1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
51 #define DEBUG_TYPE "legalizevectorops"
55 class VectorLegalizer
{
57 const TargetLowering
&TLI
;
58 bool Changed
= false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap
<SDValue
, SDValue
, 64> LegalizedNodes
;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From
, SDValue To
) {
67 LegalizedNodes
.insert(std::make_pair(From
, To
));
68 // If someone requests legalization of the new node, return itself.
70 LegalizedNodes
.insert(std::make_pair(To
, To
));
73 /// Legalizes the given node.
74 SDValue
LegalizeOp(SDValue Op
);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue
TranslateLegalizeResults(SDValue Op
, SDValue Result
);
79 /// Implements unrolling a VSETCC.
80 SDValue
UnrollVSETCC(SDValue Op
);
82 /// Implement expand-based legalization of vector operations.
84 /// This is just a high-level routine to dispatch to specific code paths for
85 /// operations to legalize them.
86 SDValue
Expand(SDValue Op
);
88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89 /// FP_TO_SINT isn't legal.
90 SDValue
ExpandFP_TO_UINT(SDValue Op
);
92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94 SDValue
ExpandUINT_TO_FLOAT(SDValue Op
);
96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97 SDValue
ExpandSEXTINREG(SDValue Op
);
99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102 /// type. The contents of the bits in the extended part of each element are
104 SDValue
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op
);
106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109 /// type, then shifts left and arithmetic shifts right to introduce a sign
111 SDValue
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op
);
113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115 /// Shuffles the low lanes of the operand into place and blends zeros into
116 /// the remaining lanes, finally bitcasting to the proper type.
117 SDValue
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op
);
119 /// Implement expand-based legalization of ABS vector operations.
120 /// If following expanding is legal/custom then do it:
121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122 /// else unroll the operation.
123 SDValue
ExpandABS(SDValue Op
);
125 /// Expand bswap of vectors into a shuffle if legal.
126 SDValue
ExpandBSWAP(SDValue Op
);
128 /// Implement vselect in terms of XOR, AND, OR when blend is not
129 /// supported by the target.
130 SDValue
ExpandVSELECT(SDValue Op
);
131 SDValue
ExpandSELECT(SDValue Op
);
132 SDValue
ExpandLoad(SDValue Op
);
133 SDValue
ExpandStore(SDValue Op
);
134 SDValue
ExpandFNEG(SDValue Op
);
135 SDValue
ExpandFSUB(SDValue Op
);
136 SDValue
ExpandBITREVERSE(SDValue Op
);
137 SDValue
ExpandCTPOP(SDValue Op
);
138 SDValue
ExpandCTLZ(SDValue Op
);
139 SDValue
ExpandCTTZ(SDValue Op
);
140 SDValue
ExpandFunnelShift(SDValue Op
);
141 SDValue
ExpandROT(SDValue Op
);
142 SDValue
ExpandFMINNUM_FMAXNUM(SDValue Op
);
143 SDValue
ExpandUADDSUBO(SDValue Op
);
144 SDValue
ExpandSADDSUBO(SDValue Op
);
145 SDValue
ExpandMULO(SDValue Op
);
146 SDValue
ExpandAddSubSat(SDValue Op
);
147 SDValue
ExpandFixedPointMul(SDValue Op
);
148 SDValue
ExpandStrictFPOp(SDValue Op
);
150 /// Implements vector promotion.
152 /// This is essentially just bitcasting the operands to a different type and
153 /// bitcasting the result back to the original type.
154 SDValue
Promote(SDValue Op
);
156 /// Implements [SU]INT_TO_FP vector promotion.
158 /// This is a [zs]ext of the input operand to a larger integer type.
159 SDValue
PromoteINT_TO_FP(SDValue Op
);
161 /// Implements FP_TO_[SU]INT vector promotion of the result type.
163 /// It is promoted to a larger integer type. The result is then
164 /// truncated back to the original type.
165 SDValue
PromoteFP_TO_INT(SDValue Op
);
168 VectorLegalizer(SelectionDAG
& dag
) :
169 DAG(dag
), TLI(dag
.getTargetLoweringInfo()) {}
171 /// Begin legalizer the vector operations in the DAG.
175 } // end anonymous namespace
177 bool VectorLegalizer::Run() {
178 // Before we start legalizing vector nodes, check if there are any vectors.
179 bool HasVectors
= false;
180 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
181 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
) {
182 // Check if the values of the nodes contain vectors. We don't need to check
183 // the operands because we are going to check their values at some point.
184 for (SDNode::value_iterator J
= I
->value_begin(), E
= I
->value_end();
186 HasVectors
|= J
->isVector();
188 // If we found a vector node we can start the legalization.
193 // If this basic block has no vectors then no need to legalize vectors.
197 // The legalize process is inherently a bottom-up recursive process (users
198 // legalize their uses before themselves). Given infinite stack space, we
199 // could just start legalizing on the root and traverse the whole graph. In
200 // practice however, this causes us to run out of stack space on large basic
201 // blocks. To avoid this problem, compute an ordering of the nodes where each
202 // node is only legalized after all of its operands are legalized.
203 DAG
.AssignTopologicalOrder();
204 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
205 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
)
206 LegalizeOp(SDValue(&*I
, 0));
208 // Finally, it's possible the root changed. Get the new root.
209 SDValue OldRoot
= DAG
.getRoot();
210 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
211 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
213 LegalizedNodes
.clear();
215 // Remove dead nodes now.
216 DAG
.RemoveDeadNodes();
221 SDValue
VectorLegalizer::TranslateLegalizeResults(SDValue Op
, SDValue Result
) {
222 // Generic legalization: just pass the operand through.
223 for (unsigned i
= 0, e
= Op
.getNode()->getNumValues(); i
!= e
; ++i
)
224 AddLegalizedOperand(Op
.getValue(i
), Result
.getValue(i
));
225 return Result
.getValue(Op
.getResNo());
228 SDValue
VectorLegalizer::LegalizeOp(SDValue Op
) {
229 // Note that LegalizeOp may be reentered even from single-use nodes, which
230 // means that we always must cache transformed nodes.
231 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
232 if (I
!= LegalizedNodes
.end()) return I
->second
;
234 SDNode
* Node
= Op
.getNode();
236 // Legalize the operands
237 SmallVector
<SDValue
, 8> Ops
;
238 for (const SDValue
&Op
: Node
->op_values())
239 Ops
.push_back(LegalizeOp(Op
));
241 SDValue Result
= SDValue(DAG
.UpdateNodeOperands(Op
.getNode(), Ops
),
244 if (Op
.getOpcode() == ISD::LOAD
) {
245 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
246 ISD::LoadExtType ExtType
= LD
->getExtensionType();
247 if (LD
->getMemoryVT().isVector() && ExtType
!= ISD::NON_EXTLOAD
) {
248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
250 switch (TLI
.getLoadExtAction(LD
->getExtensionType(), LD
->getValueType(0),
251 LD
->getMemoryVT())) {
252 default: llvm_unreachable("This action is not supported yet!");
253 case TargetLowering::Legal
:
254 return TranslateLegalizeResults(Op
, Result
);
255 case TargetLowering::Custom
:
256 if (SDValue Lowered
= TLI
.LowerOperation(Result
, DAG
)) {
257 assert(Lowered
->getNumValues() == Op
->getNumValues() &&
258 "Unexpected number of results");
259 if (Lowered
!= Result
) {
260 // Make sure the new code is also legal.
261 Lowered
= LegalizeOp(Lowered
);
264 return TranslateLegalizeResults(Op
, Lowered
);
267 case TargetLowering::Expand
:
269 return ExpandLoad(Op
);
272 } else if (Op
.getOpcode() == ISD::STORE
) {
273 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
274 EVT StVT
= ST
->getMemoryVT();
275 MVT ValVT
= ST
->getValue().getSimpleValueType();
276 if (StVT
.isVector() && ST
->isTruncatingStore()) {
277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
279 switch (TLI
.getTruncStoreAction(ValVT
, StVT
)) {
280 default: llvm_unreachable("This action is not supported yet!");
281 case TargetLowering::Legal
:
282 return TranslateLegalizeResults(Op
, Result
);
283 case TargetLowering::Custom
: {
284 SDValue Lowered
= TLI
.LowerOperation(Result
, DAG
);
285 if (Lowered
!= Result
) {
286 // Make sure the new code is also legal.
287 Lowered
= LegalizeOp(Lowered
);
290 return TranslateLegalizeResults(Op
, Lowered
);
292 case TargetLowering::Expand
:
294 return ExpandStore(Op
);
299 bool HasVectorValueOrOp
= false;
300 for (auto J
= Node
->value_begin(), E
= Node
->value_end(); J
!= E
; ++J
)
301 HasVectorValueOrOp
|= J
->isVector();
302 for (const SDValue
&Op
: Node
->op_values())
303 HasVectorValueOrOp
|= Op
.getValueType().isVector();
305 if (!HasVectorValueOrOp
)
306 return TranslateLegalizeResults(Op
, Result
);
308 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
309 switch (Op
.getOpcode()) {
311 return TranslateLegalizeResults(Op
, Result
);
312 case ISD::STRICT_FADD
:
313 case ISD::STRICT_FSUB
:
314 case ISD::STRICT_FMUL
:
315 case ISD::STRICT_FDIV
:
316 case ISD::STRICT_FREM
:
317 case ISD::STRICT_FSQRT
:
318 case ISD::STRICT_FMA
:
319 case ISD::STRICT_FPOW
:
320 case ISD::STRICT_FPOWI
:
321 case ISD::STRICT_FSIN
:
322 case ISD::STRICT_FCOS
:
323 case ISD::STRICT_FEXP
:
324 case ISD::STRICT_FEXP2
:
325 case ISD::STRICT_FLOG
:
326 case ISD::STRICT_FLOG10
:
327 case ISD::STRICT_FLOG2
:
328 case ISD::STRICT_FRINT
:
329 case ISD::STRICT_FNEARBYINT
:
330 case ISD::STRICT_FMAXNUM
:
331 case ISD::STRICT_FMINNUM
:
332 case ISD::STRICT_FCEIL
:
333 case ISD::STRICT_FFLOOR
:
334 case ISD::STRICT_FROUND
:
335 case ISD::STRICT_FTRUNC
:
336 case ISD::STRICT_FP_ROUND
:
337 case ISD::STRICT_FP_EXTEND
:
338 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
339 // If we're asked to expand a strict vector floating-point operation,
340 // by default we're going to simply unroll it. That is usually the
341 // best approach, except in the case where the resulting strict (scalar)
342 // operations would themselves use the fallback mutation to non-strict.
343 // In that specific case, just do the fallback on the vector op.
344 if (Action
== TargetLowering::Expand
&&
345 TLI
.getStrictFPOperationAction(Node
->getOpcode(),
346 Node
->getValueType(0))
347 == TargetLowering::Legal
) {
348 EVT EltVT
= Node
->getValueType(0).getVectorElementType();
349 if (TLI
.getOperationAction(Node
->getOpcode(), EltVT
)
350 == TargetLowering::Expand
&&
351 TLI
.getStrictFPOperationAction(Node
->getOpcode(), EltVT
)
352 == TargetLowering::Legal
)
353 Action
= TargetLowering::Legal
;
384 case ISD::BITREVERSE
:
387 case ISD::CTLZ_ZERO_UNDEF
:
388 case ISD::CTTZ_ZERO_UNDEF
:
394 case ISD::ZERO_EXTEND
:
395 case ISD::ANY_EXTEND
:
397 case ISD::SIGN_EXTEND
:
398 case ISD::FP_TO_SINT
:
399 case ISD::FP_TO_UINT
:
404 case ISD::FMINNUM_IEEE
:
405 case ISD::FMAXNUM_IEEE
:
422 case ISD::FNEARBYINT
:
428 case ISD::SIGN_EXTEND_INREG
:
429 case ISD::ANY_EXTEND_VECTOR_INREG
:
430 case ISD::SIGN_EXTEND_VECTOR_INREG
:
431 case ISD::ZERO_EXTEND_VECTOR_INREG
:
444 case ISD::FCANONICALIZE
:
449 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
452 case ISD::SMULFIXSAT
:
454 unsigned Scale
= Node
->getConstantOperandVal(2);
455 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
456 Node
->getValueType(0), Scale
);
459 case ISD::FP_ROUND_INREG
:
460 Action
= TLI
.getOperationAction(Node
->getOpcode(),
461 cast
<VTSDNode
>(Node
->getOperand(1))->getVT());
463 case ISD::SINT_TO_FP
:
464 case ISD::UINT_TO_FP
:
465 case ISD::VECREDUCE_ADD
:
466 case ISD::VECREDUCE_MUL
:
467 case ISD::VECREDUCE_AND
:
468 case ISD::VECREDUCE_OR
:
469 case ISD::VECREDUCE_XOR
:
470 case ISD::VECREDUCE_SMAX
:
471 case ISD::VECREDUCE_SMIN
:
472 case ISD::VECREDUCE_UMAX
:
473 case ISD::VECREDUCE_UMIN
:
474 case ISD::VECREDUCE_FADD
:
475 case ISD::VECREDUCE_FMUL
:
476 case ISD::VECREDUCE_FMAX
:
477 case ISD::VECREDUCE_FMIN
:
478 Action
= TLI
.getOperationAction(Node
->getOpcode(),
479 Node
->getOperand(0).getValueType());
483 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node
->dump(&DAG
));
486 default: llvm_unreachable("This action is not supported yet!");
487 case TargetLowering::Promote
:
488 Result
= Promote(Op
);
491 case TargetLowering::Legal
:
492 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
494 case TargetLowering::Custom
: {
495 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
496 if (SDValue Tmp1
= TLI
.LowerOperation(Op
, DAG
)) {
497 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
501 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
504 case TargetLowering::Expand
:
508 // Make sure that the generated code is itself legal.
510 Result
= LegalizeOp(Result
);
514 // Note that LegalizeOp may be reentered even from single-use nodes, which
515 // means that we always must cache transformed nodes.
516 AddLegalizedOperand(Op
, Result
);
520 SDValue
VectorLegalizer::Promote(SDValue Op
) {
521 // For a few operations there is a specific concept for promotion based on
522 // the operand's type.
523 switch (Op
.getOpcode()) {
524 case ISD::SINT_TO_FP
:
525 case ISD::UINT_TO_FP
:
526 // "Promote" the operation by extending the operand.
527 return PromoteINT_TO_FP(Op
);
528 case ISD::FP_TO_UINT
:
529 case ISD::FP_TO_SINT
:
530 // Promote the operation by extending the operand.
531 return PromoteFP_TO_INT(Op
);
534 // There are currently two cases of vector promotion:
535 // 1) Bitcasting a vector of integers to a different type to a vector of the
536 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
537 // 2) Extending a vector of floats to a vector of the same number of larger
538 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
539 MVT VT
= Op
.getSimpleValueType();
540 assert(Op
.getNode()->getNumValues() == 1 &&
541 "Can't promote a vector with multiple results!");
542 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
544 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
546 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
547 if (Op
.getOperand(j
).getValueType().isVector())
550 .getVectorElementType()
551 .isFloatingPoint() &&
552 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint())
553 Operands
[j
] = DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Op
.getOperand(j
));
555 Operands
[j
] = DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Op
.getOperand(j
));
557 Operands
[j
] = Op
.getOperand(j
);
560 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NVT
, Operands
, Op
.getNode()->getFlags());
561 if ((VT
.isFloatingPoint() && NVT
.isFloatingPoint()) ||
562 (VT
.isVector() && VT
.getVectorElementType().isFloatingPoint() &&
563 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint()))
564 return DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op
, DAG
.getIntPtrConstant(0, dl
));
566 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Op
);
569 SDValue
VectorLegalizer::PromoteINT_TO_FP(SDValue Op
) {
570 // INT_TO_FP operations may require the input operand be promoted even
571 // when the type is otherwise legal.
572 MVT VT
= Op
.getOperand(0).getSimpleValueType();
573 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
574 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
575 "Vectors have different number of elements!");
578 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
580 unsigned Opc
= Op
.getOpcode() == ISD::UINT_TO_FP
? ISD::ZERO_EXTEND
:
582 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
583 if (Op
.getOperand(j
).getValueType().isVector())
584 Operands
[j
] = DAG
.getNode(Opc
, dl
, NVT
, Op
.getOperand(j
));
586 Operands
[j
] = Op
.getOperand(j
);
589 return DAG
.getNode(Op
.getOpcode(), dl
, Op
.getValueType(), Operands
);
592 // For FP_TO_INT we promote the result type to a vector type with wider
593 // elements and then truncate the result. This is different from the default
594 // PromoteVector which uses bitcast to promote thus assumning that the
595 // promoted vector type has the same overall size.
596 SDValue
VectorLegalizer::PromoteFP_TO_INT(SDValue Op
) {
597 MVT VT
= Op
.getSimpleValueType();
598 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
599 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
600 "Vectors have different number of elements!");
602 unsigned NewOpc
= Op
->getOpcode();
603 // Change FP_TO_UINT to FP_TO_SINT if possible.
604 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
605 if (NewOpc
== ISD::FP_TO_UINT
&&
606 TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
))
607 NewOpc
= ISD::FP_TO_SINT
;
610 SDValue Promoted
= DAG
.getNode(NewOpc
, dl
, NVT
, Op
.getOperand(0));
612 // Assert that the converted value fits in the original type. If it doesn't
613 // (eg: because the value being converted is too big), then the result of the
614 // original operation was undefined anyway, so the assert is still correct.
615 Promoted
= DAG
.getNode(Op
->getOpcode() == ISD::FP_TO_UINT
? ISD::AssertZext
618 DAG
.getValueType(VT
.getScalarType()));
619 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Promoted
);
622 SDValue
VectorLegalizer::ExpandLoad(SDValue Op
) {
623 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
625 EVT SrcVT
= LD
->getMemoryVT();
626 EVT SrcEltVT
= SrcVT
.getScalarType();
627 unsigned NumElem
= SrcVT
.getVectorNumElements();
631 if (SrcVT
.getVectorNumElements() > 1 && !SrcEltVT
.isByteSized()) {
634 SmallVector
<SDValue
, 8> Vals
;
635 SmallVector
<SDValue
, 8> LoadChains
;
637 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
638 SDValue Chain
= LD
->getChain();
639 SDValue BasePTR
= LD
->getBasePtr();
640 ISD::LoadExtType ExtType
= LD
->getExtensionType();
642 // When elements in a vector is not byte-addressable, we cannot directly
643 // load each element by advancing pointer, which could only address bytes.
644 // Instead, we load all significant words, mask bits off, and concatenate
645 // them to form each element. Finally, they are extended to destination
646 // scalar type to build the destination vector.
647 EVT WideVT
= TLI
.getPointerTy(DAG
.getDataLayout());
649 assert(WideVT
.isRound() &&
650 "Could not handle the sophisticated case when the widest integer is"
652 assert(WideVT
.bitsGE(SrcEltVT
) &&
653 "Type is not legalized?");
655 unsigned WideBytes
= WideVT
.getStoreSize();
657 unsigned RemainingBytes
= SrcVT
.getStoreSize();
658 SmallVector
<SDValue
, 8> LoadVals
;
659 while (RemainingBytes
> 0) {
661 unsigned LoadBytes
= WideBytes
;
663 if (RemainingBytes
>= LoadBytes
) {
665 DAG
.getLoad(WideVT
, dl
, Chain
, BasePTR
,
666 LD
->getPointerInfo().getWithOffset(Offset
),
667 MinAlign(LD
->getAlignment(), Offset
),
668 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
671 while (RemainingBytes
< LoadBytes
) {
672 LoadBytes
>>= 1; // Reduce the load size by half.
673 LoadVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadBytes
<< 3);
676 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, WideVT
, Chain
, BasePTR
,
677 LD
->getPointerInfo().getWithOffset(Offset
), LoadVT
,
678 MinAlign(LD
->getAlignment(), Offset
),
679 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
682 RemainingBytes
-= LoadBytes
;
685 BasePTR
= DAG
.getObjectPtrOffset(dl
, BasePTR
, LoadBytes
);
687 LoadVals
.push_back(ScalarLoad
.getValue(0));
688 LoadChains
.push_back(ScalarLoad
.getValue(1));
691 unsigned BitOffset
= 0;
692 unsigned WideIdx
= 0;
693 unsigned WideBits
= WideVT
.getSizeInBits();
695 // Extract bits, pack and extend/trunc them into destination type.
696 unsigned SrcEltBits
= SrcEltVT
.getSizeInBits();
697 SDValue SrcEltBitMask
= DAG
.getConstant(
698 APInt::getLowBitsSet(WideBits
, SrcEltBits
), dl
, WideVT
);
700 for (unsigned Idx
= 0; Idx
!= NumElem
; ++Idx
) {
701 assert(BitOffset
< WideBits
&& "Unexpected offset!");
703 SDValue ShAmt
= DAG
.getConstant(
704 BitOffset
, dl
, TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
705 SDValue Lo
= DAG
.getNode(ISD::SRL
, dl
, WideVT
, LoadVals
[WideIdx
], ShAmt
);
707 BitOffset
+= SrcEltBits
;
708 if (BitOffset
>= WideBits
) {
710 BitOffset
-= WideBits
;
712 ShAmt
= DAG
.getConstant(
713 SrcEltBits
- BitOffset
, dl
,
714 TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
716 DAG
.getNode(ISD::SHL
, dl
, WideVT
, LoadVals
[WideIdx
], ShAmt
);
717 Lo
= DAG
.getNode(ISD::OR
, dl
, WideVT
, Lo
, Hi
);
721 Lo
= DAG
.getNode(ISD::AND
, dl
, WideVT
, Lo
, SrcEltBitMask
);
724 default: llvm_unreachable("Unknown extended-load op!");
726 Lo
= DAG
.getAnyExtOrTrunc(Lo
, dl
, DstEltVT
);
729 Lo
= DAG
.getZExtOrTrunc(Lo
, dl
, DstEltVT
);
733 DAG
.getConstant(WideBits
- SrcEltBits
, dl
,
734 TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
735 Lo
= DAG
.getNode(ISD::SHL
, dl
, WideVT
, Lo
, ShAmt
);
736 Lo
= DAG
.getNode(ISD::SRA
, dl
, WideVT
, Lo
, ShAmt
);
737 Lo
= DAG
.getSExtOrTrunc(Lo
, dl
, DstEltVT
);
743 NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
744 Value
= DAG
.getBuildVector(Op
.getNode()->getValueType(0), dl
, Vals
);
746 SDValue Scalarized
= TLI
.scalarizeVectorLoad(LD
, DAG
);
747 // Skip past MERGE_VALUE node if known.
748 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
) {
749 NewChain
= Scalarized
.getOperand(1);
750 Value
= Scalarized
.getOperand(0);
752 NewChain
= Scalarized
.getValue(1);
753 Value
= Scalarized
.getValue(0);
757 AddLegalizedOperand(Op
.getValue(0), Value
);
758 AddLegalizedOperand(Op
.getValue(1), NewChain
);
760 return (Op
.getResNo() ? NewChain
: Value
);
763 SDValue
VectorLegalizer::ExpandStore(SDValue Op
) {
764 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
765 SDValue TF
= TLI
.scalarizeVectorStore(ST
, DAG
);
766 AddLegalizedOperand(Op
, TF
);
770 SDValue
VectorLegalizer::Expand(SDValue Op
) {
771 switch (Op
->getOpcode()) {
772 case ISD::SIGN_EXTEND_INREG
:
773 return ExpandSEXTINREG(Op
);
774 case ISD::ANY_EXTEND_VECTOR_INREG
:
775 return ExpandANY_EXTEND_VECTOR_INREG(Op
);
776 case ISD::SIGN_EXTEND_VECTOR_INREG
:
777 return ExpandSIGN_EXTEND_VECTOR_INREG(Op
);
778 case ISD::ZERO_EXTEND_VECTOR_INREG
:
779 return ExpandZERO_EXTEND_VECTOR_INREG(Op
);
781 return ExpandBSWAP(Op
);
783 return ExpandVSELECT(Op
);
785 return ExpandSELECT(Op
);
786 case ISD::FP_TO_UINT
:
787 return ExpandFP_TO_UINT(Op
);
788 case ISD::UINT_TO_FP
:
789 return ExpandUINT_TO_FLOAT(Op
);
791 return ExpandFNEG(Op
);
793 return ExpandFSUB(Op
);
795 return UnrollVSETCC(Op
);
797 return ExpandABS(Op
);
798 case ISD::BITREVERSE
:
799 return ExpandBITREVERSE(Op
);
801 return ExpandCTPOP(Op
);
803 case ISD::CTLZ_ZERO_UNDEF
:
804 return ExpandCTLZ(Op
);
806 case ISD::CTTZ_ZERO_UNDEF
:
807 return ExpandCTTZ(Op
);
810 return ExpandFunnelShift(Op
);
813 return ExpandROT(Op
);
816 return ExpandFMINNUM_FMAXNUM(Op
);
819 return ExpandUADDSUBO(Op
);
822 return ExpandSADDSUBO(Op
);
825 return ExpandMULO(Op
);
830 return ExpandAddSubSat(Op
);
833 return ExpandFixedPointMul(Op
);
834 case ISD::SMULFIXSAT
:
835 // FIXME: We do not expand SMULFIXSAT here yet, not sure why. Maybe it
836 // results in worse codegen compared to the default unroll? This should
837 // probably be investigated. And if we still prefer to unroll an explanation
838 // could be helpful, otherwise it just looks like something that hasn't been
839 // "implemented" yet.
840 return DAG
.UnrollVectorOp(Op
.getNode());
841 case ISD::STRICT_FADD
:
842 case ISD::STRICT_FSUB
:
843 case ISD::STRICT_FMUL
:
844 case ISD::STRICT_FDIV
:
845 case ISD::STRICT_FREM
:
846 case ISD::STRICT_FSQRT
:
847 case ISD::STRICT_FMA
:
848 case ISD::STRICT_FPOW
:
849 case ISD::STRICT_FPOWI
:
850 case ISD::STRICT_FSIN
:
851 case ISD::STRICT_FCOS
:
852 case ISD::STRICT_FEXP
:
853 case ISD::STRICT_FEXP2
:
854 case ISD::STRICT_FLOG
:
855 case ISD::STRICT_FLOG10
:
856 case ISD::STRICT_FLOG2
:
857 case ISD::STRICT_FRINT
:
858 case ISD::STRICT_FNEARBYINT
:
859 case ISD::STRICT_FMAXNUM
:
860 case ISD::STRICT_FMINNUM
:
861 case ISD::STRICT_FCEIL
:
862 case ISD::STRICT_FFLOOR
:
863 case ISD::STRICT_FROUND
:
864 case ISD::STRICT_FTRUNC
:
865 return ExpandStrictFPOp(Op
);
866 case ISD::VECREDUCE_ADD
:
867 case ISD::VECREDUCE_MUL
:
868 case ISD::VECREDUCE_AND
:
869 case ISD::VECREDUCE_OR
:
870 case ISD::VECREDUCE_XOR
:
871 case ISD::VECREDUCE_SMAX
:
872 case ISD::VECREDUCE_SMIN
:
873 case ISD::VECREDUCE_UMAX
:
874 case ISD::VECREDUCE_UMIN
:
875 case ISD::VECREDUCE_FADD
:
876 case ISD::VECREDUCE_FMUL
:
877 case ISD::VECREDUCE_FMAX
:
878 case ISD::VECREDUCE_FMIN
:
879 return TLI
.expandVecReduce(Op
.getNode(), DAG
);
881 return DAG
.UnrollVectorOp(Op
.getNode());
885 SDValue
VectorLegalizer::ExpandSELECT(SDValue Op
) {
886 // Lower a select instruction where the condition is a scalar and the
887 // operands are vectors. Lower this select to VSELECT and implement it
888 // using XOR AND OR. The selector bit is broadcasted.
889 EVT VT
= Op
.getValueType();
892 SDValue Mask
= Op
.getOperand(0);
893 SDValue Op1
= Op
.getOperand(1);
894 SDValue Op2
= Op
.getOperand(2);
896 assert(VT
.isVector() && !Mask
.getValueType().isVector()
897 && Op1
.getValueType() == Op2
.getValueType() && "Invalid type");
899 // If we can't even use the basic vector operations of
900 // AND,OR,XOR, we will have to scalarize the op.
901 // Notice that the operation may be 'promoted' which means that it is
902 // 'bitcasted' to another type which is handled.
903 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
904 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
905 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
906 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
907 TLI
.getOperationAction(ISD::BUILD_VECTOR
, VT
) == TargetLowering::Expand
)
908 return DAG
.UnrollVectorOp(Op
.getNode());
910 // Generate a mask operand.
911 EVT MaskTy
= VT
.changeVectorElementTypeToInteger();
913 // What is the size of each element in the vector mask.
914 EVT BitTy
= MaskTy
.getScalarType();
916 Mask
= DAG
.getSelect(DL
, BitTy
, Mask
,
917 DAG
.getConstant(APInt::getAllOnesValue(BitTy
.getSizeInBits()), DL
,
919 DAG
.getConstant(0, DL
, BitTy
));
921 // Broadcast the mask so that the entire vector is all-one or all zero.
922 Mask
= DAG
.getSplatBuildVector(MaskTy
, DL
, Mask
);
924 // Bitcast the operands to be the same type as the mask.
925 // This is needed when we select between FP types because
926 // the mask is a vector of integers.
927 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op1
);
928 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op2
);
930 SDValue AllOnes
= DAG
.getConstant(
931 APInt::getAllOnesValue(BitTy
.getSizeInBits()), DL
, MaskTy
);
932 SDValue NotMask
= DAG
.getNode(ISD::XOR
, DL
, MaskTy
, Mask
, AllOnes
);
934 Op1
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op1
, Mask
);
935 Op2
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op2
, NotMask
);
936 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, MaskTy
, Op1
, Op2
);
937 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Val
);
940 SDValue
VectorLegalizer::ExpandSEXTINREG(SDValue Op
) {
941 EVT VT
= Op
.getValueType();
943 // Make sure that the SRA and SHL instructions are available.
944 if (TLI
.getOperationAction(ISD::SRA
, VT
) == TargetLowering::Expand
||
945 TLI
.getOperationAction(ISD::SHL
, VT
) == TargetLowering::Expand
)
946 return DAG
.UnrollVectorOp(Op
.getNode());
949 EVT OrigTy
= cast
<VTSDNode
>(Op
->getOperand(1))->getVT();
951 unsigned BW
= VT
.getScalarSizeInBits();
952 unsigned OrigBW
= OrigTy
.getScalarSizeInBits();
953 SDValue ShiftSz
= DAG
.getConstant(BW
- OrigBW
, DL
, VT
);
955 Op
= Op
.getOperand(0);
956 Op
= DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftSz
);
957 return DAG
.getNode(ISD::SRA
, DL
, VT
, Op
, ShiftSz
);
960 // Generically expand a vector anyext in register to a shuffle of the relevant
961 // lanes into the appropriate locations, with other lanes left undef.
962 SDValue
VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op
) {
964 EVT VT
= Op
.getValueType();
965 int NumElements
= VT
.getVectorNumElements();
966 SDValue Src
= Op
.getOperand(0);
967 EVT SrcVT
= Src
.getValueType();
968 int NumSrcElements
= SrcVT
.getVectorNumElements();
970 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
971 // into a larger vector type.
972 if (SrcVT
.bitsLE(VT
)) {
973 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
974 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
975 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
976 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
979 ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
), Src
,
980 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
983 // Build a base mask of undef shuffles.
984 SmallVector
<int, 16> ShuffleMask
;
985 ShuffleMask
.resize(NumSrcElements
, -1);
987 // Place the extended lanes into the correct locations.
988 int ExtLaneScale
= NumSrcElements
/ NumElements
;
989 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
990 for (int i
= 0; i
< NumElements
; ++i
)
991 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = i
;
994 ISD::BITCAST
, DL
, VT
,
995 DAG
.getVectorShuffle(SrcVT
, DL
, Src
, DAG
.getUNDEF(SrcVT
), ShuffleMask
));
998 SDValue
VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op
) {
1000 EVT VT
= Op
.getValueType();
1001 SDValue Src
= Op
.getOperand(0);
1002 EVT SrcVT
= Src
.getValueType();
1004 // First build an any-extend node which can be legalized above when we
1005 // recurse through it.
1006 Op
= DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
, DL
, VT
, Src
);
1008 // Now we need sign extend. Do this by shifting the elements. Even if these
1009 // aren't legal operations, they have a better chance of being legalized
1010 // without full scalarization than the sign extension does.
1011 unsigned EltWidth
= VT
.getScalarSizeInBits();
1012 unsigned SrcEltWidth
= SrcVT
.getScalarSizeInBits();
1013 SDValue ShiftAmount
= DAG
.getConstant(EltWidth
- SrcEltWidth
, DL
, VT
);
1014 return DAG
.getNode(ISD::SRA
, DL
, VT
,
1015 DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftAmount
),
1019 // Generically expand a vector zext in register to a shuffle of the relevant
1020 // lanes into the appropriate locations, a blend of zero into the high bits,
1021 // and a bitcast to the wider element type.
1022 SDValue
VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op
) {
1024 EVT VT
= Op
.getValueType();
1025 int NumElements
= VT
.getVectorNumElements();
1026 SDValue Src
= Op
.getOperand(0);
1027 EVT SrcVT
= Src
.getValueType();
1028 int NumSrcElements
= SrcVT
.getVectorNumElements();
1030 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1031 // into a larger vector type.
1032 if (SrcVT
.bitsLE(VT
)) {
1033 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
1034 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1035 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
1036 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
1039 ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
), Src
,
1040 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1043 // Build up a zero vector to blend into this one.
1044 SDValue Zero
= DAG
.getConstant(0, DL
, SrcVT
);
1046 // Shuffle the incoming lanes into the correct position, and pull all other
1047 // lanes from the zero vector.
1048 SmallVector
<int, 16> ShuffleMask
;
1049 ShuffleMask
.reserve(NumSrcElements
);
1050 for (int i
= 0; i
< NumSrcElements
; ++i
)
1051 ShuffleMask
.push_back(i
);
1053 int ExtLaneScale
= NumSrcElements
/ NumElements
;
1054 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
1055 for (int i
= 0; i
< NumElements
; ++i
)
1056 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = NumSrcElements
+ i
;
1058 return DAG
.getNode(ISD::BITCAST
, DL
, VT
,
1059 DAG
.getVectorShuffle(SrcVT
, DL
, Zero
, Src
, ShuffleMask
));
1062 static void createBSWAPShuffleMask(EVT VT
, SmallVectorImpl
<int> &ShuffleMask
) {
1063 int ScalarSizeInBytes
= VT
.getScalarSizeInBits() / 8;
1064 for (int I
= 0, E
= VT
.getVectorNumElements(); I
!= E
; ++I
)
1065 for (int J
= ScalarSizeInBytes
- 1; J
>= 0; --J
)
1066 ShuffleMask
.push_back((I
* ScalarSizeInBytes
) + J
);
1069 SDValue
VectorLegalizer::ExpandBSWAP(SDValue Op
) {
1070 EVT VT
= Op
.getValueType();
1072 // Generate a byte wise shuffle mask for the BSWAP.
1073 SmallVector
<int, 16> ShuffleMask
;
1074 createBSWAPShuffleMask(VT
, ShuffleMask
);
1075 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, ShuffleMask
.size());
1077 // Only emit a shuffle if the mask is legal.
1078 if (!TLI
.isShuffleMaskLegal(ShuffleMask
, ByteVT
))
1079 return DAG
.UnrollVectorOp(Op
.getNode());
1082 Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Op
.getOperand(0));
1083 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
), ShuffleMask
);
1084 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1087 SDValue
VectorLegalizer::ExpandBITREVERSE(SDValue Op
) {
1088 EVT VT
= Op
.getValueType();
1090 // If we have the scalar operation, it's probably cheaper to unroll it.
1091 if (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, VT
.getScalarType()))
1092 return DAG
.UnrollVectorOp(Op
.getNode());
1094 // If the vector element width is a whole number of bytes, test if its legal
1095 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1096 // vector. This greatly reduces the number of bit shifts necessary.
1097 unsigned ScalarSizeInBits
= VT
.getScalarSizeInBits();
1098 if (ScalarSizeInBits
> 8 && (ScalarSizeInBits
% 8) == 0) {
1099 SmallVector
<int, 16> BSWAPMask
;
1100 createBSWAPShuffleMask(VT
, BSWAPMask
);
1102 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, BSWAPMask
.size());
1103 if (TLI
.isShuffleMaskLegal(BSWAPMask
, ByteVT
) &&
1104 (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, ByteVT
) ||
1105 (TLI
.isOperationLegalOrCustom(ISD::SHL
, ByteVT
) &&
1106 TLI
.isOperationLegalOrCustom(ISD::SRL
, ByteVT
) &&
1107 TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, ByteVT
) &&
1108 TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, ByteVT
)))) {
1110 Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Op
.getOperand(0));
1111 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
),
1113 Op
= DAG
.getNode(ISD::BITREVERSE
, DL
, ByteVT
, Op
);
1114 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1118 // If we have the appropriate vector bit operations, it is better to use them
1119 // than unrolling and expanding each component.
1120 if (!TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) ||
1121 !TLI
.isOperationLegalOrCustom(ISD::SRL
, VT
) ||
1122 !TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
1123 !TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, VT
))
1124 return DAG
.UnrollVectorOp(Op
.getNode());
1126 // Let LegalizeDAG handle this later.
1130 SDValue
VectorLegalizer::ExpandVSELECT(SDValue Op
) {
1131 // Implement VSELECT in terms of XOR, AND, OR
1132 // on platforms which do not support blend natively.
1135 SDValue Mask
= Op
.getOperand(0);
1136 SDValue Op1
= Op
.getOperand(1);
1137 SDValue Op2
= Op
.getOperand(2);
1139 EVT VT
= Mask
.getValueType();
1141 // If we can't even use the basic vector operations of
1142 // AND,OR,XOR, we will have to scalarize the op.
1143 // Notice that the operation may be 'promoted' which means that it is
1144 // 'bitcasted' to another type which is handled.
1145 // This operation also isn't safe with AND, OR, XOR when the boolean
1146 // type is 0/1 as we need an all ones vector constant to mask with.
1147 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1148 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
1149 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
1150 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
1151 TLI
.getBooleanContents(Op1
.getValueType()) !=
1152 TargetLowering::ZeroOrNegativeOneBooleanContent
)
1153 return DAG
.UnrollVectorOp(Op
.getNode());
1155 // If the mask and the type are different sizes, unroll the vector op. This
1156 // can occur when getSetCCResultType returns something that is different in
1157 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1158 if (VT
.getSizeInBits() != Op1
.getValueSizeInBits())
1159 return DAG
.UnrollVectorOp(Op
.getNode());
1161 // Bitcast the operands to be the same type as the mask.
1162 // This is needed when we select between FP types because
1163 // the mask is a vector of integers.
1164 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op1
);
1165 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op2
);
1167 SDValue AllOnes
= DAG
.getConstant(
1168 APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
, VT
);
1169 SDValue NotMask
= DAG
.getNode(ISD::XOR
, DL
, VT
, Mask
, AllOnes
);
1171 Op1
= DAG
.getNode(ISD::AND
, DL
, VT
, Op1
, Mask
);
1172 Op2
= DAG
.getNode(ISD::AND
, DL
, VT
, Op2
, NotMask
);
1173 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, VT
, Op1
, Op2
);
1174 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Val
);
1177 SDValue
VectorLegalizer::ExpandABS(SDValue Op
) {
1178 // Attempt to expand using TargetLowering.
1180 if (TLI
.expandABS(Op
.getNode(), Result
, DAG
))
1183 // Otherwise go ahead and unroll.
1184 return DAG
.UnrollVectorOp(Op
.getNode());
1187 SDValue
VectorLegalizer::ExpandFP_TO_UINT(SDValue Op
) {
1188 // Attempt to expand using TargetLowering.
1190 if (TLI
.expandFP_TO_UINT(Op
.getNode(), Result
, DAG
))
1193 // Otherwise go ahead and unroll.
1194 return DAG
.UnrollVectorOp(Op
.getNode());
1197 SDValue
VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op
) {
1198 EVT VT
= Op
.getOperand(0).getValueType();
1201 // Attempt to expand using TargetLowering.
1203 if (TLI
.expandUINT_TO_FP(Op
.getNode(), Result
, DAG
))
1206 // Make sure that the SINT_TO_FP and SRL instructions are available.
1207 if (TLI
.getOperationAction(ISD::SINT_TO_FP
, VT
) == TargetLowering::Expand
||
1208 TLI
.getOperationAction(ISD::SRL
, VT
) == TargetLowering::Expand
)
1209 return DAG
.UnrollVectorOp(Op
.getNode());
1211 unsigned BW
= VT
.getScalarSizeInBits();
1212 assert((BW
== 64 || BW
== 32) &&
1213 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1215 SDValue HalfWord
= DAG
.getConstant(BW
/ 2, DL
, VT
);
1217 // Constants to clear the upper part of the word.
1218 // Notice that we can also use SHL+SHR, but using a constant is slightly
1220 uint64_t HWMask
= (BW
== 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1221 SDValue HalfWordMask
= DAG
.getConstant(HWMask
, DL
, VT
);
1223 // Two to the power of half-word-size.
1224 SDValue TWOHW
= DAG
.getConstantFP(1ULL << (BW
/ 2), DL
, Op
.getValueType());
1226 // Clear upper part of LO, lower HI
1227 SDValue HI
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
.getOperand(0), HalfWord
);
1228 SDValue LO
= DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), HalfWordMask
);
1230 // Convert hi and lo to floats
1231 // Convert the hi part back to the upper values
1232 // TODO: Can any fast-math-flags be set on these nodes?
1233 SDValue fHI
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, Op
.getValueType(), HI
);
1234 fHI
= DAG
.getNode(ISD::FMUL
, DL
, Op
.getValueType(), fHI
, TWOHW
);
1235 SDValue fLO
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, Op
.getValueType(), LO
);
1237 // Add the two halves
1238 return DAG
.getNode(ISD::FADD
, DL
, Op
.getValueType(), fHI
, fLO
);
1241 SDValue
VectorLegalizer::ExpandFNEG(SDValue Op
) {
1242 if (TLI
.isOperationLegalOrCustom(ISD::FSUB
, Op
.getValueType())) {
1244 SDValue Zero
= DAG
.getConstantFP(-0.0, DL
, Op
.getValueType());
1245 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1246 return DAG
.getNode(ISD::FSUB
, DL
, Op
.getValueType(),
1247 Zero
, Op
.getOperand(0));
1249 return DAG
.UnrollVectorOp(Op
.getNode());
1252 SDValue
VectorLegalizer::ExpandFSUB(SDValue Op
) {
1253 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1254 // we can defer this to operation legalization where it will be lowered as
1256 EVT VT
= Op
.getValueType();
1257 if (TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
) &&
1258 TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
))
1259 return Op
; // Defer to LegalizeDAG
1261 return DAG
.UnrollVectorOp(Op
.getNode());
1264 SDValue
VectorLegalizer::ExpandCTPOP(SDValue Op
) {
1266 if (TLI
.expandCTPOP(Op
.getNode(), Result
, DAG
))
1269 return DAG
.UnrollVectorOp(Op
.getNode());
1272 SDValue
VectorLegalizer::ExpandCTLZ(SDValue Op
) {
1274 if (TLI
.expandCTLZ(Op
.getNode(), Result
, DAG
))
1277 return DAG
.UnrollVectorOp(Op
.getNode());
1280 SDValue
VectorLegalizer::ExpandCTTZ(SDValue Op
) {
1282 if (TLI
.expandCTTZ(Op
.getNode(), Result
, DAG
))
1285 return DAG
.UnrollVectorOp(Op
.getNode());
1288 SDValue
VectorLegalizer::ExpandFunnelShift(SDValue Op
) {
1290 if (TLI
.expandFunnelShift(Op
.getNode(), Result
, DAG
))
1293 return DAG
.UnrollVectorOp(Op
.getNode());
1296 SDValue
VectorLegalizer::ExpandROT(SDValue Op
) {
1298 if (TLI
.expandROT(Op
.getNode(), Result
, DAG
))
1301 return DAG
.UnrollVectorOp(Op
.getNode());
1304 SDValue
VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op
) {
1305 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Op
.getNode(), DAG
))
1307 return DAG
.UnrollVectorOp(Op
.getNode());
1310 SDValue
VectorLegalizer::ExpandUADDSUBO(SDValue Op
) {
1311 SDValue Result
, Overflow
;
1312 TLI
.expandUADDSUBO(Op
.getNode(), Result
, Overflow
, DAG
);
1314 if (Op
.getResNo() == 0) {
1315 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1318 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1323 SDValue
VectorLegalizer::ExpandSADDSUBO(SDValue Op
) {
1324 SDValue Result
, Overflow
;
1325 TLI
.expandSADDSUBO(Op
.getNode(), Result
, Overflow
, DAG
);
1327 if (Op
.getResNo() == 0) {
1328 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1331 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1336 SDValue
VectorLegalizer::ExpandMULO(SDValue Op
) {
1337 SDValue Result
, Overflow
;
1338 if (!TLI
.expandMULO(Op
.getNode(), Result
, Overflow
, DAG
))
1339 std::tie(Result
, Overflow
) = DAG
.UnrollVectorOverflowOp(Op
.getNode());
1341 if (Op
.getResNo() == 0) {
1342 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1345 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1350 SDValue
VectorLegalizer::ExpandAddSubSat(SDValue Op
) {
1351 if (SDValue Expanded
= TLI
.expandAddSubSat(Op
.getNode(), DAG
))
1353 return DAG
.UnrollVectorOp(Op
.getNode());
1356 SDValue
VectorLegalizer::ExpandFixedPointMul(SDValue Op
) {
1357 if (SDValue Expanded
= TLI
.expandFixedPointMul(Op
.getNode(), DAG
))
1359 return DAG
.UnrollVectorOp(Op
.getNode());
1362 SDValue
VectorLegalizer::ExpandStrictFPOp(SDValue Op
) {
1363 EVT VT
= Op
.getValueType();
1364 EVT EltVT
= VT
.getVectorElementType();
1365 unsigned NumElems
= VT
.getVectorNumElements();
1366 unsigned NumOpers
= Op
.getNumOperands();
1367 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1368 EVT ValueVTs
[] = {EltVT
, MVT::Other
};
1369 SDValue Chain
= Op
.getOperand(0);
1372 SmallVector
<SDValue
, 32> OpValues
;
1373 SmallVector
<SDValue
, 32> OpChains
;
1374 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1375 SmallVector
<SDValue
, 4> Opers
;
1376 SDValue Idx
= DAG
.getConstant(i
, dl
,
1377 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
1379 // The Chain is the first operand.
1380 Opers
.push_back(Chain
);
1382 // Now process the remaining operands.
1383 for (unsigned j
= 1; j
< NumOpers
; ++j
) {
1384 SDValue Oper
= Op
.getOperand(j
);
1385 EVT OperVT
= Oper
.getValueType();
1387 if (OperVT
.isVector())
1388 Oper
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
1389 OperVT
.getVectorElementType(), Oper
, Idx
);
1391 Opers
.push_back(Oper
);
1394 SDValue ScalarOp
= DAG
.getNode(Op
->getOpcode(), dl
, ValueVTs
, Opers
);
1396 OpValues
.push_back(ScalarOp
.getValue(0));
1397 OpChains
.push_back(ScalarOp
.getValue(1));
1400 SDValue Result
= DAG
.getBuildVector(VT
, dl
, OpValues
);
1401 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OpChains
);
1403 AddLegalizedOperand(Op
.getValue(0), Result
);
1404 AddLegalizedOperand(Op
.getValue(1), NewChain
);
1406 return Op
.getResNo() ? NewChain
: Result
;
1409 SDValue
VectorLegalizer::UnrollVSETCC(SDValue Op
) {
1410 EVT VT
= Op
.getValueType();
1411 unsigned NumElems
= VT
.getVectorNumElements();
1412 EVT EltVT
= VT
.getVectorElementType();
1413 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1), CC
= Op
.getOperand(2);
1414 EVT TmpEltVT
= LHS
.getValueType().getVectorElementType();
1416 SmallVector
<SDValue
, 8> Ops(NumElems
);
1417 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1418 SDValue LHSElem
= DAG
.getNode(
1419 ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, LHS
,
1420 DAG
.getConstant(i
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1421 SDValue RHSElem
= DAG
.getNode(
1422 ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, RHS
,
1423 DAG
.getConstant(i
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1424 Ops
[i
] = DAG
.getNode(ISD::SETCC
, dl
,
1425 TLI
.getSetCCResultType(DAG
.getDataLayout(),
1426 *DAG
.getContext(), TmpEltVT
),
1427 LHSElem
, RHSElem
, CC
);
1428 Ops
[i
] = DAG
.getSelect(dl
, EltVT
, Ops
[i
],
1429 DAG
.getConstant(APInt::getAllOnesValue
1430 (EltVT
.getSizeInBits()), dl
, EltVT
),
1431 DAG
.getConstant(0, dl
, EltVT
));
1433 return DAG
.getBuildVector(VT
, dl
, Ops
);
1436 bool SelectionDAG::LegalizeVectors() {
1437 return VectorLegalizer(*this).Run();