[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / IR / Function.cpp
blob462458d7065272f18080504d09b58787bcb12a5c
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68 setName(Name);
71 void Argument::setParent(Function *parent) {
72 Parent = parent;
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78 return true;
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
82 return true;
83 return false;
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs = getParent()->getAttributes();
107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 Type *Argument::getParamByValType() const {
117 assert(getType()->isPointerTy() && "Only pointers have byval types");
118 return getParent()->getParamByValType(getArgNo());
121 uint64_t Argument::getDereferenceableBytes() const {
122 assert(getType()->isPointerTy() &&
123 "Only pointers have dereferenceable bytes");
124 return getParent()->getParamDereferenceableBytes(getArgNo());
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128 assert(getType()->isPointerTy() &&
129 "Only pointers have dereferenceable bytes");
130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
133 bool Argument::hasNestAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::Nest);
138 bool Argument::hasNoAliasAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoAlias);
143 bool Argument::hasNoCaptureAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::NoCapture);
148 bool Argument::hasStructRetAttr() const {
149 if (!getType()->isPointerTy()) return false;
150 return hasAttribute(Attribute::StructRet);
153 bool Argument::hasInRegAttr() const {
154 return hasAttribute(Attribute::InReg);
157 bool Argument::hasReturnedAttr() const {
158 return hasAttribute(Attribute::Returned);
161 bool Argument::hasZExtAttr() const {
162 return hasAttribute(Attribute::ZExt);
165 bool Argument::hasSExtAttr() const {
166 return hasAttribute(Attribute::SExt);
169 bool Argument::onlyReadsMemory() const {
170 AttributeList Attrs = getParent()->getAttributes();
171 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
175 void Argument::addAttrs(AttrBuilder &B) {
176 AttributeList AL = getParent()->getAttributes();
177 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178 getParent()->setAttributes(AL);
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182 getParent()->addParamAttr(getArgNo(), Kind);
185 void Argument::addAttr(Attribute Attr) {
186 getParent()->addParamAttr(getArgNo(), Attr);
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190 getParent()->removeParamAttr(getArgNo(), Kind);
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194 return getParent()->hasParamAttribute(getArgNo(), Kind);
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198 return getParent()->getParamAttribute(getArgNo(), Kind);
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
205 LLVMContext &Function::getContext() const {
206 return getType()->getContext();
209 unsigned Function::getInstructionCount() const {
210 unsigned NumInstrs = 0;
211 for (const BasicBlock &BB : BasicBlocks)
212 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213 BB.instructionsWithoutDebug().end());
214 return NumInstrs;
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218 const Twine &N, Module &M) {
219 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
222 void Function::removeFromParent() {
223 getParent()->getFunctionList().remove(getIterator());
226 void Function::eraseFromParent() {
227 getParent()->getFunctionList().erase(getIterator());
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235 // If AS == -1 and we are passed a valid module pointer we place the function
236 // in the program address space. Otherwise we default to AS0.
237 if (AddrSpace == static_cast<unsigned>(-1))
238 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239 return AddrSpace;
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243 const Twine &name, Module *ParentModule)
244 : GlobalObject(Ty, Value::FunctionVal,
245 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246 computeAddrSpace(AddrSpace, ParentModule)),
247 NumArgs(Ty->getNumParams()) {
248 assert(FunctionType::isValidReturnType(getReturnType()) &&
249 "invalid return type");
250 setGlobalObjectSubClassData(0);
252 // We only need a symbol table for a function if the context keeps value names
253 if (!getContext().shouldDiscardValueNames())
254 SymTab = std::make_unique<ValueSymbolTable>();
256 // If the function has arguments, mark them as lazily built.
257 if (Ty->getNumParams())
258 setValueSubclassData(1); // Set the "has lazy arguments" bit.
260 if (ParentModule)
261 ParentModule->getFunctionList().push_back(this);
263 HasLLVMReservedName = getName().startswith("llvm.");
264 // Ensure intrinsics have the right parameter attributes.
265 // Note, the IntID field will have been set in Value::setName if this function
266 // name is a valid intrinsic ID.
267 if (IntID)
268 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
271 Function::~Function() {
272 dropAllReferences(); // After this it is safe to delete instructions.
274 // Delete all of the method arguments and unlink from symbol table...
275 if (Arguments)
276 clearArguments();
278 // Remove the function from the on-the-side GC table.
279 clearGC();
282 void Function::BuildLazyArguments() const {
283 // Create the arguments vector, all arguments start out unnamed.
284 auto *FT = getFunctionType();
285 if (NumArgs > 0) {
286 Arguments = std::allocator<Argument>().allocate(NumArgs);
287 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288 Type *ArgTy = FT->getParamType(i);
289 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
294 // Clear the lazy arguments bit.
295 unsigned SDC = getSubclassDataFromValue();
296 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
297 assert(!hasLazyArguments());
300 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
301 return MutableArrayRef<Argument>(Args, Count);
304 void Function::clearArguments() {
305 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
306 A.setName("");
307 A.~Argument();
309 std::allocator<Argument>().deallocate(Arguments, NumArgs);
310 Arguments = nullptr;
313 void Function::stealArgumentListFrom(Function &Src) {
314 assert(isDeclaration() && "Expected no references to current arguments");
316 // Drop the current arguments, if any, and set the lazy argument bit.
317 if (!hasLazyArguments()) {
318 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
319 [](const Argument &A) { return A.use_empty(); }) &&
320 "Expected arguments to be unused in declaration");
321 clearArguments();
322 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
325 // Nothing to steal if Src has lazy arguments.
326 if (Src.hasLazyArguments())
327 return;
329 // Steal arguments from Src, and fix the lazy argument bits.
330 assert(arg_size() == Src.arg_size());
331 Arguments = Src.Arguments;
332 Src.Arguments = nullptr;
333 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
334 // FIXME: This does the work of transferNodesFromList inefficiently.
335 SmallString<128> Name;
336 if (A.hasName())
337 Name = A.getName();
338 if (!Name.empty())
339 A.setName("");
340 A.setParent(this);
341 if (!Name.empty())
342 A.setName(Name);
345 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
346 assert(!hasLazyArguments());
347 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
350 // dropAllReferences() - This function causes all the subinstructions to "let
351 // go" of all references that they are maintaining. This allows one to
352 // 'delete' a whole class at a time, even though there may be circular
353 // references... first all references are dropped, and all use counts go to
354 // zero. Then everything is deleted for real. Note that no operations are
355 // valid on an object that has "dropped all references", except operator
356 // delete.
358 void Function::dropAllReferences() {
359 setIsMaterializable(false);
361 for (BasicBlock &BB : *this)
362 BB.dropAllReferences();
364 // Delete all basic blocks. They are now unused, except possibly by
365 // blockaddresses, but BasicBlock's destructor takes care of those.
366 while (!BasicBlocks.empty())
367 BasicBlocks.begin()->eraseFromParent();
369 // Drop uses of any optional data (real or placeholder).
370 if (getNumOperands()) {
371 User::dropAllReferences();
372 setNumHungOffUseOperands(0);
373 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
376 // Metadata is stored in a side-table.
377 clearMetadata();
380 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
381 AttributeList PAL = getAttributes();
382 PAL = PAL.addAttribute(getContext(), i, Kind);
383 setAttributes(PAL);
386 void Function::addAttribute(unsigned i, Attribute Attr) {
387 AttributeList PAL = getAttributes();
388 PAL = PAL.addAttribute(getContext(), i, Attr);
389 setAttributes(PAL);
392 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
393 AttributeList PAL = getAttributes();
394 PAL = PAL.addAttributes(getContext(), i, Attrs);
395 setAttributes(PAL);
398 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
399 AttributeList PAL = getAttributes();
400 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
401 setAttributes(PAL);
404 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
405 AttributeList PAL = getAttributes();
406 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
407 setAttributes(PAL);
410 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
411 AttributeList PAL = getAttributes();
412 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
413 setAttributes(PAL);
416 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
417 AttributeList PAL = getAttributes();
418 PAL = PAL.removeAttribute(getContext(), i, Kind);
419 setAttributes(PAL);
422 void Function::removeAttribute(unsigned i, StringRef Kind) {
423 AttributeList PAL = getAttributes();
424 PAL = PAL.removeAttribute(getContext(), i, Kind);
425 setAttributes(PAL);
428 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
429 AttributeList PAL = getAttributes();
430 PAL = PAL.removeAttributes(getContext(), i, Attrs);
431 setAttributes(PAL);
434 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
435 AttributeList PAL = getAttributes();
436 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
437 setAttributes(PAL);
440 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
441 AttributeList PAL = getAttributes();
442 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
443 setAttributes(PAL);
446 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
447 AttributeList PAL = getAttributes();
448 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
449 setAttributes(PAL);
452 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
453 AttributeList PAL = getAttributes();
454 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
455 setAttributes(PAL);
458 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
459 AttributeList PAL = getAttributes();
460 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
461 setAttributes(PAL);
464 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
465 AttributeList PAL = getAttributes();
466 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
467 setAttributes(PAL);
470 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
471 uint64_t Bytes) {
472 AttributeList PAL = getAttributes();
473 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
474 setAttributes(PAL);
477 const std::string &Function::getGC() const {
478 assert(hasGC() && "Function has no collector");
479 return getContext().getGC(*this);
482 void Function::setGC(std::string Str) {
483 setValueSubclassDataBit(14, !Str.empty());
484 getContext().setGC(*this, std::move(Str));
487 void Function::clearGC() {
488 if (!hasGC())
489 return;
490 getContext().deleteGC(*this);
491 setValueSubclassDataBit(14, false);
494 /// Copy all additional attributes (those not needed to create a Function) from
495 /// the Function Src to this one.
496 void Function::copyAttributesFrom(const Function *Src) {
497 GlobalObject::copyAttributesFrom(Src);
498 setCallingConv(Src->getCallingConv());
499 setAttributes(Src->getAttributes());
500 if (Src->hasGC())
501 setGC(Src->getGC());
502 else
503 clearGC();
504 if (Src->hasPersonalityFn())
505 setPersonalityFn(Src->getPersonalityFn());
506 if (Src->hasPrefixData())
507 setPrefixData(Src->getPrefixData());
508 if (Src->hasPrologueData())
509 setPrologueData(Src->getPrologueData());
512 /// Table of string intrinsic names indexed by enum value.
513 static const char * const IntrinsicNameTable[] = {
514 "not_intrinsic",
515 #define GET_INTRINSIC_NAME_TABLE
516 #include "llvm/IR/IntrinsicImpl.inc"
517 #undef GET_INTRINSIC_NAME_TABLE
520 /// Table of per-target intrinsic name tables.
521 #define GET_INTRINSIC_TARGET_DATA
522 #include "llvm/IR/IntrinsicImpl.inc"
523 #undef GET_INTRINSIC_TARGET_DATA
525 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
526 /// target as \c Name, or the generic table if \c Name is not target specific.
528 /// Returns the relevant slice of \c IntrinsicNameTable
529 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
530 assert(Name.startswith("llvm."));
532 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
533 // Drop "llvm." and take the first dotted component. That will be the target
534 // if this is target specific.
535 StringRef Target = Name.drop_front(5).split('.').first;
536 auto It = partition_point(
537 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
538 // We've either found the target or just fall back to the generic set, which
539 // is always first.
540 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
541 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
544 /// This does the actual lookup of an intrinsic ID which
545 /// matches the given function name.
546 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
547 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
548 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
549 if (Idx == -1)
550 return Intrinsic::not_intrinsic;
552 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
553 // an index into a sub-table.
554 int Adjust = NameTable.data() - IntrinsicNameTable;
555 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
557 // If the intrinsic is not overloaded, require an exact match. If it is
558 // overloaded, require either exact or prefix match.
559 const auto MatchSize = strlen(NameTable[Idx]);
560 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
561 bool IsExactMatch = Name.size() == MatchSize;
562 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
565 void Function::recalculateIntrinsicID() {
566 StringRef Name = getName();
567 if (!Name.startswith("llvm.")) {
568 HasLLVMReservedName = false;
569 IntID = Intrinsic::not_intrinsic;
570 return;
572 HasLLVMReservedName = true;
573 IntID = lookupIntrinsicID(Name);
576 /// Returns a stable mangling for the type specified for use in the name
577 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
578 /// of named types is simply their name. Manglings for unnamed types consist
579 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
580 /// combined with the mangling of their component types. A vararg function
581 /// type will have a suffix of 'vararg'. Since function types can contain
582 /// other function types, we close a function type mangling with suffix 'f'
583 /// which can't be confused with it's prefix. This ensures we don't have
584 /// collisions between two unrelated function types. Otherwise, you might
585 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
587 static std::string getMangledTypeStr(Type* Ty) {
588 std::string Result;
589 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
590 Result += "p" + utostr(PTyp->getAddressSpace()) +
591 getMangledTypeStr(PTyp->getElementType());
592 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
593 Result += "a" + utostr(ATyp->getNumElements()) +
594 getMangledTypeStr(ATyp->getElementType());
595 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
596 if (!STyp->isLiteral()) {
597 Result += "s_";
598 Result += STyp->getName();
599 } else {
600 Result += "sl_";
601 for (auto Elem : STyp->elements())
602 Result += getMangledTypeStr(Elem);
604 // Ensure nested structs are distinguishable.
605 Result += "s";
606 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
607 Result += "f_" + getMangledTypeStr(FT->getReturnType());
608 for (size_t i = 0; i < FT->getNumParams(); i++)
609 Result += getMangledTypeStr(FT->getParamType(i));
610 if (FT->isVarArg())
611 Result += "vararg";
612 // Ensure nested function types are distinguishable.
613 Result += "f";
614 } else if (isa<VectorType>(Ty)) {
615 Result += "v" + utostr(Ty->getVectorNumElements()) +
616 getMangledTypeStr(Ty->getVectorElementType());
617 } else if (Ty) {
618 switch (Ty->getTypeID()) {
619 default: llvm_unreachable("Unhandled type");
620 case Type::VoidTyID: Result += "isVoid"; break;
621 case Type::MetadataTyID: Result += "Metadata"; break;
622 case Type::HalfTyID: Result += "f16"; break;
623 case Type::FloatTyID: Result += "f32"; break;
624 case Type::DoubleTyID: Result += "f64"; break;
625 case Type::X86_FP80TyID: Result += "f80"; break;
626 case Type::FP128TyID: Result += "f128"; break;
627 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
628 case Type::X86_MMXTyID: Result += "x86mmx"; break;
629 case Type::IntegerTyID:
630 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
631 break;
634 return Result;
637 StringRef Intrinsic::getName(ID id) {
638 assert(id < num_intrinsics && "Invalid intrinsic ID!");
639 assert(!isOverloaded(id) &&
640 "This version of getName does not support overloading");
641 return IntrinsicNameTable[id];
644 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
645 assert(id < num_intrinsics && "Invalid intrinsic ID!");
646 std::string Result(IntrinsicNameTable[id]);
647 for (Type *Ty : Tys) {
648 Result += "." + getMangledTypeStr(Ty);
650 return Result;
653 /// IIT_Info - These are enumerators that describe the entries returned by the
654 /// getIntrinsicInfoTableEntries function.
656 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
657 enum IIT_Info {
658 // Common values should be encoded with 0-15.
659 IIT_Done = 0,
660 IIT_I1 = 1,
661 IIT_I8 = 2,
662 IIT_I16 = 3,
663 IIT_I32 = 4,
664 IIT_I64 = 5,
665 IIT_F16 = 6,
666 IIT_F32 = 7,
667 IIT_F64 = 8,
668 IIT_V2 = 9,
669 IIT_V4 = 10,
670 IIT_V8 = 11,
671 IIT_V16 = 12,
672 IIT_V32 = 13,
673 IIT_PTR = 14,
674 IIT_ARG = 15,
676 // Values from 16+ are only encodable with the inefficient encoding.
677 IIT_V64 = 16,
678 IIT_MMX = 17,
679 IIT_TOKEN = 18,
680 IIT_METADATA = 19,
681 IIT_EMPTYSTRUCT = 20,
682 IIT_STRUCT2 = 21,
683 IIT_STRUCT3 = 22,
684 IIT_STRUCT4 = 23,
685 IIT_STRUCT5 = 24,
686 IIT_EXTEND_ARG = 25,
687 IIT_TRUNC_ARG = 26,
688 IIT_ANYPTR = 27,
689 IIT_V1 = 28,
690 IIT_VARARG = 29,
691 IIT_HALF_VEC_ARG = 30,
692 IIT_SAME_VEC_WIDTH_ARG = 31,
693 IIT_PTR_TO_ARG = 32,
694 IIT_PTR_TO_ELT = 33,
695 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
696 IIT_I128 = 35,
697 IIT_V512 = 36,
698 IIT_V1024 = 37,
699 IIT_STRUCT6 = 38,
700 IIT_STRUCT7 = 39,
701 IIT_STRUCT8 = 40,
702 IIT_F128 = 41,
703 IIT_VEC_ELEMENT = 42
706 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
707 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
708 using namespace Intrinsic;
710 IIT_Info Info = IIT_Info(Infos[NextElt++]);
711 unsigned StructElts = 2;
713 switch (Info) {
714 case IIT_Done:
715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
716 return;
717 case IIT_VARARG:
718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
719 return;
720 case IIT_MMX:
721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
722 return;
723 case IIT_TOKEN:
724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
725 return;
726 case IIT_METADATA:
727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
728 return;
729 case IIT_F16:
730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
731 return;
732 case IIT_F32:
733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
734 return;
735 case IIT_F64:
736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
737 return;
738 case IIT_F128:
739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
740 return;
741 case IIT_I1:
742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
743 return;
744 case IIT_I8:
745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
746 return;
747 case IIT_I16:
748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
749 return;
750 case IIT_I32:
751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
752 return;
753 case IIT_I64:
754 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
755 return;
756 case IIT_I128:
757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
758 return;
759 case IIT_V1:
760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
761 DecodeIITType(NextElt, Infos, OutputTable);
762 return;
763 case IIT_V2:
764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
765 DecodeIITType(NextElt, Infos, OutputTable);
766 return;
767 case IIT_V4:
768 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
769 DecodeIITType(NextElt, Infos, OutputTable);
770 return;
771 case IIT_V8:
772 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
773 DecodeIITType(NextElt, Infos, OutputTable);
774 return;
775 case IIT_V16:
776 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
777 DecodeIITType(NextElt, Infos, OutputTable);
778 return;
779 case IIT_V32:
780 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
781 DecodeIITType(NextElt, Infos, OutputTable);
782 return;
783 case IIT_V64:
784 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
785 DecodeIITType(NextElt, Infos, OutputTable);
786 return;
787 case IIT_V512:
788 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
789 DecodeIITType(NextElt, Infos, OutputTable);
790 return;
791 case IIT_V1024:
792 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
793 DecodeIITType(NextElt, Infos, OutputTable);
794 return;
795 case IIT_PTR:
796 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
797 DecodeIITType(NextElt, Infos, OutputTable);
798 return;
799 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
800 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
801 Infos[NextElt++]));
802 DecodeIITType(NextElt, Infos, OutputTable);
803 return;
805 case IIT_ARG: {
806 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
808 return;
810 case IIT_EXTEND_ARG: {
811 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
812 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
813 ArgInfo));
814 return;
816 case IIT_TRUNC_ARG: {
817 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
818 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
819 ArgInfo));
820 return;
822 case IIT_HALF_VEC_ARG: {
823 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
824 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
825 ArgInfo));
826 return;
828 case IIT_SAME_VEC_WIDTH_ARG: {
829 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
830 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
831 ArgInfo));
832 return;
834 case IIT_PTR_TO_ARG: {
835 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
837 ArgInfo));
838 return;
840 case IIT_PTR_TO_ELT: {
841 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
842 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
843 return;
845 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
846 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
847 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
848 OutputTable.push_back(
849 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
850 return;
852 case IIT_EMPTYSTRUCT:
853 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
854 return;
855 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
856 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
857 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
858 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
859 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
860 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
861 case IIT_STRUCT2: {
862 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
864 for (unsigned i = 0; i != StructElts; ++i)
865 DecodeIITType(NextElt, Infos, OutputTable);
866 return;
868 case IIT_VEC_ELEMENT: {
869 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
870 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
871 ArgInfo));
872 return;
875 llvm_unreachable("unhandled");
878 #define GET_INTRINSIC_GENERATOR_GLOBAL
879 #include "llvm/IR/IntrinsicImpl.inc"
880 #undef GET_INTRINSIC_GENERATOR_GLOBAL
882 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
883 SmallVectorImpl<IITDescriptor> &T){
884 // Check to see if the intrinsic's type was expressible by the table.
885 unsigned TableVal = IIT_Table[id-1];
887 // Decode the TableVal into an array of IITValues.
888 SmallVector<unsigned char, 8> IITValues;
889 ArrayRef<unsigned char> IITEntries;
890 unsigned NextElt = 0;
891 if ((TableVal >> 31) != 0) {
892 // This is an offset into the IIT_LongEncodingTable.
893 IITEntries = IIT_LongEncodingTable;
895 // Strip sentinel bit.
896 NextElt = (TableVal << 1) >> 1;
897 } else {
898 // Decode the TableVal into an array of IITValues. If the entry was encoded
899 // into a single word in the table itself, decode it now.
900 do {
901 IITValues.push_back(TableVal & 0xF);
902 TableVal >>= 4;
903 } while (TableVal);
905 IITEntries = IITValues;
906 NextElt = 0;
909 // Okay, decode the table into the output vector of IITDescriptors.
910 DecodeIITType(NextElt, IITEntries, T);
911 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
912 DecodeIITType(NextElt, IITEntries, T);
915 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
916 ArrayRef<Type*> Tys, LLVMContext &Context) {
917 using namespace Intrinsic;
919 IITDescriptor D = Infos.front();
920 Infos = Infos.slice(1);
922 switch (D.Kind) {
923 case IITDescriptor::Void: return Type::getVoidTy(Context);
924 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
925 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
926 case IITDescriptor::Token: return Type::getTokenTy(Context);
927 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
928 case IITDescriptor::Half: return Type::getHalfTy(Context);
929 case IITDescriptor::Float: return Type::getFloatTy(Context);
930 case IITDescriptor::Double: return Type::getDoubleTy(Context);
931 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
933 case IITDescriptor::Integer:
934 return IntegerType::get(Context, D.Integer_Width);
935 case IITDescriptor::Vector:
936 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
937 case IITDescriptor::Pointer:
938 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
939 D.Pointer_AddressSpace);
940 case IITDescriptor::Struct: {
941 SmallVector<Type *, 8> Elts;
942 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
943 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
944 return StructType::get(Context, Elts);
946 case IITDescriptor::Argument:
947 return Tys[D.getArgumentNumber()];
948 case IITDescriptor::ExtendArgument: {
949 Type *Ty = Tys[D.getArgumentNumber()];
950 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
951 return VectorType::getExtendedElementVectorType(VTy);
953 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
955 case IITDescriptor::TruncArgument: {
956 Type *Ty = Tys[D.getArgumentNumber()];
957 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
958 return VectorType::getTruncatedElementVectorType(VTy);
960 IntegerType *ITy = cast<IntegerType>(Ty);
961 assert(ITy->getBitWidth() % 2 == 0);
962 return IntegerType::get(Context, ITy->getBitWidth() / 2);
964 case IITDescriptor::HalfVecArgument:
965 return VectorType::getHalfElementsVectorType(cast<VectorType>(
966 Tys[D.getArgumentNumber()]));
967 case IITDescriptor::SameVecWidthArgument: {
968 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
969 Type *Ty = Tys[D.getArgumentNumber()];
970 if (auto *VTy = dyn_cast<VectorType>(Ty))
971 return VectorType::get(EltTy, VTy->getNumElements());
972 return EltTy;
974 case IITDescriptor::PtrToArgument: {
975 Type *Ty = Tys[D.getArgumentNumber()];
976 return PointerType::getUnqual(Ty);
978 case IITDescriptor::PtrToElt: {
979 Type *Ty = Tys[D.getArgumentNumber()];
980 VectorType *VTy = dyn_cast<VectorType>(Ty);
981 if (!VTy)
982 llvm_unreachable("Expected an argument of Vector Type");
983 Type *EltTy = VTy->getVectorElementType();
984 return PointerType::getUnqual(EltTy);
986 case IITDescriptor::VecElementArgument: {
987 Type *Ty = Tys[D.getArgumentNumber()];
988 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
989 return VTy->getElementType();
990 llvm_unreachable("Expected an argument of Vector Type");
992 case IITDescriptor::VecOfAnyPtrsToElt:
993 // Return the overloaded type (which determines the pointers address space)
994 return Tys[D.getOverloadArgNumber()];
996 llvm_unreachable("unhandled");
999 FunctionType *Intrinsic::getType(LLVMContext &Context,
1000 ID id, ArrayRef<Type*> Tys) {
1001 SmallVector<IITDescriptor, 8> Table;
1002 getIntrinsicInfoTableEntries(id, Table);
1004 ArrayRef<IITDescriptor> TableRef = Table;
1005 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1007 SmallVector<Type*, 8> ArgTys;
1008 while (!TableRef.empty())
1009 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1011 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1012 // If we see void type as the type of the last argument, it is vararg intrinsic
1013 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1014 ArgTys.pop_back();
1015 return FunctionType::get(ResultTy, ArgTys, true);
1017 return FunctionType::get(ResultTy, ArgTys, false);
1020 bool Intrinsic::isOverloaded(ID id) {
1021 #define GET_INTRINSIC_OVERLOAD_TABLE
1022 #include "llvm/IR/IntrinsicImpl.inc"
1023 #undef GET_INTRINSIC_OVERLOAD_TABLE
1026 bool Intrinsic::isLeaf(ID id) {
1027 switch (id) {
1028 default:
1029 return true;
1031 case Intrinsic::experimental_gc_statepoint:
1032 case Intrinsic::experimental_patchpoint_void:
1033 case Intrinsic::experimental_patchpoint_i64:
1034 return false;
1038 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1039 #define GET_INTRINSIC_ATTRIBUTES
1040 #include "llvm/IR/IntrinsicImpl.inc"
1041 #undef GET_INTRINSIC_ATTRIBUTES
1043 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1044 // There can never be multiple globals with the same name of different types,
1045 // because intrinsics must be a specific type.
1046 return cast<Function>(
1047 M->getOrInsertFunction(getName(id, Tys),
1048 getType(M->getContext(), id, Tys))
1049 .getCallee());
1052 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1053 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1054 #include "llvm/IR/IntrinsicImpl.inc"
1055 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1057 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1058 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1059 #include "llvm/IR/IntrinsicImpl.inc"
1060 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1062 using DeferredIntrinsicMatchPair =
1063 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1065 static bool matchIntrinsicType(
1066 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1067 SmallVectorImpl<Type *> &ArgTys,
1068 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1069 bool IsDeferredCheck) {
1070 using namespace Intrinsic;
1072 // If we ran out of descriptors, there are too many arguments.
1073 if (Infos.empty()) return true;
1075 // Do this before slicing off the 'front' part
1076 auto InfosRef = Infos;
1077 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1078 DeferredChecks.emplace_back(T, InfosRef);
1079 return false;
1082 IITDescriptor D = Infos.front();
1083 Infos = Infos.slice(1);
1085 switch (D.Kind) {
1086 case IITDescriptor::Void: return !Ty->isVoidTy();
1087 case IITDescriptor::VarArg: return true;
1088 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1089 case IITDescriptor::Token: return !Ty->isTokenTy();
1090 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1091 case IITDescriptor::Half: return !Ty->isHalfTy();
1092 case IITDescriptor::Float: return !Ty->isFloatTy();
1093 case IITDescriptor::Double: return !Ty->isDoubleTy();
1094 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1095 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1096 case IITDescriptor::Vector: {
1097 VectorType *VT = dyn_cast<VectorType>(Ty);
1098 return !VT || VT->getNumElements() != D.Vector_Width ||
1099 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1100 DeferredChecks, IsDeferredCheck);
1102 case IITDescriptor::Pointer: {
1103 PointerType *PT = dyn_cast<PointerType>(Ty);
1104 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1105 matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1106 DeferredChecks, IsDeferredCheck);
1109 case IITDescriptor::Struct: {
1110 StructType *ST = dyn_cast<StructType>(Ty);
1111 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1112 return true;
1114 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1115 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1116 DeferredChecks, IsDeferredCheck))
1117 return true;
1118 return false;
1121 case IITDescriptor::Argument:
1122 // If this is the second occurrence of an argument,
1123 // verify that the later instance matches the previous instance.
1124 if (D.getArgumentNumber() < ArgTys.size())
1125 return Ty != ArgTys[D.getArgumentNumber()];
1127 if (D.getArgumentNumber() > ArgTys.size() ||
1128 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1129 return IsDeferredCheck || DeferCheck(Ty);
1131 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1132 "Table consistency error");
1133 ArgTys.push_back(Ty);
1135 switch (D.getArgumentKind()) {
1136 case IITDescriptor::AK_Any: return false; // Success
1137 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1138 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1139 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1140 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1141 default: break;
1143 llvm_unreachable("all argument kinds not covered");
1145 case IITDescriptor::ExtendArgument: {
1146 // If this is a forward reference, defer the check for later.
1147 if (D.getArgumentNumber() >= ArgTys.size())
1148 return IsDeferredCheck || DeferCheck(Ty);
1150 Type *NewTy = ArgTys[D.getArgumentNumber()];
1151 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1152 NewTy = VectorType::getExtendedElementVectorType(VTy);
1153 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1154 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1155 else
1156 return true;
1158 return Ty != NewTy;
1160 case IITDescriptor::TruncArgument: {
1161 // If this is a forward reference, defer the check for later.
1162 if (D.getArgumentNumber() >= ArgTys.size())
1163 return IsDeferredCheck || DeferCheck(Ty);
1165 Type *NewTy = ArgTys[D.getArgumentNumber()];
1166 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1167 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1168 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1169 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1170 else
1171 return true;
1173 return Ty != NewTy;
1175 case IITDescriptor::HalfVecArgument:
1176 // If this is a forward reference, defer the check for later.
1177 return D.getArgumentNumber() >= ArgTys.size() ||
1178 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1179 VectorType::getHalfElementsVectorType(
1180 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1181 case IITDescriptor::SameVecWidthArgument: {
1182 if (D.getArgumentNumber() >= ArgTys.size()) {
1183 // Defer check and subsequent check for the vector element type.
1184 Infos = Infos.slice(1);
1185 return IsDeferredCheck || DeferCheck(Ty);
1187 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1188 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1189 // Both must be vectors of the same number of elements or neither.
1190 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1191 return true;
1192 Type *EltTy = Ty;
1193 if (ThisArgType) {
1194 if (ReferenceType->getVectorNumElements() !=
1195 ThisArgType->getVectorNumElements())
1196 return true;
1197 EltTy = ThisArgType->getVectorElementType();
1199 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1200 IsDeferredCheck);
1202 case IITDescriptor::PtrToArgument: {
1203 if (D.getArgumentNumber() >= ArgTys.size())
1204 return IsDeferredCheck || DeferCheck(Ty);
1205 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1206 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1207 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1209 case IITDescriptor::PtrToElt: {
1210 if (D.getArgumentNumber() >= ArgTys.size())
1211 return IsDeferredCheck || DeferCheck(Ty);
1212 VectorType * ReferenceType =
1213 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1214 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1216 return (!ThisArgType || !ReferenceType ||
1217 ThisArgType->getElementType() != ReferenceType->getElementType());
1219 case IITDescriptor::VecOfAnyPtrsToElt: {
1220 unsigned RefArgNumber = D.getRefArgNumber();
1221 if (RefArgNumber >= ArgTys.size()) {
1222 if (IsDeferredCheck)
1223 return true;
1224 // If forward referencing, already add the pointer-vector type and
1225 // defer the checks for later.
1226 ArgTys.push_back(Ty);
1227 return DeferCheck(Ty);
1230 if (!IsDeferredCheck){
1231 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1232 "Table consistency error");
1233 ArgTys.push_back(Ty);
1236 // Verify the overloaded type "matches" the Ref type.
1237 // i.e. Ty is a vector with the same width as Ref.
1238 // Composed of pointers to the same element type as Ref.
1239 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1240 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1241 if (!ThisArgVecTy || !ReferenceType ||
1242 (ReferenceType->getVectorNumElements() !=
1243 ThisArgVecTy->getVectorNumElements()))
1244 return true;
1245 PointerType *ThisArgEltTy =
1246 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1247 if (!ThisArgEltTy)
1248 return true;
1249 return ThisArgEltTy->getElementType() !=
1250 ReferenceType->getVectorElementType();
1252 case IITDescriptor::VecElementArgument: {
1253 if (D.getArgumentNumber() >= ArgTys.size())
1254 return IsDeferredCheck ? true : DeferCheck(Ty);
1255 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1256 return !ReferenceType || Ty != ReferenceType->getElementType();
1259 llvm_unreachable("unhandled");
1262 Intrinsic::MatchIntrinsicTypesResult
1263 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1264 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1265 SmallVectorImpl<Type *> &ArgTys) {
1266 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1267 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1268 false))
1269 return MatchIntrinsicTypes_NoMatchRet;
1271 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1273 for (auto Ty : FTy->params())
1274 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1275 return MatchIntrinsicTypes_NoMatchArg;
1277 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1278 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1279 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1280 true))
1281 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1282 : MatchIntrinsicTypes_NoMatchArg;
1285 return MatchIntrinsicTypes_Match;
1288 bool
1289 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1290 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1291 // If there are no descriptors left, then it can't be a vararg.
1292 if (Infos.empty())
1293 return isVarArg;
1295 // There should be only one descriptor remaining at this point.
1296 if (Infos.size() != 1)
1297 return true;
1299 // Check and verify the descriptor.
1300 IITDescriptor D = Infos.front();
1301 Infos = Infos.slice(1);
1302 if (D.Kind == IITDescriptor::VarArg)
1303 return !isVarArg;
1305 return true;
1308 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1309 Intrinsic::ID ID = F->getIntrinsicID();
1310 if (!ID)
1311 return None;
1313 FunctionType *FTy = F->getFunctionType();
1314 // Accumulate an array of overloaded types for the given intrinsic
1315 SmallVector<Type *, 4> ArgTys;
1317 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1318 getIntrinsicInfoTableEntries(ID, Table);
1319 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1321 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1322 return None;
1323 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1324 return None;
1327 StringRef Name = F->getName();
1328 if (Name == Intrinsic::getName(ID, ArgTys))
1329 return None;
1331 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1332 NewDecl->setCallingConv(F->getCallingConv());
1333 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1334 return NewDecl;
1337 /// hasAddressTaken - returns true if there are any uses of this function
1338 /// other than direct calls or invokes to it.
1339 bool Function::hasAddressTaken(const User* *PutOffender) const {
1340 for (const Use &U : uses()) {
1341 const User *FU = U.getUser();
1342 if (isa<BlockAddress>(FU))
1343 continue;
1344 const auto *Call = dyn_cast<CallBase>(FU);
1345 if (!Call) {
1346 if (PutOffender)
1347 *PutOffender = FU;
1348 return true;
1350 if (!Call->isCallee(&U)) {
1351 if (PutOffender)
1352 *PutOffender = FU;
1353 return true;
1356 return false;
1359 bool Function::isDefTriviallyDead() const {
1360 // Check the linkage
1361 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1362 !hasAvailableExternallyLinkage())
1363 return false;
1365 // Check if the function is used by anything other than a blockaddress.
1366 for (const User *U : users())
1367 if (!isa<BlockAddress>(U))
1368 return false;
1370 return true;
1373 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1374 /// setjmp or other function that gcc recognizes as "returning twice".
1375 bool Function::callsFunctionThatReturnsTwice() const {
1376 for (const Instruction &I : instructions(this))
1377 if (const auto *Call = dyn_cast<CallBase>(&I))
1378 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1379 return true;
1381 return false;
1384 Constant *Function::getPersonalityFn() const {
1385 assert(hasPersonalityFn() && getNumOperands());
1386 return cast<Constant>(Op<0>());
1389 void Function::setPersonalityFn(Constant *Fn) {
1390 setHungoffOperand<0>(Fn);
1391 setValueSubclassDataBit(3, Fn != nullptr);
1394 Constant *Function::getPrefixData() const {
1395 assert(hasPrefixData() && getNumOperands());
1396 return cast<Constant>(Op<1>());
1399 void Function::setPrefixData(Constant *PrefixData) {
1400 setHungoffOperand<1>(PrefixData);
1401 setValueSubclassDataBit(1, PrefixData != nullptr);
1404 Constant *Function::getPrologueData() const {
1405 assert(hasPrologueData() && getNumOperands());
1406 return cast<Constant>(Op<2>());
1409 void Function::setPrologueData(Constant *PrologueData) {
1410 setHungoffOperand<2>(PrologueData);
1411 setValueSubclassDataBit(2, PrologueData != nullptr);
1414 void Function::allocHungoffUselist() {
1415 // If we've already allocated a uselist, stop here.
1416 if (getNumOperands())
1417 return;
1419 allocHungoffUses(3, /*IsPhi=*/ false);
1420 setNumHungOffUseOperands(3);
1422 // Initialize the uselist with placeholder operands to allow traversal.
1423 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1424 Op<0>().set(CPN);
1425 Op<1>().set(CPN);
1426 Op<2>().set(CPN);
1429 template <int Idx>
1430 void Function::setHungoffOperand(Constant *C) {
1431 if (C) {
1432 allocHungoffUselist();
1433 Op<Idx>().set(C);
1434 } else if (getNumOperands()) {
1435 Op<Idx>().set(
1436 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1440 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1441 assert(Bit < 16 && "SubclassData contains only 16 bits");
1442 if (On)
1443 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1444 else
1445 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1448 void Function::setEntryCount(ProfileCount Count,
1449 const DenseSet<GlobalValue::GUID> *S) {
1450 assert(Count.hasValue());
1451 #if !defined(NDEBUG)
1452 auto PrevCount = getEntryCount();
1453 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1454 #endif
1455 MDBuilder MDB(getContext());
1456 setMetadata(
1457 LLVMContext::MD_prof,
1458 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1461 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1462 const DenseSet<GlobalValue::GUID> *Imports) {
1463 setEntryCount(ProfileCount(Count, Type), Imports);
1466 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1467 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1468 if (MD && MD->getOperand(0))
1469 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1470 if (MDS->getString().equals("function_entry_count")) {
1471 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1472 uint64_t Count = CI->getValue().getZExtValue();
1473 // A value of -1 is used for SamplePGO when there were no samples.
1474 // Treat this the same as unknown.
1475 if (Count == (uint64_t)-1)
1476 return ProfileCount::getInvalid();
1477 return ProfileCount(Count, PCT_Real);
1478 } else if (AllowSynthetic &&
1479 MDS->getString().equals("synthetic_function_entry_count")) {
1480 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1481 uint64_t Count = CI->getValue().getZExtValue();
1482 return ProfileCount(Count, PCT_Synthetic);
1485 return ProfileCount::getInvalid();
1488 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1489 DenseSet<GlobalValue::GUID> R;
1490 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1491 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1492 if (MDS->getString().equals("function_entry_count"))
1493 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1494 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1495 ->getValue()
1496 .getZExtValue());
1497 return R;
1500 void Function::setSectionPrefix(StringRef Prefix) {
1501 MDBuilder MDB(getContext());
1502 setMetadata(LLVMContext::MD_section_prefix,
1503 MDB.createFunctionSectionPrefix(Prefix));
1506 Optional<StringRef> Function::getSectionPrefix() const {
1507 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1508 assert(cast<MDString>(MD->getOperand(0))
1509 ->getString()
1510 .equals("function_section_prefix") &&
1511 "Metadata not match");
1512 return cast<MDString>(MD->getOperand(1))->getString();
1514 return None;
1517 bool Function::nullPointerIsDefined() const {
1518 return getFnAttribute("null-pointer-is-valid")
1519 .getValueAsString()
1520 .equals("true");
1523 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1524 if (F && F->nullPointerIsDefined())
1525 return true;
1527 if (AS != 0)
1528 return true;
1530 return false;