValue
> ExpandChainLibCall(RTLIB::Libcall LC
,
230 SDNode
*Node
, bool isSigned
);
231 std::pair
<SDValue
, SDValue
> ExpandAtomic(SDNode
*Node
);
233 SDValue
PromoteTargetBoolean(SDValue Bool
, EVT ValVT
);
235 void ReplaceValueWith(SDValue From
, SDValue To
);
236 void SplitInteger(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
237 void SplitInteger(SDValue Op
, EVT LoVT
, EVT HiVT
,
238 SDValue
&Lo
, SDValue
&Hi
);
240 void AddToWorklist(SDNode
*N
) {
241 N
->setNodeId(ReadyToProcess
);
242 Worklist
.push_back(N
);
245 //===--------------------------------------------------------------------===//
246 // Integer Promotion Support: LegalizeIntegerTypes.cpp
247 //===--------------------------------------------------------------------===//
249 /// Given a processed operand Op which was promoted to a larger integer type,
250 /// this returns the promoted value. The low bits of the promoted value
251 /// corresponding to the original type are exactly equal to Op.
252 /// The extra bits contain rubbish, so the promoted value may need to be zero-
253 /// or sign-extended from the original type before it is usable (the helpers
254 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
255 /// For example, if Op is an i16 and was promoted to an i32, then this method
256 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
257 /// 16 bits of which contain rubbish.
258 SDValue
GetPromotedInteger(SDValue Op
) {
259 TableId
&PromotedId
= PromotedIntegers
[getTableId(Op
)];
260 SDValue PromotedOp
= getSDValue(PromotedId
);
261 assert(PromotedOp
.getNode() && "Operand wasn't promoted?");
264 void SetPromotedInteger(SDValue Op
, SDValue Result
);
266 /// Get a promoted operand and sign extend it to the final size.
267 SDValue
SExtPromotedInteger(SDValue Op
) {
268 EVT OldVT
= Op
.getValueType();
270 Op
= GetPromotedInteger(Op
);
271 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Op
.getValueType(), Op
,
272 DAG
.getValueType(OldVT
));
275 /// Get a promoted operand and zero extend it to the final size.
276 SDValue
ZExtPromotedInteger(SDValue Op
) {
277 EVT OldVT
= Op
.getValueType();
279 Op
= GetPromotedInteger(Op
);
280 return DAG
.getZeroExtendInReg(Op
, dl
, OldVT
.getScalarType());
283 // Get a promoted operand and sign or zero extend it to the final size
284 // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
285 // subtarget and type, the choice of sign or zero-extension will be
287 SDValue
SExtOrZExtPromotedInteger(SDValue Op
) {
288 EVT OldVT
= Op
.getValueType();
290 Op
= GetPromotedInteger(Op
);
291 if (TLI
.isSExtCheaperThanZExt(OldVT
, Op
.getValueType()))
292 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, Op
.getValueType(), Op
,
293 DAG
.getValueType(OldVT
));
294 return DAG
.getZeroExtendInReg(Op
, DL
, OldVT
.getScalarType());
297 // Integer Result Promotion.
298 void PromoteIntegerResult(SDNode
*N
, unsigned ResNo
);
299 SDValue
PromoteIntRes_MERGE_VALUES(SDNode
*N
, unsigned ResNo
);
300 SDValue
PromoteIntRes_AssertSext(SDNode
*N
);
301 SDValue
PromoteIntRes_AssertZext(SDNode
*N
);
302 SDValue
PromoteIntRes_Atomic0(AtomicSDNode
*N
);
303 SDValue
PromoteIntRes_Atomic1(AtomicSDNode
*N
);
304 SDValue
PromoteIntRes_AtomicCmpSwap(AtomicSDNode
*N
, unsigned ResNo
);
305 SDValue
PromoteIntRes_EXTRACT_SUBVECTOR(SDNode
*N
);
306 SDValue
PromoteIntRes_VECTOR_SHUFFLE(SDNode
*N
);
307 SDValue
PromoteIntRes_BUILD_VECTOR(SDNode
*N
);
308 SDValue
PromoteIntRes_SCALAR_TO_VECTOR(SDNode
*N
);
309 SDValue
PromoteIntRes_EXTEND_VECTOR_INREG(SDNode
*N
);
310 SDValue
PromoteIntRes_INSERT_VECTOR_ELT(SDNode
*N
);
311 SDValue
PromoteIntRes_CONCAT_VECTORS(SDNode
*N
);
312 SDValue
PromoteIntRes_BITCAST(SDNode
*N
);
313 SDValue
PromoteIntRes_BSWAP(SDNode
*N
);
314 SDValue
PromoteIntRes_BITREVERSE(SDNode
*N
);
315 SDValue
PromoteIntRes_BUILD_PAIR(SDNode
*N
);
316 SDValue
PromoteIntRes_Constant(SDNode
*N
);
317 SDValue
PromoteIntRes_CTLZ(SDNode
*N
);
318 SDValue
PromoteIntRes_CTPOP(SDNode
*N
);
319 SDValue
PromoteIntRes_CTTZ(SDNode
*N
);
320 SDValue
PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode
*N
);
321 SDValue
PromoteIntRes_FP_TO_XINT(SDNode
*N
);
322 SDValue
PromoteIntRes_FP_TO_FP16(SDNode
*N
);
323 SDValue
PromoteIntRes_INT_EXTEND(SDNode
*N
);
324 SDValue
PromoteIntRes_LOAD(LoadSDNode
*N
);
325 SDValue
PromoteIntRes_MLOAD(MaskedLoadSDNode
*N
);
326 SDValue
PromoteIntRes_MGATHER(MaskedGatherSDNode
*N
);
327 SDValue
PromoteIntRes_Overflow(SDNode
*N
);
328 SDValue
PromoteIntRes_SADDSUBO(SDNode
*N
, unsigned ResNo
);
329 SDValue
PromoteIntRes_SELECT(SDNode
*N
);
330 SDValue
PromoteIntRes_VSELECT(SDNode
*N
);
331 SDValue
PromoteIntRes_SELECT_CC(SDNode
*N
);
332 SDValue
PromoteIntRes_SETCC(SDNode
*N
);
333 SDValue
PromoteIntRes_SHL(SDNode
*N
);
334 SDValue
PromoteIntRes_SimpleIntBinOp(SDNode
*N
);
335 SDValue
PromoteIntRes_ZExtIntBinOp(SDNode
*N
);
336 SDValue
PromoteIntRes_SExtIntBinOp(SDNode
*N
);
337 SDValue
PromoteIntRes_SIGN_EXTEND_INREG(SDNode
*N
);
338 SDValue
PromoteIntRes_SRA(SDNode
*N
);
339 SDValue
PromoteIntRes_SRL(SDNode
*N
);
340 SDValue
PromoteIntRes_TRUNCATE(SDNode
*N
);
341 SDValue
PromoteIntRes_UADDSUBO(SDNode
*N
, unsigned ResNo
);
342 SDValue
PromoteIntRes_ADDSUBCARRY(SDNode
*N
, unsigned ResNo
);
343 SDValue
PromoteIntRes_UNDEF(SDNode
*N
);
344 SDValue
PromoteIntRes_VAARG(SDNode
*N
);
345 SDValue
PromoteIntRes_XMULO(SDNode
*N
, unsigned ResNo
);
346 SDValue
PromoteIntRes_ADDSUBSAT(SDNode
*N
);
347 SDValue
PromoteIntRes_MULFIX(SDNode
*N
);
348 SDValue
PromoteIntRes_FLT_ROUNDS(SDNode
*N
);
349 SDValue
PromoteIntRes_VECREDUCE(SDNode
*N
);
350 SDValue
PromoteIntRes_ABS(SDNode
*N
);
352 // Integer Operand Promotion.
353 bool PromoteIntegerOperand(SDNode
*N
, unsigned OpNo
);
354 SDValue
PromoteIntOp_ANY_EXTEND(SDNode
*N
);
355 SDValue
PromoteIntOp_ATOMIC_STORE(AtomicSDNode
*N
);
356 SDValue
PromoteIntOp_BITCAST(SDNode
*N
);
357 SDValue
PromoteIntOp_BUILD_PAIR(SDNode
*N
);
358 SDValue
PromoteIntOp_BR_CC(SDNode
*N
, unsigned OpNo
);
359 SDValue
PromoteIntOp_BRCOND(SDNode
*N
, unsigned OpNo
);
360 SDValue
PromoteIntOp_BUILD_VECTOR(SDNode
*N
);
361 SDValue
PromoteIntOp_INSERT_VECTOR_ELT(SDNode
*N
, unsigned OpNo
);
362 SDValue
PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
363 SDValue
PromoteIntOp_EXTRACT_SUBVECTOR(SDNode
*N
);
364 SDValue
PromoteIntOp_CONCAT_VECTORS(SDNode
*N
);
365 SDValue
PromoteIntOp_SCALAR_TO_VECTOR(SDNode
*N
);
366 SDValue
PromoteIntOp_SELECT(SDNode
*N
, unsigned OpNo
);
367 SDValue
PromoteIntOp_SELECT_CC(SDNode
*N
, unsigned OpNo
);
368 SDValue
PromoteIntOp_SETCC(SDNode
*N
, unsigned OpNo
);
369 SDValue
PromoteIntOp_Shift(SDNode
*N
);
370 SDValue
PromoteIntOp_SIGN_EXTEND(SDNode
*N
);
371 SDValue
PromoteIntOp_SINT_TO_FP(SDNode
*N
);
372 SDValue
PromoteIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
373 SDValue
PromoteIntOp_TRUNCATE(SDNode
*N
);
374 SDValue
PromoteIntOp_UINT_TO_FP(SDNode
*N
);
375 SDValue
PromoteIntOp_ZERO_EXTEND(SDNode
*N
);
376 SDValue
PromoteIntOp_MSTORE(MaskedStoreSDNode
*N
, unsigned OpNo
);
377 SDValue
PromoteIntOp_MLOAD(MaskedLoadSDNode
*N
, unsigned OpNo
);
378 SDValue
PromoteIntOp_MSCATTER(MaskedScatterSDNode
*N
, unsigned OpNo
);
379 SDValue
PromoteIntOp_MGATHER(MaskedGatherSDNode
*N
, unsigned OpNo
);
380 SDValue
PromoteIntOp_ADDSUBCARRY(SDNode
*N
, unsigned OpNo
);
381 SDValue
PromoteIntOp_FRAMERETURNADDR(SDNode
*N
);
382 SDValue
PromoteIntOp_PREFETCH(SDNode
*N
, unsigned OpNo
);
383 SDValue
PromoteIntOp_MULFIX(SDNode
*N
);
384 SDValue
PromoteIntOp_FPOWI(SDNode
*N
);
385 SDValue
PromoteIntOp_VECREDUCE(SDNode
*N
);
387 void PromoteSetCCOperands(SDValue
&LHS
,SDValue
&RHS
, ISD::CondCode Code
);
389 //===--------------------------------------------------------------------===//
390 // Integer Expansion Support: LegalizeIntegerTypes.cpp
391 //===--------------------------------------------------------------------===//
393 /// Given a processed operand Op which was expanded into two integers of half
394 /// the size, this returns the two halves. The low bits of Op are exactly
395 /// equal to the bits of Lo; the high bits exactly equal Hi.
396 /// For example, if Op is an i64 which was expanded into two i32's, then this
397 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
398 /// Op, and Hi being equal to the upper 32 bits.
399 void GetExpandedInteger(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
400 void SetExpandedInteger(SDValue Op
, SDValue Lo
, SDValue Hi
);
402 // Integer Result Expansion.
403 void ExpandIntegerResult(SDNode
*N
, unsigned ResNo
);
404 void ExpandIntRes_ANY_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
405 void ExpandIntRes_AssertSext (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
406 void ExpandIntRes_AssertZext (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
407 void ExpandIntRes_Constant (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
408 void ExpandIntRes_ABS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
409 void ExpandIntRes_CTLZ (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
410 void ExpandIntRes_CTPOP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
411 void ExpandIntRes_CTTZ (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
412 void ExpandIntRes_LOAD (LoadSDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
413 void ExpandIntRes_READCYCLECOUNTER (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
414 void ExpandIntRes_SIGN_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
415 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
416 void ExpandIntRes_TRUNCATE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
417 void ExpandIntRes_ZERO_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
418 void ExpandIntRes_FLT_ROUNDS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
419 void ExpandIntRes_FP_TO_SINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
420 void ExpandIntRes_FP_TO_UINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
421 void ExpandIntRes_LLROUND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
422 void ExpandIntRes_LLRINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
424 void ExpandIntRes_Logical (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
425 void ExpandIntRes_ADDSUB (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
426 void ExpandIntRes_ADDSUBC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
427 void ExpandIntRes_ADDSUBE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
428 void ExpandIntRes_ADDSUBCARRY (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
429 void ExpandIntRes_BITREVERSE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
430 void ExpandIntRes_BSWAP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
431 void ExpandIntRes_MUL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
432 void ExpandIntRes_SDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
433 void ExpandIntRes_SREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
434 void ExpandIntRes_UDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
435 void ExpandIntRes_UREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
436 void ExpandIntRes_Shift (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
438 void ExpandIntRes_MINMAX (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
440 void ExpandIntRes_SADDSUBO (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
441 void ExpandIntRes_UADDSUBO (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
442 void ExpandIntRes_XMULO (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
443 void ExpandIntRes_ADDSUBSAT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
444 void ExpandIntRes_MULFIX (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
446 void ExpandIntRes_ATOMIC_LOAD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
447 void ExpandIntRes_VECREDUCE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
449 void ExpandShiftByConstant(SDNode
*N
, const APInt
&Amt
,
450 SDValue
&Lo
, SDValue
&Hi
);
451 bool ExpandShiftWithKnownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
452 bool ExpandShiftWithUnknownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
454 // Integer Operand Expansion.
455 bool ExpandIntegerOperand(SDNode
*N
, unsigned OpNo
);
456 SDValue
ExpandIntOp_BR_CC(SDNode
*N
);
457 SDValue
ExpandIntOp_SELECT_CC(SDNode
*N
);
458 SDValue
ExpandIntOp_SETCC(SDNode
*N
);
459 SDValue
ExpandIntOp_SETCCCARRY(SDNode
*N
);
460 SDValue
ExpandIntOp_Shift(SDNode
*N
);
461 SDValue
ExpandIntOp_SINT_TO_FP(SDNode
*N
);
462 SDValue
ExpandIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
463 SDValue
ExpandIntOp_TRUNCATE(SDNode
*N
);
464 SDValue
ExpandIntOp_UINT_TO_FP(SDNode
*N
);
465 SDValue
ExpandIntOp_RETURNADDR(SDNode
*N
);
466 SDValue
ExpandIntOp_ATOMIC_STORE(SDNode
*N
);
468 void IntegerExpandSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
469 ISD::CondCode
&CCCode
, const SDLoc
&dl
);
471 //===--------------------------------------------------------------------===//
472 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
473 //===--------------------------------------------------------------------===//
475 /// Given an operand Op of Float type, returns the integer if the Op is not
476 /// supported in target HW and converted to the integer.
477 /// The integer contains exactly the same bits as Op - only the type changed.
478 /// For example, if Op is an f32 which was softened to an i32, then this
479 /// method returns an i32, the bits of which coincide with those of Op.
480 /// If the Op can be efficiently supported in target HW or the operand must
481 /// stay in a register, the Op is not converted to an integer.
482 /// In that case, the given op is returned.
483 SDValue
GetSoftenedFloat(SDValue Op
) {
484 TableId Id
= getTableId(Op
);
485 auto Iter
= SoftenedFloats
.find(Id
);
486 if (Iter
== SoftenedFloats
.end()) {
487 assert(isSimpleLegalType(Op
.getValueType()) &&
488 "Operand wasn't converted to integer?");
491 SDValue SoftenedOp
= getSDValue(Iter
->second
);
492 assert(SoftenedOp
.getNode() && "Unconverted op in SoftenedFloats?");
495 void SetSoftenedFloat(SDValue Op
, SDValue Result
);
497 // Convert Float Results to Integer for Non-HW-supported Operations.
498 bool SoftenFloatResult(SDNode
*N
, unsigned ResNo
);
499 SDValue
SoftenFloatRes_MERGE_VALUES(SDNode
*N
, unsigned ResNo
);
500 SDValue
SoftenFloatRes_BITCAST(SDNode
*N
, unsigned ResNo
);
501 SDValue
SoftenFloatRes_BUILD_PAIR(SDNode
*N
);
502 SDValue
SoftenFloatRes_ConstantFP(SDNode
*N
, unsigned ResNo
);
503 SDValue
SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode
*N
, unsigned ResNo
);
504 SDValue
SoftenFloatRes_FABS(SDNode
*N
, unsigned ResNo
);
505 SDValue
SoftenFloatRes_FMINNUM(SDNode
*N
);
506 SDValue
SoftenFloatRes_FMAXNUM(SDNode
*N
);
507 SDValue
SoftenFloatRes_FADD(SDNode
*N
);
508 SDValue
SoftenFloatRes_FCEIL(SDNode
*N
);
509 SDValue
SoftenFloatRes_FCOPYSIGN(SDNode
*N
, unsigned ResNo
);
510 SDValue
SoftenFloatRes_FCOS(SDNode
*N
);
511 SDValue
SoftenFloatRes_FDIV(SDNode
*N
);
512 SDValue
SoftenFloatRes_FEXP(SDNode
*N
);
513 SDValue
SoftenFloatRes_FEXP2(SDNode
*N
);
514 SDValue
SoftenFloatRes_FFLOOR(SDNode
*N
);
515 SDValue
SoftenFloatRes_FLOG(SDNode
*N
);
516 SDValue
SoftenFloatRes_FLOG2(SDNode
*N
);
517 SDValue
SoftenFloatRes_FLOG10(SDNode
*N
);
518 SDValue
SoftenFloatRes_FMA(SDNode
*N
);
519 SDValue
SoftenFloatRes_FMUL(SDNode
*N
);
520 SDValue
SoftenFloatRes_FNEARBYINT(SDNode
*N
);
521 SDValue
SoftenFloatRes_FNEG(SDNode
*N
, unsigned ResNo
);
522 SDValue
SoftenFloatRes_FP_EXTEND(SDNode
*N
);
523 SDValue
SoftenFloatRes_FP16_TO_FP(SDNode
*N
);
524 SDValue
SoftenFloatRes_FP_ROUND(SDNode
*N
);
525 SDValue
SoftenFloatRes_FPOW(SDNode
*N
);
526 SDValue
SoftenFloatRes_FPOWI(SDNode
*N
);
527 SDValue
SoftenFloatRes_FREM(SDNode
*N
);
528 SDValue
SoftenFloatRes_FRINT(SDNode
*N
);
529 SDValue
SoftenFloatRes_FROUND(SDNode
*N
);
530 SDValue
SoftenFloatRes_FSIN(SDNode
*N
);
531 SDValue
SoftenFloatRes_FSQRT(SDNode
*N
);
532 SDValue
SoftenFloatRes_FSUB(SDNode
*N
);
533 SDValue
SoftenFloatRes_FTRUNC(SDNode
*N
);
534 SDValue
SoftenFloatRes_LOAD(SDNode
*N
, unsigned ResNo
);
535 SDValue
SoftenFloatRes_SELECT(SDNode
*N
, unsigned ResNo
);
536 SDValue
SoftenFloatRes_SELECT_CC(SDNode
*N
, unsigned ResNo
);
537 SDValue
SoftenFloatRes_UNDEF(SDNode
*N
);
538 SDValue
SoftenFloatRes_VAARG(SDNode
*N
);
539 SDValue
SoftenFloatRes_XINT_TO_FP(SDNode
*N
);
541 // Return true if we can skip softening the given operand or SDNode because
542 // either it was soften before by SoftenFloatResult and references to the
543 // operand were replaced by ReplaceValueWith or it's value type is legal in HW
544 // registers and the operand can be left unchanged.
545 bool CanSkipSoftenFloatOperand(SDNode
*N
, unsigned OpNo
);
547 // Convert Float Operand to Integer for Non-HW-supported Operations.
548 bool SoftenFloatOperand(SDNode
*N
, unsigned OpNo
);
549 SDValue
SoftenFloatOp_BITCAST(SDNode
*N
);
550 SDValue
SoftenFloatOp_COPY_TO_REG(SDNode
*N
);
551 SDValue
SoftenFloatOp_BR_CC(SDNode
*N
);
552 SDValue
SoftenFloatOp_FABS(SDNode
*N
);
553 SDValue
SoftenFloatOp_FCOPYSIGN(SDNode
*N
);
554 SDValue
SoftenFloatOp_FNEG(SDNode
*N
);
555 SDValue
SoftenFloatOp_FP_EXTEND(SDNode
*N
);
556 SDValue
SoftenFloatOp_FP_ROUND(SDNode
*N
);
557 SDValue
SoftenFloatOp_FP_TO_XINT(SDNode
*N
);
558 SDValue
SoftenFloatOp_LROUND(SDNode
*N
);
559 SDValue
SoftenFloatOp_LLROUND(SDNode
*N
);
560 SDValue
SoftenFloatOp_LRINT(SDNode
*N
);
561 SDValue
SoftenFloatOp_LLRINT(SDNode
*N
);
562 SDValue
SoftenFloatOp_SELECT(SDNode
*N
);
563 SDValue
SoftenFloatOp_SELECT_CC(SDNode
*N
);
564 SDValue
SoftenFloatOp_SETCC(SDNode
*N
);
565 SDValue
SoftenFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
567 //===--------------------------------------------------------------------===//
568 // Float Expansion Support: LegalizeFloatTypes.cpp
569 //===--------------------------------------------------------------------===//
571 /// Given a processed operand Op which was expanded into two floating-point
572 /// values of half the size, this returns the two halves.
573 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
574 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
575 /// into two f64's, then this method returns the two f64's, with Lo being
576 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
577 void GetExpandedFloat(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
578 void SetExpandedFloat(SDValue Op
, SDValue Lo
, SDValue Hi
);
580 // Float Result Expansion.
581 void ExpandFloatResult(SDNode
*N
, unsigned ResNo
);
582 void ExpandFloatRes_ConstantFP(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
583 void ExpandFloatRes_FABS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
584 void ExpandFloatRes_FMINNUM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
585 void ExpandFloatRes_FMAXNUM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
586 void ExpandFloatRes_FADD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
587 void ExpandFloatRes_FCEIL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
588 void ExpandFloatRes_FCOPYSIGN (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
589 void ExpandFloatRes_FCOS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
590 void ExpandFloatRes_FDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
591 void ExpandFloatRes_FEXP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
592 void ExpandFloatRes_FEXP2 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
593 void ExpandFloatRes_FFLOOR (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
594 void ExpandFloatRes_FLOG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
595 void ExpandFloatRes_FLOG2 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
596 void ExpandFloatRes_FLOG10 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
597 void ExpandFloatRes_FMA (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
598 void ExpandFloatRes_FMUL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
599 void ExpandFloatRes_FNEARBYINT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
600 void ExpandFloatRes_FNEG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
601 void ExpandFloatRes_FP_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
602 void ExpandFloatRes_FPOW (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
603 void ExpandFloatRes_FPOWI (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
604 void ExpandFloatRes_FREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
605 void ExpandFloatRes_FRINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
606 void ExpandFloatRes_FROUND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
607 void ExpandFloatRes_FSIN (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
608 void ExpandFloatRes_FSQRT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
609 void ExpandFloatRes_FSUB (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
610 void ExpandFloatRes_FTRUNC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
611 void ExpandFloatRes_LOAD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
612 void ExpandFloatRes_XINT_TO_FP(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
614 // Float Operand Expansion.
615 bool ExpandFloatOperand(SDNode
*N
, unsigned OpNo
);
616 SDValue
ExpandFloatOp_BR_CC(SDNode
*N
);
617 SDValue
ExpandFloatOp_FCOPYSIGN(SDNode
*N
);
618 SDValue
ExpandFloatOp_FP_ROUND(SDNode
*N
);
619 SDValue
ExpandFloatOp_FP_TO_SINT(SDNode
*N
);
620 SDValue
ExpandFloatOp_FP_TO_UINT(SDNode
*N
);
621 SDValue
ExpandFloatOp_LROUND(SDNode
*N
);
622 SDValue
ExpandFloatOp_LLROUND(SDNode
*N
);
623 SDValue
ExpandFloatOp_LRINT(SDNode
*N
);
624 SDValue
ExpandFloatOp_LLRINT(SDNode
*N
);
625 SDValue
ExpandFloatOp_SELECT_CC(SDNode
*N
);
626 SDValue
ExpandFloatOp_SETCC(SDNode
*N
);
627 SDValue
ExpandFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
629 void FloatExpandSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
630 ISD::CondCode
&CCCode
, const SDLoc
&dl
);
632 //===--------------------------------------------------------------------===//
633 // Float promotion support: LegalizeFloatTypes.cpp
634 //===--------------------------------------------------------------------===//
636 SDValue
GetPromotedFloat(SDValue Op
) {
637 TableId
&PromotedId
= PromotedFloats
[getTableId(Op
)];
638 SDValue PromotedOp
= getSDValue(PromotedId
);
639 assert(PromotedOp
.getNode() && "Operand wasn't promoted?");
642 void SetPromotedFloat(SDValue Op
, SDValue Result
);
644 void PromoteFloatResult(SDNode
*N
, unsigned ResNo
);
645 SDValue
PromoteFloatRes_BITCAST(SDNode
*N
);
646 SDValue
PromoteFloatRes_BinOp(SDNode
*N
);
647 SDValue
PromoteFloatRes_ConstantFP(SDNode
*N
);
648 SDValue
PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode
*N
);
649 SDValue
PromoteFloatRes_FCOPYSIGN(SDNode
*N
);
650 SDValue
PromoteFloatRes_FMAD(SDNode
*N
);
651 SDValue
PromoteFloatRes_FPOWI(SDNode
*N
);
652 SDValue
PromoteFloatRes_FP_ROUND(SDNode
*N
);
653 SDValue
PromoteFloatRes_LOAD(SDNode
*N
);
654 SDValue
PromoteFloatRes_SELECT(SDNode
*N
);
655 SDValue
PromoteFloatRes_SELECT_CC(SDNode
*N
);
656 SDValue
PromoteFloatRes_UnaryOp(SDNode
*N
);
657 SDValue
PromoteFloatRes_UNDEF(SDNode
*N
);
658 SDValue
BitcastToInt_ATOMIC_SWAP(SDNode
*N
);
659 SDValue
PromoteFloatRes_XINT_TO_FP(SDNode
*N
);
661 bool PromoteFloatOperand(SDNode
*N
, unsigned OpNo
);
662 SDValue
PromoteFloatOp_BITCAST(SDNode
*N
, unsigned OpNo
);
663 SDValue
PromoteFloatOp_FCOPYSIGN(SDNode
*N
, unsigned OpNo
);
664 SDValue
PromoteFloatOp_FP_EXTEND(SDNode
*N
, unsigned OpNo
);
665 SDValue
PromoteFloatOp_FP_TO_XINT(SDNode
*N
, unsigned OpNo
);
666 SDValue
PromoteFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
667 SDValue
PromoteFloatOp_SELECT_CC(SDNode
*N
, unsigned OpNo
);
668 SDValue
PromoteFloatOp_SETCC(SDNode
*N
, unsigned OpNo
);
670 //===--------------------------------------------------------------------===//
671 // Scalarization Support: LegalizeVectorTypes.cpp
672 //===--------------------------------------------------------------------===//
674 /// Given a processed one-element vector Op which was scalarized to its
675 /// element type, this returns the element. For example, if Op is a v1i32,
676 /// Op = < i32 val >, this method returns val, an i32.
677 SDValue
GetScalarizedVector(SDValue Op
) {
678 TableId
&ScalarizedId
= ScalarizedVectors
[getTableId(Op
)];
679 SDValue ScalarizedOp
= getSDValue(ScalarizedId
);
680 assert(ScalarizedOp
.getNode() && "Operand wasn't scalarized?");
683 void SetScalarizedVector(SDValue Op
, SDValue Result
);
685 // Vector Result Scalarization: <1 x ty> -> ty.
686 void ScalarizeVectorResult(SDNode
*N
, unsigned ResNo
);
687 SDValue
ScalarizeVecRes_MERGE_VALUES(SDNode
*N
, unsigned ResNo
);
688 SDValue
ScalarizeVecRes_BinOp(SDNode
*N
);
689 SDValue
ScalarizeVecRes_TernaryOp(SDNode
*N
);
690 SDValue
ScalarizeVecRes_UnaryOp(SDNode
*N
);
691 SDValue
ScalarizeVecRes_StrictFPOp(SDNode
*N
);
692 SDValue
ScalarizeVecRes_OverflowOp(SDNode
*N
, unsigned ResNo
);
693 SDValue
ScalarizeVecRes_InregOp(SDNode
*N
);
694 SDValue
ScalarizeVecRes_VecInregOp(SDNode
*N
);
696 SDValue
ScalarizeVecRes_BITCAST(SDNode
*N
);
697 SDValue
ScalarizeVecRes_BUILD_VECTOR(SDNode
*N
);
698 SDValue
ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode
*N
);
699 SDValue
ScalarizeVecRes_FP_ROUND(SDNode
*N
);
700 SDValue
ScalarizeVecRes_STRICT_FP_ROUND(SDNode
*N
);
701 SDValue
ScalarizeVecRes_FPOWI(SDNode
*N
);
702 SDValue
ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode
*N
);
703 SDValue
ScalarizeVecRes_LOAD(LoadSDNode
*N
);
704 SDValue
ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode
*N
);
705 SDValue
ScalarizeVecRes_VSELECT(SDNode
*N
);
706 SDValue
ScalarizeVecRes_SELECT(SDNode
*N
);
707 SDValue
ScalarizeVecRes_SELECT_CC(SDNode
*N
);
708 SDValue
ScalarizeVecRes_SETCC(SDNode
*N
);
709 SDValue
ScalarizeVecRes_UNDEF(SDNode
*N
);
710 SDValue
ScalarizeVecRes_VECTOR_SHUFFLE(SDNode
*N
);
712 SDValue
ScalarizeVecRes_MULFIX(SDNode
*N
);
714 // Vector Operand Scalarization: <1 x ty> -> ty.
715 bool ScalarizeVectorOperand(SDNode
*N
, unsigned OpNo
);
716 SDValue
ScalarizeVecOp_BITCAST(SDNode
*N
);
717 SDValue
ScalarizeVecOp_UnaryOp(SDNode
*N
);
718 SDValue
ScalarizeVecOp_CONCAT_VECTORS(SDNode
*N
);
719 SDValue
ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
720 SDValue
ScalarizeVecOp_VSELECT(SDNode
*N
);
721 SDValue
ScalarizeVecOp_VSETCC(SDNode
*N
);
722 SDValue
ScalarizeVecOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
723 SDValue
ScalarizeVecOp_FP_ROUND(SDNode
*N
, unsigned OpNo
);
724 SDValue
ScalarizeVecOp_STRICT_FP_ROUND(SDNode
*N
, unsigned OpNo
);
725 SDValue
ScalarizeVecOp_VECREDUCE(SDNode
*N
);
727 //===--------------------------------------------------------------------===//
728 // Vector Splitting Support: LegalizeVectorTypes.cpp
729 //===--------------------------------------------------------------------===//
731 /// Given a processed vector Op which was split into vectors of half the size,
732 /// this method returns the halves. The first elements of Op coincide with the
733 /// elements of Lo; the remaining elements of Op coincide with the elements of
734 /// Hi: Op is what you would get by concatenating Lo and Hi.
735 /// For example, if Op is a v8i32 that was split into two v4i32's, then this
736 /// method returns the two v4i32's, with Lo corresponding to the first 4
737 /// elements of Op, and Hi to the last 4 elements.
738 void GetSplitVector(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
739 void SetSplitVector(SDValue Op
, SDValue Lo
, SDValue Hi
);
741 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
742 void SplitVectorResult(SDNode
*N
, unsigned ResNo
);
743 void SplitVecRes_BinOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
744 void SplitVecRes_TernaryOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
745 void SplitVecRes_UnaryOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
746 void SplitVecRes_ExtendOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
747 void SplitVecRes_InregOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
748 void SplitVecRes_ExtVecInRegOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
749 void SplitVecRes_StrictFPOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
750 void SplitVecRes_OverflowOp(SDNode
*N
, unsigned ResNo
,
751 SDValue
&Lo
, SDValue
&Hi
);
753 void SplitVecRes_MULFIX(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
755 void SplitVecRes_BITCAST(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
756 void SplitVecRes_BUILD_VECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
757 void SplitVecRes_CONCAT_VECTORS(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
758 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
759 void SplitVecRes_INSERT_SUBVECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
760 void SplitVecRes_FPOWI(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
761 void SplitVecRes_FCOPYSIGN(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
762 void SplitVecRes_INSERT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
763 void SplitVecRes_LOAD(LoadSDNode
*LD
, SDValue
&Lo
, SDValue
&Hi
);
764 void SplitVecRes_MLOAD(MaskedLoadSDNode
*MLD
, SDValue
&Lo
, SDValue
&Hi
);
765 void SplitVecRes_MGATHER(MaskedGatherSDNode
*MGT
, SDValue
&Lo
, SDValue
&Hi
);
766 void SplitVecRes_SCALAR_TO_VECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
767 void SplitVecRes_SETCC(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
768 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode
*N
, SDValue
&Lo
,
770 void SplitVecRes_VAARG(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
772 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
773 bool SplitVectorOperand(SDNode
*N
, unsigned OpNo
);
774 SDValue
SplitVecOp_VSELECT(SDNode
*N
, unsigned OpNo
);
775 SDValue
SplitVecOp_VECREDUCE(SDNode
*N
, unsigned OpNo
);
776 SDValue
SplitVecOp_UnaryOp(SDNode
*N
);
777 SDValue
SplitVecOp_TruncateHelper(SDNode
*N
);
779 SDValue
SplitVecOp_BITCAST(SDNode
*N
);
780 SDValue
SplitVecOp_EXTRACT_SUBVECTOR(SDNode
*N
);
781 SDValue
SplitVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
782 SDValue
SplitVecOp_ExtVecInRegOp(SDNode
*N
);
783 SDValue
SplitVecOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
784 SDValue
SplitVecOp_MSTORE(MaskedStoreSDNode
*N
, unsigned OpNo
);
785 SDValue
SplitVecOp_MSCATTER(MaskedScatterSDNode
*N
, unsigned OpNo
);
786 SDValue
SplitVecOp_MGATHER(MaskedGatherSDNode
*MGT
, unsigned OpNo
);
787 SDValue
SplitVecOp_CONCAT_VECTORS(SDNode
*N
);
788 SDValue
SplitVecOp_VSETCC(SDNode
*N
);
789 SDValue
SplitVecOp_FP_ROUND(SDNode
*N
);
790 SDValue
SplitVecOp_FCOPYSIGN(SDNode
*N
);
792 //===--------------------------------------------------------------------===//
793 // Vector Widening Support: LegalizeVectorTypes.cpp
794 //===--------------------------------------------------------------------===//
796 /// Given a processed vector Op which was widened into a larger vector, this
797 /// method returns the larger vector. The elements of the returned vector
798 /// consist of the elements of Op followed by elements containing rubbish.
799 /// For example, if Op is a v2i32 that was widened to a v4i32, then this
800 /// method returns a v4i32 for which the first two elements are the same as
801 /// those of Op, while the last two elements contain rubbish.
802 SDValue
GetWidenedVector(SDValue Op
) {
803 TableId
&WidenedId
= WidenedVectors
[getTableId(Op
)];
804 SDValue WidenedOp
= getSDValue(WidenedId
);
805 assert(WidenedOp
.getNode() && "Operand wasn't widened?");
808 void SetWidenedVector(SDValue Op
, SDValue Result
);
810 // Widen Vector Result Promotion.
811 void WidenVectorResult(SDNode
*N
, unsigned ResNo
);
812 SDValue
WidenVecRes_MERGE_VALUES(SDNode
* N
, unsigned ResNo
);
813 SDValue
WidenVecRes_BITCAST(SDNode
* N
);
814 SDValue
WidenVecRes_BUILD_VECTOR(SDNode
* N
);
815 SDValue
WidenVecRes_CONCAT_VECTORS(SDNode
* N
);
816 SDValue
WidenVecRes_EXTEND_VECTOR_INREG(SDNode
* N
);
817 SDValue
WidenVecRes_EXTRACT_SUBVECTOR(SDNode
* N
);
818 SDValue
WidenVecRes_INSERT_VECTOR_ELT(SDNode
* N
);
819 SDValue
WidenVecRes_LOAD(SDNode
* N
);
820 SDValue
WidenVecRes_MLOAD(MaskedLoadSDNode
* N
);
821 SDValue
WidenVecRes_MGATHER(MaskedGatherSDNode
* N
);
822 SDValue
WidenVecRes_SCALAR_TO_VECTOR(SDNode
* N
);
823 SDValue
WidenVecRes_SELECT(SDNode
* N
);
824 SDValue
WidenVSELECTAndMask(SDNode
*N
);
825 SDValue
WidenVecRes_SELECT_CC(SDNode
* N
);
826 SDValue
WidenVecRes_SETCC(SDNode
* N
);
827 SDValue
WidenVecRes_UNDEF(SDNode
*N
);
828 SDValue
WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode
*N
);
830 SDValue
WidenVecRes_Ternary(SDNode
*N
);
831 SDValue
WidenVecRes_Binary(SDNode
*N
);
832 SDValue
WidenVecRes_BinaryCanTrap(SDNode
*N
);
833 SDValue
WidenVecRes_BinaryWithExtraScalarOp(SDNode
*N
);
834 SDValue
WidenVecRes_StrictFP(SDNode
*N
);
835 SDValue
WidenVecRes_OverflowOp(SDNode
*N
, unsigned ResNo
);
836 SDValue
WidenVecRes_Convert(SDNode
*N
);
837 SDValue
WidenVecRes_Convert_StrictFP(SDNode
*N
);
838 SDValue
WidenVecRes_FCOPYSIGN(SDNode
*N
);
839 SDValue
WidenVecRes_POWI(SDNode
*N
);
840 SDValue
WidenVecRes_Shift(SDNode
*N
);
841 SDValue
WidenVecRes_Unary(SDNode
*N
);
842 SDValue
WidenVecRes_InregOp(SDNode
*N
);
844 // Widen Vector Operand.
845 bool WidenVectorOperand(SDNode
*N
, unsigned OpNo
);
846 SDValue
WidenVecOp_BITCAST(SDNode
*N
);
847 SDValue
WidenVecOp_CONCAT_VECTORS(SDNode
*N
);
848 SDValue
WidenVecOp_EXTEND(SDNode
*N
);
849 SDValue
WidenVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
850 SDValue
WidenVecOp_EXTRACT_SUBVECTOR(SDNode
*N
);
851 SDValue
WidenVecOp_STORE(SDNode
* N
);
852 SDValue
WidenVecOp_MSTORE(SDNode
* N
, unsigned OpNo
);
853 SDValue
WidenVecOp_MGATHER(SDNode
* N
, unsigned OpNo
);
854 SDValue
WidenVecOp_MSCATTER(SDNode
* N
, unsigned OpNo
);
855 SDValue
WidenVecOp_SETCC(SDNode
* N
);
856 SDValue
WidenVecOp_VSELECT(SDNode
*N
);
858 SDValue
WidenVecOp_Convert(SDNode
*N
);
859 SDValue
WidenVecOp_FCOPYSIGN(SDNode
*N
);
860 SDValue
WidenVecOp_VECREDUCE(SDNode
*N
);
862 /// Helper function to generate a set of operations to perform
863 /// a vector operation for a wider type.
865 SDValue
UnrollVectorOp_StrictFP(SDNode
*N
, unsigned ResNE
);
867 //===--------------------------------------------------------------------===//
868 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
869 //===--------------------------------------------------------------------===//
871 /// Helper function to generate a set of loads to load a vector with a
872 /// resulting wider type. It takes:
873 /// LdChain: list of chains for the load to be generated.
874 /// Ld: load to widen
875 SDValue
GenWidenVectorLoads(SmallVectorImpl
<SDValue
> &LdChain
,
878 /// Helper function to generate a set of extension loads to load a vector with
879 /// a resulting wider type. It takes:
880 /// LdChain: list of chains for the load to be generated.
881 /// Ld: load to widen
882 /// ExtType: extension element type
883 SDValue
GenWidenVectorExtLoads(SmallVectorImpl
<SDValue
> &LdChain
,
884 LoadSDNode
*LD
, ISD::LoadExtType ExtType
);
886 /// Helper function to generate a set of stores to store a widen vector into
887 /// non-widen memory.
888 /// StChain: list of chains for the stores we have generated
889 /// ST: store of a widen value
890 void GenWidenVectorStores(SmallVectorImpl
<SDValue
> &StChain
, StoreSDNode
*ST
);
892 /// Helper function to generate a set of stores to store a truncate widen
893 /// vector into non-widen memory.
894 /// StChain: list of chains for the stores we have generated
895 /// ST: store of a widen value
896 void GenWidenVectorTruncStores(SmallVectorImpl
<SDValue
> &StChain
,
899 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
900 /// input vector must have the same element type as NVT.
901 /// When FillWithZeroes is "on" the vector will be widened with zeroes.
902 /// By default, the vector will be widened with undefined values.
903 SDValue
ModifyToType(SDValue InOp
, EVT NVT
, bool FillWithZeroes
= false);
905 /// Return a mask of vector type MaskVT to replace InMask. Also adjust
906 /// MaskVT to ToMaskVT if needed with vector extension or truncation.
907 SDValue
convertMask(SDValue InMask
, EVT MaskVT
, EVT ToMaskVT
);
909 //===--------------------------------------------------------------------===//
910 // Generic Splitting: LegalizeTypesGeneric.cpp
911 //===--------------------------------------------------------------------===//
913 // Legalization methods which only use that the illegal type is split into two
914 // not necessarily identical types. As such they can be used for splitting
915 // vectors and expanding integers and floats.
917 void GetSplitOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
) {
918 if (Op
.getValueType().isVector())
919 GetSplitVector(Op
, Lo
, Hi
);
920 else if (Op
.getValueType().isInteger())
921 GetExpandedInteger(Op
, Lo
, Hi
);
923 GetExpandedFloat(Op
, Lo
, Hi
);
926 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
928 void GetPairElements(SDValue Pair
, SDValue
&Lo
, SDValue
&Hi
);
930 // Generic Result Splitting.
931 void SplitRes_MERGE_VALUES(SDNode
*N
, unsigned ResNo
,
932 SDValue
&Lo
, SDValue
&Hi
);
933 void SplitRes_SELECT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
934 void SplitRes_SELECT_CC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
935 void SplitRes_UNDEF (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
937 void SplitVSETCC(const SDNode
*N
);
939 //===--------------------------------------------------------------------===//
940 // Generic Expansion: LegalizeTypesGeneric.cpp
941 //===--------------------------------------------------------------------===//
943 // Legalization methods which only use that the illegal type is split into two
944 // identical types of half the size, and that the Lo/Hi part is stored first
945 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
946 // such they can be used for expanding integers and floats.
948 void GetExpandedOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
) {
949 if (Op
.getValueType().isInteger())
950 GetExpandedInteger(Op
, Lo
, Hi
);
952 GetExpandedFloat(Op
, Lo
, Hi
);
956 /// This function will split the integer \p Op into \p NumElements
957 /// operations of type \p EltVT and store them in \p Ops.
958 void IntegerToVector(SDValue Op
, unsigned NumElements
,
959 SmallVectorImpl
<SDValue
> &Ops
, EVT EltVT
);
961 // Generic Result Expansion.
962 void ExpandRes_MERGE_VALUES (SDNode
*N
, unsigned ResNo
,
963 SDValue
&Lo
, SDValue
&Hi
);
964 void ExpandRes_BITCAST (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
965 void ExpandRes_BUILD_PAIR (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
966 void ExpandRes_EXTRACT_ELEMENT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
967 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
968 void ExpandRes_NormalLoad (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
969 void ExpandRes_VAARG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
971 // Generic Operand Expansion.
972 SDValue
ExpandOp_BITCAST (SDNode
*N
);
973 SDValue
ExpandOp_BUILD_VECTOR (SDNode
*N
);
974 SDValue
ExpandOp_EXTRACT_ELEMENT (SDNode
*N
);
975 SDValue
ExpandOp_INSERT_VECTOR_ELT(SDNode
*N
);
976 SDValue
ExpandOp_SCALAR_TO_VECTOR (SDNode
*N
);
977 SDValue
ExpandOp_NormalStore (SDNode
*N
, unsigned OpNo
);
980 } // end namespace llvm.