[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / StatepointLowering.cpp
blobfad98b6f50dc182cfe0c7219d1c8268c4e6386a2
1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <iterator>
51 #include <tuple>
52 #include <utility>
54 using namespace llvm;
56 #define DEBUG_TYPE "statepoint-lowering"
58 STATISTIC(NumSlotsAllocatedForStatepoints,
59 "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired,
62 "Maximum number of stack slots required for a singe statepoint");
64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65 SelectionDAGBuilder &Builder, uint64_t Value) {
66 SDLoc L = Builder.getCurSDLoc();
67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68 MVT::i64));
69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73 // Consistency check
74 assert(PendingGCRelocateCalls.empty() &&
75 "Trying to visit statepoint before finished processing previous one");
76 Locations.clear();
77 NextSlotToAllocate = 0;
78 // Need to resize this on each safepoint - we need the two to stay in sync and
79 // the clear patterns of a SelectionDAGBuilder have no relation to
80 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
81 AllocatedStackSlots.clear();
82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
85 void StatepointLoweringState::clear() {
86 Locations.clear();
87 AllocatedStackSlots.clear();
88 assert(PendingGCRelocateCalls.empty() &&
89 "cleared before statepoint sequence completed");
92 SDValue
93 StatepointLoweringState::allocateStackSlot(EVT ValueType,
94 SelectionDAGBuilder &Builder) {
95 NumSlotsAllocatedForStatepoints++;
96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
98 unsigned SpillSize = ValueType.getStoreSize();
99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
101 // First look for a previously created stack slot which is not in
102 // use (accounting for the fact arbitrary slots may already be
103 // reserved), or to create a new stack slot and use it.
105 const size_t NumSlots = AllocatedStackSlots.size();
106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
108 assert(AllocatedStackSlots.size() ==
109 Builder.FuncInfo.StatepointStackSlots.size() &&
110 "Broken invariant");
112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115 if (MFI.getObjectSize(FI) == SpillSize) {
116 AllocatedStackSlots.set(NextSlotToAllocate);
117 // TODO: Is ValueType the right thing to use here?
118 return Builder.DAG.getFrameIndex(FI, ValueType);
123 // Couldn't find a free slot, so create a new one:
125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127 MFI.markAsStatepointSpillSlotObjectIndex(FI);
129 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131 assert(AllocatedStackSlots.size() ==
132 Builder.FuncInfo.StatepointStackSlots.size() &&
133 "Broken invariant");
135 StatepointMaxSlotsRequired.updateMax(
136 Builder.FuncInfo.StatepointStackSlots.size());
138 return SpillSlot;
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144 static Optional<int> findPreviousSpillSlot(const Value *Val,
145 SelectionDAGBuilder &Builder,
146 int LookUpDepth) {
147 // Can not look any further - give up now
148 if (LookUpDepth <= 0)
149 return None;
151 // Spill location is known for gc relocates
152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153 const auto &SpillMap =
154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
156 auto It = SpillMap.find(Relocate->getDerivedPtr());
157 if (It == SpillMap.end())
158 return None;
160 return It->second;
163 // Look through bitcast instructions.
164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
167 // Look through phi nodes
168 // All incoming values should have same known stack slot, otherwise result
169 // is unknown.
170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171 Optional<int> MergedResult = None;
173 for (auto &IncomingValue : Phi->incoming_values()) {
174 Optional<int> SpillSlot =
175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176 if (!SpillSlot.hasValue())
177 return None;
179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180 return None;
182 MergedResult = SpillSlot;
184 return MergedResult;
187 // TODO: We can do better for PHI nodes. In cases like this:
188 // ptr = phi(relocated_pointer, not_relocated_pointer)
189 // statepoint(ptr)
190 // We will return that stack slot for ptr is unknown. And later we might
191 // assign different stack slots for ptr and relocated_pointer. This limits
192 // llvm's ability to remove redundant stores.
193 // Unfortunately it's hard to accomplish in current infrastructure.
194 // We use this function to eliminate spill store completely, while
195 // in example we still need to emit store, but instead of any location
196 // we need to use special "preferred" location.
198 // TODO: handle simple updates. If a value is modified and the original
199 // value is no longer live, it would be nice to put the modified value in the
200 // same slot. This allows folding of the memory accesses for some
201 // instructions types (like an increment).
202 // statepoint (i)
203 // i1 = i+1
204 // statepoint (i1)
205 // However we need to be careful for cases like this:
206 // statepoint(i)
207 // i1 = i+1
208 // statepoint(i, i1)
209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210 // put handling of simple modifications in this function like it's done
211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212 // which we visit values is unspecified.
214 // Don't know any information about this instruction
215 return None;
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling. If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
223 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224 SelectionDAGBuilder &Builder) {
225 SDValue Incoming = Builder.getValue(IncomingValue);
227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228 // We won't need to spill this, so no need to check for previously
229 // allocated stack slots
230 return;
233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234 if (OldLocation.getNode())
235 // Duplicates in input
236 return;
238 const int LookUpDepth = 6;
239 Optional<int> Index =
240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241 if (!Index.hasValue())
242 return;
244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
246 auto SlotIt = find(StatepointSlots, *Index);
247 assert(SlotIt != StatepointSlots.end() &&
248 "Value spilled to the unknown stack slot");
250 // This is one of our dedicated lowering slots
251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253 // stack slot already assigned to someone else, can't use it!
254 // TODO: currently we reserve space for gc arguments after doing
255 // normal allocation for deopt arguments. We should reserve for
256 // _all_ deopt and gc arguments, then start allocating. This
257 // will prevent some moves being inserted when vm state changes,
258 // but gc state doesn't between two calls.
259 return;
261 // Reserve this stack slot
262 Builder.StatepointLowering.reserveStackSlot(Offset);
264 // Cache this slot so we find it when going through the normal
265 // assignment loop.
266 SDValue Loc =
267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268 Builder.StatepointLowering.setLocation(Incoming, Loc);
271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
272 /// is not required for correctness. It's purpose is to reduce the size of
273 /// StackMap section. It has no effect on the number of spill slots required
274 /// or the actual lowering.
275 static void
276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
277 SmallVectorImpl<const Value *> &Ptrs,
278 SmallVectorImpl<const GCRelocateInst *> &Relocs,
279 SelectionDAGBuilder &Builder,
280 FunctionLoweringInfo::StatepointSpillMap &SSM) {
281 DenseMap<SDValue, const Value *> Seen;
283 SmallVector<const Value *, 64> NewBases, NewPtrs;
284 SmallVector<const GCRelocateInst *, 64> NewRelocs;
285 for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
286 SDValue SD = Builder.getValue(Ptrs[i]);
287 auto SeenIt = Seen.find(SD);
289 if (SeenIt == Seen.end()) {
290 // Only add non-duplicates
291 NewBases.push_back(Bases[i]);
292 NewPtrs.push_back(Ptrs[i]);
293 NewRelocs.push_back(Relocs[i]);
294 Seen[SD] = Ptrs[i];
295 } else {
296 // Duplicate pointer found, note in SSM and move on:
297 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
300 assert(Bases.size() >= NewBases.size());
301 assert(Ptrs.size() >= NewPtrs.size());
302 assert(Relocs.size() >= NewRelocs.size());
303 Bases = NewBases;
304 Ptrs = NewPtrs;
305 Relocs = NewRelocs;
306 assert(Ptrs.size() == Bases.size());
307 assert(Ptrs.size() == Relocs.size());
310 /// Extract call from statepoint, lower it and return pointer to the
311 /// call node. Also update NodeMap so that getValue(statepoint) will
312 /// reference lowered call result
313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
314 SelectionDAGBuilder::StatepointLoweringInfo &SI,
315 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
316 SDValue ReturnValue, CallEndVal;
317 std::tie(ReturnValue, CallEndVal) =
318 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
319 SDNode *CallEnd = CallEndVal.getNode();
321 // Get a call instruction from the call sequence chain. Tail calls are not
322 // allowed. The following code is essentially reverse engineering X86's
323 // LowerCallTo.
325 // We are expecting DAG to have the following form:
327 // ch = eh_label (only in case of invoke statepoint)
328 // ch, glue = callseq_start ch
329 // ch, glue = X86::Call ch, glue
330 // ch, glue = callseq_end ch, glue
331 // get_return_value ch, glue
333 // get_return_value can either be a sequence of CopyFromReg instructions
334 // to grab the return value from the return register(s), or it can be a LOAD
335 // to load a value returned by reference via a stack slot.
337 bool HasDef = !SI.CLI.RetTy->isVoidTy();
338 if (HasDef) {
339 if (CallEnd->getOpcode() == ISD::LOAD)
340 CallEnd = CallEnd->getOperand(0).getNode();
341 else
342 while (CallEnd->getOpcode() == ISD::CopyFromReg)
343 CallEnd = CallEnd->getOperand(0).getNode();
346 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
347 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
350 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
351 FrameIndexSDNode &FI) {
352 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
353 auto MMOFlags = MachineMemOperand::MOStore |
354 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
355 auto &MFI = MF.getFrameInfo();
356 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
357 MFI.getObjectSize(FI.getIndex()),
358 MFI.getObjectAlignment(FI.getIndex()));
361 /// Spill a value incoming to the statepoint. It might be either part of
362 /// vmstate
363 /// or gcstate. In both cases unconditionally spill it on the stack unless it
364 /// is a null constant. Return pair with first element being frame index
365 /// containing saved value and second element with outgoing chain from the
366 /// emitted store
367 static std::tuple<SDValue, SDValue, MachineMemOperand*>
368 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
369 SelectionDAGBuilder &Builder) {
370 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
371 MachineMemOperand* MMO = nullptr;
373 // Emit new store if we didn't do it for this ptr before
374 if (!Loc.getNode()) {
375 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
376 Builder);
377 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
378 // We use TargetFrameIndex so that isel will not select it into LEA
379 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
381 // Right now we always allocate spill slots that are of the same
382 // size as the value we're about to spill (the size of spillee can
383 // vary since we spill vectors of pointers too). At some point we
384 // can consider allowing spills of smaller values to larger slots
385 // (i.e. change the '==' in the assert below to a '>=').
386 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
387 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
388 "Bad spill: stack slot does not match!");
390 // Note: Using the alignment of the spill slot (rather than the abi or
391 // preferred alignment) is required for correctness when dealing with spill
392 // slots with preferred alignments larger than frame alignment..
393 auto &MF = Builder.DAG.getMachineFunction();
394 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
395 auto *StoreMMO =
396 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
397 MFI.getObjectSize(Index),
398 MFI.getObjectAlignment(Index));
399 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
400 StoreMMO);
402 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
404 Builder.StatepointLowering.setLocation(Incoming, Loc);
407 assert(Loc.getNode());
408 return std::make_tuple(Loc, Chain, MMO);
411 /// Lower a single value incoming to a statepoint node. This value can be
412 /// either a deopt value or a gc value, the handling is the same. We special
413 /// case constants and allocas, then fall back to spilling if required.
414 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
415 SmallVectorImpl<SDValue> &Ops,
416 SmallVectorImpl<MachineMemOperand*> &MemRefs,
417 SelectionDAGBuilder &Builder) {
418 // Note: We know all of these spills are independent, but don't bother to
419 // exploit that chain wise. DAGCombine will happily do so as needed, so
420 // doing it here would be a small compile time win at most.
421 SDValue Chain = Builder.getRoot();
423 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
424 // If the original value was a constant, make sure it gets recorded as
425 // such in the stackmap. This is required so that the consumer can
426 // parse any internal format to the deopt state. It also handles null
427 // pointers and other constant pointers in GC states. Note the constant
428 // vectors do not appear to actually hit this path and that anything larger
429 // than an i64 value (not type!) will fail asserts here.
430 pushStackMapConstant(Ops, Builder, C->getSExtValue());
431 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
432 // This handles allocas as arguments to the statepoint (this is only
433 // really meaningful for a deopt value. For GC, we'd be trying to
434 // relocate the address of the alloca itself?)
435 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
436 "Incoming value is a frame index!");
437 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
438 Builder.getFrameIndexTy()));
440 auto &MF = Builder.DAG.getMachineFunction();
441 auto *MMO = getMachineMemOperand(MF, *FI);
442 MemRefs.push_back(MMO);
444 } else if (LiveInOnly) {
445 // If this value is live in (not live-on-return, or live-through), we can
446 // treat it the same way patchpoint treats it's "live in" values. We'll
447 // end up folding some of these into stack references, but they'll be
448 // handled by the register allocator. Note that we do not have the notion
449 // of a late use so these values might be placed in registers which are
450 // clobbered by the call. This is fine for live-in.
451 Ops.push_back(Incoming);
452 } else {
453 // Otherwise, locate a spill slot and explicitly spill it so it
454 // can be found by the runtime later. We currently do not support
455 // tracking values through callee saved registers to their eventual
456 // spill location. This would be a useful optimization, but would
457 // need to be optional since it requires a lot of complexity on the
458 // runtime side which not all would support.
459 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
460 Ops.push_back(std::get<0>(Res));
461 if (auto *MMO = std::get<2>(Res))
462 MemRefs.push_back(MMO);
463 Chain = std::get<1>(Res);;
466 Builder.DAG.setRoot(Chain);
469 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
470 /// lowering is described in lowerIncomingStatepointValue. This function is
471 /// responsible for lowering everything in the right position and playing some
472 /// tricks to avoid redundant stack manipulation where possible. On
473 /// completion, 'Ops' will contain ready to use operands for machine code
474 /// statepoint. The chain nodes will have already been created and the DAG root
475 /// will be set to the last value spilled (if any were).
476 static void
477 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
478 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI,
479 SelectionDAGBuilder &Builder) {
480 // Lower the deopt and gc arguments for this statepoint. Layout will be:
481 // deopt argument length, deopt arguments.., gc arguments...
482 #ifndef NDEBUG
483 if (auto *GFI = Builder.GFI) {
484 // Check that each of the gc pointer and bases we've gotten out of the
485 // safepoint is something the strategy thinks might be a pointer (or vector
486 // of pointers) into the GC heap. This is basically just here to help catch
487 // errors during statepoint insertion. TODO: This should actually be in the
488 // Verifier, but we can't get to the GCStrategy from there (yet).
489 GCStrategy &S = GFI->getStrategy();
490 for (const Value *V : SI.Bases) {
491 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
492 if (Opt.hasValue()) {
493 assert(Opt.getValue() &&
494 "non gc managed base pointer found in statepoint");
497 for (const Value *V : SI.Ptrs) {
498 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
499 if (Opt.hasValue()) {
500 assert(Opt.getValue() &&
501 "non gc managed derived pointer found in statepoint");
504 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
505 } else {
506 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
507 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
509 #endif
511 // Figure out what lowering strategy we're going to use for each part
512 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
513 // as "live-through". A "live-through" variable is one which is "live-in",
514 // "live-out", and live throughout the lifetime of the call (i.e. we can find
515 // it from any PC within the transitive callee of the statepoint). In
516 // particular, if the callee spills callee preserved registers we may not
517 // be able to find a value placed in that register during the call. This is
518 // fine for live-out, but not for live-through. If we were willing to make
519 // assumptions about the code generator producing the callee, we could
520 // potentially allow live-through values in callee saved registers.
521 const bool LiveInDeopt =
522 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
524 auto isGCValue =[&](const Value *V) {
525 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
528 // Before we actually start lowering (and allocating spill slots for values),
529 // reserve any stack slots which we judge to be profitable to reuse for a
530 // particular value. This is purely an optimization over the code below and
531 // doesn't change semantics at all. It is important for performance that we
532 // reserve slots for both deopt and gc values before lowering either.
533 for (const Value *V : SI.DeoptState) {
534 if (!LiveInDeopt || isGCValue(V))
535 reservePreviousStackSlotForValue(V, Builder);
537 for (unsigned i = 0; i < SI.Bases.size(); ++i) {
538 reservePreviousStackSlotForValue(SI.Bases[i], Builder);
539 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
542 // First, prefix the list with the number of unique values to be
543 // lowered. Note that this is the number of *Values* not the
544 // number of SDValues required to lower them.
545 const int NumVMSArgs = SI.DeoptState.size();
546 pushStackMapConstant(Ops, Builder, NumVMSArgs);
548 // The vm state arguments are lowered in an opaque manner. We do not know
549 // what type of values are contained within.
550 for (const Value *V : SI.DeoptState) {
551 SDValue Incoming;
552 // If this is a function argument at a static frame index, generate it as
553 // the frame index.
554 if (const Argument *Arg = dyn_cast<Argument>(V)) {
555 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
556 if (FI != INT_MAX)
557 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
559 if (!Incoming.getNode())
560 Incoming = Builder.getValue(V);
561 const bool LiveInValue = LiveInDeopt && !isGCValue(V);
562 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder);
565 // Finally, go ahead and lower all the gc arguments. There's no prefixed
566 // length for this one. After lowering, we'll have the base and pointer
567 // arrays interwoven with each (lowered) base pointer immediately followed by
568 // it's (lowered) derived pointer. i.e
569 // (base[0], ptr[0], base[1], ptr[1], ...)
570 for (unsigned i = 0; i < SI.Bases.size(); ++i) {
571 const Value *Base = SI.Bases[i];
572 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
573 Ops, MemRefs, Builder);
575 const Value *Ptr = SI.Ptrs[i];
576 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
577 Ops, MemRefs, Builder);
580 // If there are any explicit spill slots passed to the statepoint, record
581 // them, but otherwise do not do anything special. These are user provided
582 // allocas and give control over placement to the consumer. In this case,
583 // it is the contents of the slot which may get updated, not the pointer to
584 // the alloca
585 for (Value *V : SI.GCArgs) {
586 SDValue Incoming = Builder.getValue(V);
587 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
588 // This handles allocas as arguments to the statepoint
589 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
590 "Incoming value is a frame index!");
591 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
592 Builder.getFrameIndexTy()));
594 auto &MF = Builder.DAG.getMachineFunction();
595 auto *MMO = getMachineMemOperand(MF, *FI);
596 MemRefs.push_back(MMO);
600 // Record computed locations for all lowered values.
601 // This can not be embedded in lowering loops as we need to record *all*
602 // values, while previous loops account only values with unique SDValues.
603 const Instruction *StatepointInstr = SI.StatepointInstr;
604 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
606 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
607 const Value *V = Relocate->getDerivedPtr();
608 SDValue SDV = Builder.getValue(V);
609 SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
611 if (Loc.getNode()) {
612 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
613 } else {
614 // Record value as visited, but not spilled. This is case for allocas
615 // and constants. For this values we can avoid emitting spill load while
616 // visiting corresponding gc_relocate.
617 // Actually we do not need to record them in this map at all.
618 // We do this only to check that we are not relocating any unvisited
619 // value.
620 SpillMap.SlotMap[V] = None;
622 // Default llvm mechanisms for exporting values which are used in
623 // different basic blocks does not work for gc relocates.
624 // Note that it would be incorrect to teach llvm that all relocates are
625 // uses of the corresponding values so that it would automatically
626 // export them. Relocates of the spilled values does not use original
627 // value.
628 if (Relocate->getParent() != StatepointInstr->getParent())
629 Builder.ExportFromCurrentBlock(V);
634 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
635 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
636 // The basic scheme here is that information about both the original call and
637 // the safepoint is encoded in the CallInst. We create a temporary call and
638 // lower it, then reverse engineer the calling sequence.
640 NumOfStatepoints++;
641 // Clear state
642 StatepointLowering.startNewStatepoint(*this);
644 #ifndef NDEBUG
645 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
646 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
647 for (auto *Reloc : SI.GCRelocates)
648 if (Reloc->getParent() == SI.StatepointInstr->getParent())
649 StatepointLowering.scheduleRelocCall(*Reloc);
650 #endif
652 // Remove any redundant llvm::Values which map to the same SDValue as another
653 // input. Also has the effect of removing duplicates in the original
654 // llvm::Value input list as well. This is a useful optimization for
655 // reducing the size of the StackMap section. It has no other impact.
656 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
657 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
658 assert(SI.Bases.size() == SI.Ptrs.size() &&
659 SI.Ptrs.size() == SI.GCRelocates.size());
661 // Lower statepoint vmstate and gcstate arguments
662 SmallVector<SDValue, 10> LoweredMetaArgs;
663 SmallVector<MachineMemOperand*, 16> MemRefs;
664 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
666 // Now that we've emitted the spills, we need to update the root so that the
667 // call sequence is ordered correctly.
668 SI.CLI.setChain(getRoot());
670 // Get call node, we will replace it later with statepoint
671 SDValue ReturnVal;
672 SDNode *CallNode;
673 std::tie(ReturnVal, CallNode) =
674 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
676 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
677 // nodes with all the appropriate arguments and return values.
679 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
680 SDValue Chain = CallNode->getOperand(0);
682 SDValue Glue;
683 bool CallHasIncomingGlue = CallNode->getGluedNode();
684 if (CallHasIncomingGlue) {
685 // Glue is always last operand
686 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
689 // Build the GC_TRANSITION_START node if necessary.
691 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
692 // order in which they appear in the call to the statepoint intrinsic. If
693 // any of the operands is a pointer-typed, that operand is immediately
694 // followed by a SRCVALUE for the pointer that may be used during lowering
695 // (e.g. to form MachinePointerInfo values for loads/stores).
696 const bool IsGCTransition =
697 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
698 (uint64_t)StatepointFlags::GCTransition;
699 if (IsGCTransition) {
700 SmallVector<SDValue, 8> TSOps;
702 // Add chain
703 TSOps.push_back(Chain);
705 // Add GC transition arguments
706 for (const Value *V : SI.GCTransitionArgs) {
707 TSOps.push_back(getValue(V));
708 if (V->getType()->isPointerTy())
709 TSOps.push_back(DAG.getSrcValue(V));
712 // Add glue if necessary
713 if (CallHasIncomingGlue)
714 TSOps.push_back(Glue);
716 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
718 SDValue GCTransitionStart =
719 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
721 Chain = GCTransitionStart.getValue(0);
722 Glue = GCTransitionStart.getValue(1);
725 // TODO: Currently, all of these operands are being marked as read/write in
726 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
727 // and flags to be read-only.
728 SmallVector<SDValue, 40> Ops;
730 // Add the <id> and <numBytes> constants.
731 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
732 Ops.push_back(
733 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
735 // Calculate and push starting position of vmstate arguments
736 // Get number of arguments incoming directly into call node
737 unsigned NumCallRegArgs =
738 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
739 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
741 // Add call target
742 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
743 Ops.push_back(CallTarget);
745 // Add call arguments
746 // Get position of register mask in the call
747 SDNode::op_iterator RegMaskIt;
748 if (CallHasIncomingGlue)
749 RegMaskIt = CallNode->op_end() - 2;
750 else
751 RegMaskIt = CallNode->op_end() - 1;
752 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
754 // Add a constant argument for the calling convention
755 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
757 // Add a constant argument for the flags
758 uint64_t Flags = SI.StatepointFlags;
759 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
760 "Unknown flag used");
761 pushStackMapConstant(Ops, *this, Flags);
763 // Insert all vmstate and gcstate arguments
764 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
766 // Add register mask from call node
767 Ops.push_back(*RegMaskIt);
769 // Add chain
770 Ops.push_back(Chain);
772 // Same for the glue, but we add it only if original call had it
773 if (Glue.getNode())
774 Ops.push_back(Glue);
776 // Compute return values. Provide a glue output since we consume one as
777 // input. This allows someone else to chain off us as needed.
778 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
780 MachineSDNode *StatepointMCNode =
781 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
782 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
784 SDNode *SinkNode = StatepointMCNode;
786 // Build the GC_TRANSITION_END node if necessary.
788 // See the comment above regarding GC_TRANSITION_START for the layout of
789 // the operands to the GC_TRANSITION_END node.
790 if (IsGCTransition) {
791 SmallVector<SDValue, 8> TEOps;
793 // Add chain
794 TEOps.push_back(SDValue(StatepointMCNode, 0));
796 // Add GC transition arguments
797 for (const Value *V : SI.GCTransitionArgs) {
798 TEOps.push_back(getValue(V));
799 if (V->getType()->isPointerTy())
800 TEOps.push_back(DAG.getSrcValue(V));
803 // Add glue
804 TEOps.push_back(SDValue(StatepointMCNode, 1));
806 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
808 SDValue GCTransitionStart =
809 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
811 SinkNode = GCTransitionStart.getNode();
814 // Replace original call
815 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
816 // Remove original call node
817 DAG.DeleteNode(CallNode);
819 // DON'T set the root - under the assumption that it's already set past the
820 // inserted node we created.
822 // TODO: A better future implementation would be to emit a single variable
823 // argument, variable return value STATEPOINT node here and then hookup the
824 // return value of each gc.relocate to the respective output of the
825 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
826 // to actually be possible today.
828 return ReturnVal;
831 void
832 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
833 const BasicBlock *EHPadBB /*= nullptr*/) {
834 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
835 "anyregcc is not supported on statepoints!");
837 #ifndef NDEBUG
838 // If this is a malformed statepoint, report it early to simplify debugging.
839 // This should catch any IR level mistake that's made when constructing or
840 // transforming statepoints.
841 ISP.verify();
843 // Check that the associated GCStrategy expects to encounter statepoints.
844 assert(GFI->getStrategy().useStatepoints() &&
845 "GCStrategy does not expect to encounter statepoints");
846 #endif
848 SDValue ActualCallee;
850 if (ISP.getNumPatchBytes() > 0) {
851 // If we've been asked to emit a nop sequence instead of a call instruction
852 // for this statepoint then don't lower the call target, but use a constant
853 // `null` instead. Not lowering the call target lets statepoint clients get
854 // away without providing a physical address for the symbolic call target at
855 // link time.
857 const auto &TLI = DAG.getTargetLoweringInfo();
858 const auto &DL = DAG.getDataLayout();
860 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
861 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
862 } else {
863 ActualCallee = getValue(ISP.getCalledValue());
866 StatepointLoweringInfo SI(DAG);
867 populateCallLoweringInfo(SI.CLI, ISP.getCall(),
868 ImmutableStatepoint::CallArgsBeginPos,
869 ISP.getNumCallArgs(), ActualCallee,
870 ISP.getActualReturnType(), false /* IsPatchPoint */);
872 for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
873 SI.GCRelocates.push_back(Relocate);
874 SI.Bases.push_back(Relocate->getBasePtr());
875 SI.Ptrs.push_back(Relocate->getDerivedPtr());
878 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
879 SI.StatepointInstr = ISP.getInstruction();
880 SI.GCTransitionArgs =
881 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
882 SI.ID = ISP.getID();
883 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
884 SI.StatepointFlags = ISP.getFlags();
885 SI.NumPatchBytes = ISP.getNumPatchBytes();
886 SI.EHPadBB = EHPadBB;
888 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
890 // Export the result value if needed
891 const GCResultInst *GCResult = ISP.getGCResult();
892 Type *RetTy = ISP.getActualReturnType();
893 if (!RetTy->isVoidTy() && GCResult) {
894 if (GCResult->getParent() != ISP.getCall()->getParent()) {
895 // Result value will be used in a different basic block so we need to
896 // export it now. Default exporting mechanism will not work here because
897 // statepoint call has a different type than the actual call. It means
898 // that by default llvm will create export register of the wrong type
899 // (always i32 in our case). So instead we need to create export register
900 // with correct type manually.
901 // TODO: To eliminate this problem we can remove gc.result intrinsics
902 // completely and make statepoint call to return a tuple.
903 unsigned Reg = FuncInfo.CreateRegs(RetTy);
904 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
905 DAG.getDataLayout(), Reg, RetTy,
906 ISP.getCall()->getCallingConv());
907 SDValue Chain = DAG.getEntryNode();
909 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
910 PendingExports.push_back(Chain);
911 FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
912 } else {
913 // Result value will be used in a same basic block. Don't export it or
914 // perform any explicit register copies.
915 // We'll replace the actuall call node shortly. gc_result will grab
916 // this value.
917 setValue(ISP.getInstruction(), ReturnValue);
919 } else {
920 // The token value is never used from here on, just generate a poison value
921 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
925 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
926 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
927 bool VarArgDisallowed, bool ForceVoidReturnTy) {
928 StatepointLoweringInfo SI(DAG);
929 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
930 populateCallLoweringInfo(
931 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
932 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
933 false);
934 if (!VarArgDisallowed)
935 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
937 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
939 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
941 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
942 SI.ID = SD.StatepointID.getValueOr(DefaultID);
943 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
945 SI.DeoptState =
946 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
947 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
948 SI.EHPadBB = EHPadBB;
950 // NB! The GC arguments are deliberately left empty.
952 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
953 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
954 setValue(Call, ReturnVal);
958 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
959 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
960 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
961 /* VarArgDisallowed = */ false,
962 /* ForceVoidReturnTy = */ false);
965 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
966 // The result value of the gc_result is simply the result of the actual
967 // call. We've already emitted this, so just grab the value.
968 const Instruction *I = CI.getStatepoint();
970 if (I->getParent() != CI.getParent()) {
971 // Statepoint is in different basic block so we should have stored call
972 // result in a virtual register.
973 // We can not use default getValue() functionality to copy value from this
974 // register because statepoint and actual call return types can be
975 // different, and getValue() will use CopyFromReg of the wrong type,
976 // which is always i32 in our case.
977 PointerType *CalleeType = cast<PointerType>(
978 ImmutableStatepoint(I).getCalledValue()->getType());
979 Type *RetTy =
980 cast<FunctionType>(CalleeType->getElementType())->getReturnType();
981 SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
983 assert(CopyFromReg.getNode());
984 setValue(&CI, CopyFromReg);
985 } else {
986 setValue(&CI, getValue(I));
990 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
991 #ifndef NDEBUG
992 // Consistency check
993 // We skip this check for relocates not in the same basic block as their
994 // statepoint. It would be too expensive to preserve validation info through
995 // different basic blocks.
996 if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
997 StatepointLowering.relocCallVisited(Relocate);
999 auto *Ty = Relocate.getType()->getScalarType();
1000 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1001 assert(*IsManaged && "Non gc managed pointer relocated!");
1002 #endif
1004 const Value *DerivedPtr = Relocate.getDerivedPtr();
1005 SDValue SD = getValue(DerivedPtr);
1007 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
1008 auto SlotIt = SpillMap.find(DerivedPtr);
1009 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
1010 Optional<int> DerivedPtrLocation = SlotIt->second;
1012 // We didn't need to spill these special cases (constants and allocas).
1013 // See the handling in spillIncomingValueForStatepoint for detail.
1014 if (!DerivedPtrLocation) {
1015 setValue(&Relocate, SD);
1016 return;
1019 unsigned Index = *DerivedPtrLocation;
1020 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1022 // Note: We know all of these reloads are independent, but don't bother to
1023 // exploit that chain wise. DAGCombine will happily do so as needed, so
1024 // doing it here would be a small compile time win at most.
1025 SDValue Chain = getRoot();
1027 auto &MF = DAG.getMachineFunction();
1028 auto &MFI = MF.getFrameInfo();
1029 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1030 auto *LoadMMO =
1031 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1032 MFI.getObjectSize(Index),
1033 MFI.getObjectAlignment(Index));
1035 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1036 Relocate.getType());
1038 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1039 SpillSlot, LoadMMO);
1041 DAG.setRoot(SpillLoad.getValue(1));
1043 assert(SpillLoad.getNode());
1044 setValue(&Relocate, SpillLoad);
1047 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1048 const auto &TLI = DAG.getTargetLoweringInfo();
1049 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1050 TLI.getPointerTy(DAG.getDataLayout()));
1052 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1053 // call. We also do not lower the return value to any virtual register, and
1054 // change the immediately following return to a trap instruction.
1055 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1056 /* VarArgDisallowed = */ true,
1057 /* ForceVoidReturnTy = */ true);
1060 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1061 // We do not lower the return value from llvm.deoptimize to any virtual
1062 // register, and change the immediately following return to a trap
1063 // instruction.
1064 if (DAG.getTarget().Options.TrapUnreachable)
1065 DAG.setRoot(
1066 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));