[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blobf4438d41f65355f5d90515b606dde22345ff0af4
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39 : TargetLoweringBase(tm) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42 return nullptr;
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52 SDValue &Chain) const {
53 const Function &F = DAG.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
57 // call sequence.
58 AttributeList CallerAttrs = F.getAttributes();
59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60 .removeAttribute(Attribute::NoAlias)
61 .removeAttribute(Attribute::NonNull)
62 .hasAttributes())
63 return false;
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68 return false;
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node, Chain);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75 const uint32_t *CallerPreservedMask,
76 const SmallVectorImpl<CCValAssign> &ArgLocs,
77 const SmallVectorImpl<SDValue> &OutVals) const {
78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79 const CCValAssign &ArgLoc = ArgLocs[I];
80 if (!ArgLoc.isRegLoc())
81 continue;
82 Register Reg = ArgLoc.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85 continue;
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value = OutVals[I];
90 if (Value->getOpcode() != ISD::CopyFromReg)
91 return false;
92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94 return false;
96 return true;
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102 unsigned ArgIdx) {
103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113 Alignment = Call->getParamAlignment(ArgIdx);
114 ByValType = nullptr;
115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116 ByValType = Call->getParamByValType(ArgIdx);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123 ArrayRef<SDValue> Ops,
124 MakeLibCallOptions CallOptions,
125 const SDLoc &dl) const {
126 TargetLowering::ArgListTy Args;
127 Args.reserve(Ops.size());
129 TargetLowering::ArgListEntry Entry;
130 for (SDValue Op : Ops) {
131 Entry.Node = Op;
132 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
133 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(),
134 CallOptions.IsSExt);
135 Entry.IsZExt = !Entry.IsSExt;
136 Args.push_back(Entry);
139 if (LC == RTLIB::UNKNOWN_LIBCALL)
140 report_fatal_error("Unsupported library call operation!");
141 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
142 getPointerTy(DAG.getDataLayout()));
144 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
145 TargetLowering::CallLoweringInfo CLI(DAG);
146 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
147 CLI.setDebugLoc(dl)
148 .setChain(DAG.getEntryNode())
149 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
150 .setNoReturn(CallOptions.DoesNotReturn)
151 .setDiscardResult(!CallOptions.IsReturnValueUsed)
152 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
153 .setSExtResult(signExtend)
154 .setZExtResult(!signExtend);
155 return LowerCallTo(CLI);
158 bool
159 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
160 unsigned Limit, uint64_t Size,
161 unsigned DstAlign, unsigned SrcAlign,
162 bool IsMemset,
163 bool ZeroMemset,
164 bool MemcpyStrSrc,
165 bool AllowOverlap,
166 unsigned DstAS, unsigned SrcAS,
167 const AttributeList &FuncAttributes) const {
168 // If 'SrcAlign' is zero, that means the memory operation does not need to
169 // load the value, i.e. memset or memcpy from constant string. Otherwise,
170 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
171 // is the specified alignment of the memory operation. If it is zero, that
172 // means it's possible to change the alignment of the destination.
173 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
174 // not need to be loaded.
175 if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
176 return false;
178 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
179 IsMemset, ZeroMemset, MemcpyStrSrc,
180 FuncAttributes);
182 if (VT == MVT::Other) {
183 // Use the largest integer type whose alignment constraints are satisfied.
184 // We only need to check DstAlign here as SrcAlign is always greater or
185 // equal to DstAlign (or zero).
186 VT = MVT::i64;
187 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
188 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
189 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
190 assert(VT.isInteger());
192 // Find the largest legal integer type.
193 MVT LVT = MVT::i64;
194 while (!isTypeLegal(LVT))
195 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
196 assert(LVT.isInteger());
198 // If the type we've chosen is larger than the largest legal integer type
199 // then use that instead.
200 if (VT.bitsGT(LVT))
201 VT = LVT;
204 unsigned NumMemOps = 0;
205 while (Size != 0) {
206 unsigned VTSize = VT.getSizeInBits() / 8;
207 while (VTSize > Size) {
208 // For now, only use non-vector load / store's for the left-over pieces.
209 EVT NewVT = VT;
210 unsigned NewVTSize;
212 bool Found = false;
213 if (VT.isVector() || VT.isFloatingPoint()) {
214 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
215 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
216 isSafeMemOpType(NewVT.getSimpleVT()))
217 Found = true;
218 else if (NewVT == MVT::i64 &&
219 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
220 isSafeMemOpType(MVT::f64)) {
221 // i64 is usually not legal on 32-bit targets, but f64 may be.
222 NewVT = MVT::f64;
223 Found = true;
227 if (!Found) {
228 do {
229 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
230 if (NewVT == MVT::i8)
231 break;
232 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
234 NewVTSize = NewVT.getSizeInBits() / 8;
236 // If the new VT cannot cover all of the remaining bits, then consider
237 // issuing a (or a pair of) unaligned and overlapping load / store.
238 bool Fast;
239 if (NumMemOps && AllowOverlap && NewVTSize < Size &&
240 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
241 MachineMemOperand::MONone, &Fast) &&
242 Fast)
243 VTSize = Size;
244 else {
245 VT = NewVT;
246 VTSize = NewVTSize;
250 if (++NumMemOps > Limit)
251 return false;
253 MemOps.push_back(VT);
254 Size -= VTSize;
257 return true;
260 /// Soften the operands of a comparison. This code is shared among BR_CC,
261 /// SELECT_CC, and SETCC handlers.
262 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
263 SDValue &NewLHS, SDValue &NewRHS,
264 ISD::CondCode &CCCode,
265 const SDLoc &dl) const {
266 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
267 && "Unsupported setcc type!");
269 // Expand into one or more soft-fp libcall(s).
270 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
271 bool ShouldInvertCC = false;
272 switch (CCCode) {
273 case ISD::SETEQ:
274 case ISD::SETOEQ:
275 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
276 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
277 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
278 break;
279 case ISD::SETNE:
280 case ISD::SETUNE:
281 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
282 (VT == MVT::f64) ? RTLIB::UNE_F64 :
283 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
284 break;
285 case ISD::SETGE:
286 case ISD::SETOGE:
287 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
288 (VT == MVT::f64) ? RTLIB::OGE_F64 :
289 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
290 break;
291 case ISD::SETLT:
292 case ISD::SETOLT:
293 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
294 (VT == MVT::f64) ? RTLIB::OLT_F64 :
295 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
296 break;
297 case ISD::SETLE:
298 case ISD::SETOLE:
299 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
300 (VT == MVT::f64) ? RTLIB::OLE_F64 :
301 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
302 break;
303 case ISD::SETGT:
304 case ISD::SETOGT:
305 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
306 (VT == MVT::f64) ? RTLIB::OGT_F64 :
307 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
308 break;
309 case ISD::SETUO:
310 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
311 (VT == MVT::f64) ? RTLIB::UO_F64 :
312 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
313 break;
314 case ISD::SETO:
315 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
316 (VT == MVT::f64) ? RTLIB::O_F64 :
317 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
318 break;
319 case ISD::SETONE:
320 // SETONE = SETOLT | SETOGT
321 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
322 (VT == MVT::f64) ? RTLIB::OLT_F64 :
323 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
324 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
325 (VT == MVT::f64) ? RTLIB::OGT_F64 :
326 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
327 break;
328 case ISD::SETUEQ:
329 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
330 (VT == MVT::f64) ? RTLIB::UO_F64 :
331 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
332 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
333 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
334 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
335 break;
336 default:
337 // Invert CC for unordered comparisons
338 ShouldInvertCC = true;
339 switch (CCCode) {
340 case ISD::SETULT:
341 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
342 (VT == MVT::f64) ? RTLIB::OGE_F64 :
343 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
344 break;
345 case ISD::SETULE:
346 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347 (VT == MVT::f64) ? RTLIB::OGT_F64 :
348 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349 break;
350 case ISD::SETUGT:
351 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
352 (VT == MVT::f64) ? RTLIB::OLE_F64 :
353 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
354 break;
355 case ISD::SETUGE:
356 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
357 (VT == MVT::f64) ? RTLIB::OLT_F64 :
358 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
359 break;
360 default: llvm_unreachable("Do not know how to soften this setcc!");
364 // Use the target specific return value for comparions lib calls.
365 EVT RetVT = getCmpLibcallReturnType();
366 SDValue Ops[2] = {NewLHS, NewRHS};
367 TargetLowering::MakeLibCallOptions CallOptions;
368 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
369 NewRHS = DAG.getConstant(0, dl, RetVT);
371 CCCode = getCmpLibcallCC(LC1);
372 if (ShouldInvertCC)
373 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
375 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
376 SDValue Tmp = DAG.getNode(
377 ISD::SETCC, dl,
378 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
379 NewLHS, NewRHS, DAG.getCondCode(CCCode));
380 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
381 NewLHS = DAG.getNode(
382 ISD::SETCC, dl,
383 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
384 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
385 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
386 NewRHS = SDValue();
390 /// Return the entry encoding for a jump table in the current function. The
391 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
392 unsigned TargetLowering::getJumpTableEncoding() const {
393 // In non-pic modes, just use the address of a block.
394 if (!isPositionIndependent())
395 return MachineJumpTableInfo::EK_BlockAddress;
397 // In PIC mode, if the target supports a GPRel32 directive, use it.
398 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
399 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
401 // Otherwise, use a label difference.
402 return MachineJumpTableInfo::EK_LabelDifference32;
405 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
406 SelectionDAG &DAG) const {
407 // If our PIC model is GP relative, use the global offset table as the base.
408 unsigned JTEncoding = getJumpTableEncoding();
410 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
411 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
412 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
414 return Table;
417 /// This returns the relocation base for the given PIC jumptable, the same as
418 /// getPICJumpTableRelocBase, but as an MCExpr.
419 const MCExpr *
420 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
421 unsigned JTI,MCContext &Ctx) const{
422 // The normal PIC reloc base is the label at the start of the jump table.
423 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
426 bool
427 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
428 const TargetMachine &TM = getTargetMachine();
429 const GlobalValue *GV = GA->getGlobal();
431 // If the address is not even local to this DSO we will have to load it from
432 // a got and then add the offset.
433 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
434 return false;
436 // If the code is position independent we will have to add a base register.
437 if (isPositionIndependent())
438 return false;
440 // Otherwise we can do it.
441 return true;
444 //===----------------------------------------------------------------------===//
445 // Optimization Methods
446 //===----------------------------------------------------------------------===//
448 /// If the specified instruction has a constant integer operand and there are
449 /// bits set in that constant that are not demanded, then clear those bits and
450 /// return true.
451 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
452 TargetLoweringOpt &TLO) const {
453 SDLoc DL(Op);
454 unsigned Opcode = Op.getOpcode();
456 // Do target-specific constant optimization.
457 if (targetShrinkDemandedConstant(Op, Demanded, TLO))
458 return TLO.New.getNode();
460 // FIXME: ISD::SELECT, ISD::SELECT_CC
461 switch (Opcode) {
462 default:
463 break;
464 case ISD::XOR:
465 case ISD::AND:
466 case ISD::OR: {
467 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
468 if (!Op1C)
469 return false;
471 // If this is a 'not' op, don't touch it because that's a canonical form.
472 const APInt &C = Op1C->getAPIntValue();
473 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
474 return false;
476 if (!C.isSubsetOf(Demanded)) {
477 EVT VT = Op.getValueType();
478 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
479 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
480 return TLO.CombineTo(Op, NewOp);
483 break;
487 return false;
490 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
491 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
492 /// generalized for targets with other types of implicit widening casts.
493 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
494 const APInt &Demanded,
495 TargetLoweringOpt &TLO) const {
496 assert(Op.getNumOperands() == 2 &&
497 "ShrinkDemandedOp only supports binary operators!");
498 assert(Op.getNode()->getNumValues() == 1 &&
499 "ShrinkDemandedOp only supports nodes with one result!");
501 SelectionDAG &DAG = TLO.DAG;
502 SDLoc dl(Op);
504 // Early return, as this function cannot handle vector types.
505 if (Op.getValueType().isVector())
506 return false;
508 // Don't do this if the node has another user, which may require the
509 // full value.
510 if (!Op.getNode()->hasOneUse())
511 return false;
513 // Search for the smallest integer type with free casts to and from
514 // Op's type. For expedience, just check power-of-2 integer types.
515 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
516 unsigned DemandedSize = Demanded.getActiveBits();
517 unsigned SmallVTBits = DemandedSize;
518 if (!isPowerOf2_32(SmallVTBits))
519 SmallVTBits = NextPowerOf2(SmallVTBits);
520 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
521 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
522 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
523 TLI.isZExtFree(SmallVT, Op.getValueType())) {
524 // We found a type with free casts.
525 SDValue X = DAG.getNode(
526 Op.getOpcode(), dl, SmallVT,
527 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
528 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
529 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
530 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
531 return TLO.CombineTo(Op, Z);
534 return false;
537 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
538 DAGCombinerInfo &DCI) const {
539 SelectionDAG &DAG = DCI.DAG;
540 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
541 !DCI.isBeforeLegalizeOps());
542 KnownBits Known;
544 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
545 if (Simplified) {
546 DCI.AddToWorklist(Op.getNode());
547 DCI.CommitTargetLoweringOpt(TLO);
549 return Simplified;
552 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
553 KnownBits &Known,
554 TargetLoweringOpt &TLO,
555 unsigned Depth,
556 bool AssumeSingleUse) const {
557 EVT VT = Op.getValueType();
558 APInt DemandedElts = VT.isVector()
559 ? APInt::getAllOnesValue(VT.getVectorNumElements())
560 : APInt(1, 1);
561 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
562 AssumeSingleUse);
565 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
566 // TODO: Under what circumstances can we create nodes? Constant folding?
567 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
568 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
569 SelectionDAG &DAG, unsigned Depth) const {
570 // Limit search depth.
571 if (Depth >= 6)
572 return SDValue();
574 // Ignore UNDEFs.
575 if (Op.isUndef())
576 return SDValue();
578 // Not demanding any bits/elts from Op.
579 if (DemandedBits == 0 || DemandedElts == 0)
580 return DAG.getUNDEF(Op.getValueType());
582 unsigned NumElts = DemandedElts.getBitWidth();
583 KnownBits LHSKnown, RHSKnown;
584 switch (Op.getOpcode()) {
585 case ISD::BITCAST: {
586 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
587 EVT SrcVT = Src.getValueType();
588 EVT DstVT = Op.getValueType();
589 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
590 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
592 if (NumSrcEltBits == NumDstEltBits)
593 if (SDValue V = SimplifyMultipleUseDemandedBits(
594 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
595 return DAG.getBitcast(DstVT, V);
597 // TODO - bigendian once we have test coverage.
598 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
599 DAG.getDataLayout().isLittleEndian()) {
600 unsigned Scale = NumDstEltBits / NumSrcEltBits;
601 unsigned NumSrcElts = SrcVT.getVectorNumElements();
602 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
603 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
604 for (unsigned i = 0; i != Scale; ++i) {
605 unsigned Offset = i * NumSrcEltBits;
606 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
607 if (!Sub.isNullValue()) {
608 DemandedSrcBits |= Sub;
609 for (unsigned j = 0; j != NumElts; ++j)
610 if (DemandedElts[j])
611 DemandedSrcElts.setBit((j * Scale) + i);
615 if (SDValue V = SimplifyMultipleUseDemandedBits(
616 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
617 return DAG.getBitcast(DstVT, V);
620 // TODO - bigendian once we have test coverage.
621 if ((NumSrcEltBits % NumDstEltBits) == 0 &&
622 DAG.getDataLayout().isLittleEndian()) {
623 unsigned Scale = NumSrcEltBits / NumDstEltBits;
624 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
625 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
626 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
627 for (unsigned i = 0; i != NumElts; ++i)
628 if (DemandedElts[i]) {
629 unsigned Offset = (i % Scale) * NumDstEltBits;
630 DemandedSrcBits.insertBits(DemandedBits, Offset);
631 DemandedSrcElts.setBit(i / Scale);
634 if (SDValue V = SimplifyMultipleUseDemandedBits(
635 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
636 return DAG.getBitcast(DstVT, V);
639 break;
641 case ISD::AND: {
642 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
643 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
645 // If all of the demanded bits are known 1 on one side, return the other.
646 // These bits cannot contribute to the result of the 'and' in this
647 // context.
648 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
649 return Op.getOperand(0);
650 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
651 return Op.getOperand(1);
652 break;
654 case ISD::OR: {
655 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
656 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
658 // If all of the demanded bits are known zero on one side, return the
659 // other. These bits cannot contribute to the result of the 'or' in this
660 // context.
661 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
662 return Op.getOperand(0);
663 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
664 return Op.getOperand(1);
665 break;
667 case ISD::XOR: {
668 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
669 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
671 // If all of the demanded bits are known zero on one side, return the
672 // other.
673 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
674 return Op.getOperand(0);
675 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
676 return Op.getOperand(1);
677 break;
679 case ISD::SIGN_EXTEND_INREG: {
680 // If none of the extended bits are demanded, eliminate the sextinreg.
681 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
682 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
683 return Op.getOperand(0);
684 break;
686 case ISD::INSERT_VECTOR_ELT: {
687 // If we don't demand the inserted element, return the base vector.
688 SDValue Vec = Op.getOperand(0);
689 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
690 EVT VecVT = Vec.getValueType();
691 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
692 !DemandedElts[CIdx->getZExtValue()])
693 return Vec;
694 break;
696 case ISD::VECTOR_SHUFFLE: {
697 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
699 // If all the demanded elts are from one operand and are inline,
700 // then we can use the operand directly.
701 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
702 for (unsigned i = 0; i != NumElts; ++i) {
703 int M = ShuffleMask[i];
704 if (M < 0 || !DemandedElts[i])
705 continue;
706 AllUndef = false;
707 IdentityLHS &= (M == (int)i);
708 IdentityRHS &= ((M - NumElts) == i);
711 if (AllUndef)
712 return DAG.getUNDEF(Op.getValueType());
713 if (IdentityLHS)
714 return Op.getOperand(0);
715 if (IdentityRHS)
716 return Op.getOperand(1);
717 break;
719 default:
720 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
721 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
722 Op, DemandedBits, DemandedElts, DAG, Depth))
723 return V;
724 break;
726 return SDValue();
729 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
730 /// result of Op are ever used downstream. If we can use this information to
731 /// simplify Op, create a new simplified DAG node and return true, returning the
732 /// original and new nodes in Old and New. Otherwise, analyze the expression and
733 /// return a mask of Known bits for the expression (used to simplify the
734 /// caller). The Known bits may only be accurate for those bits in the
735 /// OriginalDemandedBits and OriginalDemandedElts.
736 bool TargetLowering::SimplifyDemandedBits(
737 SDValue Op, const APInt &OriginalDemandedBits,
738 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
739 unsigned Depth, bool AssumeSingleUse) const {
740 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
741 assert(Op.getScalarValueSizeInBits() == BitWidth &&
742 "Mask size mismatches value type size!");
744 unsigned NumElts = OriginalDemandedElts.getBitWidth();
745 assert((!Op.getValueType().isVector() ||
746 NumElts == Op.getValueType().getVectorNumElements()) &&
747 "Unexpected vector size");
749 APInt DemandedBits = OriginalDemandedBits;
750 APInt DemandedElts = OriginalDemandedElts;
751 SDLoc dl(Op);
752 auto &DL = TLO.DAG.getDataLayout();
754 // Don't know anything.
755 Known = KnownBits(BitWidth);
757 // Undef operand.
758 if (Op.isUndef())
759 return false;
761 if (Op.getOpcode() == ISD::Constant) {
762 // We know all of the bits for a constant!
763 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
764 Known.Zero = ~Known.One;
765 return false;
768 // Other users may use these bits.
769 EVT VT = Op.getValueType();
770 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
771 if (Depth != 0) {
772 // If not at the root, Just compute the Known bits to
773 // simplify things downstream.
774 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
775 return false;
777 // If this is the root being simplified, allow it to have multiple uses,
778 // just set the DemandedBits/Elts to all bits.
779 DemandedBits = APInt::getAllOnesValue(BitWidth);
780 DemandedElts = APInt::getAllOnesValue(NumElts);
781 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
782 // Not demanding any bits/elts from Op.
783 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
784 } else if (Depth >= 6) { // Limit search depth.
785 return false;
788 KnownBits Known2, KnownOut;
789 switch (Op.getOpcode()) {
790 case ISD::SCALAR_TO_VECTOR: {
791 if (!DemandedElts[0])
792 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
794 KnownBits SrcKnown;
795 SDValue Src = Op.getOperand(0);
796 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
797 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
798 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
799 return true;
800 Known = SrcKnown.zextOrTrunc(BitWidth, false);
801 break;
803 case ISD::BUILD_VECTOR:
804 // Collect the known bits that are shared by every demanded element.
805 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
806 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
807 return false; // Don't fall through, will infinitely loop.
808 case ISD::LOAD: {
809 LoadSDNode *LD = cast<LoadSDNode>(Op);
810 if (getTargetConstantFromLoad(LD)) {
811 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
812 return false; // Don't fall through, will infinitely loop.
814 break;
816 case ISD::INSERT_VECTOR_ELT: {
817 SDValue Vec = Op.getOperand(0);
818 SDValue Scl = Op.getOperand(1);
819 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
820 EVT VecVT = Vec.getValueType();
822 // If index isn't constant, assume we need all vector elements AND the
823 // inserted element.
824 APInt DemandedVecElts(DemandedElts);
825 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
826 unsigned Idx = CIdx->getZExtValue();
827 DemandedVecElts.clearBit(Idx);
829 // Inserted element is not required.
830 if (!DemandedElts[Idx])
831 return TLO.CombineTo(Op, Vec);
834 KnownBits KnownScl;
835 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
836 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
837 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
838 return true;
840 Known = KnownScl.zextOrTrunc(BitWidth, false);
842 KnownBits KnownVec;
843 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
844 Depth + 1))
845 return true;
847 if (!!DemandedVecElts) {
848 Known.One &= KnownVec.One;
849 Known.Zero &= KnownVec.Zero;
852 return false;
854 case ISD::INSERT_SUBVECTOR: {
855 SDValue Base = Op.getOperand(0);
856 SDValue Sub = Op.getOperand(1);
857 EVT SubVT = Sub.getValueType();
858 unsigned NumSubElts = SubVT.getVectorNumElements();
860 // If index isn't constant, assume we need the original demanded base
861 // elements and ALL the inserted subvector elements.
862 APInt BaseElts = DemandedElts;
863 APInt SubElts = APInt::getAllOnesValue(NumSubElts);
864 if (isa<ConstantSDNode>(Op.getOperand(2))) {
865 const APInt &Idx = Op.getConstantOperandAPInt(2);
866 if (Idx.ule(NumElts - NumSubElts)) {
867 unsigned SubIdx = Idx.getZExtValue();
868 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
869 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
873 KnownBits KnownSub, KnownBase;
874 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
875 Depth + 1))
876 return true;
877 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
878 Depth + 1))
879 return true;
881 Known.Zero.setAllBits();
882 Known.One.setAllBits();
883 if (!!SubElts) {
884 Known.One &= KnownSub.One;
885 Known.Zero &= KnownSub.Zero;
887 if (!!BaseElts) {
888 Known.One &= KnownBase.One;
889 Known.Zero &= KnownBase.Zero;
891 break;
893 case ISD::CONCAT_VECTORS: {
894 Known.Zero.setAllBits();
895 Known.One.setAllBits();
896 EVT SubVT = Op.getOperand(0).getValueType();
897 unsigned NumSubVecs = Op.getNumOperands();
898 unsigned NumSubElts = SubVT.getVectorNumElements();
899 for (unsigned i = 0; i != NumSubVecs; ++i) {
900 APInt DemandedSubElts =
901 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
902 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
903 Known2, TLO, Depth + 1))
904 return true;
905 // Known bits are shared by every demanded subvector element.
906 if (!!DemandedSubElts) {
907 Known.One &= Known2.One;
908 Known.Zero &= Known2.Zero;
911 break;
913 case ISD::VECTOR_SHUFFLE: {
914 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
916 // Collect demanded elements from shuffle operands..
917 APInt DemandedLHS(NumElts, 0);
918 APInt DemandedRHS(NumElts, 0);
919 for (unsigned i = 0; i != NumElts; ++i) {
920 if (!DemandedElts[i])
921 continue;
922 int M = ShuffleMask[i];
923 if (M < 0) {
924 // For UNDEF elements, we don't know anything about the common state of
925 // the shuffle result.
926 DemandedLHS.clearAllBits();
927 DemandedRHS.clearAllBits();
928 break;
930 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
931 if (M < (int)NumElts)
932 DemandedLHS.setBit(M);
933 else
934 DemandedRHS.setBit(M - NumElts);
937 if (!!DemandedLHS || !!DemandedRHS) {
938 SDValue Op0 = Op.getOperand(0);
939 SDValue Op1 = Op.getOperand(1);
941 Known.Zero.setAllBits();
942 Known.One.setAllBits();
943 if (!!DemandedLHS) {
944 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
945 Depth + 1))
946 return true;
947 Known.One &= Known2.One;
948 Known.Zero &= Known2.Zero;
950 if (!!DemandedRHS) {
951 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
952 Depth + 1))
953 return true;
954 Known.One &= Known2.One;
955 Known.Zero &= Known2.Zero;
958 // Attempt to avoid multi-use ops if we don't need anything from them.
959 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
960 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
961 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
962 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
963 if (DemandedOp0 || DemandedOp1) {
964 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
965 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
966 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
967 return TLO.CombineTo(Op, NewOp);
970 break;
972 case ISD::AND: {
973 SDValue Op0 = Op.getOperand(0);
974 SDValue Op1 = Op.getOperand(1);
976 // If the RHS is a constant, check to see if the LHS would be zero without
977 // using the bits from the RHS. Below, we use knowledge about the RHS to
978 // simplify the LHS, here we're using information from the LHS to simplify
979 // the RHS.
980 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
981 // Do not increment Depth here; that can cause an infinite loop.
982 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
983 // If the LHS already has zeros where RHSC does, this 'and' is dead.
984 if ((LHSKnown.Zero & DemandedBits) ==
985 (~RHSC->getAPIntValue() & DemandedBits))
986 return TLO.CombineTo(Op, Op0);
988 // If any of the set bits in the RHS are known zero on the LHS, shrink
989 // the constant.
990 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
991 return true;
993 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
994 // constant, but if this 'and' is only clearing bits that were just set by
995 // the xor, then this 'and' can be eliminated by shrinking the mask of
996 // the xor. For example, for a 32-bit X:
997 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
998 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
999 LHSKnown.One == ~RHSC->getAPIntValue()) {
1000 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1001 return TLO.CombineTo(Op, Xor);
1005 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1006 Depth + 1))
1007 return true;
1008 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1009 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1010 Known2, TLO, Depth + 1))
1011 return true;
1012 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1014 // Attempt to avoid multi-use ops if we don't need anything from them.
1015 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1016 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1017 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1018 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1019 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1020 if (DemandedOp0 || DemandedOp1) {
1021 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1022 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1023 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1024 return TLO.CombineTo(Op, NewOp);
1028 // If all of the demanded bits are known one on one side, return the other.
1029 // These bits cannot contribute to the result of the 'and'.
1030 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1031 return TLO.CombineTo(Op, Op0);
1032 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1033 return TLO.CombineTo(Op, Op1);
1034 // If all of the demanded bits in the inputs are known zeros, return zero.
1035 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1036 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1037 // If the RHS is a constant, see if we can simplify it.
1038 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1039 return true;
1040 // If the operation can be done in a smaller type, do so.
1041 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1042 return true;
1044 // Output known-1 bits are only known if set in both the LHS & RHS.
1045 Known.One &= Known2.One;
1046 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1047 Known.Zero |= Known2.Zero;
1048 break;
1050 case ISD::OR: {
1051 SDValue Op0 = Op.getOperand(0);
1052 SDValue Op1 = Op.getOperand(1);
1054 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1055 Depth + 1))
1056 return true;
1057 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1058 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1059 Known2, TLO, Depth + 1))
1060 return true;
1061 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1063 // Attempt to avoid multi-use ops if we don't need anything from them.
1064 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1065 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1066 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1067 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1068 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1069 if (DemandedOp0 || DemandedOp1) {
1070 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1071 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1072 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1073 return TLO.CombineTo(Op, NewOp);
1077 // If all of the demanded bits are known zero on one side, return the other.
1078 // These bits cannot contribute to the result of the 'or'.
1079 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1080 return TLO.CombineTo(Op, Op0);
1081 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1082 return TLO.CombineTo(Op, Op1);
1083 // If the RHS is a constant, see if we can simplify it.
1084 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1085 return true;
1086 // If the operation can be done in a smaller type, do so.
1087 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1088 return true;
1090 // Output known-0 bits are only known if clear in both the LHS & RHS.
1091 Known.Zero &= Known2.Zero;
1092 // Output known-1 are known to be set if set in either the LHS | RHS.
1093 Known.One |= Known2.One;
1094 break;
1096 case ISD::XOR: {
1097 SDValue Op0 = Op.getOperand(0);
1098 SDValue Op1 = Op.getOperand(1);
1100 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1101 Depth + 1))
1102 return true;
1103 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1104 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1105 Depth + 1))
1106 return true;
1107 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1109 // Attempt to avoid multi-use ops if we don't need anything from them.
1110 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1111 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1112 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1113 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1114 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1115 if (DemandedOp0 || DemandedOp1) {
1116 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1117 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1118 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1119 return TLO.CombineTo(Op, NewOp);
1123 // If all of the demanded bits are known zero on one side, return the other.
1124 // These bits cannot contribute to the result of the 'xor'.
1125 if (DemandedBits.isSubsetOf(Known.Zero))
1126 return TLO.CombineTo(Op, Op0);
1127 if (DemandedBits.isSubsetOf(Known2.Zero))
1128 return TLO.CombineTo(Op, Op1);
1129 // If the operation can be done in a smaller type, do so.
1130 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1131 return true;
1133 // If all of the unknown bits are known to be zero on one side or the other
1134 // (but not both) turn this into an *inclusive* or.
1135 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1136 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1137 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1139 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1140 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1141 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1142 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1144 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1145 // If one side is a constant, and all of the known set bits on the other
1146 // side are also set in the constant, turn this into an AND, as we know
1147 // the bits will be cleared.
1148 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1149 // NB: it is okay if more bits are known than are requested
1150 if (C->getAPIntValue() == Known2.One) {
1151 SDValue ANDC =
1152 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1153 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1156 // If the RHS is a constant, see if we can change it. Don't alter a -1
1157 // constant because that's a 'not' op, and that is better for combining
1158 // and codegen.
1159 if (!C->isAllOnesValue()) {
1160 if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1161 // We're flipping all demanded bits. Flip the undemanded bits too.
1162 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1163 return TLO.CombineTo(Op, New);
1165 // If we can't turn this into a 'not', try to shrink the constant.
1166 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1167 return true;
1171 Known = std::move(KnownOut);
1172 break;
1174 case ISD::SELECT:
1175 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1176 Depth + 1))
1177 return true;
1178 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1179 Depth + 1))
1180 return true;
1181 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1182 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1184 // If the operands are constants, see if we can simplify them.
1185 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1186 return true;
1188 // Only known if known in both the LHS and RHS.
1189 Known.One &= Known2.One;
1190 Known.Zero &= Known2.Zero;
1191 break;
1192 case ISD::SELECT_CC:
1193 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1194 Depth + 1))
1195 return true;
1196 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1197 Depth + 1))
1198 return true;
1199 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1200 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1202 // If the operands are constants, see if we can simplify them.
1203 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1204 return true;
1206 // Only known if known in both the LHS and RHS.
1207 Known.One &= Known2.One;
1208 Known.Zero &= Known2.Zero;
1209 break;
1210 case ISD::SETCC: {
1211 SDValue Op0 = Op.getOperand(0);
1212 SDValue Op1 = Op.getOperand(1);
1213 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1214 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1215 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1216 // -1, we may be able to bypass the setcc.
1217 if (DemandedBits.isSignMask() &&
1218 Op0.getScalarValueSizeInBits() == BitWidth &&
1219 getBooleanContents(VT) ==
1220 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1221 // If we're testing X < 0, then this compare isn't needed - just use X!
1222 // FIXME: We're limiting to integer types here, but this should also work
1223 // if we don't care about FP signed-zero. The use of SETLT with FP means
1224 // that we don't care about NaNs.
1225 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1226 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1227 return TLO.CombineTo(Op, Op0);
1229 // TODO: Should we check for other forms of sign-bit comparisons?
1230 // Examples: X <= -1, X >= 0
1232 if (getBooleanContents(Op0.getValueType()) ==
1233 TargetLowering::ZeroOrOneBooleanContent &&
1234 BitWidth > 1)
1235 Known.Zero.setBitsFrom(1);
1236 break;
1238 case ISD::SHL: {
1239 SDValue Op0 = Op.getOperand(0);
1240 SDValue Op1 = Op.getOperand(1);
1242 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1243 // If the shift count is an invalid immediate, don't do anything.
1244 if (SA->getAPIntValue().uge(BitWidth))
1245 break;
1247 unsigned ShAmt = SA->getZExtValue();
1248 if (ShAmt == 0)
1249 return TLO.CombineTo(Op, Op0);
1251 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1252 // single shift. We can do this if the bottom bits (which are shifted
1253 // out) are never demanded.
1254 // TODO - support non-uniform vector amounts.
1255 if (Op0.getOpcode() == ISD::SRL) {
1256 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1257 if (ConstantSDNode *SA2 =
1258 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1259 if (SA2->getAPIntValue().ult(BitWidth)) {
1260 unsigned C1 = SA2->getZExtValue();
1261 unsigned Opc = ISD::SHL;
1262 int Diff = ShAmt - C1;
1263 if (Diff < 0) {
1264 Diff = -Diff;
1265 Opc = ISD::SRL;
1268 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1269 return TLO.CombineTo(
1270 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1276 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1277 Known, TLO, Depth + 1))
1278 return true;
1280 // Try shrinking the operation as long as the shift amount will still be
1281 // in range.
1282 if ((ShAmt < DemandedBits.getActiveBits()) &&
1283 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1284 return true;
1286 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1287 // are not demanded. This will likely allow the anyext to be folded away.
1288 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1289 SDValue InnerOp = Op0.getOperand(0);
1290 EVT InnerVT = InnerOp.getValueType();
1291 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1292 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1293 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1294 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1295 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1296 ShTy = InnerVT;
1297 SDValue NarrowShl =
1298 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1299 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1300 return TLO.CombineTo(
1301 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1303 // Repeat the SHL optimization above in cases where an extension
1304 // intervenes: (shl (anyext (shr x, c1)), c2) to
1305 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1306 // aren't demanded (as above) and that the shifted upper c1 bits of
1307 // x aren't demanded.
1308 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1309 InnerOp.hasOneUse()) {
1310 if (ConstantSDNode *SA2 =
1311 isConstOrConstSplat(InnerOp.getOperand(1))) {
1312 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1313 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1314 DemandedBits.getActiveBits() <=
1315 (InnerBits - InnerShAmt + ShAmt) &&
1316 DemandedBits.countTrailingZeros() >= ShAmt) {
1317 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1318 Op1.getValueType());
1319 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1320 InnerOp.getOperand(0));
1321 return TLO.CombineTo(
1322 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1328 Known.Zero <<= ShAmt;
1329 Known.One <<= ShAmt;
1330 // low bits known zero.
1331 Known.Zero.setLowBits(ShAmt);
1333 break;
1335 case ISD::SRL: {
1336 SDValue Op0 = Op.getOperand(0);
1337 SDValue Op1 = Op.getOperand(1);
1339 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1340 // If the shift count is an invalid immediate, don't do anything.
1341 if (SA->getAPIntValue().uge(BitWidth))
1342 break;
1344 unsigned ShAmt = SA->getZExtValue();
1345 if (ShAmt == 0)
1346 return TLO.CombineTo(Op, Op0);
1348 EVT ShiftVT = Op1.getValueType();
1349 APInt InDemandedMask = (DemandedBits << ShAmt);
1351 // If the shift is exact, then it does demand the low bits (and knows that
1352 // they are zero).
1353 if (Op->getFlags().hasExact())
1354 InDemandedMask.setLowBits(ShAmt);
1356 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1357 // single shift. We can do this if the top bits (which are shifted out)
1358 // are never demanded.
1359 // TODO - support non-uniform vector amounts.
1360 if (Op0.getOpcode() == ISD::SHL) {
1361 if (ConstantSDNode *SA2 =
1362 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1363 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1364 if (SA2->getAPIntValue().ult(BitWidth)) {
1365 unsigned C1 = SA2->getZExtValue();
1366 unsigned Opc = ISD::SRL;
1367 int Diff = ShAmt - C1;
1368 if (Diff < 0) {
1369 Diff = -Diff;
1370 Opc = ISD::SHL;
1373 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1374 return TLO.CombineTo(
1375 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1381 // Compute the new bits that are at the top now.
1382 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1383 Depth + 1))
1384 return true;
1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386 Known.Zero.lshrInPlace(ShAmt);
1387 Known.One.lshrInPlace(ShAmt);
1389 Known.Zero.setHighBits(ShAmt); // High bits known zero.
1391 break;
1393 case ISD::SRA: {
1394 SDValue Op0 = Op.getOperand(0);
1395 SDValue Op1 = Op.getOperand(1);
1397 // If this is an arithmetic shift right and only the low-bit is set, we can
1398 // always convert this into a logical shr, even if the shift amount is
1399 // variable. The low bit of the shift cannot be an input sign bit unless
1400 // the shift amount is >= the size of the datatype, which is undefined.
1401 if (DemandedBits.isOneValue())
1402 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1404 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1405 // If the shift count is an invalid immediate, don't do anything.
1406 if (SA->getAPIntValue().uge(BitWidth))
1407 break;
1409 unsigned ShAmt = SA->getZExtValue();
1410 if (ShAmt == 0)
1411 return TLO.CombineTo(Op, Op0);
1413 APInt InDemandedMask = (DemandedBits << ShAmt);
1415 // If the shift is exact, then it does demand the low bits (and knows that
1416 // they are zero).
1417 if (Op->getFlags().hasExact())
1418 InDemandedMask.setLowBits(ShAmt);
1420 // If any of the demanded bits are produced by the sign extension, we also
1421 // demand the input sign bit.
1422 if (DemandedBits.countLeadingZeros() < ShAmt)
1423 InDemandedMask.setSignBit();
1425 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1426 Depth + 1))
1427 return true;
1428 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1429 Known.Zero.lshrInPlace(ShAmt);
1430 Known.One.lshrInPlace(ShAmt);
1432 // If the input sign bit is known to be zero, or if none of the top bits
1433 // are demanded, turn this into an unsigned shift right.
1434 if (Known.Zero[BitWidth - ShAmt - 1] ||
1435 DemandedBits.countLeadingZeros() >= ShAmt) {
1436 SDNodeFlags Flags;
1437 Flags.setExact(Op->getFlags().hasExact());
1438 return TLO.CombineTo(
1439 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1442 int Log2 = DemandedBits.exactLogBase2();
1443 if (Log2 >= 0) {
1444 // The bit must come from the sign.
1445 SDValue NewSA =
1446 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1447 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1450 if (Known.One[BitWidth - ShAmt - 1])
1451 // New bits are known one.
1452 Known.One.setHighBits(ShAmt);
1454 break;
1456 case ISD::FSHL:
1457 case ISD::FSHR: {
1458 SDValue Op0 = Op.getOperand(0);
1459 SDValue Op1 = Op.getOperand(1);
1460 SDValue Op2 = Op.getOperand(2);
1461 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1463 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1464 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1466 // For fshl, 0-shift returns the 1st arg.
1467 // For fshr, 0-shift returns the 2nd arg.
1468 if (Amt == 0) {
1469 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1470 Known, TLO, Depth + 1))
1471 return true;
1472 break;
1475 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1476 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1477 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1478 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1479 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1480 Depth + 1))
1481 return true;
1482 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1483 Depth + 1))
1484 return true;
1486 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1487 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1488 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1489 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1490 Known.One |= Known2.One;
1491 Known.Zero |= Known2.Zero;
1493 break;
1495 case ISD::BITREVERSE: {
1496 SDValue Src = Op.getOperand(0);
1497 APInt DemandedSrcBits = DemandedBits.reverseBits();
1498 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1499 Depth + 1))
1500 return true;
1501 Known.One = Known2.One.reverseBits();
1502 Known.Zero = Known2.Zero.reverseBits();
1503 break;
1505 case ISD::SIGN_EXTEND_INREG: {
1506 SDValue Op0 = Op.getOperand(0);
1507 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1508 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1510 // If we only care about the highest bit, don't bother shifting right.
1511 if (DemandedBits.isSignMask()) {
1512 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1513 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1514 // However if the input is already sign extended we expect the sign
1515 // extension to be dropped altogether later and do not simplify.
1516 if (!AlreadySignExtended) {
1517 // Compute the correct shift amount type, which must be getShiftAmountTy
1518 // for scalar types after legalization.
1519 EVT ShiftAmtTy = VT;
1520 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1521 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1523 SDValue ShiftAmt =
1524 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1525 return TLO.CombineTo(Op,
1526 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1530 // If none of the extended bits are demanded, eliminate the sextinreg.
1531 if (DemandedBits.getActiveBits() <= ExVTBits)
1532 return TLO.CombineTo(Op, Op0);
1534 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1536 // Since the sign extended bits are demanded, we know that the sign
1537 // bit is demanded.
1538 InputDemandedBits.setBit(ExVTBits - 1);
1540 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1541 return true;
1542 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1544 // If the sign bit of the input is known set or clear, then we know the
1545 // top bits of the result.
1547 // If the input sign bit is known zero, convert this into a zero extension.
1548 if (Known.Zero[ExVTBits - 1])
1549 return TLO.CombineTo(
1550 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1552 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1553 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1554 Known.One.setBitsFrom(ExVTBits);
1555 Known.Zero &= Mask;
1556 } else { // Input sign bit unknown
1557 Known.Zero &= Mask;
1558 Known.One &= Mask;
1560 break;
1562 case ISD::BUILD_PAIR: {
1563 EVT HalfVT = Op.getOperand(0).getValueType();
1564 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1566 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1567 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1569 KnownBits KnownLo, KnownHi;
1571 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1572 return true;
1574 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1575 return true;
1577 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1578 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1580 Known.One = KnownLo.One.zext(BitWidth) |
1581 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1582 break;
1584 case ISD::ZERO_EXTEND:
1585 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1586 SDValue Src = Op.getOperand(0);
1587 EVT SrcVT = Src.getValueType();
1588 unsigned InBits = SrcVT.getScalarSizeInBits();
1589 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1590 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1592 // If none of the top bits are demanded, convert this into an any_extend.
1593 if (DemandedBits.getActiveBits() <= InBits) {
1594 // If we only need the non-extended bits of the bottom element
1595 // then we can just bitcast to the result.
1596 if (IsVecInReg && DemandedElts == 1 &&
1597 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1598 TLO.DAG.getDataLayout().isLittleEndian())
1599 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1601 unsigned Opc =
1602 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1603 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1604 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1607 APInt InDemandedBits = DemandedBits.trunc(InBits);
1608 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1609 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1610 Depth + 1))
1611 return true;
1612 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1613 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1614 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1615 break;
1617 case ISD::SIGN_EXTEND:
1618 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1619 SDValue Src = Op.getOperand(0);
1620 EVT SrcVT = Src.getValueType();
1621 unsigned InBits = SrcVT.getScalarSizeInBits();
1622 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1623 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1625 // If none of the top bits are demanded, convert this into an any_extend.
1626 if (DemandedBits.getActiveBits() <= InBits) {
1627 // If we only need the non-extended bits of the bottom element
1628 // then we can just bitcast to the result.
1629 if (IsVecInReg && DemandedElts == 1 &&
1630 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1631 TLO.DAG.getDataLayout().isLittleEndian())
1632 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1634 unsigned Opc =
1635 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1636 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1637 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1640 APInt InDemandedBits = DemandedBits.trunc(InBits);
1641 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1643 // Since some of the sign extended bits are demanded, we know that the sign
1644 // bit is demanded.
1645 InDemandedBits.setBit(InBits - 1);
1647 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1648 Depth + 1))
1649 return true;
1650 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1651 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1653 // If the sign bit is known one, the top bits match.
1654 Known = Known.sext(BitWidth);
1656 // If the sign bit is known zero, convert this to a zero extend.
1657 if (Known.isNonNegative()) {
1658 unsigned Opc =
1659 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1660 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1661 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1663 break;
1665 case ISD::ANY_EXTEND:
1666 case ISD::ANY_EXTEND_VECTOR_INREG: {
1667 SDValue Src = Op.getOperand(0);
1668 EVT SrcVT = Src.getValueType();
1669 unsigned InBits = SrcVT.getScalarSizeInBits();
1670 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1671 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1673 // If we only need the bottom element then we can just bitcast.
1674 // TODO: Handle ANY_EXTEND?
1675 if (IsVecInReg && DemandedElts == 1 &&
1676 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1677 TLO.DAG.getDataLayout().isLittleEndian())
1678 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1680 APInt InDemandedBits = DemandedBits.trunc(InBits);
1681 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1682 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1683 Depth + 1))
1684 return true;
1685 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1686 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1687 Known = Known.zext(BitWidth, false /* => any extend */);
1688 break;
1690 case ISD::TRUNCATE: {
1691 SDValue Src = Op.getOperand(0);
1693 // Simplify the input, using demanded bit information, and compute the known
1694 // zero/one bits live out.
1695 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1696 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1697 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1698 return true;
1699 Known = Known.trunc(BitWidth);
1701 // Attempt to avoid multi-use ops if we don't need anything from them.
1702 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1703 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1704 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1706 // If the input is only used by this truncate, see if we can shrink it based
1707 // on the known demanded bits.
1708 if (Src.getNode()->hasOneUse()) {
1709 switch (Src.getOpcode()) {
1710 default:
1711 break;
1712 case ISD::SRL:
1713 // Shrink SRL by a constant if none of the high bits shifted in are
1714 // demanded.
1715 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1716 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1717 // undesirable.
1718 break;
1720 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1721 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1722 break;
1724 SDValue Shift = Src.getOperand(1);
1725 uint64_t ShVal = ShAmt->getZExtValue();
1727 if (TLO.LegalTypes())
1728 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1730 APInt HighBits =
1731 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1732 HighBits.lshrInPlace(ShVal);
1733 HighBits = HighBits.trunc(BitWidth);
1735 if (!(HighBits & DemandedBits)) {
1736 // None of the shifted in bits are needed. Add a truncate of the
1737 // shift input, then shift it.
1738 SDValue NewTrunc =
1739 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1740 return TLO.CombineTo(
1741 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1743 break;
1747 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1748 break;
1750 case ISD::AssertZext: {
1751 // AssertZext demands all of the high bits, plus any of the low bits
1752 // demanded by its users.
1753 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1754 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1755 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1756 TLO, Depth + 1))
1757 return true;
1758 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1760 Known.Zero |= ~InMask;
1761 break;
1763 case ISD::EXTRACT_VECTOR_ELT: {
1764 SDValue Src = Op.getOperand(0);
1765 SDValue Idx = Op.getOperand(1);
1766 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1767 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1769 // Demand the bits from every vector element without a constant index.
1770 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1771 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1772 if (CIdx->getAPIntValue().ult(NumSrcElts))
1773 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1775 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1776 // anything about the extended bits.
1777 APInt DemandedSrcBits = DemandedBits;
1778 if (BitWidth > EltBitWidth)
1779 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1782 Depth + 1))
1783 return true;
1785 Known = Known2;
1786 if (BitWidth > EltBitWidth)
1787 Known = Known.zext(BitWidth, false /* => any extend */);
1788 break;
1790 case ISD::BITCAST: {
1791 SDValue Src = Op.getOperand(0);
1792 EVT SrcVT = Src.getValueType();
1793 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1795 // If this is an FP->Int bitcast and if the sign bit is the only
1796 // thing demanded, turn this into a FGETSIGN.
1797 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1798 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1799 SrcVT.isFloatingPoint()) {
1800 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1801 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1802 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1803 SrcVT != MVT::f128) {
1804 // Cannot eliminate/lower SHL for f128 yet.
1805 EVT Ty = OpVTLegal ? VT : MVT::i32;
1806 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1807 // place. We expect the SHL to be eliminated by other optimizations.
1808 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1809 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1810 if (!OpVTLegal && OpVTSizeInBits > 32)
1811 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1812 unsigned ShVal = Op.getValueSizeInBits() - 1;
1813 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1814 return TLO.CombineTo(Op,
1815 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1819 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1820 // Demand the elt/bit if any of the original elts/bits are demanded.
1821 // TODO - bigendian once we have test coverage.
1822 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1823 TLO.DAG.getDataLayout().isLittleEndian()) {
1824 unsigned Scale = BitWidth / NumSrcEltBits;
1825 unsigned NumSrcElts = SrcVT.getVectorNumElements();
1826 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1827 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1828 for (unsigned i = 0; i != Scale; ++i) {
1829 unsigned Offset = i * NumSrcEltBits;
1830 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1831 if (!Sub.isNullValue()) {
1832 DemandedSrcBits |= Sub;
1833 for (unsigned j = 0; j != NumElts; ++j)
1834 if (DemandedElts[j])
1835 DemandedSrcElts.setBit((j * Scale) + i);
1839 APInt KnownSrcUndef, KnownSrcZero;
1840 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1841 KnownSrcZero, TLO, Depth + 1))
1842 return true;
1844 KnownBits KnownSrcBits;
1845 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1846 KnownSrcBits, TLO, Depth + 1))
1847 return true;
1848 } else if ((NumSrcEltBits % BitWidth) == 0 &&
1849 TLO.DAG.getDataLayout().isLittleEndian()) {
1850 unsigned Scale = NumSrcEltBits / BitWidth;
1851 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1852 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1853 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1854 for (unsigned i = 0; i != NumElts; ++i)
1855 if (DemandedElts[i]) {
1856 unsigned Offset = (i % Scale) * BitWidth;
1857 DemandedSrcBits.insertBits(DemandedBits, Offset);
1858 DemandedSrcElts.setBit(i / Scale);
1861 if (SrcVT.isVector()) {
1862 APInt KnownSrcUndef, KnownSrcZero;
1863 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1864 KnownSrcZero, TLO, Depth + 1))
1865 return true;
1868 KnownBits KnownSrcBits;
1869 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1870 KnownSrcBits, TLO, Depth + 1))
1871 return true;
1874 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1875 // recursive call where Known may be useful to the caller.
1876 if (Depth > 0) {
1877 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1878 return false;
1880 break;
1882 case ISD::ADD:
1883 case ISD::MUL:
1884 case ISD::SUB: {
1885 // Add, Sub, and Mul don't demand any bits in positions beyond that
1886 // of the highest bit demanded of them.
1887 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1888 SDNodeFlags Flags = Op.getNode()->getFlags();
1889 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1890 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1891 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1892 Depth + 1) ||
1893 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1894 Depth + 1) ||
1895 // See if the operation should be performed at a smaller bit width.
1896 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1897 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1898 // Disable the nsw and nuw flags. We can no longer guarantee that we
1899 // won't wrap after simplification.
1900 Flags.setNoSignedWrap(false);
1901 Flags.setNoUnsignedWrap(false);
1902 SDValue NewOp =
1903 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1904 return TLO.CombineTo(Op, NewOp);
1906 return true;
1909 // Attempt to avoid multi-use ops if we don't need anything from them.
1910 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1911 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1912 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1913 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1914 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1915 if (DemandedOp0 || DemandedOp1) {
1916 Flags.setNoSignedWrap(false);
1917 Flags.setNoUnsignedWrap(false);
1918 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1919 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1920 SDValue NewOp =
1921 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1922 return TLO.CombineTo(Op, NewOp);
1926 // If we have a constant operand, we may be able to turn it into -1 if we
1927 // do not demand the high bits. This can make the constant smaller to
1928 // encode, allow more general folding, or match specialized instruction
1929 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1930 // is probably not useful (and could be detrimental).
1931 ConstantSDNode *C = isConstOrConstSplat(Op1);
1932 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1933 if (C && !C->isAllOnesValue() && !C->isOne() &&
1934 (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1935 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1936 // We can't guarantee that the new math op doesn't wrap, so explicitly
1937 // clear those flags to prevent folding with a potential existing node
1938 // that has those flags set.
1939 SDNodeFlags Flags;
1940 Flags.setNoSignedWrap(false);
1941 Flags.setNoUnsignedWrap(false);
1942 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1943 return TLO.CombineTo(Op, NewOp);
1946 LLVM_FALLTHROUGH;
1948 default:
1949 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1950 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1951 Known, TLO, Depth))
1952 return true;
1953 break;
1956 // Just use computeKnownBits to compute output bits.
1957 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1958 break;
1961 // If we know the value of all of the demanded bits, return this as a
1962 // constant.
1963 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1964 // Avoid folding to a constant if any OpaqueConstant is involved.
1965 const SDNode *N = Op.getNode();
1966 for (SDNodeIterator I = SDNodeIterator::begin(N),
1967 E = SDNodeIterator::end(N);
1968 I != E; ++I) {
1969 SDNode *Op = *I;
1970 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1971 if (C->isOpaque())
1972 return false;
1974 // TODO: Handle float bits as well.
1975 if (VT.isInteger())
1976 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1979 return false;
1982 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1983 const APInt &DemandedElts,
1984 APInt &KnownUndef,
1985 APInt &KnownZero,
1986 DAGCombinerInfo &DCI) const {
1987 SelectionDAG &DAG = DCI.DAG;
1988 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1989 !DCI.isBeforeLegalizeOps());
1991 bool Simplified =
1992 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1993 if (Simplified) {
1994 DCI.AddToWorklist(Op.getNode());
1995 DCI.CommitTargetLoweringOpt(TLO);
1998 return Simplified;
2001 /// Given a vector binary operation and known undefined elements for each input
2002 /// operand, compute whether each element of the output is undefined.
2003 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2004 const APInt &UndefOp0,
2005 const APInt &UndefOp1) {
2006 EVT VT = BO.getValueType();
2007 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2008 "Vector binop only");
2010 EVT EltVT = VT.getVectorElementType();
2011 unsigned NumElts = VT.getVectorNumElements();
2012 assert(UndefOp0.getBitWidth() == NumElts &&
2013 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2015 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2016 const APInt &UndefVals) {
2017 if (UndefVals[Index])
2018 return DAG.getUNDEF(EltVT);
2020 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2021 // Try hard to make sure that the getNode() call is not creating temporary
2022 // nodes. Ignore opaque integers because they do not constant fold.
2023 SDValue Elt = BV->getOperand(Index);
2024 auto *C = dyn_cast<ConstantSDNode>(Elt);
2025 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2026 return Elt;
2029 return SDValue();
2032 APInt KnownUndef = APInt::getNullValue(NumElts);
2033 for (unsigned i = 0; i != NumElts; ++i) {
2034 // If both inputs for this element are either constant or undef and match
2035 // the element type, compute the constant/undef result for this element of
2036 // the vector.
2037 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2038 // not handle FP constants. The code within getNode() should be refactored
2039 // to avoid the danger of creating a bogus temporary node here.
2040 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2041 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2042 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2043 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2044 KnownUndef.setBit(i);
2046 return KnownUndef;
2049 bool TargetLowering::SimplifyDemandedVectorElts(
2050 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2051 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2052 bool AssumeSingleUse) const {
2053 EVT VT = Op.getValueType();
2054 APInt DemandedElts = OriginalDemandedElts;
2055 unsigned NumElts = DemandedElts.getBitWidth();
2056 assert(VT.isVector() && "Expected vector op");
2057 assert(VT.getVectorNumElements() == NumElts &&
2058 "Mask size mismatches value type element count!");
2060 KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2062 // Undef operand.
2063 if (Op.isUndef()) {
2064 KnownUndef.setAllBits();
2065 return false;
2068 // If Op has other users, assume that all elements are needed.
2069 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2070 DemandedElts.setAllBits();
2072 // Not demanding any elements from Op.
2073 if (DemandedElts == 0) {
2074 KnownUndef.setAllBits();
2075 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2078 // Limit search depth.
2079 if (Depth >= 6)
2080 return false;
2082 SDLoc DL(Op);
2083 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2085 switch (Op.getOpcode()) {
2086 case ISD::SCALAR_TO_VECTOR: {
2087 if (!DemandedElts[0]) {
2088 KnownUndef.setAllBits();
2089 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2091 KnownUndef.setHighBits(NumElts - 1);
2092 break;
2094 case ISD::BITCAST: {
2095 SDValue Src = Op.getOperand(0);
2096 EVT SrcVT = Src.getValueType();
2098 // We only handle vectors here.
2099 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2100 if (!SrcVT.isVector())
2101 break;
2103 // Fast handling of 'identity' bitcasts.
2104 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2105 if (NumSrcElts == NumElts)
2106 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2107 KnownZero, TLO, Depth + 1);
2109 APInt SrcZero, SrcUndef;
2110 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2112 // Bitcast from 'large element' src vector to 'small element' vector, we
2113 // must demand a source element if any DemandedElt maps to it.
2114 if ((NumElts % NumSrcElts) == 0) {
2115 unsigned Scale = NumElts / NumSrcElts;
2116 for (unsigned i = 0; i != NumElts; ++i)
2117 if (DemandedElts[i])
2118 SrcDemandedElts.setBit(i / Scale);
2120 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2121 TLO, Depth + 1))
2122 return true;
2124 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2125 // of the large element.
2126 // TODO - bigendian once we have test coverage.
2127 if (TLO.DAG.getDataLayout().isLittleEndian()) {
2128 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2129 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2130 for (unsigned i = 0; i != NumElts; ++i)
2131 if (DemandedElts[i]) {
2132 unsigned Ofs = (i % Scale) * EltSizeInBits;
2133 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2136 KnownBits Known;
2137 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2138 return true;
2141 // If the src element is zero/undef then all the output elements will be -
2142 // only demanded elements are guaranteed to be correct.
2143 for (unsigned i = 0; i != NumSrcElts; ++i) {
2144 if (SrcDemandedElts[i]) {
2145 if (SrcZero[i])
2146 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2147 if (SrcUndef[i])
2148 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2153 // Bitcast from 'small element' src vector to 'large element' vector, we
2154 // demand all smaller source elements covered by the larger demanded element
2155 // of this vector.
2156 if ((NumSrcElts % NumElts) == 0) {
2157 unsigned Scale = NumSrcElts / NumElts;
2158 for (unsigned i = 0; i != NumElts; ++i)
2159 if (DemandedElts[i])
2160 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2162 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2163 TLO, Depth + 1))
2164 return true;
2166 // If all the src elements covering an output element are zero/undef, then
2167 // the output element will be as well, assuming it was demanded.
2168 for (unsigned i = 0; i != NumElts; ++i) {
2169 if (DemandedElts[i]) {
2170 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2171 KnownZero.setBit(i);
2172 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2173 KnownUndef.setBit(i);
2177 break;
2179 case ISD::BUILD_VECTOR: {
2180 // Check all elements and simplify any unused elements with UNDEF.
2181 if (!DemandedElts.isAllOnesValue()) {
2182 // Don't simplify BROADCASTS.
2183 if (llvm::any_of(Op->op_values(),
2184 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2185 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2186 bool Updated = false;
2187 for (unsigned i = 0; i != NumElts; ++i) {
2188 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2189 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2190 KnownUndef.setBit(i);
2191 Updated = true;
2194 if (Updated)
2195 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2198 for (unsigned i = 0; i != NumElts; ++i) {
2199 SDValue SrcOp = Op.getOperand(i);
2200 if (SrcOp.isUndef()) {
2201 KnownUndef.setBit(i);
2202 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2203 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2204 KnownZero.setBit(i);
2207 break;
2209 case ISD::CONCAT_VECTORS: {
2210 EVT SubVT = Op.getOperand(0).getValueType();
2211 unsigned NumSubVecs = Op.getNumOperands();
2212 unsigned NumSubElts = SubVT.getVectorNumElements();
2213 for (unsigned i = 0; i != NumSubVecs; ++i) {
2214 SDValue SubOp = Op.getOperand(i);
2215 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2216 APInt SubUndef, SubZero;
2217 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2218 Depth + 1))
2219 return true;
2220 KnownUndef.insertBits(SubUndef, i * NumSubElts);
2221 KnownZero.insertBits(SubZero, i * NumSubElts);
2223 break;
2225 case ISD::INSERT_SUBVECTOR: {
2226 if (!isa<ConstantSDNode>(Op.getOperand(2)))
2227 break;
2228 SDValue Base = Op.getOperand(0);
2229 SDValue Sub = Op.getOperand(1);
2230 EVT SubVT = Sub.getValueType();
2231 unsigned NumSubElts = SubVT.getVectorNumElements();
2232 const APInt &Idx = Op.getConstantOperandAPInt(2);
2233 if (Idx.ugt(NumElts - NumSubElts))
2234 break;
2235 unsigned SubIdx = Idx.getZExtValue();
2236 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2237 APInt SubUndef, SubZero;
2238 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2239 Depth + 1))
2240 return true;
2241 APInt BaseElts = DemandedElts;
2242 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2244 // If none of the base operand elements are demanded, replace it with undef.
2245 if (!BaseElts && !Base.isUndef())
2246 return TLO.CombineTo(Op,
2247 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2248 TLO.DAG.getUNDEF(VT),
2249 Op.getOperand(1),
2250 Op.getOperand(2)));
2252 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2253 Depth + 1))
2254 return true;
2255 KnownUndef.insertBits(SubUndef, SubIdx);
2256 KnownZero.insertBits(SubZero, SubIdx);
2257 break;
2259 case ISD::EXTRACT_SUBVECTOR: {
2260 SDValue Src = Op.getOperand(0);
2261 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2262 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2263 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2264 // Offset the demanded elts by the subvector index.
2265 uint64_t Idx = SubIdx->getZExtValue();
2266 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2267 APInt SrcUndef, SrcZero;
2268 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2269 Depth + 1))
2270 return true;
2271 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2272 KnownZero = SrcZero.extractBits(NumElts, Idx);
2274 break;
2276 case ISD::INSERT_VECTOR_ELT: {
2277 SDValue Vec = Op.getOperand(0);
2278 SDValue Scl = Op.getOperand(1);
2279 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2281 // For a legal, constant insertion index, if we don't need this insertion
2282 // then strip it, else remove it from the demanded elts.
2283 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2284 unsigned Idx = CIdx->getZExtValue();
2285 if (!DemandedElts[Idx])
2286 return TLO.CombineTo(Op, Vec);
2288 APInt DemandedVecElts(DemandedElts);
2289 DemandedVecElts.clearBit(Idx);
2290 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2291 KnownZero, TLO, Depth + 1))
2292 return true;
2294 KnownUndef.clearBit(Idx);
2295 if (Scl.isUndef())
2296 KnownUndef.setBit(Idx);
2298 KnownZero.clearBit(Idx);
2299 if (isNullConstant(Scl) || isNullFPConstant(Scl))
2300 KnownZero.setBit(Idx);
2301 break;
2304 APInt VecUndef, VecZero;
2305 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2306 Depth + 1))
2307 return true;
2308 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2309 break;
2311 case ISD::VSELECT: {
2312 // Try to transform the select condition based on the current demanded
2313 // elements.
2314 // TODO: If a condition element is undef, we can choose from one arm of the
2315 // select (and if one arm is undef, then we can propagate that to the
2316 // result).
2317 // TODO - add support for constant vselect masks (see IR version of this).
2318 APInt UnusedUndef, UnusedZero;
2319 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2320 UnusedZero, TLO, Depth + 1))
2321 return true;
2323 // See if we can simplify either vselect operand.
2324 APInt DemandedLHS(DemandedElts);
2325 APInt DemandedRHS(DemandedElts);
2326 APInt UndefLHS, ZeroLHS;
2327 APInt UndefRHS, ZeroRHS;
2328 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2329 ZeroLHS, TLO, Depth + 1))
2330 return true;
2331 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2332 ZeroRHS, TLO, Depth + 1))
2333 return true;
2335 KnownUndef = UndefLHS & UndefRHS;
2336 KnownZero = ZeroLHS & ZeroRHS;
2337 break;
2339 case ISD::VECTOR_SHUFFLE: {
2340 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2342 // Collect demanded elements from shuffle operands..
2343 APInt DemandedLHS(NumElts, 0);
2344 APInt DemandedRHS(NumElts, 0);
2345 for (unsigned i = 0; i != NumElts; ++i) {
2346 int M = ShuffleMask[i];
2347 if (M < 0 || !DemandedElts[i])
2348 continue;
2349 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2350 if (M < (int)NumElts)
2351 DemandedLHS.setBit(M);
2352 else
2353 DemandedRHS.setBit(M - NumElts);
2356 // See if we can simplify either shuffle operand.
2357 APInt UndefLHS, ZeroLHS;
2358 APInt UndefRHS, ZeroRHS;
2359 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2360 ZeroLHS, TLO, Depth + 1))
2361 return true;
2362 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2363 ZeroRHS, TLO, Depth + 1))
2364 return true;
2366 // Simplify mask using undef elements from LHS/RHS.
2367 bool Updated = false;
2368 bool IdentityLHS = true, IdentityRHS = true;
2369 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2370 for (unsigned i = 0; i != NumElts; ++i) {
2371 int &M = NewMask[i];
2372 if (M < 0)
2373 continue;
2374 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2375 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2376 Updated = true;
2377 M = -1;
2379 IdentityLHS &= (M < 0) || (M == (int)i);
2380 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2383 // Update legal shuffle masks based on demanded elements if it won't reduce
2384 // to Identity which can cause premature removal of the shuffle mask.
2385 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2386 isShuffleMaskLegal(NewMask, VT))
2387 return TLO.CombineTo(Op,
2388 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2389 Op.getOperand(1), NewMask));
2391 // Propagate undef/zero elements from LHS/RHS.
2392 for (unsigned i = 0; i != NumElts; ++i) {
2393 int M = ShuffleMask[i];
2394 if (M < 0) {
2395 KnownUndef.setBit(i);
2396 } else if (M < (int)NumElts) {
2397 if (UndefLHS[M])
2398 KnownUndef.setBit(i);
2399 if (ZeroLHS[M])
2400 KnownZero.setBit(i);
2401 } else {
2402 if (UndefRHS[M - NumElts])
2403 KnownUndef.setBit(i);
2404 if (ZeroRHS[M - NumElts])
2405 KnownZero.setBit(i);
2408 break;
2410 case ISD::ANY_EXTEND_VECTOR_INREG:
2411 case ISD::SIGN_EXTEND_VECTOR_INREG:
2412 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2413 APInt SrcUndef, SrcZero;
2414 SDValue Src = Op.getOperand(0);
2415 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2416 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2417 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2418 Depth + 1))
2419 return true;
2420 KnownZero = SrcZero.zextOrTrunc(NumElts);
2421 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2423 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2424 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2425 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2426 // aext - if we just need the bottom element then we can bitcast.
2427 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2430 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2431 // zext(undef) upper bits are guaranteed to be zero.
2432 if (DemandedElts.isSubsetOf(KnownUndef))
2433 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2434 KnownUndef.clearAllBits();
2436 break;
2439 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2440 // MAX, saturated math, etc.
2441 case ISD::OR:
2442 case ISD::XOR:
2443 case ISD::ADD:
2444 case ISD::SUB:
2445 case ISD::FADD:
2446 case ISD::FSUB:
2447 case ISD::FMUL:
2448 case ISD::FDIV:
2449 case ISD::FREM: {
2450 APInt UndefRHS, ZeroRHS;
2451 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2452 ZeroRHS, TLO, Depth + 1))
2453 return true;
2454 APInt UndefLHS, ZeroLHS;
2455 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2456 ZeroLHS, TLO, Depth + 1))
2457 return true;
2459 KnownZero = ZeroLHS & ZeroRHS;
2460 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2461 break;
2463 case ISD::SHL:
2464 case ISD::SRL:
2465 case ISD::SRA:
2466 case ISD::ROTL:
2467 case ISD::ROTR: {
2468 APInt UndefRHS, ZeroRHS;
2469 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2470 ZeroRHS, TLO, Depth + 1))
2471 return true;
2472 APInt UndefLHS, ZeroLHS;
2473 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2474 ZeroLHS, TLO, Depth + 1))
2475 return true;
2477 KnownZero = ZeroLHS;
2478 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2479 break;
2481 case ISD::MUL:
2482 case ISD::AND: {
2483 APInt SrcUndef, SrcZero;
2484 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2485 SrcZero, TLO, Depth + 1))
2486 return true;
2487 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2488 KnownZero, TLO, Depth + 1))
2489 return true;
2491 // If either side has a zero element, then the result element is zero, even
2492 // if the other is an UNDEF.
2493 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2494 // and then handle 'and' nodes with the rest of the binop opcodes.
2495 KnownZero |= SrcZero;
2496 KnownUndef &= SrcUndef;
2497 KnownUndef &= ~KnownZero;
2498 break;
2500 case ISD::TRUNCATE:
2501 case ISD::SIGN_EXTEND:
2502 case ISD::ZERO_EXTEND:
2503 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2504 KnownZero, TLO, Depth + 1))
2505 return true;
2507 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2508 // zext(undef) upper bits are guaranteed to be zero.
2509 if (DemandedElts.isSubsetOf(KnownUndef))
2510 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2511 KnownUndef.clearAllBits();
2513 break;
2514 default: {
2515 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2516 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2517 KnownZero, TLO, Depth))
2518 return true;
2519 } else {
2520 KnownBits Known;
2521 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2522 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2523 TLO, Depth, AssumeSingleUse))
2524 return true;
2526 break;
2529 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2531 // Constant fold all undef cases.
2532 // TODO: Handle zero cases as well.
2533 if (DemandedElts.isSubsetOf(KnownUndef))
2534 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2536 return false;
2539 /// Determine which of the bits specified in Mask are known to be either zero or
2540 /// one and return them in the Known.
2541 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2542 KnownBits &Known,
2543 const APInt &DemandedElts,
2544 const SelectionDAG &DAG,
2545 unsigned Depth) const {
2546 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2547 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2548 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2549 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2550 "Should use MaskedValueIsZero if you don't know whether Op"
2551 " is a target node!");
2552 Known.resetAll();
2555 void TargetLowering::computeKnownBitsForTargetInstr(
2556 Register R, KnownBits &Known, const APInt &DemandedElts,
2557 const MachineRegisterInfo &MRI, unsigned Depth) const {
2558 Known.resetAll();
2561 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2562 KnownBits &Known,
2563 const APInt &DemandedElts,
2564 const SelectionDAG &DAG,
2565 unsigned Depth) const {
2566 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2568 if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2569 // The low bits are known zero if the pointer is aligned.
2570 Known.Zero.setLowBits(Log2_32(Align));
2574 /// This method can be implemented by targets that want to expose additional
2575 /// information about sign bits to the DAG Combiner.
2576 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2577 const APInt &,
2578 const SelectionDAG &,
2579 unsigned Depth) const {
2580 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2581 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2582 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2583 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2584 "Should use ComputeNumSignBits if you don't know whether Op"
2585 " is a target node!");
2586 return 1;
2589 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2590 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2591 TargetLoweringOpt &TLO, unsigned Depth) const {
2592 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2593 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2594 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2595 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2596 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2597 " is a target node!");
2598 return false;
2601 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2602 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2603 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2604 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2605 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2606 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2607 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2608 "Should use SimplifyDemandedBits if you don't know whether Op"
2609 " is a target node!");
2610 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2611 return false;
2614 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2615 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2616 SelectionDAG &DAG, unsigned Depth) const {
2617 assert(
2618 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2619 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2620 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2621 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2622 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2623 " is a target node!");
2624 return SDValue();
2627 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2628 return nullptr;
2631 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2632 const SelectionDAG &DAG,
2633 bool SNaN,
2634 unsigned Depth) const {
2635 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2636 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2637 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2638 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2639 "Should use isKnownNeverNaN if you don't know whether Op"
2640 " is a target node!");
2641 return false;
2644 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2645 // work with truncating build vectors and vectors with elements of less than
2646 // 8 bits.
2647 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2648 if (!N)
2649 return false;
2651 APInt CVal;
2652 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2653 CVal = CN->getAPIntValue();
2654 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2655 auto *CN = BV->getConstantSplatNode();
2656 if (!CN)
2657 return false;
2659 // If this is a truncating build vector, truncate the splat value.
2660 // Otherwise, we may fail to match the expected values below.
2661 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2662 CVal = CN->getAPIntValue();
2663 if (BVEltWidth < CVal.getBitWidth())
2664 CVal = CVal.trunc(BVEltWidth);
2665 } else {
2666 return false;
2669 switch (getBooleanContents(N->getValueType(0))) {
2670 case UndefinedBooleanContent:
2671 return CVal[0];
2672 case ZeroOrOneBooleanContent:
2673 return CVal.isOneValue();
2674 case ZeroOrNegativeOneBooleanContent:
2675 return CVal.isAllOnesValue();
2678 llvm_unreachable("Invalid boolean contents");
2681 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2682 if (!N)
2683 return false;
2685 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2686 if (!CN) {
2687 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2688 if (!BV)
2689 return false;
2691 // Only interested in constant splats, we don't care about undef
2692 // elements in identifying boolean constants and getConstantSplatNode
2693 // returns NULL if all ops are undef;
2694 CN = BV->getConstantSplatNode();
2695 if (!CN)
2696 return false;
2699 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2700 return !CN->getAPIntValue()[0];
2702 return CN->isNullValue();
2705 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2706 bool SExt) const {
2707 if (VT == MVT::i1)
2708 return N->isOne();
2710 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2711 switch (Cnt) {
2712 case TargetLowering::ZeroOrOneBooleanContent:
2713 // An extended value of 1 is always true, unless its original type is i1,
2714 // in which case it will be sign extended to -1.
2715 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2716 case TargetLowering::UndefinedBooleanContent:
2717 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2718 return N->isAllOnesValue() && SExt;
2720 llvm_unreachable("Unexpected enumeration.");
2723 /// This helper function of SimplifySetCC tries to optimize the comparison when
2724 /// either operand of the SetCC node is a bitwise-and instruction.
2725 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2726 ISD::CondCode Cond, const SDLoc &DL,
2727 DAGCombinerInfo &DCI) const {
2728 // Match these patterns in any of their permutations:
2729 // (X & Y) == Y
2730 // (X & Y) != Y
2731 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2732 std::swap(N0, N1);
2734 EVT OpVT = N0.getValueType();
2735 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2736 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2737 return SDValue();
2739 SDValue X, Y;
2740 if (N0.getOperand(0) == N1) {
2741 X = N0.getOperand(1);
2742 Y = N0.getOperand(0);
2743 } else if (N0.getOperand(1) == N1) {
2744 X = N0.getOperand(0);
2745 Y = N0.getOperand(1);
2746 } else {
2747 return SDValue();
2750 SelectionDAG &DAG = DCI.DAG;
2751 SDValue Zero = DAG.getConstant(0, DL, OpVT);
2752 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2753 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2754 // Note that where Y is variable and is known to have at most one bit set
2755 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2756 // equivalent when Y == 0.
2757 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2758 if (DCI.isBeforeLegalizeOps() ||
2759 isCondCodeLegal(Cond, N0.getSimpleValueType()))
2760 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2761 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2762 // If the target supports an 'and-not' or 'and-complement' logic operation,
2763 // try to use that to make a comparison operation more efficient.
2764 // But don't do this transform if the mask is a single bit because there are
2765 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2766 // 'rlwinm' on PPC).
2768 // Bail out if the compare operand that we want to turn into a zero is
2769 // already a zero (otherwise, infinite loop).
2770 auto *YConst = dyn_cast<ConstantSDNode>(Y);
2771 if (YConst && YConst->isNullValue())
2772 return SDValue();
2774 // Transform this into: ~X & Y == 0.
2775 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2776 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2777 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2780 return SDValue();
2783 /// There are multiple IR patterns that could be checking whether certain
2784 /// truncation of a signed number would be lossy or not. The pattern which is
2785 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2786 /// We are looking for the following pattern: (KeptBits is a constant)
2787 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2788 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2789 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2790 /// We will unfold it into the natural trunc+sext pattern:
2791 /// ((%x << C) a>> C) dstcond %x
2792 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2793 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2794 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2795 const SDLoc &DL) const {
2796 // We must be comparing with a constant.
2797 ConstantSDNode *C1;
2798 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2799 return SDValue();
2801 // N0 should be: add %x, (1 << (KeptBits-1))
2802 if (N0->getOpcode() != ISD::ADD)
2803 return SDValue();
2805 // And we must be 'add'ing a constant.
2806 ConstantSDNode *C01;
2807 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2808 return SDValue();
2810 SDValue X = N0->getOperand(0);
2811 EVT XVT = X.getValueType();
2813 // Validate constants ...
2815 APInt I1 = C1->getAPIntValue();
2817 ISD::CondCode NewCond;
2818 if (Cond == ISD::CondCode::SETULT) {
2819 NewCond = ISD::CondCode::SETEQ;
2820 } else if (Cond == ISD::CondCode::SETULE) {
2821 NewCond = ISD::CondCode::SETEQ;
2822 // But need to 'canonicalize' the constant.
2823 I1 += 1;
2824 } else if (Cond == ISD::CondCode::SETUGT) {
2825 NewCond = ISD::CondCode::SETNE;
2826 // But need to 'canonicalize' the constant.
2827 I1 += 1;
2828 } else if (Cond == ISD::CondCode::SETUGE) {
2829 NewCond = ISD::CondCode::SETNE;
2830 } else
2831 return SDValue();
2833 APInt I01 = C01->getAPIntValue();
2835 auto checkConstants = [&I1, &I01]() -> bool {
2836 // Both of them must be power-of-two, and the constant from setcc is bigger.
2837 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2840 if (checkConstants()) {
2841 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2842 } else {
2843 // What if we invert constants? (and the target predicate)
2844 I1.negate();
2845 I01.negate();
2846 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2847 if (!checkConstants())
2848 return SDValue();
2849 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2852 // They are power-of-two, so which bit is set?
2853 const unsigned KeptBits = I1.logBase2();
2854 const unsigned KeptBitsMinusOne = I01.logBase2();
2856 // Magic!
2857 if (KeptBits != (KeptBitsMinusOne + 1))
2858 return SDValue();
2859 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2861 // We don't want to do this in every single case.
2862 SelectionDAG &DAG = DCI.DAG;
2863 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2864 XVT, KeptBits))
2865 return SDValue();
2867 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2868 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2870 // Unfold into: ((%x << C) a>> C) cond %x
2871 // Where 'cond' will be either 'eq' or 'ne'.
2872 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2873 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2874 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2875 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2877 return T2;
2880 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2881 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2882 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2883 DAGCombinerInfo &DCI, const SDLoc &DL) const {
2884 assert(isConstOrConstSplat(N1C) &&
2885 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2886 "Should be a comparison with 0.");
2887 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2888 "Valid only for [in]equality comparisons.");
2890 unsigned NewShiftOpcode;
2891 SDValue X, C, Y;
2893 SelectionDAG &DAG = DCI.DAG;
2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2896 // Look for '(C l>>/<< Y)'.
2897 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2898 // The shift should be one-use.
2899 if (!V.hasOneUse())
2900 return false;
2901 unsigned OldShiftOpcode = V.getOpcode();
2902 switch (OldShiftOpcode) {
2903 case ISD::SHL:
2904 NewShiftOpcode = ISD::SRL;
2905 break;
2906 case ISD::SRL:
2907 NewShiftOpcode = ISD::SHL;
2908 break;
2909 default:
2910 return false; // must be a logical shift.
2912 // We should be shifting a constant.
2913 // FIXME: best to use isConstantOrConstantVector().
2914 C = V.getOperand(0);
2915 ConstantSDNode *CC =
2916 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2917 if (!CC)
2918 return false;
2919 Y = V.getOperand(1);
2921 ConstantSDNode *XC =
2922 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2923 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2924 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2927 // LHS of comparison should be an one-use 'and'.
2928 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2929 return SDValue();
2931 X = N0.getOperand(0);
2932 SDValue Mask = N0.getOperand(1);
2934 // 'and' is commutative!
2935 if (!Match(Mask)) {
2936 std::swap(X, Mask);
2937 if (!Match(Mask))
2938 return SDValue();
2941 EVT VT = X.getValueType();
2943 // Produce:
2944 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2945 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2946 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2947 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2948 return T2;
2951 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2952 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2953 /// handle the commuted versions of these patterns.
2954 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2955 ISD::CondCode Cond, const SDLoc &DL,
2956 DAGCombinerInfo &DCI) const {
2957 unsigned BOpcode = N0.getOpcode();
2958 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2959 "Unexpected binop");
2960 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2962 // (X + Y) == X --> Y == 0
2963 // (X - Y) == X --> Y == 0
2964 // (X ^ Y) == X --> Y == 0
2965 SelectionDAG &DAG = DCI.DAG;
2966 EVT OpVT = N0.getValueType();
2967 SDValue X = N0.getOperand(0);
2968 SDValue Y = N0.getOperand(1);
2969 if (X == N1)
2970 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2972 if (Y != N1)
2973 return SDValue();
2975 // (X + Y) == Y --> X == 0
2976 // (X ^ Y) == Y --> X == 0
2977 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2978 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2980 // The shift would not be valid if the operands are boolean (i1).
2981 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2982 return SDValue();
2984 // (X - Y) == Y --> X == Y << 1
2985 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2986 !DCI.isBeforeLegalize());
2987 SDValue One = DAG.getConstant(1, DL, ShiftVT);
2988 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2989 if (!DCI.isCalledByLegalizer())
2990 DCI.AddToWorklist(YShl1.getNode());
2991 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2994 /// Try to simplify a setcc built with the specified operands and cc. If it is
2995 /// unable to simplify it, return a null SDValue.
2996 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2997 ISD::CondCode Cond, bool foldBooleans,
2998 DAGCombinerInfo &DCI,
2999 const SDLoc &dl) const {
3000 SelectionDAG &DAG = DCI.DAG;
3001 EVT OpVT = N0.getValueType();
3003 // Constant fold or commute setcc.
3004 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3005 return Fold;
3007 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3008 // TODO: Handle non-splat vector constants. All undef causes trouble.
3009 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3010 if (isConstOrConstSplat(N0) &&
3011 (DCI.isBeforeLegalizeOps() ||
3012 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3013 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3015 // If we have a subtract with the same 2 non-constant operands as this setcc
3016 // -- but in reverse order -- then try to commute the operands of this setcc
3017 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3018 // instruction on some targets.
3019 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3020 (DCI.isBeforeLegalizeOps() ||
3021 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3022 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3023 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3024 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3026 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3027 const APInt &C1 = N1C->getAPIntValue();
3029 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3030 // equality comparison, then we're just comparing whether X itself is
3031 // zero.
3032 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3033 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3034 N0.getOperand(1).getOpcode() == ISD::Constant) {
3035 const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3036 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3037 ShAmt == Log2_32(N0.getValueSizeInBits())) {
3038 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3039 // (srl (ctlz x), 5) == 0 -> X != 0
3040 // (srl (ctlz x), 5) != 1 -> X != 0
3041 Cond = ISD::SETNE;
3042 } else {
3043 // (srl (ctlz x), 5) != 0 -> X == 0
3044 // (srl (ctlz x), 5) == 1 -> X == 0
3045 Cond = ISD::SETEQ;
3047 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3048 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3049 Zero, Cond);
3053 SDValue CTPOP = N0;
3054 // Look through truncs that don't change the value of a ctpop.
3055 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3056 CTPOP = N0.getOperand(0);
3058 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3059 (N0 == CTPOP ||
3060 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3061 EVT CTVT = CTPOP.getValueType();
3062 SDValue CTOp = CTPOP.getOperand(0);
3064 // (ctpop x) u< 2 -> (x & x-1) == 0
3065 // (ctpop x) u> 1 -> (x & x-1) != 0
3066 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3067 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3068 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3069 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3070 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3071 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3074 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3075 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3076 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3077 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3078 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3079 SDValue Zero = DAG.getConstant(0, dl, CTVT);
3080 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3081 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3082 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3083 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3084 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3085 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3086 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3087 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3091 // (zext x) == C --> x == (trunc C)
3092 // (sext x) == C --> x == (trunc C)
3093 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3094 DCI.isBeforeLegalize() && N0->hasOneUse()) {
3095 unsigned MinBits = N0.getValueSizeInBits();
3096 SDValue PreExt;
3097 bool Signed = false;
3098 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3099 // ZExt
3100 MinBits = N0->getOperand(0).getValueSizeInBits();
3101 PreExt = N0->getOperand(0);
3102 } else if (N0->getOpcode() == ISD::AND) {
3103 // DAGCombine turns costly ZExts into ANDs
3104 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3105 if ((C->getAPIntValue()+1).isPowerOf2()) {
3106 MinBits = C->getAPIntValue().countTrailingOnes();
3107 PreExt = N0->getOperand(0);
3109 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3110 // SExt
3111 MinBits = N0->getOperand(0).getValueSizeInBits();
3112 PreExt = N0->getOperand(0);
3113 Signed = true;
3114 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3115 // ZEXTLOAD / SEXTLOAD
3116 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3117 MinBits = LN0->getMemoryVT().getSizeInBits();
3118 PreExt = N0;
3119 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3120 Signed = true;
3121 MinBits = LN0->getMemoryVT().getSizeInBits();
3122 PreExt = N0;
3126 // Figure out how many bits we need to preserve this constant.
3127 unsigned ReqdBits = Signed ?
3128 C1.getBitWidth() - C1.getNumSignBits() + 1 :
3129 C1.getActiveBits();
3131 // Make sure we're not losing bits from the constant.
3132 if (MinBits > 0 &&
3133 MinBits < C1.getBitWidth() &&
3134 MinBits >= ReqdBits) {
3135 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3136 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3137 // Will get folded away.
3138 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3139 if (MinBits == 1 && C1 == 1)
3140 // Invert the condition.
3141 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3142 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3143 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3144 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3147 // If truncating the setcc operands is not desirable, we can still
3148 // simplify the expression in some cases:
3149 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3150 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3151 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3152 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3153 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3154 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3155 SDValue TopSetCC = N0->getOperand(0);
3156 unsigned N0Opc = N0->getOpcode();
3157 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3158 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3159 TopSetCC.getOpcode() == ISD::SETCC &&
3160 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3161 (isConstFalseVal(N1C) ||
3162 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3164 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3165 (!N1C->isNullValue() && Cond == ISD::SETNE);
3167 if (!Inverse)
3168 return TopSetCC;
3170 ISD::CondCode InvCond = ISD::getSetCCInverse(
3171 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3172 TopSetCC.getOperand(0).getValueType().isInteger());
3173 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3174 TopSetCC.getOperand(1),
3175 InvCond);
3180 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3181 // equality or unsigned, and all 1 bits of the const are in the same
3182 // partial word, see if we can shorten the load.
3183 if (DCI.isBeforeLegalize() &&
3184 !ISD::isSignedIntSetCC(Cond) &&
3185 N0.getOpcode() == ISD::AND && C1 == 0 &&
3186 N0.getNode()->hasOneUse() &&
3187 isa<LoadSDNode>(N0.getOperand(0)) &&
3188 N0.getOperand(0).getNode()->hasOneUse() &&
3189 isa<ConstantSDNode>(N0.getOperand(1))) {
3190 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3191 APInt bestMask;
3192 unsigned bestWidth = 0, bestOffset = 0;
3193 if (!Lod->isVolatile() && Lod->isUnindexed()) {
3194 unsigned origWidth = N0.getValueSizeInBits();
3195 unsigned maskWidth = origWidth;
3196 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3197 // 8 bits, but have to be careful...
3198 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3199 origWidth = Lod->getMemoryVT().getSizeInBits();
3200 const APInt &Mask = N0.getConstantOperandAPInt(1);
3201 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3202 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3203 for (unsigned offset=0; offset<origWidth/width; offset++) {
3204 if (Mask.isSubsetOf(newMask)) {
3205 if (DAG.getDataLayout().isLittleEndian())
3206 bestOffset = (uint64_t)offset * (width/8);
3207 else
3208 bestOffset = (origWidth/width - offset - 1) * (width/8);
3209 bestMask = Mask.lshr(offset * (width/8) * 8);
3210 bestWidth = width;
3211 break;
3213 newMask <<= width;
3217 if (bestWidth) {
3218 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3219 if (newVT.isRound() &&
3220 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3221 EVT PtrType = Lod->getOperand(1).getValueType();
3222 SDValue Ptr = Lod->getBasePtr();
3223 if (bestOffset != 0)
3224 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3225 DAG.getConstant(bestOffset, dl, PtrType));
3226 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3227 SDValue NewLoad = DAG.getLoad(
3228 newVT, dl, Lod->getChain(), Ptr,
3229 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3230 return DAG.getSetCC(dl, VT,
3231 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3232 DAG.getConstant(bestMask.trunc(bestWidth),
3233 dl, newVT)),
3234 DAG.getConstant(0LL, dl, newVT), Cond);
3239 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3240 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3241 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3243 // If the comparison constant has bits in the upper part, the
3244 // zero-extended value could never match.
3245 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3246 C1.getBitWidth() - InSize))) {
3247 switch (Cond) {
3248 case ISD::SETUGT:
3249 case ISD::SETUGE:
3250 case ISD::SETEQ:
3251 return DAG.getConstant(0, dl, VT);
3252 case ISD::SETULT:
3253 case ISD::SETULE:
3254 case ISD::SETNE:
3255 return DAG.getConstant(1, dl, VT);
3256 case ISD::SETGT:
3257 case ISD::SETGE:
3258 // True if the sign bit of C1 is set.
3259 return DAG.getConstant(C1.isNegative(), dl, VT);
3260 case ISD::SETLT:
3261 case ISD::SETLE:
3262 // True if the sign bit of C1 isn't set.
3263 return DAG.getConstant(C1.isNonNegative(), dl, VT);
3264 default:
3265 break;
3269 // Otherwise, we can perform the comparison with the low bits.
3270 switch (Cond) {
3271 case ISD::SETEQ:
3272 case ISD::SETNE:
3273 case ISD::SETUGT:
3274 case ISD::SETUGE:
3275 case ISD::SETULT:
3276 case ISD::SETULE: {
3277 EVT newVT = N0.getOperand(0).getValueType();
3278 if (DCI.isBeforeLegalizeOps() ||
3279 (isOperationLegal(ISD::SETCC, newVT) &&
3280 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3281 EVT NewSetCCVT =
3282 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3283 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3285 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3286 NewConst, Cond);
3287 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3289 break;
3291 default:
3292 break; // todo, be more careful with signed comparisons
3294 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3295 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3296 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3297 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3298 EVT ExtDstTy = N0.getValueType();
3299 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3301 // If the constant doesn't fit into the number of bits for the source of
3302 // the sign extension, it is impossible for both sides to be equal.
3303 if (C1.getMinSignedBits() > ExtSrcTyBits)
3304 return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3306 SDValue ZextOp;
3307 EVT Op0Ty = N0.getOperand(0).getValueType();
3308 if (Op0Ty == ExtSrcTy) {
3309 ZextOp = N0.getOperand(0);
3310 } else {
3311 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3312 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3313 DAG.getConstant(Imm, dl, Op0Ty));
3315 if (!DCI.isCalledByLegalizer())
3316 DCI.AddToWorklist(ZextOp.getNode());
3317 // Otherwise, make this a use of a zext.
3318 return DAG.getSetCC(dl, VT, ZextOp,
3319 DAG.getConstant(C1 & APInt::getLowBitsSet(
3320 ExtDstTyBits,
3321 ExtSrcTyBits),
3322 dl, ExtDstTy),
3323 Cond);
3324 } else if ((N1C->isNullValue() || N1C->isOne()) &&
3325 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3326 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3327 if (N0.getOpcode() == ISD::SETCC &&
3328 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3329 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3330 if (TrueWhenTrue)
3331 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3332 // Invert the condition.
3333 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3334 CC = ISD::getSetCCInverse(CC,
3335 N0.getOperand(0).getValueType().isInteger());
3336 if (DCI.isBeforeLegalizeOps() ||
3337 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3338 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3341 if ((N0.getOpcode() == ISD::XOR ||
3342 (N0.getOpcode() == ISD::AND &&
3343 N0.getOperand(0).getOpcode() == ISD::XOR &&
3344 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3345 isa<ConstantSDNode>(N0.getOperand(1)) &&
3346 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3347 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3348 // can only do this if the top bits are known zero.
3349 unsigned BitWidth = N0.getValueSizeInBits();
3350 if (DAG.MaskedValueIsZero(N0,
3351 APInt::getHighBitsSet(BitWidth,
3352 BitWidth-1))) {
3353 // Okay, get the un-inverted input value.
3354 SDValue Val;
3355 if (N0.getOpcode() == ISD::XOR) {
3356 Val = N0.getOperand(0);
3357 } else {
3358 assert(N0.getOpcode() == ISD::AND &&
3359 N0.getOperand(0).getOpcode() == ISD::XOR);
3360 // ((X^1)&1)^1 -> X & 1
3361 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3362 N0.getOperand(0).getOperand(0),
3363 N0.getOperand(1));
3366 return DAG.getSetCC(dl, VT, Val, N1,
3367 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3369 } else if (N1C->isOne() &&
3370 (VT == MVT::i1 ||
3371 getBooleanContents(N0->getValueType(0)) ==
3372 ZeroOrOneBooleanContent)) {
3373 SDValue Op0 = N0;
3374 if (Op0.getOpcode() == ISD::TRUNCATE)
3375 Op0 = Op0.getOperand(0);
3377 if ((Op0.getOpcode() == ISD::XOR) &&
3378 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3379 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3380 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3381 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3382 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3383 Cond);
3385 if (Op0.getOpcode() == ISD::AND &&
3386 isa<ConstantSDNode>(Op0.getOperand(1)) &&
3387 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3388 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3389 if (Op0.getValueType().bitsGT(VT))
3390 Op0 = DAG.getNode(ISD::AND, dl, VT,
3391 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3392 DAG.getConstant(1, dl, VT));
3393 else if (Op0.getValueType().bitsLT(VT))
3394 Op0 = DAG.getNode(ISD::AND, dl, VT,
3395 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3396 DAG.getConstant(1, dl, VT));
3398 return DAG.getSetCC(dl, VT, Op0,
3399 DAG.getConstant(0, dl, Op0.getValueType()),
3400 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3402 if (Op0.getOpcode() == ISD::AssertZext &&
3403 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3404 return DAG.getSetCC(dl, VT, Op0,
3405 DAG.getConstant(0, dl, Op0.getValueType()),
3406 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3410 // Given:
3411 // icmp eq/ne (urem %x, %y), 0
3412 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3413 // icmp eq/ne %x, 0
3414 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3415 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3416 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3417 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3418 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3419 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3422 if (SDValue V =
3423 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3424 return V;
3427 // These simplifications apply to splat vectors as well.
3428 // TODO: Handle more splat vector cases.
3429 if (auto *N1C = isConstOrConstSplat(N1)) {
3430 const APInt &C1 = N1C->getAPIntValue();
3432 APInt MinVal, MaxVal;
3433 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3434 if (ISD::isSignedIntSetCC(Cond)) {
3435 MinVal = APInt::getSignedMinValue(OperandBitSize);
3436 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3437 } else {
3438 MinVal = APInt::getMinValue(OperandBitSize);
3439 MaxVal = APInt::getMaxValue(OperandBitSize);
3442 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3443 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3444 // X >= MIN --> true
3445 if (C1 == MinVal)
3446 return DAG.getBoolConstant(true, dl, VT, OpVT);
3448 if (!VT.isVector()) { // TODO: Support this for vectors.
3449 // X >= C0 --> X > (C0 - 1)
3450 APInt C = C1 - 1;
3451 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3452 if ((DCI.isBeforeLegalizeOps() ||
3453 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3454 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3455 isLegalICmpImmediate(C.getSExtValue())))) {
3456 return DAG.getSetCC(dl, VT, N0,
3457 DAG.getConstant(C, dl, N1.getValueType()),
3458 NewCC);
3463 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3464 // X <= MAX --> true
3465 if (C1 == MaxVal)
3466 return DAG.getBoolConstant(true, dl, VT, OpVT);
3468 // X <= C0 --> X < (C0 + 1)
3469 if (!VT.isVector()) { // TODO: Support this for vectors.
3470 APInt C = C1 + 1;
3471 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3472 if ((DCI.isBeforeLegalizeOps() ||
3473 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3474 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3475 isLegalICmpImmediate(C.getSExtValue())))) {
3476 return DAG.getSetCC(dl, VT, N0,
3477 DAG.getConstant(C, dl, N1.getValueType()),
3478 NewCC);
3483 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3484 if (C1 == MinVal)
3485 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3487 // TODO: Support this for vectors after legalize ops.
3488 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3489 // Canonicalize setlt X, Max --> setne X, Max
3490 if (C1 == MaxVal)
3491 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3493 // If we have setult X, 1, turn it into seteq X, 0
3494 if (C1 == MinVal+1)
3495 return DAG.getSetCC(dl, VT, N0,
3496 DAG.getConstant(MinVal, dl, N0.getValueType()),
3497 ISD::SETEQ);
3501 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3502 if (C1 == MaxVal)
3503 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3505 // TODO: Support this for vectors after legalize ops.
3506 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3507 // Canonicalize setgt X, Min --> setne X, Min
3508 if (C1 == MinVal)
3509 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3511 // If we have setugt X, Max-1, turn it into seteq X, Max
3512 if (C1 == MaxVal-1)
3513 return DAG.getSetCC(dl, VT, N0,
3514 DAG.getConstant(MaxVal, dl, N0.getValueType()),
3515 ISD::SETEQ);
3519 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3520 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3521 if (C1.isNullValue())
3522 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3523 VT, N0, N1, Cond, DCI, dl))
3524 return CC;
3527 // If we have "setcc X, C0", check to see if we can shrink the immediate
3528 // by changing cc.
3529 // TODO: Support this for vectors after legalize ops.
3530 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3531 // SETUGT X, SINTMAX -> SETLT X, 0
3532 if (Cond == ISD::SETUGT &&
3533 C1 == APInt::getSignedMaxValue(OperandBitSize))
3534 return DAG.getSetCC(dl, VT, N0,
3535 DAG.getConstant(0, dl, N1.getValueType()),
3536 ISD::SETLT);
3538 // SETULT X, SINTMIN -> SETGT X, -1
3539 if (Cond == ISD::SETULT &&
3540 C1 == APInt::getSignedMinValue(OperandBitSize)) {
3541 SDValue ConstMinusOne =
3542 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3543 N1.getValueType());
3544 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3549 // Back to non-vector simplifications.
3550 // TODO: Can we do these for vector splats?
3551 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3552 const APInt &C1 = N1C->getAPIntValue();
3554 // Fold bit comparisons when we can.
3555 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3556 (VT == N0.getValueType() ||
3557 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3558 N0.getOpcode() == ISD::AND) {
3559 auto &DL = DAG.getDataLayout();
3560 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3561 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3562 !DCI.isBeforeLegalize());
3563 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
3564 // Perform the xform if the AND RHS is a single bit.
3565 if (AndRHS->getAPIntValue().isPowerOf2()) {
3566 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3567 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3568 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3569 ShiftTy)));
3571 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3572 // (X & 8) == 8 --> (X & 8) >> 3
3573 // Perform the xform if C1 is a single bit.
3574 if (C1.isPowerOf2()) {
3575 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3576 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3577 DAG.getConstant(C1.logBase2(), dl,
3578 ShiftTy)));
3584 if (C1.getMinSignedBits() <= 64 &&
3585 !isLegalICmpImmediate(C1.getSExtValue())) {
3586 // (X & -256) == 256 -> (X >> 8) == 1
3587 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3588 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3589 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3590 const APInt &AndRHSC = AndRHS->getAPIntValue();
3591 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3592 unsigned ShiftBits = AndRHSC.countTrailingZeros();
3593 auto &DL = DAG.getDataLayout();
3594 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3595 !DCI.isBeforeLegalize());
3596 EVT CmpTy = N0.getValueType();
3597 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3598 DAG.getConstant(ShiftBits, dl,
3599 ShiftTy));
3600 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3601 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3604 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3605 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3606 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3607 // X < 0x100000000 -> (X >> 32) < 1
3608 // X >= 0x100000000 -> (X >> 32) >= 1
3609 // X <= 0x0ffffffff -> (X >> 32) < 1
3610 // X > 0x0ffffffff -> (X >> 32) >= 1
3611 unsigned ShiftBits;
3612 APInt NewC = C1;
3613 ISD::CondCode NewCond = Cond;
3614 if (AdjOne) {
3615 ShiftBits = C1.countTrailingOnes();
3616 NewC = NewC + 1;
3617 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3618 } else {
3619 ShiftBits = C1.countTrailingZeros();
3621 NewC.lshrInPlace(ShiftBits);
3622 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3623 isLegalICmpImmediate(NewC.getSExtValue())) {
3624 auto &DL = DAG.getDataLayout();
3625 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3626 !DCI.isBeforeLegalize());
3627 EVT CmpTy = N0.getValueType();
3628 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3629 DAG.getConstant(ShiftBits, dl, ShiftTy));
3630 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3631 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3637 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3638 auto *CFP = cast<ConstantFPSDNode>(N1);
3639 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3641 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3642 // constant if knowing that the operand is non-nan is enough. We prefer to
3643 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3644 // materialize 0.0.
3645 if (Cond == ISD::SETO || Cond == ISD::SETUO)
3646 return DAG.getSetCC(dl, VT, N0, N0, Cond);
3648 // setcc (fneg x), C -> setcc swap(pred) x, -C
3649 if (N0.getOpcode() == ISD::FNEG) {
3650 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3651 if (DCI.isBeforeLegalizeOps() ||
3652 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3653 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3654 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3658 // If the condition is not legal, see if we can find an equivalent one
3659 // which is legal.
3660 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3661 // If the comparison was an awkward floating-point == or != and one of
3662 // the comparison operands is infinity or negative infinity, convert the
3663 // condition to a less-awkward <= or >=.
3664 if (CFP->getValueAPF().isInfinity()) {
3665 if (CFP->getValueAPF().isNegative()) {
3666 if (Cond == ISD::SETOEQ &&
3667 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3668 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3669 if (Cond == ISD::SETUEQ &&
3670 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3671 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3672 if (Cond == ISD::SETUNE &&
3673 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3674 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3675 if (Cond == ISD::SETONE &&
3676 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3677 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3678 } else {
3679 if (Cond == ISD::SETOEQ &&
3680 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3681 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3682 if (Cond == ISD::SETUEQ &&
3683 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3684 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3685 if (Cond == ISD::SETUNE &&
3686 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3687 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3688 if (Cond == ISD::SETONE &&
3689 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3690 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3696 if (N0 == N1) {
3697 // The sext(setcc()) => setcc() optimization relies on the appropriate
3698 // constant being emitted.
3699 assert(!N0.getValueType().isInteger() &&
3700 "Integer types should be handled by FoldSetCC");
3702 bool EqTrue = ISD::isTrueWhenEqual(Cond);
3703 unsigned UOF = ISD::getUnorderedFlavor(Cond);
3704 if (UOF == 2) // FP operators that are undefined on NaNs.
3705 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3706 if (UOF == unsigned(EqTrue))
3707 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3708 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3709 // if it is not already.
3710 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3711 if (NewCond != Cond &&
3712 (DCI.isBeforeLegalizeOps() ||
3713 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3714 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3717 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3718 N0.getValueType().isInteger()) {
3719 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3720 N0.getOpcode() == ISD::XOR) {
3721 // Simplify (X+Y) == (X+Z) --> Y == Z
3722 if (N0.getOpcode() == N1.getOpcode()) {
3723 if (N0.getOperand(0) == N1.getOperand(0))
3724 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3725 if (N0.getOperand(1) == N1.getOperand(1))
3726 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3727 if (isCommutativeBinOp(N0.getOpcode())) {
3728 // If X op Y == Y op X, try other combinations.
3729 if (N0.getOperand(0) == N1.getOperand(1))
3730 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3731 Cond);
3732 if (N0.getOperand(1) == N1.getOperand(0))
3733 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3734 Cond);
3738 // If RHS is a legal immediate value for a compare instruction, we need
3739 // to be careful about increasing register pressure needlessly.
3740 bool LegalRHSImm = false;
3742 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3743 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3744 // Turn (X+C1) == C2 --> X == C2-C1
3745 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3746 return DAG.getSetCC(dl, VT, N0.getOperand(0),
3747 DAG.getConstant(RHSC->getAPIntValue()-
3748 LHSR->getAPIntValue(),
3749 dl, N0.getValueType()), Cond);
3752 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3753 if (N0.getOpcode() == ISD::XOR)
3754 // If we know that all of the inverted bits are zero, don't bother
3755 // performing the inversion.
3756 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3757 return
3758 DAG.getSetCC(dl, VT, N0.getOperand(0),
3759 DAG.getConstant(LHSR->getAPIntValue() ^
3760 RHSC->getAPIntValue(),
3761 dl, N0.getValueType()),
3762 Cond);
3765 // Turn (C1-X) == C2 --> X == C1-C2
3766 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3767 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3768 return
3769 DAG.getSetCC(dl, VT, N0.getOperand(1),
3770 DAG.getConstant(SUBC->getAPIntValue() -
3771 RHSC->getAPIntValue(),
3772 dl, N0.getValueType()),
3773 Cond);
3777 // Could RHSC fold directly into a compare?
3778 if (RHSC->getValueType(0).getSizeInBits() <= 64)
3779 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3782 // (X+Y) == X --> Y == 0 and similar folds.
3783 // Don't do this if X is an immediate that can fold into a cmp
3784 // instruction and X+Y has other uses. It could be an induction variable
3785 // chain, and the transform would increase register pressure.
3786 if (!LegalRHSImm || N0.hasOneUse())
3787 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3788 return V;
3791 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3792 N1.getOpcode() == ISD::XOR)
3793 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3794 return V;
3796 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3797 return V;
3800 // Fold remainder of division by a constant.
3801 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3802 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3803 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3805 // When division is cheap or optimizing for minimum size,
3806 // fall through to DIVREM creation by skipping this fold.
3807 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3808 if (N0.getOpcode() == ISD::UREM) {
3809 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3810 return Folded;
3811 } else if (N0.getOpcode() == ISD::SREM) {
3812 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3813 return Folded;
3818 // Fold away ALL boolean setcc's.
3819 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3820 SDValue Temp;
3821 switch (Cond) {
3822 default: llvm_unreachable("Unknown integer setcc!");
3823 case ISD::SETEQ: // X == Y -> ~(X^Y)
3824 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3825 N0 = DAG.getNOT(dl, Temp, OpVT);
3826 if (!DCI.isCalledByLegalizer())
3827 DCI.AddToWorklist(Temp.getNode());
3828 break;
3829 case ISD::SETNE: // X != Y --> (X^Y)
3830 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3831 break;
3832 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3833 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3834 Temp = DAG.getNOT(dl, N0, OpVT);
3835 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3836 if (!DCI.isCalledByLegalizer())
3837 DCI.AddToWorklist(Temp.getNode());
3838 break;
3839 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3840 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3841 Temp = DAG.getNOT(dl, N1, OpVT);
3842 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3843 if (!DCI.isCalledByLegalizer())
3844 DCI.AddToWorklist(Temp.getNode());
3845 break;
3846 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3847 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3848 Temp = DAG.getNOT(dl, N0, OpVT);
3849 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3850 if (!DCI.isCalledByLegalizer())
3851 DCI.AddToWorklist(Temp.getNode());
3852 break;
3853 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3854 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3855 Temp = DAG.getNOT(dl, N1, OpVT);
3856 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3857 break;
3859 if (VT.getScalarType() != MVT::i1) {
3860 if (!DCI.isCalledByLegalizer())
3861 DCI.AddToWorklist(N0.getNode());
3862 // FIXME: If running after legalize, we probably can't do this.
3863 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3864 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3866 return N0;
3869 // Could not fold it.
3870 return SDValue();
3873 /// Returns true (and the GlobalValue and the offset) if the node is a
3874 /// GlobalAddress + offset.
3875 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3876 int64_t &Offset) const {
3878 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3880 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3881 GA = GASD->getGlobal();
3882 Offset += GASD->getOffset();
3883 return true;
3886 if (N->getOpcode() == ISD::ADD) {
3887 SDValue N1 = N->getOperand(0);
3888 SDValue N2 = N->getOperand(1);
3889 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3890 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3891 Offset += V->getSExtValue();
3892 return true;
3894 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3895 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3896 Offset += V->getSExtValue();
3897 return true;
3902 return false;
3905 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3906 DAGCombinerInfo &DCI) const {
3907 // Default implementation: no optimization.
3908 return SDValue();
3911 //===----------------------------------------------------------------------===//
3912 // Inline Assembler Implementation Methods
3913 //===----------------------------------------------------------------------===//
3915 TargetLowering::ConstraintType
3916 TargetLowering::getConstraintType(StringRef Constraint) const {
3917 unsigned S = Constraint.size();
3919 if (S == 1) {
3920 switch (Constraint[0]) {
3921 default: break;
3922 case 'r':
3923 return C_RegisterClass;
3924 case 'm': // memory
3925 case 'o': // offsetable
3926 case 'V': // not offsetable
3927 return C_Memory;
3928 case 'n': // Simple Integer
3929 case 'E': // Floating Point Constant
3930 case 'F': // Floating Point Constant
3931 return C_Immediate;
3932 case 'i': // Simple Integer or Relocatable Constant
3933 case 's': // Relocatable Constant
3934 case 'p': // Address.
3935 case 'X': // Allow ANY value.
3936 case 'I': // Target registers.
3937 case 'J':
3938 case 'K':
3939 case 'L':
3940 case 'M':
3941 case 'N':
3942 case 'O':
3943 case 'P':
3944 case '<':
3945 case '>':
3946 return C_Other;
3950 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3951 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3952 return C_Memory;
3953 return C_Register;
3955 return C_Unknown;
3958 /// Try to replace an X constraint, which matches anything, with another that
3959 /// has more specific requirements based on the type of the corresponding
3960 /// operand.
3961 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3962 if (ConstraintVT.isInteger())
3963 return "r";
3964 if (ConstraintVT.isFloatingPoint())
3965 return "f"; // works for many targets
3966 return nullptr;
3969 SDValue TargetLowering::LowerAsmOutputForConstraint(
3970 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3971 SelectionDAG &DAG) const {
3972 return SDValue();
3975 /// Lower the specified operand into the Ops vector.
3976 /// If it is invalid, don't add anything to Ops.
3977 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3978 std::string &Constraint,
3979 std::vector<SDValue> &Ops,
3980 SelectionDAG &DAG) const {
3982 if (Constraint.length() > 1) return;
3984 char ConstraintLetter = Constraint[0];
3985 switch (ConstraintLetter) {
3986 default: break;
3987 case 'X': // Allows any operand; labels (basic block) use this.
3988 if (Op.getOpcode() == ISD::BasicBlock ||
3989 Op.getOpcode() == ISD::TargetBlockAddress) {
3990 Ops.push_back(Op);
3991 return;
3993 LLVM_FALLTHROUGH;
3994 case 'i': // Simple Integer or Relocatable Constant
3995 case 'n': // Simple Integer
3996 case 's': { // Relocatable Constant
3998 GlobalAddressSDNode *GA;
3999 ConstantSDNode *C;
4000 BlockAddressSDNode *BA;
4001 uint64_t Offset = 0;
4003 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4004 // etc., since getelementpointer is variadic. We can't use
4005 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4006 // while in this case the GA may be furthest from the root node which is
4007 // likely an ISD::ADD.
4008 while (1) {
4009 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4010 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4011 GA->getValueType(0),
4012 Offset + GA->getOffset()));
4013 return;
4014 } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4015 ConstraintLetter != 's') {
4016 // gcc prints these as sign extended. Sign extend value to 64 bits
4017 // now; without this it would get ZExt'd later in
4018 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4019 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4020 BooleanContent BCont = getBooleanContents(MVT::i64);
4021 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4022 : ISD::SIGN_EXTEND;
4023 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4024 : C->getSExtValue();
4025 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4026 SDLoc(C), MVT::i64));
4027 return;
4028 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4029 ConstraintLetter != 'n') {
4030 Ops.push_back(DAG.getTargetBlockAddress(
4031 BA->getBlockAddress(), BA->getValueType(0),
4032 Offset + BA->getOffset(), BA->getTargetFlags()));
4033 return;
4034 } else {
4035 const unsigned OpCode = Op.getOpcode();
4036 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4037 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4038 Op = Op.getOperand(1);
4039 // Subtraction is not commutative.
4040 else if (OpCode == ISD::ADD &&
4041 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4042 Op = Op.getOperand(0);
4043 else
4044 return;
4045 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4046 continue;
4049 return;
4051 break;
4056 std::pair<unsigned, const TargetRegisterClass *>
4057 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4058 StringRef Constraint,
4059 MVT VT) const {
4060 if (Constraint.empty() || Constraint[0] != '{')
4061 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4062 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4064 // Remove the braces from around the name.
4065 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4067 std::pair<unsigned, const TargetRegisterClass *> R =
4068 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4070 // Figure out which register class contains this reg.
4071 for (const TargetRegisterClass *RC : RI->regclasses()) {
4072 // If none of the value types for this register class are valid, we
4073 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4074 if (!isLegalRC(*RI, *RC))
4075 continue;
4077 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4078 I != E; ++I) {
4079 if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4080 std::pair<unsigned, const TargetRegisterClass *> S =
4081 std::make_pair(*I, RC);
4083 // If this register class has the requested value type, return it,
4084 // otherwise keep searching and return the first class found
4085 // if no other is found which explicitly has the requested type.
4086 if (RI->isTypeLegalForClass(*RC, VT))
4087 return S;
4088 if (!R.second)
4089 R = S;
4094 return R;
4097 //===----------------------------------------------------------------------===//
4098 // Constraint Selection.
4100 /// Return true of this is an input operand that is a matching constraint like
4101 /// "4".
4102 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4103 assert(!ConstraintCode.empty() && "No known constraint!");
4104 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4107 /// If this is an input matching constraint, this method returns the output
4108 /// operand it matches.
4109 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4110 assert(!ConstraintCode.empty() && "No known constraint!");
4111 return atoi(ConstraintCode.c_str());
4114 /// Split up the constraint string from the inline assembly value into the
4115 /// specific constraints and their prefixes, and also tie in the associated
4116 /// operand values.
4117 /// If this returns an empty vector, and if the constraint string itself
4118 /// isn't empty, there was an error parsing.
4119 TargetLowering::AsmOperandInfoVector
4120 TargetLowering::ParseConstraints(const DataLayout &DL,
4121 const TargetRegisterInfo *TRI,
4122 ImmutableCallSite CS) const {
4123 /// Information about all of the constraints.
4124 AsmOperandInfoVector ConstraintOperands;
4125 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4126 unsigned maCount = 0; // Largest number of multiple alternative constraints.
4128 // Do a prepass over the constraints, canonicalizing them, and building up the
4129 // ConstraintOperands list.
4130 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4131 unsigned ResNo = 0; // ResNo - The result number of the next output.
4133 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4134 ConstraintOperands.emplace_back(std::move(CI));
4135 AsmOperandInfo &OpInfo = ConstraintOperands.back();
4137 // Update multiple alternative constraint count.
4138 if (OpInfo.multipleAlternatives.size() > maCount)
4139 maCount = OpInfo.multipleAlternatives.size();
4141 OpInfo.ConstraintVT = MVT::Other;
4143 // Compute the value type for each operand.
4144 switch (OpInfo.Type) {
4145 case InlineAsm::isOutput:
4146 // Indirect outputs just consume an argument.
4147 if (OpInfo.isIndirect) {
4148 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4149 break;
4152 // The return value of the call is this value. As such, there is no
4153 // corresponding argument.
4154 assert(!CS.getType()->isVoidTy() &&
4155 "Bad inline asm!");
4156 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4157 OpInfo.ConstraintVT =
4158 getSimpleValueType(DL, STy->getElementType(ResNo));
4159 } else {
4160 assert(ResNo == 0 && "Asm only has one result!");
4161 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4163 ++ResNo;
4164 break;
4165 case InlineAsm::isInput:
4166 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4167 break;
4168 case InlineAsm::isClobber:
4169 // Nothing to do.
4170 break;
4173 if (OpInfo.CallOperandVal) {
4174 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4175 if (OpInfo.isIndirect) {
4176 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4177 if (!PtrTy)
4178 report_fatal_error("Indirect operand for inline asm not a pointer!");
4179 OpTy = PtrTy->getElementType();
4182 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4183 if (StructType *STy = dyn_cast<StructType>(OpTy))
4184 if (STy->getNumElements() == 1)
4185 OpTy = STy->getElementType(0);
4187 // If OpTy is not a single value, it may be a struct/union that we
4188 // can tile with integers.
4189 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4190 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4191 switch (BitSize) {
4192 default: break;
4193 case 1:
4194 case 8:
4195 case 16:
4196 case 32:
4197 case 64:
4198 case 128:
4199 OpInfo.ConstraintVT =
4200 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4201 break;
4203 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4204 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4205 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4206 } else {
4207 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4212 // If we have multiple alternative constraints, select the best alternative.
4213 if (!ConstraintOperands.empty()) {
4214 if (maCount) {
4215 unsigned bestMAIndex = 0;
4216 int bestWeight = -1;
4217 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4218 int weight = -1;
4219 unsigned maIndex;
4220 // Compute the sums of the weights for each alternative, keeping track
4221 // of the best (highest weight) one so far.
4222 for (maIndex = 0; maIndex < maCount; ++maIndex) {
4223 int weightSum = 0;
4224 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4225 cIndex != eIndex; ++cIndex) {
4226 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4227 if (OpInfo.Type == InlineAsm::isClobber)
4228 continue;
4230 // If this is an output operand with a matching input operand,
4231 // look up the matching input. If their types mismatch, e.g. one
4232 // is an integer, the other is floating point, or their sizes are
4233 // different, flag it as an maCantMatch.
4234 if (OpInfo.hasMatchingInput()) {
4235 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4236 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4237 if ((OpInfo.ConstraintVT.isInteger() !=
4238 Input.ConstraintVT.isInteger()) ||
4239 (OpInfo.ConstraintVT.getSizeInBits() !=
4240 Input.ConstraintVT.getSizeInBits())) {
4241 weightSum = -1; // Can't match.
4242 break;
4246 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4247 if (weight == -1) {
4248 weightSum = -1;
4249 break;
4251 weightSum += weight;
4253 // Update best.
4254 if (weightSum > bestWeight) {
4255 bestWeight = weightSum;
4256 bestMAIndex = maIndex;
4260 // Now select chosen alternative in each constraint.
4261 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4262 cIndex != eIndex; ++cIndex) {
4263 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4264 if (cInfo.Type == InlineAsm::isClobber)
4265 continue;
4266 cInfo.selectAlternative(bestMAIndex);
4271 // Check and hook up tied operands, choose constraint code to use.
4272 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4273 cIndex != eIndex; ++cIndex) {
4274 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4276 // If this is an output operand with a matching input operand, look up the
4277 // matching input. If their types mismatch, e.g. one is an integer, the
4278 // other is floating point, or their sizes are different, flag it as an
4279 // error.
4280 if (OpInfo.hasMatchingInput()) {
4281 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4283 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4284 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4285 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4286 OpInfo.ConstraintVT);
4287 std::pair<unsigned, const TargetRegisterClass *> InputRC =
4288 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4289 Input.ConstraintVT);
4290 if ((OpInfo.ConstraintVT.isInteger() !=
4291 Input.ConstraintVT.isInteger()) ||
4292 (MatchRC.second != InputRC.second)) {
4293 report_fatal_error("Unsupported asm: input constraint"
4294 " with a matching output constraint of"
4295 " incompatible type!");
4301 return ConstraintOperands;
4304 /// Return an integer indicating how general CT is.
4305 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4306 switch (CT) {
4307 case TargetLowering::C_Immediate:
4308 case TargetLowering::C_Other:
4309 case TargetLowering::C_Unknown:
4310 return 0;
4311 case TargetLowering::C_Register:
4312 return 1;
4313 case TargetLowering::C_RegisterClass:
4314 return 2;
4315 case TargetLowering::C_Memory:
4316 return 3;
4318 llvm_unreachable("Invalid constraint type");
4321 /// Examine constraint type and operand type and determine a weight value.
4322 /// This object must already have been set up with the operand type
4323 /// and the current alternative constraint selected.
4324 TargetLowering::ConstraintWeight
4325 TargetLowering::getMultipleConstraintMatchWeight(
4326 AsmOperandInfo &info, int maIndex) const {
4327 InlineAsm::ConstraintCodeVector *rCodes;
4328 if (maIndex >= (int)info.multipleAlternatives.size())
4329 rCodes = &info.Codes;
4330 else
4331 rCodes = &info.multipleAlternatives[maIndex].Codes;
4332 ConstraintWeight BestWeight = CW_Invalid;
4334 // Loop over the options, keeping track of the most general one.
4335 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4336 ConstraintWeight weight =
4337 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4338 if (weight > BestWeight)
4339 BestWeight = weight;
4342 return BestWeight;
4345 /// Examine constraint type and operand type and determine a weight value.
4346 /// This object must already have been set up with the operand type
4347 /// and the current alternative constraint selected.
4348 TargetLowering::ConstraintWeight
4349 TargetLowering::getSingleConstraintMatchWeight(
4350 AsmOperandInfo &info, const char *constraint) const {
4351 ConstraintWeight weight = CW_Invalid;
4352 Value *CallOperandVal = info.CallOperandVal;
4353 // If we don't have a value, we can't do a match,
4354 // but allow it at the lowest weight.
4355 if (!CallOperandVal)
4356 return CW_Default;
4357 // Look at the constraint type.
4358 switch (*constraint) {
4359 case 'i': // immediate integer.
4360 case 'n': // immediate integer with a known value.
4361 if (isa<ConstantInt>(CallOperandVal))
4362 weight = CW_Constant;
4363 break;
4364 case 's': // non-explicit intregal immediate.
4365 if (isa<GlobalValue>(CallOperandVal))
4366 weight = CW_Constant;
4367 break;
4368 case 'E': // immediate float if host format.
4369 case 'F': // immediate float.
4370 if (isa<ConstantFP>(CallOperandVal))
4371 weight = CW_Constant;
4372 break;
4373 case '<': // memory operand with autodecrement.
4374 case '>': // memory operand with autoincrement.
4375 case 'm': // memory operand.
4376 case 'o': // offsettable memory operand
4377 case 'V': // non-offsettable memory operand
4378 weight = CW_Memory;
4379 break;
4380 case 'r': // general register.
4381 case 'g': // general register, memory operand or immediate integer.
4382 // note: Clang converts "g" to "imr".
4383 if (CallOperandVal->getType()->isIntegerTy())
4384 weight = CW_Register;
4385 break;
4386 case 'X': // any operand.
4387 default:
4388 weight = CW_Default;
4389 break;
4391 return weight;
4394 /// If there are multiple different constraints that we could pick for this
4395 /// operand (e.g. "imr") try to pick the 'best' one.
4396 /// This is somewhat tricky: constraints fall into four classes:
4397 /// Other -> immediates and magic values
4398 /// Register -> one specific register
4399 /// RegisterClass -> a group of regs
4400 /// Memory -> memory
4401 /// Ideally, we would pick the most specific constraint possible: if we have
4402 /// something that fits into a register, we would pick it. The problem here
4403 /// is that if we have something that could either be in a register or in
4404 /// memory that use of the register could cause selection of *other*
4405 /// operands to fail: they might only succeed if we pick memory. Because of
4406 /// this the heuristic we use is:
4408 /// 1) If there is an 'other' constraint, and if the operand is valid for
4409 /// that constraint, use it. This makes us take advantage of 'i'
4410 /// constraints when available.
4411 /// 2) Otherwise, pick the most general constraint present. This prefers
4412 /// 'm' over 'r', for example.
4414 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4415 const TargetLowering &TLI,
4416 SDValue Op, SelectionDAG *DAG) {
4417 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4418 unsigned BestIdx = 0;
4419 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4420 int BestGenerality = -1;
4422 // Loop over the options, keeping track of the most general one.
4423 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4424 TargetLowering::ConstraintType CType =
4425 TLI.getConstraintType(OpInfo.Codes[i]);
4427 // If this is an 'other' or 'immediate' constraint, see if the operand is
4428 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4429 // the operand is an integer in the range [0..31] we want to use I (saving a
4430 // load of a register), otherwise we must use 'r'.
4431 if ((CType == TargetLowering::C_Other ||
4432 CType == TargetLowering::C_Immediate) && Op.getNode()) {
4433 assert(OpInfo.Codes[i].size() == 1 &&
4434 "Unhandled multi-letter 'other' constraint");
4435 std::vector<SDValue> ResultOps;
4436 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4437 ResultOps, *DAG);
4438 if (!ResultOps.empty()) {
4439 BestType = CType;
4440 BestIdx = i;
4441 break;
4445 // Things with matching constraints can only be registers, per gcc
4446 // documentation. This mainly affects "g" constraints.
4447 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4448 continue;
4450 // This constraint letter is more general than the previous one, use it.
4451 int Generality = getConstraintGenerality(CType);
4452 if (Generality > BestGenerality) {
4453 BestType = CType;
4454 BestIdx = i;
4455 BestGenerality = Generality;
4459 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4460 OpInfo.ConstraintType = BestType;
4463 /// Determines the constraint code and constraint type to use for the specific
4464 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4465 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4466 SDValue Op,
4467 SelectionDAG *DAG) const {
4468 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4470 // Single-letter constraints ('r') are very common.
4471 if (OpInfo.Codes.size() == 1) {
4472 OpInfo.ConstraintCode = OpInfo.Codes[0];
4473 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4474 } else {
4475 ChooseConstraint(OpInfo, *this, Op, DAG);
4478 // 'X' matches anything.
4479 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4480 // Labels and constants are handled elsewhere ('X' is the only thing
4481 // that matches labels). For Functions, the type here is the type of
4482 // the result, which is not what we want to look at; leave them alone.
4483 Value *v = OpInfo.CallOperandVal;
4484 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4485 OpInfo.CallOperandVal = v;
4486 return;
4489 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4490 return;
4492 // Otherwise, try to resolve it to something we know about by looking at
4493 // the actual operand type.
4494 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4495 OpInfo.ConstraintCode = Repl;
4496 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4501 /// Given an exact SDIV by a constant, create a multiplication
4502 /// with the multiplicative inverse of the constant.
4503 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4504 const SDLoc &dl, SelectionDAG &DAG,
4505 SmallVectorImpl<SDNode *> &Created) {
4506 SDValue Op0 = N->getOperand(0);
4507 SDValue Op1 = N->getOperand(1);
4508 EVT VT = N->getValueType(0);
4509 EVT SVT = VT.getScalarType();
4510 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4511 EVT ShSVT = ShVT.getScalarType();
4513 bool UseSRA = false;
4514 SmallVector<SDValue, 16> Shifts, Factors;
4516 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4517 if (C->isNullValue())
4518 return false;
4519 APInt Divisor = C->getAPIntValue();
4520 unsigned Shift = Divisor.countTrailingZeros();
4521 if (Shift) {
4522 Divisor.ashrInPlace(Shift);
4523 UseSRA = true;
4525 // Calculate the multiplicative inverse, using Newton's method.
4526 APInt t;
4527 APInt Factor = Divisor;
4528 while ((t = Divisor * Factor) != 1)
4529 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4530 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4531 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4532 return true;
4535 // Collect all magic values from the build vector.
4536 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4537 return SDValue();
4539 SDValue Shift, Factor;
4540 if (VT.isVector()) {
4541 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4542 Factor = DAG.getBuildVector(VT, dl, Factors);
4543 } else {
4544 Shift = Shifts[0];
4545 Factor = Factors[0];
4548 SDValue Res = Op0;
4550 // Shift the value upfront if it is even, so the LSB is one.
4551 if (UseSRA) {
4552 // TODO: For UDIV use SRL instead of SRA.
4553 SDNodeFlags Flags;
4554 Flags.setExact(true);
4555 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4556 Created.push_back(Res.getNode());
4559 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4562 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4563 SelectionDAG &DAG,
4564 SmallVectorImpl<SDNode *> &Created) const {
4565 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4566 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4567 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4568 return SDValue(N, 0); // Lower SDIV as SDIV
4569 return SDValue();
4572 /// Given an ISD::SDIV node expressing a divide by constant,
4573 /// return a DAG expression to select that will generate the same value by
4574 /// multiplying by a magic number.
4575 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4576 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4577 bool IsAfterLegalization,
4578 SmallVectorImpl<SDNode *> &Created) const {
4579 SDLoc dl(N);
4580 EVT VT = N->getValueType(0);
4581 EVT SVT = VT.getScalarType();
4582 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4583 EVT ShSVT = ShVT.getScalarType();
4584 unsigned EltBits = VT.getScalarSizeInBits();
4586 // Check to see if we can do this.
4587 // FIXME: We should be more aggressive here.
4588 if (!isTypeLegal(VT))
4589 return SDValue();
4591 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4592 if (N->getFlags().hasExact())
4593 return BuildExactSDIV(*this, N, dl, DAG, Created);
4595 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4597 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4598 if (C->isNullValue())
4599 return false;
4601 const APInt &Divisor = C->getAPIntValue();
4602 APInt::ms magics = Divisor.magic();
4603 int NumeratorFactor = 0;
4604 int ShiftMask = -1;
4606 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4607 // If d is +1/-1, we just multiply the numerator by +1/-1.
4608 NumeratorFactor = Divisor.getSExtValue();
4609 magics.m = 0;
4610 magics.s = 0;
4611 ShiftMask = 0;
4612 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4613 // If d > 0 and m < 0, add the numerator.
4614 NumeratorFactor = 1;
4615 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4616 // If d < 0 and m > 0, subtract the numerator.
4617 NumeratorFactor = -1;
4620 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4621 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4622 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4623 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4624 return true;
4627 SDValue N0 = N->getOperand(0);
4628 SDValue N1 = N->getOperand(1);
4630 // Collect the shifts / magic values from each element.
4631 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4632 return SDValue();
4634 SDValue MagicFactor, Factor, Shift, ShiftMask;
4635 if (VT.isVector()) {
4636 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4637 Factor = DAG.getBuildVector(VT, dl, Factors);
4638 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4639 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4640 } else {
4641 MagicFactor = MagicFactors[0];
4642 Factor = Factors[0];
4643 Shift = Shifts[0];
4644 ShiftMask = ShiftMasks[0];
4647 // Multiply the numerator (operand 0) by the magic value.
4648 // FIXME: We should support doing a MUL in a wider type.
4649 SDValue Q;
4650 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4651 : isOperationLegalOrCustom(ISD::MULHS, VT))
4652 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4653 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4654 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4655 SDValue LoHi =
4656 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4657 Q = SDValue(LoHi.getNode(), 1);
4658 } else
4659 return SDValue(); // No mulhs or equivalent.
4660 Created.push_back(Q.getNode());
4662 // (Optionally) Add/subtract the numerator using Factor.
4663 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4664 Created.push_back(Factor.getNode());
4665 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4666 Created.push_back(Q.getNode());
4668 // Shift right algebraic by shift value.
4669 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4670 Created.push_back(Q.getNode());
4672 // Extract the sign bit, mask it and add it to the quotient.
4673 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4674 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4675 Created.push_back(T.getNode());
4676 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4677 Created.push_back(T.getNode());
4678 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4681 /// Given an ISD::UDIV node expressing a divide by constant,
4682 /// return a DAG expression to select that will generate the same value by
4683 /// multiplying by a magic number.
4684 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4685 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4686 bool IsAfterLegalization,
4687 SmallVectorImpl<SDNode *> &Created) const {
4688 SDLoc dl(N);
4689 EVT VT = N->getValueType(0);
4690 EVT SVT = VT.getScalarType();
4691 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4692 EVT ShSVT = ShVT.getScalarType();
4693 unsigned EltBits = VT.getScalarSizeInBits();
4695 // Check to see if we can do this.
4696 // FIXME: We should be more aggressive here.
4697 if (!isTypeLegal(VT))
4698 return SDValue();
4700 bool UseNPQ = false;
4701 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4703 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4704 if (C->isNullValue())
4705 return false;
4706 // FIXME: We should use a narrower constant when the upper
4707 // bits are known to be zero.
4708 APInt Divisor = C->getAPIntValue();
4709 APInt::mu magics = Divisor.magicu();
4710 unsigned PreShift = 0, PostShift = 0;
4712 // If the divisor is even, we can avoid using the expensive fixup by
4713 // shifting the divided value upfront.
4714 if (magics.a != 0 && !Divisor[0]) {
4715 PreShift = Divisor.countTrailingZeros();
4716 // Get magic number for the shifted divisor.
4717 magics = Divisor.lshr(PreShift).magicu(PreShift);
4718 assert(magics.a == 0 && "Should use cheap fixup now");
4721 APInt Magic = magics.m;
4723 unsigned SelNPQ;
4724 if (magics.a == 0 || Divisor.isOneValue()) {
4725 assert(magics.s < Divisor.getBitWidth() &&
4726 "We shouldn't generate an undefined shift!");
4727 PostShift = magics.s;
4728 SelNPQ = false;
4729 } else {
4730 PostShift = magics.s - 1;
4731 SelNPQ = true;
4734 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4735 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4736 NPQFactors.push_back(
4737 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4738 : APInt::getNullValue(EltBits),
4739 dl, SVT));
4740 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4741 UseNPQ |= SelNPQ;
4742 return true;
4745 SDValue N0 = N->getOperand(0);
4746 SDValue N1 = N->getOperand(1);
4748 // Collect the shifts/magic values from each element.
4749 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4750 return SDValue();
4752 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4753 if (VT.isVector()) {
4754 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4755 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4756 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4757 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4758 } else {
4759 PreShift = PreShifts[0];
4760 MagicFactor = MagicFactors[0];
4761 PostShift = PostShifts[0];
4764 SDValue Q = N0;
4765 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4766 Created.push_back(Q.getNode());
4768 // FIXME: We should support doing a MUL in a wider type.
4769 auto GetMULHU = [&](SDValue X, SDValue Y) {
4770 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4771 : isOperationLegalOrCustom(ISD::MULHU, VT))
4772 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4773 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4774 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4775 SDValue LoHi =
4776 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4777 return SDValue(LoHi.getNode(), 1);
4779 return SDValue(); // No mulhu or equivalent
4782 // Multiply the numerator (operand 0) by the magic value.
4783 Q = GetMULHU(Q, MagicFactor);
4784 if (!Q)
4785 return SDValue();
4787 Created.push_back(Q.getNode());
4789 if (UseNPQ) {
4790 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4791 Created.push_back(NPQ.getNode());
4793 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4794 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4795 if (VT.isVector())
4796 NPQ = GetMULHU(NPQ, NPQFactor);
4797 else
4798 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4800 Created.push_back(NPQ.getNode());
4802 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4803 Created.push_back(Q.getNode());
4806 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4807 Created.push_back(Q.getNode());
4809 SDValue One = DAG.getConstant(1, dl, VT);
4810 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4811 return DAG.getSelect(dl, VT, IsOne, N0, Q);
4814 /// If all values in Values that *don't* match the predicate are same 'splat'
4815 /// value, then replace all values with that splat value.
4816 /// Else, if AlternativeReplacement was provided, then replace all values that
4817 /// do match predicate with AlternativeReplacement value.
4818 static void
4819 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4820 std::function<bool(SDValue)> Predicate,
4821 SDValue AlternativeReplacement = SDValue()) {
4822 SDValue Replacement;
4823 // Is there a value for which the Predicate does *NOT* match? What is it?
4824 auto SplatValue = llvm::find_if_not(Values, Predicate);
4825 if (SplatValue != Values.end()) {
4826 // Does Values consist only of SplatValue's and values matching Predicate?
4827 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4828 return Value == *SplatValue || Predicate(Value);
4829 })) // Then we shall replace values matching predicate with SplatValue.
4830 Replacement = *SplatValue;
4832 if (!Replacement) {
4833 // Oops, we did not find the "baseline" splat value.
4834 if (!AlternativeReplacement)
4835 return; // Nothing to do.
4836 // Let's replace with provided value then.
4837 Replacement = AlternativeReplacement;
4839 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4842 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4843 /// where the divisor is constant and the comparison target is zero,
4844 /// return a DAG expression that will generate the same comparison result
4845 /// using only multiplications, additions and shifts/rotations.
4846 /// Ref: "Hacker's Delight" 10-17.
4847 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4848 SDValue CompTargetNode,
4849 ISD::CondCode Cond,
4850 DAGCombinerInfo &DCI,
4851 const SDLoc &DL) const {
4852 SmallVector<SDNode *, 2> Built;
4853 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4854 DCI, DL, Built)) {
4855 for (SDNode *N : Built)
4856 DCI.AddToWorklist(N);
4857 return Folded;
4860 return SDValue();
4863 SDValue
4864 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4865 SDValue CompTargetNode, ISD::CondCode Cond,
4866 DAGCombinerInfo &DCI, const SDLoc &DL,
4867 SmallVectorImpl<SDNode *> &Created) const {
4868 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4869 // - D must be constant, with D = D0 * 2^K where D0 is odd
4870 // - P is the multiplicative inverse of D0 modulo 2^W
4871 // - Q = floor(((2^W) - 1) / D)
4872 // where W is the width of the common type of N and D.
4873 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4874 "Only applicable for (in)equality comparisons.");
4876 SelectionDAG &DAG = DCI.DAG;
4878 EVT VT = REMNode.getValueType();
4879 EVT SVT = VT.getScalarType();
4880 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4881 EVT ShSVT = ShVT.getScalarType();
4883 // If MUL is unavailable, we cannot proceed in any case.
4884 if (!isOperationLegalOrCustom(ISD::MUL, VT))
4885 return SDValue();
4887 // TODO: Could support comparing with non-zero too.
4888 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4889 if (!CompTarget || !CompTarget->isNullValue())
4890 return SDValue();
4892 bool HadOneDivisor = false;
4893 bool AllDivisorsAreOnes = true;
4894 bool HadEvenDivisor = false;
4895 bool AllDivisorsArePowerOfTwo = true;
4896 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4898 auto BuildUREMPattern = [&](ConstantSDNode *C) {
4899 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4900 if (C->isNullValue())
4901 return false;
4903 const APInt &D = C->getAPIntValue();
4904 // If all divisors are ones, we will prefer to avoid the fold.
4905 HadOneDivisor |= D.isOneValue();
4906 AllDivisorsAreOnes &= D.isOneValue();
4908 // Decompose D into D0 * 2^K
4909 unsigned K = D.countTrailingZeros();
4910 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4911 APInt D0 = D.lshr(K);
4913 // D is even if it has trailing zeros.
4914 HadEvenDivisor |= (K != 0);
4915 // D is a power-of-two if D0 is one.
4916 // If all divisors are power-of-two, we will prefer to avoid the fold.
4917 AllDivisorsArePowerOfTwo &= D0.isOneValue();
4919 // P = inv(D0, 2^W)
4920 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4921 unsigned W = D.getBitWidth();
4922 APInt P = D0.zext(W + 1)
4923 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4924 .trunc(W);
4925 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4926 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4928 // Q = floor((2^W - 1) / D)
4929 APInt Q = APInt::getAllOnesValue(W).udiv(D);
4931 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4932 "We are expecting that K is always less than all-ones for ShSVT");
4934 // If the divisor is 1 the result can be constant-folded.
4935 if (D.isOneValue()) {
4936 // Set P and K amount to a bogus values so we can try to splat them.
4937 P = 0;
4938 K = -1;
4939 assert(Q.isAllOnesValue() &&
4940 "Expecting all-ones comparison for one divisor");
4943 PAmts.push_back(DAG.getConstant(P, DL, SVT));
4944 KAmts.push_back(
4945 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4946 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4947 return true;
4950 SDValue N = REMNode.getOperand(0);
4951 SDValue D = REMNode.getOperand(1);
4953 // Collect the values from each element.
4954 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4955 return SDValue();
4957 // If this is a urem by a one, avoid the fold since it can be constant-folded.
4958 if (AllDivisorsAreOnes)
4959 return SDValue();
4961 // If this is a urem by a powers-of-two, avoid the fold since it can be
4962 // best implemented as a bit test.
4963 if (AllDivisorsArePowerOfTwo)
4964 return SDValue();
4966 SDValue PVal, KVal, QVal;
4967 if (VT.isVector()) {
4968 if (HadOneDivisor) {
4969 // Try to turn PAmts into a splat, since we don't care about the values
4970 // that are currently '0'. If we can't, just keep '0'`s.
4971 turnVectorIntoSplatVector(PAmts, isNullConstant);
4972 // Try to turn KAmts into a splat, since we don't care about the values
4973 // that are currently '-1'. If we can't, change them to '0'`s.
4974 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
4975 DAG.getConstant(0, DL, ShSVT));
4978 PVal = DAG.getBuildVector(VT, DL, PAmts);
4979 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
4980 QVal = DAG.getBuildVector(VT, DL, QAmts);
4981 } else {
4982 PVal = PAmts[0];
4983 KVal = KAmts[0];
4984 QVal = QAmts[0];
4987 // (mul N, P)
4988 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
4989 Created.push_back(Op0.getNode());
4991 // Rotate right only if any divisor was even. We avoid rotates for all-odd
4992 // divisors as a performance improvement, since rotating by 0 is a no-op.
4993 if (HadEvenDivisor) {
4994 // We need ROTR to do this.
4995 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
4996 return SDValue();
4997 SDNodeFlags Flags;
4998 Flags.setExact(true);
4999 // UREM: (rotr (mul N, P), K)
5000 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5001 Created.push_back(Op0.getNode());
5004 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5005 return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5006 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5009 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5010 /// where the divisor is constant and the comparison target is zero,
5011 /// return a DAG expression that will generate the same comparison result
5012 /// using only multiplications, additions and shifts/rotations.
5013 /// Ref: "Hacker's Delight" 10-17.
5014 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5015 SDValue CompTargetNode,
5016 ISD::CondCode Cond,
5017 DAGCombinerInfo &DCI,
5018 const SDLoc &DL) const {
5019 SmallVector<SDNode *, 7> Built;
5020 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5021 DCI, DL, Built)) {
5022 assert(Built.size() <= 7 && "Max size prediction failed.");
5023 for (SDNode *N : Built)
5024 DCI.AddToWorklist(N);
5025 return Folded;
5028 return SDValue();
5031 SDValue
5032 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5033 SDValue CompTargetNode, ISD::CondCode Cond,
5034 DAGCombinerInfo &DCI, const SDLoc &DL,
5035 SmallVectorImpl<SDNode *> &Created) const {
5036 // Fold:
5037 // (seteq/ne (srem N, D), 0)
5038 // To:
5039 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5041 // - D must be constant, with D = D0 * 2^K where D0 is odd
5042 // - P is the multiplicative inverse of D0 modulo 2^W
5043 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5044 // - Q = floor((2 * A) / (2^K))
5045 // where W is the width of the common type of N and D.
5046 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5047 "Only applicable for (in)equality comparisons.");
5049 SelectionDAG &DAG = DCI.DAG;
5051 EVT VT = REMNode.getValueType();
5052 EVT SVT = VT.getScalarType();
5053 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5054 EVT ShSVT = ShVT.getScalarType();
5056 // If MUL is unavailable, we cannot proceed in any case.
5057 if (!isOperationLegalOrCustom(ISD::MUL, VT))
5058 return SDValue();
5060 // TODO: Could support comparing with non-zero too.
5061 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5062 if (!CompTarget || !CompTarget->isNullValue())
5063 return SDValue();
5065 bool HadIntMinDivisor = false;
5066 bool HadOneDivisor = false;
5067 bool AllDivisorsAreOnes = true;
5068 bool HadEvenDivisor = false;
5069 bool NeedToApplyOffset = false;
5070 bool AllDivisorsArePowerOfTwo = true;
5071 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5073 auto BuildSREMPattern = [&](ConstantSDNode *C) {
5074 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5075 if (C->isNullValue())
5076 return false;
5078 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5080 // WARNING: this fold is only valid for positive divisors!
5081 APInt D = C->getAPIntValue();
5082 if (D.isNegative())
5083 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5085 HadIntMinDivisor |= D.isMinSignedValue();
5087 // If all divisors are ones, we will prefer to avoid the fold.
5088 HadOneDivisor |= D.isOneValue();
5089 AllDivisorsAreOnes &= D.isOneValue();
5091 // Decompose D into D0 * 2^K
5092 unsigned K = D.countTrailingZeros();
5093 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5094 APInt D0 = D.lshr(K);
5096 if (!D.isMinSignedValue()) {
5097 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5098 // we don't care about this lane in this fold, we'll special-handle it.
5099 HadEvenDivisor |= (K != 0);
5102 // D is a power-of-two if D0 is one. This includes INT_MIN.
5103 // If all divisors are power-of-two, we will prefer to avoid the fold.
5104 AllDivisorsArePowerOfTwo &= D0.isOneValue();
5106 // P = inv(D0, 2^W)
5107 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5108 unsigned W = D.getBitWidth();
5109 APInt P = D0.zext(W + 1)
5110 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5111 .trunc(W);
5112 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5113 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5115 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5116 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5117 A.clearLowBits(K);
5119 if (!D.isMinSignedValue()) {
5120 // If divisor INT_MIN, then we don't care about this lane in this fold,
5121 // we'll special-handle it.
5122 NeedToApplyOffset |= A != 0;
5125 // Q = floor((2 * A) / (2^K))
5126 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5128 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5129 "We are expecting that A is always less than all-ones for SVT");
5130 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5131 "We are expecting that K is always less than all-ones for ShSVT");
5133 // If the divisor is 1 the result can be constant-folded. Likewise, we
5134 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5135 if (D.isOneValue()) {
5136 // Set P, A and K to a bogus values so we can try to splat them.
5137 P = 0;
5138 A = -1;
5139 K = -1;
5141 // x ?% 1 == 0 <--> true <--> x u<= -1
5142 Q = -1;
5145 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5146 AAmts.push_back(DAG.getConstant(A, DL, SVT));
5147 KAmts.push_back(
5148 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5149 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5150 return true;
5153 SDValue N = REMNode.getOperand(0);
5154 SDValue D = REMNode.getOperand(1);
5156 // Collect the values from each element.
5157 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5158 return SDValue();
5160 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5161 if (AllDivisorsAreOnes)
5162 return SDValue();
5164 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5165 // since it can be best implemented as a bit test.
5166 if (AllDivisorsArePowerOfTwo)
5167 return SDValue();
5169 SDValue PVal, AVal, KVal, QVal;
5170 if (VT.isVector()) {
5171 if (HadOneDivisor) {
5172 // Try to turn PAmts into a splat, since we don't care about the values
5173 // that are currently '0'. If we can't, just keep '0'`s.
5174 turnVectorIntoSplatVector(PAmts, isNullConstant);
5175 // Try to turn AAmts into a splat, since we don't care about the
5176 // values that are currently '-1'. If we can't, change them to '0'`s.
5177 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5178 DAG.getConstant(0, DL, SVT));
5179 // Try to turn KAmts into a splat, since we don't care about the values
5180 // that are currently '-1'. If we can't, change them to '0'`s.
5181 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5182 DAG.getConstant(0, DL, ShSVT));
5185 PVal = DAG.getBuildVector(VT, DL, PAmts);
5186 AVal = DAG.getBuildVector(VT, DL, AAmts);
5187 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5188 QVal = DAG.getBuildVector(VT, DL, QAmts);
5189 } else {
5190 PVal = PAmts[0];
5191 AVal = AAmts[0];
5192 KVal = KAmts[0];
5193 QVal = QAmts[0];
5196 // (mul N, P)
5197 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5198 Created.push_back(Op0.getNode());
5200 if (NeedToApplyOffset) {
5201 // We need ADD to do this.
5202 if (!isOperationLegalOrCustom(ISD::ADD, VT))
5203 return SDValue();
5205 // (add (mul N, P), A)
5206 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5207 Created.push_back(Op0.getNode());
5210 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5211 // divisors as a performance improvement, since rotating by 0 is a no-op.
5212 if (HadEvenDivisor) {
5213 // We need ROTR to do this.
5214 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5215 return SDValue();
5216 SDNodeFlags Flags;
5217 Flags.setExact(true);
5218 // SREM: (rotr (add (mul N, P), A), K)
5219 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5220 Created.push_back(Op0.getNode());
5223 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5224 SDValue Fold =
5225 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5226 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5228 // If we didn't have lanes with INT_MIN divisor, then we're done.
5229 if (!HadIntMinDivisor)
5230 return Fold;
5232 // That fold is only valid for positive divisors. Which effectively means,
5233 // it is invalid for INT_MIN divisors. So if we have such a lane,
5234 // we must fix-up results for said lanes.
5235 assert(VT.isVector() && "Can/should only get here for vectors.");
5237 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5238 !isOperationLegalOrCustom(ISD::AND, VT) ||
5239 !isOperationLegalOrCustom(Cond, VT) ||
5240 !isOperationLegalOrCustom(ISD::VSELECT, VT))
5241 return SDValue();
5243 Created.push_back(Fold.getNode());
5245 SDValue IntMin = DAG.getConstant(
5246 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5247 SDValue IntMax = DAG.getConstant(
5248 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5249 SDValue Zero =
5250 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5252 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5253 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5254 Created.push_back(DivisorIsIntMin.getNode());
5256 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5257 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5258 Created.push_back(Masked.getNode());
5259 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5260 Created.push_back(MaskedIsZero.getNode());
5262 // To produce final result we need to blend 2 vectors: 'SetCC' and
5263 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5264 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5265 // constant-folded, select can get lowered to a shuffle with constant mask.
5266 SDValue Blended =
5267 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5269 return Blended;
5272 bool TargetLowering::
5273 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5274 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5275 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5276 "be a constant integer");
5277 return true;
5280 return false;
5283 //===----------------------------------------------------------------------===//
5284 // Legalization Utilities
5285 //===----------------------------------------------------------------------===//
5287 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5288 SDValue LHS, SDValue RHS,
5289 SmallVectorImpl<SDValue> &Result,
5290 EVT HiLoVT, SelectionDAG &DAG,
5291 MulExpansionKind Kind, SDValue LL,
5292 SDValue LH, SDValue RL, SDValue RH) const {
5293 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5294 Opcode == ISD::SMUL_LOHI);
5296 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5297 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5298 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5299 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5300 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5301 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5302 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5303 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5305 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5306 return false;
5308 unsigned OuterBitSize = VT.getScalarSizeInBits();
5309 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5310 unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5311 unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5313 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5314 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5315 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5317 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5318 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5319 bool Signed) -> bool {
5320 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5321 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5322 Hi = SDValue(Lo.getNode(), 1);
5323 return true;
5325 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5326 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5327 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5328 return true;
5330 return false;
5333 SDValue Lo, Hi;
5335 if (!LL.getNode() && !RL.getNode() &&
5336 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5337 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5338 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5341 if (!LL.getNode())
5342 return false;
5344 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5345 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5346 DAG.MaskedValueIsZero(RHS, HighMask)) {
5347 // The inputs are both zero-extended.
5348 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5349 Result.push_back(Lo);
5350 Result.push_back(Hi);
5351 if (Opcode != ISD::MUL) {
5352 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5353 Result.push_back(Zero);
5354 Result.push_back(Zero);
5356 return true;
5360 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5361 RHSSB > InnerBitSize) {
5362 // The input values are both sign-extended.
5363 // TODO non-MUL case?
5364 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5365 Result.push_back(Lo);
5366 Result.push_back(Hi);
5367 return true;
5371 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5372 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5373 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5374 // FIXME getShiftAmountTy does not always return a sensible result when VT
5375 // is an illegal type, and so the type may be too small to fit the shift
5376 // amount. Override it with i32. The shift will have to be legalized.
5377 ShiftAmountTy = MVT::i32;
5379 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5381 if (!LH.getNode() && !RH.getNode() &&
5382 isOperationLegalOrCustom(ISD::SRL, VT) &&
5383 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5384 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5385 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5386 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5387 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5390 if (!LH.getNode())
5391 return false;
5393 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5394 return false;
5396 Result.push_back(Lo);
5398 if (Opcode == ISD::MUL) {
5399 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5400 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5401 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5402 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5403 Result.push_back(Hi);
5404 return true;
5407 // Compute the full width result.
5408 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5409 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5410 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5411 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5412 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5415 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5416 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5417 return false;
5419 // This is effectively the add part of a multiply-add of half-sized operands,
5420 // so it cannot overflow.
5421 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5423 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5424 return false;
5426 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5427 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5429 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5430 isOperationLegalOrCustom(ISD::ADDE, VT));
5431 if (UseGlue)
5432 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5433 Merge(Lo, Hi));
5434 else
5435 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5436 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5438 SDValue Carry = Next.getValue(1);
5439 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5440 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5442 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5443 return false;
5445 if (UseGlue)
5446 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5447 Carry);
5448 else
5449 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5450 Zero, Carry);
5452 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5454 if (Opcode == ISD::SMUL_LOHI) {
5455 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5456 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5457 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5459 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5460 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5461 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5464 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5465 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5466 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5467 return true;
5470 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5471 SelectionDAG &DAG, MulExpansionKind Kind,
5472 SDValue LL, SDValue LH, SDValue RL,
5473 SDValue RH) const {
5474 SmallVector<SDValue, 2> Result;
5475 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5476 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5477 DAG, Kind, LL, LH, RL, RH);
5478 if (Ok) {
5479 assert(Result.size() == 2);
5480 Lo = Result[0];
5481 Hi = Result[1];
5483 return Ok;
5486 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5487 SelectionDAG &DAG) const {
5488 EVT VT = Node->getValueType(0);
5490 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5491 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5492 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5493 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5494 return false;
5496 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5497 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5498 SDValue X = Node->getOperand(0);
5499 SDValue Y = Node->getOperand(1);
5500 SDValue Z = Node->getOperand(2);
5502 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5503 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5504 SDLoc DL(SDValue(Node, 0));
5506 EVT ShVT = Z.getValueType();
5507 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5508 SDValue Zero = DAG.getConstant(0, DL, ShVT);
5510 SDValue ShAmt;
5511 if (isPowerOf2_32(EltSizeInBits)) {
5512 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5513 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5514 } else {
5515 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5518 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5519 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5520 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5521 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5523 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5524 // and that is undefined. We must compare and select to avoid UB.
5525 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5527 // For fshl, 0-shift returns the 1st arg (X).
5528 // For fshr, 0-shift returns the 2nd arg (Y).
5529 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5530 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5531 return true;
5534 // TODO: Merge with expandFunnelShift.
5535 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5536 SelectionDAG &DAG) const {
5537 EVT VT = Node->getValueType(0);
5538 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5539 bool IsLeft = Node->getOpcode() == ISD::ROTL;
5540 SDValue Op0 = Node->getOperand(0);
5541 SDValue Op1 = Node->getOperand(1);
5542 SDLoc DL(SDValue(Node, 0));
5544 EVT ShVT = Op1.getValueType();
5545 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5547 // If a rotate in the other direction is legal, use it.
5548 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5549 if (isOperationLegal(RevRot, VT)) {
5550 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5551 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5552 return true;
5555 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5556 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5557 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5558 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5559 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5560 return false;
5562 // Otherwise,
5563 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5564 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5566 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5567 "Expecting the type bitwidth to be a power of 2");
5568 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5569 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5570 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5571 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5572 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5573 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5574 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5575 DAG.getNode(HsOpc, DL, VT, Op0, And1));
5576 return true;
5579 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5580 SelectionDAG &DAG) const {
5581 SDValue Src = Node->getOperand(0);
5582 EVT SrcVT = Src.getValueType();
5583 EVT DstVT = Node->getValueType(0);
5584 SDLoc dl(SDValue(Node, 0));
5586 // FIXME: Only f32 to i64 conversions are supported.
5587 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5588 return false;
5590 // Expand f32 -> i64 conversion
5591 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5592 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5593 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5594 EVT IntVT = SrcVT.changeTypeToInteger();
5595 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5597 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5598 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5599 SDValue Bias = DAG.getConstant(127, dl, IntVT);
5600 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5601 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5602 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5604 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5606 SDValue ExponentBits = DAG.getNode(
5607 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5608 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5609 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5611 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5612 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5613 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5614 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5616 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5617 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5618 DAG.getConstant(0x00800000, dl, IntVT));
5620 R = DAG.getZExtOrTrunc(R, dl, DstVT);
5622 R = DAG.getSelectCC(
5623 dl, Exponent, ExponentLoBit,
5624 DAG.getNode(ISD::SHL, dl, DstVT, R,
5625 DAG.getZExtOrTrunc(
5626 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5627 dl, IntShVT)),
5628 DAG.getNode(ISD::SRL, dl, DstVT, R,
5629 DAG.getZExtOrTrunc(
5630 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5631 dl, IntShVT)),
5632 ISD::SETGT);
5634 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5635 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5637 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5638 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5639 return true;
5642 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5643 SelectionDAG &DAG) const {
5644 SDLoc dl(SDValue(Node, 0));
5645 SDValue Src = Node->getOperand(0);
5647 EVT SrcVT = Src.getValueType();
5648 EVT DstVT = Node->getValueType(0);
5649 EVT SetCCVT =
5650 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5652 // Only expand vector types if we have the appropriate vector bit operations.
5653 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
5654 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5655 return false;
5657 // If the maximum float value is smaller then the signed integer range,
5658 // the destination signmask can't be represented by the float, so we can
5659 // just use FP_TO_SINT directly.
5660 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5661 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5662 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5663 if (APFloat::opOverflow &
5664 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5665 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5666 return true;
5669 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5670 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5672 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5673 if (Strict) {
5674 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5675 // signmask then offset (the result of which should be fully representable).
5676 // Sel = Src < 0x8000000000000000
5677 // Val = select Sel, Src, Src - 0x8000000000000000
5678 // Ofs = select Sel, 0, 0x8000000000000000
5679 // Result = fp_to_sint(Val) ^ Ofs
5681 // TODO: Should any fast-math-flags be set for the FSUB?
5682 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
5683 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5684 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5685 DAG.getConstant(SignMask, dl, DstVT));
5686 Result = DAG.getNode(ISD::XOR, dl, DstVT,
5687 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
5688 } else {
5689 // Expand based on maximum range of FP_TO_SINT:
5690 // True = fp_to_sint(Src)
5691 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5692 // Result = select (Src < 0x8000000000000000), True, False
5694 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5695 // TODO: Should any fast-math-flags be set for the FSUB?
5696 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5697 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5698 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5699 DAG.getConstant(SignMask, dl, DstVT));
5700 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5702 return true;
5705 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5706 SelectionDAG &DAG) const {
5707 SDValue Src = Node->getOperand(0);
5708 EVT SrcVT = Src.getValueType();
5709 EVT DstVT = Node->getValueType(0);
5711 if (SrcVT.getScalarType() != MVT::i64)
5712 return false;
5714 SDLoc dl(SDValue(Node, 0));
5715 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5717 if (DstVT.getScalarType() == MVT::f32) {
5718 // Only expand vector types if we have the appropriate vector bit
5719 // operations.
5720 if (SrcVT.isVector() &&
5721 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5722 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5723 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5724 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5725 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5726 return false;
5728 // For unsigned conversions, convert them to signed conversions using the
5729 // algorithm from the x86_64 __floatundidf in compiler_rt.
5730 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5732 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5733 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5734 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5735 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5736 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5738 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5739 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5741 // TODO: This really should be implemented using a branch rather than a
5742 // select. We happen to get lucky and machinesink does the right
5743 // thing most of the time. This would be a good candidate for a
5744 // pseudo-op, or, even better, for whole-function isel.
5745 EVT SetCCVT =
5746 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5748 SDValue SignBitTest = DAG.getSetCC(
5749 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5750 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5751 return true;
5754 if (DstVT.getScalarType() == MVT::f64) {
5755 // Only expand vector types if we have the appropriate vector bit
5756 // operations.
5757 if (SrcVT.isVector() &&
5758 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5759 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5760 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5761 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5762 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5763 return false;
5765 // Implementation of unsigned i64 to f64 following the algorithm in
5766 // __floatundidf in compiler_rt. This implementation has the advantage
5767 // of performing rounding correctly, both in the default rounding mode
5768 // and in all alternate rounding modes.
5769 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5770 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5771 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5772 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5773 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5774 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5776 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5777 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5778 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5779 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5780 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5781 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5782 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5783 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5784 return true;
5787 return false;
5790 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5791 SelectionDAG &DAG) const {
5792 SDLoc dl(Node);
5793 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5794 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5795 EVT VT = Node->getValueType(0);
5796 if (isOperationLegalOrCustom(NewOp, VT)) {
5797 SDValue Quiet0 = Node->getOperand(0);
5798 SDValue Quiet1 = Node->getOperand(1);
5800 if (!Node->getFlags().hasNoNaNs()) {
5801 // Insert canonicalizes if it's possible we need to quiet to get correct
5802 // sNaN behavior.
5803 if (!DAG.isKnownNeverSNaN(Quiet0)) {
5804 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5805 Node->getFlags());
5807 if (!DAG.isKnownNeverSNaN(Quiet1)) {
5808 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5809 Node->getFlags());
5813 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5816 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5817 // instead if there are no NaNs.
5818 if (Node->getFlags().hasNoNaNs()) {
5819 unsigned IEEE2018Op =
5820 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5821 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5822 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5823 Node->getOperand(1), Node->getFlags());
5827 return SDValue();
5830 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5831 SelectionDAG &DAG) const {
5832 SDLoc dl(Node);
5833 EVT VT = Node->getValueType(0);
5834 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5835 SDValue Op = Node->getOperand(0);
5836 unsigned Len = VT.getScalarSizeInBits();
5837 assert(VT.isInteger() && "CTPOP not implemented for this type.");
5839 // TODO: Add support for irregular type lengths.
5840 if (!(Len <= 128 && Len % 8 == 0))
5841 return false;
5843 // Only expand vector types if we have the appropriate vector bit operations.
5844 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5845 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5846 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5847 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5848 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5849 return false;
5851 // This is the "best" algorithm from
5852 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5853 SDValue Mask55 =
5854 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5855 SDValue Mask33 =
5856 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5857 SDValue Mask0F =
5858 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5859 SDValue Mask01 =
5860 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5862 // v = v - ((v >> 1) & 0x55555555...)
5863 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5864 DAG.getNode(ISD::AND, dl, VT,
5865 DAG.getNode(ISD::SRL, dl, VT, Op,
5866 DAG.getConstant(1, dl, ShVT)),
5867 Mask55));
5868 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5869 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5870 DAG.getNode(ISD::AND, dl, VT,
5871 DAG.getNode(ISD::SRL, dl, VT, Op,
5872 DAG.getConstant(2, dl, ShVT)),
5873 Mask33));
5874 // v = (v + (v >> 4)) & 0x0F0F0F0F...
5875 Op = DAG.getNode(ISD::AND, dl, VT,
5876 DAG.getNode(ISD::ADD, dl, VT, Op,
5877 DAG.getNode(ISD::SRL, dl, VT, Op,
5878 DAG.getConstant(4, dl, ShVT))),
5879 Mask0F);
5880 // v = (v * 0x01010101...) >> (Len - 8)
5881 if (Len > 8)
5882 Op =
5883 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5884 DAG.getConstant(Len - 8, dl, ShVT));
5886 Result = Op;
5887 return true;
5890 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5891 SelectionDAG &DAG) const {
5892 SDLoc dl(Node);
5893 EVT VT = Node->getValueType(0);
5894 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5895 SDValue Op = Node->getOperand(0);
5896 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5898 // If the non-ZERO_UNDEF version is supported we can use that instead.
5899 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5900 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5901 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5902 return true;
5905 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5906 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5907 EVT SetCCVT =
5908 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5909 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5910 SDValue Zero = DAG.getConstant(0, dl, VT);
5911 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5912 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5913 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5914 return true;
5917 // Only expand vector types if we have the appropriate vector bit operations.
5918 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5919 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5920 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5921 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5922 return false;
5924 // for now, we do this:
5925 // x = x | (x >> 1);
5926 // x = x | (x >> 2);
5927 // ...
5928 // x = x | (x >>16);
5929 // x = x | (x >>32); // for 64-bit input
5930 // return popcount(~x);
5932 // Ref: "Hacker's Delight" by Henry Warren
5933 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5934 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5935 Op = DAG.getNode(ISD::OR, dl, VT, Op,
5936 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5938 Op = DAG.getNOT(dl, Op, VT);
5939 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5940 return true;
5943 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5944 SelectionDAG &DAG) const {
5945 SDLoc dl(Node);
5946 EVT VT = Node->getValueType(0);
5947 SDValue Op = Node->getOperand(0);
5948 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5950 // If the non-ZERO_UNDEF version is supported we can use that instead.
5951 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5952 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5953 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5954 return true;
5957 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5958 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5959 EVT SetCCVT =
5960 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5961 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5962 SDValue Zero = DAG.getConstant(0, dl, VT);
5963 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5964 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5965 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5966 return true;
5969 // Only expand vector types if we have the appropriate vector bit operations.
5970 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5971 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5972 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5973 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5974 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5975 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5976 return false;
5978 // for now, we use: { return popcount(~x & (x - 1)); }
5979 // unless the target has ctlz but not ctpop, in which case we use:
5980 // { return 32 - nlz(~x & (x-1)); }
5981 // Ref: "Hacker's Delight" by Henry Warren
5982 SDValue Tmp = DAG.getNode(
5983 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5984 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5986 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5987 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5988 Result =
5989 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5990 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5991 return true;
5994 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5995 return true;
5998 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5999 SelectionDAG &DAG) const {
6000 SDLoc dl(N);
6001 EVT VT = N->getValueType(0);
6002 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6003 SDValue Op = N->getOperand(0);
6005 // Only expand vector types if we have the appropriate vector operations.
6006 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6007 !isOperationLegalOrCustom(ISD::ADD, VT) ||
6008 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6009 return false;
6011 SDValue Shift =
6012 DAG.getNode(ISD::SRA, dl, VT, Op,
6013 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6014 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6015 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6016 return true;
6019 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6020 SelectionDAG &DAG) const {
6021 SDLoc SL(LD);
6022 SDValue Chain = LD->getChain();
6023 SDValue BasePTR = LD->getBasePtr();
6024 EVT SrcVT = LD->getMemoryVT();
6025 ISD::LoadExtType ExtType = LD->getExtensionType();
6027 unsigned NumElem = SrcVT.getVectorNumElements();
6029 EVT SrcEltVT = SrcVT.getScalarType();
6030 EVT DstEltVT = LD->getValueType(0).getScalarType();
6032 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6033 assert(SrcEltVT.isByteSized());
6035 SmallVector<SDValue, 8> Vals;
6036 SmallVector<SDValue, 8> LoadChains;
6038 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6039 SDValue ScalarLoad =
6040 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6041 LD->getPointerInfo().getWithOffset(Idx * Stride),
6042 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6043 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6045 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6047 Vals.push_back(ScalarLoad.getValue(0));
6048 LoadChains.push_back(ScalarLoad.getValue(1));
6051 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6052 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6054 return DAG.getMergeValues({Value, NewChain}, SL);
6057 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6058 SelectionDAG &DAG) const {
6059 SDLoc SL(ST);
6061 SDValue Chain = ST->getChain();
6062 SDValue BasePtr = ST->getBasePtr();
6063 SDValue Value = ST->getValue();
6064 EVT StVT = ST->getMemoryVT();
6066 // The type of the data we want to save
6067 EVT RegVT = Value.getValueType();
6068 EVT RegSclVT = RegVT.getScalarType();
6070 // The type of data as saved in memory.
6071 EVT MemSclVT = StVT.getScalarType();
6073 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6074 unsigned NumElem = StVT.getVectorNumElements();
6076 // A vector must always be stored in memory as-is, i.e. without any padding
6077 // between the elements, since various code depend on it, e.g. in the
6078 // handling of a bitcast of a vector type to int, which may be done with a
6079 // vector store followed by an integer load. A vector that does not have
6080 // elements that are byte-sized must therefore be stored as an integer
6081 // built out of the extracted vector elements.
6082 if (!MemSclVT.isByteSized()) {
6083 unsigned NumBits = StVT.getSizeInBits();
6084 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6086 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6088 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6089 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6090 DAG.getConstant(Idx, SL, IdxVT));
6091 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6092 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6093 unsigned ShiftIntoIdx =
6094 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6095 SDValue ShiftAmount =
6096 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6097 SDValue ShiftedElt =
6098 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6099 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6102 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6103 ST->getAlignment(), ST->getMemOperand()->getFlags(),
6104 ST->getAAInfo());
6107 // Store Stride in bytes
6108 unsigned Stride = MemSclVT.getSizeInBits() / 8;
6109 assert(Stride && "Zero stride!");
6110 // Extract each of the elements from the original vector and save them into
6111 // memory individually.
6112 SmallVector<SDValue, 8> Stores;
6113 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6114 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6115 DAG.getConstant(Idx, SL, IdxVT));
6117 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6119 // This scalar TruncStore may be illegal, but we legalize it later.
6120 SDValue Store = DAG.getTruncStore(
6121 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6122 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6123 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6125 Stores.push_back(Store);
6128 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6131 std::pair<SDValue, SDValue>
6132 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6133 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6134 "unaligned indexed loads not implemented!");
6135 SDValue Chain = LD->getChain();
6136 SDValue Ptr = LD->getBasePtr();
6137 EVT VT = LD->getValueType(0);
6138 EVT LoadedVT = LD->getMemoryVT();
6139 SDLoc dl(LD);
6140 auto &MF = DAG.getMachineFunction();
6142 if (VT.isFloatingPoint() || VT.isVector()) {
6143 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6144 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6145 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6146 LoadedVT.isVector()) {
6147 // Scalarize the load and let the individual components be handled.
6148 SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6149 if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6150 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6151 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6154 // Expand to a (misaligned) integer load of the same size,
6155 // then bitconvert to floating point or vector.
6156 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6157 LD->getMemOperand());
6158 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6159 if (LoadedVT != VT)
6160 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6161 ISD::ANY_EXTEND, dl, VT, Result);
6163 return std::make_pair(Result, newLoad.getValue(1));
6166 // Copy the value to a (aligned) stack slot using (unaligned) integer
6167 // loads and stores, then do a (aligned) load from the stack slot.
6168 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6169 unsigned LoadedBytes = LoadedVT.getStoreSize();
6170 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6171 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6173 // Make sure the stack slot is also aligned for the register type.
6174 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6175 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6176 SmallVector<SDValue, 8> Stores;
6177 SDValue StackPtr = StackBase;
6178 unsigned Offset = 0;
6180 EVT PtrVT = Ptr.getValueType();
6181 EVT StackPtrVT = StackPtr.getValueType();
6183 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6184 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6186 // Do all but one copies using the full register width.
6187 for (unsigned i = 1; i < NumRegs; i++) {
6188 // Load one integer register's worth from the original location.
6189 SDValue Load = DAG.getLoad(
6190 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6191 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6192 LD->getAAInfo());
6193 // Follow the load with a store to the stack slot. Remember the store.
6194 Stores.push_back(DAG.getStore(
6195 Load.getValue(1), dl, Load, StackPtr,
6196 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6197 // Increment the pointers.
6198 Offset += RegBytes;
6200 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6201 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6204 // The last copy may be partial. Do an extending load.
6205 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6206 8 * (LoadedBytes - Offset));
6207 SDValue Load =
6208 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6209 LD->getPointerInfo().getWithOffset(Offset), MemVT,
6210 MinAlign(LD->getAlignment(), Offset),
6211 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6212 // Follow the load with a store to the stack slot. Remember the store.
6213 // On big-endian machines this requires a truncating store to ensure
6214 // that the bits end up in the right place.
6215 Stores.push_back(DAG.getTruncStore(
6216 Load.getValue(1), dl, Load, StackPtr,
6217 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6219 // The order of the stores doesn't matter - say it with a TokenFactor.
6220 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6222 // Finally, perform the original load only redirected to the stack slot.
6223 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6224 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6225 LoadedVT);
6227 // Callers expect a MERGE_VALUES node.
6228 return std::make_pair(Load, TF);
6231 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6232 "Unaligned load of unsupported type.");
6234 // Compute the new VT that is half the size of the old one. This is an
6235 // integer MVT.
6236 unsigned NumBits = LoadedVT.getSizeInBits();
6237 EVT NewLoadedVT;
6238 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6239 NumBits >>= 1;
6241 unsigned Alignment = LD->getAlignment();
6242 unsigned IncrementSize = NumBits / 8;
6243 ISD::LoadExtType HiExtType = LD->getExtensionType();
6245 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6246 if (HiExtType == ISD::NON_EXTLOAD)
6247 HiExtType = ISD::ZEXTLOAD;
6249 // Load the value in two parts
6250 SDValue Lo, Hi;
6251 if (DAG.getDataLayout().isLittleEndian()) {
6252 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6253 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6254 LD->getAAInfo());
6256 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6257 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6258 LD->getPointerInfo().getWithOffset(IncrementSize),
6259 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6260 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6261 } else {
6262 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6263 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6264 LD->getAAInfo());
6266 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6267 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6268 LD->getPointerInfo().getWithOffset(IncrementSize),
6269 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6270 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6273 // aggregate the two parts
6274 SDValue ShiftAmount =
6275 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6276 DAG.getDataLayout()));
6277 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6278 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6280 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6281 Hi.getValue(1));
6283 return std::make_pair(Result, TF);
6286 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6287 SelectionDAG &DAG) const {
6288 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6289 "unaligned indexed stores not implemented!");
6290 SDValue Chain = ST->getChain();
6291 SDValue Ptr = ST->getBasePtr();
6292 SDValue Val = ST->getValue();
6293 EVT VT = Val.getValueType();
6294 int Alignment = ST->getAlignment();
6295 auto &MF = DAG.getMachineFunction();
6296 EVT StoreMemVT = ST->getMemoryVT();
6298 SDLoc dl(ST);
6299 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6300 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6301 if (isTypeLegal(intVT)) {
6302 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6303 StoreMemVT.isVector()) {
6304 // Scalarize the store and let the individual components be handled.
6305 SDValue Result = scalarizeVectorStore(ST, DAG);
6306 return Result;
6308 // Expand to a bitconvert of the value to the integer type of the
6309 // same size, then a (misaligned) int store.
6310 // FIXME: Does not handle truncating floating point stores!
6311 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6312 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6313 Alignment, ST->getMemOperand()->getFlags());
6314 return Result;
6316 // Do a (aligned) store to a stack slot, then copy from the stack slot
6317 // to the final destination using (unaligned) integer loads and stores.
6318 MVT RegVT = getRegisterType(
6319 *DAG.getContext(),
6320 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6321 EVT PtrVT = Ptr.getValueType();
6322 unsigned StoredBytes = StoreMemVT.getStoreSize();
6323 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6324 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6326 // Make sure the stack slot is also aligned for the register type.
6327 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6328 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6330 // Perform the original store, only redirected to the stack slot.
6331 SDValue Store = DAG.getTruncStore(
6332 Chain, dl, Val, StackPtr,
6333 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6335 EVT StackPtrVT = StackPtr.getValueType();
6337 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6338 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6339 SmallVector<SDValue, 8> Stores;
6340 unsigned Offset = 0;
6342 // Do all but one copies using the full register width.
6343 for (unsigned i = 1; i < NumRegs; i++) {
6344 // Load one integer register's worth from the stack slot.
6345 SDValue Load = DAG.getLoad(
6346 RegVT, dl, Store, StackPtr,
6347 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6348 // Store it to the final location. Remember the store.
6349 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6350 ST->getPointerInfo().getWithOffset(Offset),
6351 MinAlign(ST->getAlignment(), Offset),
6352 ST->getMemOperand()->getFlags()));
6353 // Increment the pointers.
6354 Offset += RegBytes;
6355 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6356 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6359 // The last store may be partial. Do a truncating store. On big-endian
6360 // machines this requires an extending load from the stack slot to ensure
6361 // that the bits are in the right place.
6362 EVT LoadMemVT =
6363 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6365 // Load from the stack slot.
6366 SDValue Load = DAG.getExtLoad(
6367 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6368 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6370 Stores.push_back(
6371 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6372 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6373 MinAlign(ST->getAlignment(), Offset),
6374 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6375 // The order of the stores doesn't matter - say it with a TokenFactor.
6376 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6377 return Result;
6380 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6381 "Unaligned store of unknown type.");
6382 // Get the half-size VT
6383 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6384 int NumBits = NewStoredVT.getSizeInBits();
6385 int IncrementSize = NumBits / 8;
6387 // Divide the stored value in two parts.
6388 SDValue ShiftAmount = DAG.getConstant(
6389 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6390 SDValue Lo = Val;
6391 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6393 // Store the two parts
6394 SDValue Store1, Store2;
6395 Store1 = DAG.getTruncStore(Chain, dl,
6396 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6397 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6398 ST->getMemOperand()->getFlags());
6400 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6401 Alignment = MinAlign(Alignment, IncrementSize);
6402 Store2 = DAG.getTruncStore(
6403 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6404 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6405 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6407 SDValue Result =
6408 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6409 return Result;
6412 SDValue
6413 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6414 const SDLoc &DL, EVT DataVT,
6415 SelectionDAG &DAG,
6416 bool IsCompressedMemory) const {
6417 SDValue Increment;
6418 EVT AddrVT = Addr.getValueType();
6419 EVT MaskVT = Mask.getValueType();
6420 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6421 "Incompatible types of Data and Mask");
6422 if (IsCompressedMemory) {
6423 // Incrementing the pointer according to number of '1's in the mask.
6424 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6425 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6426 if (MaskIntVT.getSizeInBits() < 32) {
6427 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6428 MaskIntVT = MVT::i32;
6431 // Count '1's with POPCNT.
6432 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6433 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6434 // Scale is an element size in bytes.
6435 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6436 AddrVT);
6437 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6438 } else
6439 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6441 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6444 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6445 SDValue Idx,
6446 EVT VecVT,
6447 const SDLoc &dl) {
6448 if (isa<ConstantSDNode>(Idx))
6449 return Idx;
6451 EVT IdxVT = Idx.getValueType();
6452 unsigned NElts = VecVT.getVectorNumElements();
6453 if (isPowerOf2_32(NElts)) {
6454 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6455 Log2_32(NElts));
6456 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6457 DAG.getConstant(Imm, dl, IdxVT));
6460 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6461 DAG.getConstant(NElts - 1, dl, IdxVT));
6464 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6465 SDValue VecPtr, EVT VecVT,
6466 SDValue Index) const {
6467 SDLoc dl(Index);
6468 // Make sure the index type is big enough to compute in.
6469 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6471 EVT EltVT = VecVT.getVectorElementType();
6473 // Calculate the element offset and add it to the pointer.
6474 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6475 assert(EltSize * 8 == EltVT.getSizeInBits() &&
6476 "Converting bits to bytes lost precision");
6478 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6480 EVT IdxVT = Index.getValueType();
6482 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6483 DAG.getConstant(EltSize, dl, IdxVT));
6484 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6487 //===----------------------------------------------------------------------===//
6488 // Implementation of Emulated TLS Model
6489 //===----------------------------------------------------------------------===//
6491 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6492 SelectionDAG &DAG) const {
6493 // Access to address of TLS varialbe xyz is lowered to a function call:
6494 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6495 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6496 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6497 SDLoc dl(GA);
6499 ArgListTy Args;
6500 ArgListEntry Entry;
6501 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6502 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6503 StringRef EmuTlsVarName(NameString);
6504 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6505 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6506 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6507 Entry.Ty = VoidPtrType;
6508 Args.push_back(Entry);
6510 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6512 TargetLowering::CallLoweringInfo CLI(DAG);
6513 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6514 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6515 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6517 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6518 // At last for X86 targets, maybe good for other targets too?
6519 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6520 MFI.setAdjustsStack(true); // Is this only for X86 target?
6521 MFI.setHasCalls(true);
6523 assert((GA->getOffset() == 0) &&
6524 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6525 return CallResult.first;
6528 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6529 SelectionDAG &DAG) const {
6530 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6531 if (!isCtlzFast())
6532 return SDValue();
6533 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6534 SDLoc dl(Op);
6535 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6536 if (C->isNullValue() && CC == ISD::SETEQ) {
6537 EVT VT = Op.getOperand(0).getValueType();
6538 SDValue Zext = Op.getOperand(0);
6539 if (VT.bitsLT(MVT::i32)) {
6540 VT = MVT::i32;
6541 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6543 unsigned Log2b = Log2_32(VT.getSizeInBits());
6544 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6545 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6546 DAG.getConstant(Log2b, dl, MVT::i32));
6547 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6550 return SDValue();
6553 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6554 unsigned Opcode = Node->getOpcode();
6555 SDValue LHS = Node->getOperand(0);
6556 SDValue RHS = Node->getOperand(1);
6557 EVT VT = LHS.getValueType();
6558 SDLoc dl(Node);
6560 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6561 assert(VT.isInteger() && "Expected operands to be integers");
6563 // usub.sat(a, b) -> umax(a, b) - b
6564 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6565 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6566 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6569 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6570 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6571 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6572 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6575 unsigned OverflowOp;
6576 switch (Opcode) {
6577 case ISD::SADDSAT:
6578 OverflowOp = ISD::SADDO;
6579 break;
6580 case ISD::UADDSAT:
6581 OverflowOp = ISD::UADDO;
6582 break;
6583 case ISD::SSUBSAT:
6584 OverflowOp = ISD::SSUBO;
6585 break;
6586 case ISD::USUBSAT:
6587 OverflowOp = ISD::USUBO;
6588 break;
6589 default:
6590 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6591 "addition or subtraction node.");
6594 unsigned BitWidth = LHS.getScalarValueSizeInBits();
6595 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6596 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6597 LHS, RHS);
6598 SDValue SumDiff = Result.getValue(0);
6599 SDValue Overflow = Result.getValue(1);
6600 SDValue Zero = DAG.getConstant(0, dl, VT);
6601 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6603 if (Opcode == ISD::UADDSAT) {
6604 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6605 // (LHS + RHS) | OverflowMask
6606 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6607 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6609 // Overflow ? 0xffff.... : (LHS + RHS)
6610 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6611 } else if (Opcode == ISD::USUBSAT) {
6612 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6613 // (LHS - RHS) & ~OverflowMask
6614 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6615 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6616 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6618 // Overflow ? 0 : (LHS - RHS)
6619 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6620 } else {
6621 // SatMax -> Overflow && SumDiff < 0
6622 // SatMin -> Overflow && SumDiff >= 0
6623 APInt MinVal = APInt::getSignedMinValue(BitWidth);
6624 APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6625 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6626 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6627 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6628 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6629 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6633 SDValue
6634 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6635 assert((Node->getOpcode() == ISD::SMULFIX ||
6636 Node->getOpcode() == ISD::UMULFIX ||
6637 Node->getOpcode() == ISD::SMULFIXSAT) &&
6638 "Expected a fixed point multiplication opcode");
6640 SDLoc dl(Node);
6641 SDValue LHS = Node->getOperand(0);
6642 SDValue RHS = Node->getOperand(1);
6643 EVT VT = LHS.getValueType();
6644 unsigned Scale = Node->getConstantOperandVal(2);
6645 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6646 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6647 unsigned VTSize = VT.getScalarSizeInBits();
6649 if (!Scale) {
6650 // [us]mul.fix(a, b, 0) -> mul(a, b)
6651 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6652 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6653 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6654 SDValue Result =
6655 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6656 SDValue Product = Result.getValue(0);
6657 SDValue Overflow = Result.getValue(1);
6658 SDValue Zero = DAG.getConstant(0, dl, VT);
6660 APInt MinVal = APInt::getSignedMinValue(VTSize);
6661 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6662 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6663 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6664 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6665 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6666 return DAG.getSelect(dl, VT, Overflow, Result, Product);
6670 bool Signed =
6671 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6672 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6673 "Expected scale to be less than the number of bits if signed or at "
6674 "most the number of bits if unsigned.");
6675 assert(LHS.getValueType() == RHS.getValueType() &&
6676 "Expected both operands to be the same type");
6678 // Get the upper and lower bits of the result.
6679 SDValue Lo, Hi;
6680 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6681 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6682 if (isOperationLegalOrCustom(LoHiOp, VT)) {
6683 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6684 Lo = Result.getValue(0);
6685 Hi = Result.getValue(1);
6686 } else if (isOperationLegalOrCustom(HiOp, VT)) {
6687 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6688 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6689 } else if (VT.isVector()) {
6690 return SDValue();
6691 } else {
6692 report_fatal_error("Unable to expand fixed point multiplication.");
6695 if (Scale == VTSize)
6696 // Result is just the top half since we'd be shifting by the width of the
6697 // operand.
6698 return Hi;
6700 // The result will need to be shifted right by the scale since both operands
6701 // are scaled. The result is given to us in 2 halves, so we only want part of
6702 // both in the result.
6703 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6704 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6705 DAG.getConstant(Scale, dl, ShiftTy));
6706 if (!Saturating)
6707 return Result;
6709 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6710 SDValue HiMask =
6711 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6712 SDValue LoMask = DAG.getConstant(
6713 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6714 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6715 APInt MinVal = APInt::getSignedMinValue(VTSize);
6717 Result = DAG.getSelectCC(dl, Hi, LoMask,
6718 DAG.getConstant(MaxVal, dl, VT), Result,
6719 ISD::SETGT);
6720 return DAG.getSelectCC(dl, Hi, HiMask,
6721 DAG.getConstant(MinVal, dl, VT), Result,
6722 ISD::SETLT);
6725 void TargetLowering::expandUADDSUBO(
6726 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6727 SDLoc dl(Node);
6728 SDValue LHS = Node->getOperand(0);
6729 SDValue RHS = Node->getOperand(1);
6730 bool IsAdd = Node->getOpcode() == ISD::UADDO;
6732 // If ADD/SUBCARRY is legal, use that instead.
6733 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6734 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6735 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6736 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6737 { LHS, RHS, CarryIn });
6738 Result = SDValue(NodeCarry.getNode(), 0);
6739 Overflow = SDValue(NodeCarry.getNode(), 1);
6740 return;
6743 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6744 LHS.getValueType(), LHS, RHS);
6746 EVT ResultType = Node->getValueType(1);
6747 EVT SetCCType = getSetCCResultType(
6748 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6749 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6750 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6751 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6754 void TargetLowering::expandSADDSUBO(
6755 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6756 SDLoc dl(Node);
6757 SDValue LHS = Node->getOperand(0);
6758 SDValue RHS = Node->getOperand(1);
6759 bool IsAdd = Node->getOpcode() == ISD::SADDO;
6761 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6762 LHS.getValueType(), LHS, RHS);
6764 EVT ResultType = Node->getValueType(1);
6765 EVT OType = getSetCCResultType(
6766 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6768 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6769 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6770 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6771 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6772 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6773 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6774 return;
6777 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6779 // LHSSign -> LHS >= 0
6780 // RHSSign -> RHS >= 0
6781 // SumSign -> Result >= 0
6783 // Add:
6784 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6785 // Sub:
6786 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6787 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6788 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6789 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6790 IsAdd ? ISD::SETEQ : ISD::SETNE);
6792 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6793 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6795 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6796 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6799 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6800 SDValue &Overflow, SelectionDAG &DAG) const {
6801 SDLoc dl(Node);
6802 EVT VT = Node->getValueType(0);
6803 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6804 SDValue LHS = Node->getOperand(0);
6805 SDValue RHS = Node->getOperand(1);
6806 bool isSigned = Node->getOpcode() == ISD::SMULO;
6808 // For power-of-two multiplications we can use a simpler shift expansion.
6809 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6810 const APInt &C = RHSC->getAPIntValue();
6811 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6812 if (C.isPowerOf2()) {
6813 // smulo(x, signed_min) is same as umulo(x, signed_min).
6814 bool UseArithShift = isSigned && !C.isMinSignedValue();
6815 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6816 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6817 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6818 Overflow = DAG.getSetCC(dl, SetCCVT,
6819 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6820 dl, VT, Result, ShiftAmt),
6821 LHS, ISD::SETNE);
6822 return true;
6826 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6827 if (VT.isVector())
6828 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6829 VT.getVectorNumElements());
6831 SDValue BottomHalf;
6832 SDValue TopHalf;
6833 static const unsigned Ops[2][3] =
6834 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6835 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6836 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6837 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6838 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6839 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6840 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6841 RHS);
6842 TopHalf = BottomHalf.getValue(1);
6843 } else if (isTypeLegal(WideVT)) {
6844 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6845 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6846 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6847 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6848 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6849 getShiftAmountTy(WideVT, DAG.getDataLayout()));
6850 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6851 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6852 } else {
6853 if (VT.isVector())
6854 return false;
6856 // We can fall back to a libcall with an illegal type for the MUL if we
6857 // have a libcall big enough.
6858 // Also, we can fall back to a division in some cases, but that's a big
6859 // performance hit in the general case.
6860 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6861 if (WideVT == MVT::i16)
6862 LC = RTLIB::MUL_I16;
6863 else if (WideVT == MVT::i32)
6864 LC = RTLIB::MUL_I32;
6865 else if (WideVT == MVT::i64)
6866 LC = RTLIB::MUL_I64;
6867 else if (WideVT == MVT::i128)
6868 LC = RTLIB::MUL_I128;
6869 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6871 SDValue HiLHS;
6872 SDValue HiRHS;
6873 if (isSigned) {
6874 // The high part is obtained by SRA'ing all but one of the bits of low
6875 // part.
6876 unsigned LoSize = VT.getSizeInBits();
6877 HiLHS =
6878 DAG.getNode(ISD::SRA, dl, VT, LHS,
6879 DAG.getConstant(LoSize - 1, dl,
6880 getPointerTy(DAG.getDataLayout())));
6881 HiRHS =
6882 DAG.getNode(ISD::SRA, dl, VT, RHS,
6883 DAG.getConstant(LoSize - 1, dl,
6884 getPointerTy(DAG.getDataLayout())));
6885 } else {
6886 HiLHS = DAG.getConstant(0, dl, VT);
6887 HiRHS = DAG.getConstant(0, dl, VT);
6890 // Here we're passing the 2 arguments explicitly as 4 arguments that are
6891 // pre-lowered to the correct types. This all depends upon WideVT not
6892 // being a legal type for the architecture and thus has to be split to
6893 // two arguments.
6894 SDValue Ret;
6895 TargetLowering::MakeLibCallOptions CallOptions;
6896 CallOptions.setSExt(isSigned);
6897 CallOptions.setIsPostTypeLegalization(true);
6898 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6899 // Halves of WideVT are packed into registers in different order
6900 // depending on platform endianness. This is usually handled by
6901 // the C calling convention, but we can't defer to it in
6902 // the legalizer.
6903 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6904 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
6905 } else {
6906 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6907 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
6909 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6910 "Ret value is a collection of constituent nodes holding result.");
6911 if (DAG.getDataLayout().isLittleEndian()) {
6912 // Same as above.
6913 BottomHalf = Ret.getOperand(0);
6914 TopHalf = Ret.getOperand(1);
6915 } else {
6916 BottomHalf = Ret.getOperand(1);
6917 TopHalf = Ret.getOperand(0);
6921 Result = BottomHalf;
6922 if (isSigned) {
6923 SDValue ShiftAmt = DAG.getConstant(
6924 VT.getScalarSizeInBits() - 1, dl,
6925 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6926 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6927 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6928 } else {
6929 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6930 DAG.getConstant(0, dl, VT), ISD::SETNE);
6933 // Truncate the result if SetCC returns a larger type than needed.
6934 EVT RType = Node->getValueType(1);
6935 if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6936 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6938 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6939 "Unexpected result type for S/UMULO legalization");
6940 return true;
6943 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6944 SDLoc dl(Node);
6945 bool NoNaN = Node->getFlags().hasNoNaNs();
6946 unsigned BaseOpcode = 0;
6947 switch (Node->getOpcode()) {
6948 default: llvm_unreachable("Expected VECREDUCE opcode");
6949 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6950 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6951 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
6952 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
6953 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
6954 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
6955 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
6956 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6957 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6958 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6959 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6960 case ISD::VECREDUCE_FMAX:
6961 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6962 break;
6963 case ISD::VECREDUCE_FMIN:
6964 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6965 break;
6968 SDValue Op = Node->getOperand(0);
6969 EVT VT = Op.getValueType();
6971 // Try to use a shuffle reduction for power of two vectors.
6972 if (VT.isPow2VectorType()) {
6973 while (VT.getVectorNumElements() > 1) {
6974 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6975 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6976 break;
6978 SDValue Lo, Hi;
6979 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6980 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6981 VT = HalfVT;
6985 EVT EltVT = VT.getVectorElementType();
6986 unsigned NumElts = VT.getVectorNumElements();
6988 SmallVector<SDValue, 8> Ops;
6989 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6991 SDValue Res = Ops[0];
6992 for (unsigned i = 1; i < NumElts; i++)
6993 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6995 // Result type may be wider than element type.
6996 if (EltVT != Node->getValueType(0))
6997 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6998 return Res;