[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Transforms / IPO / SampleProfile.cpp
blob224da4b5550a6bd5cd9b42f92c114184c4c32169
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <functional>
79 #include <limits>
80 #include <map>
81 #include <memory>
82 #include <queue>
83 #include <string>
84 #include <system_error>
85 #include <utility>
86 #include <vector>
88 using namespace llvm;
89 using namespace sampleprof;
90 using ProfileCount = Function::ProfileCount;
91 #define DEBUG_TYPE "sample-profile"
93 // Command line option to specify the file to read samples from. This is
94 // mainly used for debugging.
95 static cl::opt<std::string> SampleProfileFile(
96 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
97 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
99 // The named file contains a set of transformations that may have been applied
100 // to the symbol names between the program from which the sample data was
101 // collected and the current program's symbols.
102 static cl::opt<std::string> SampleProfileRemappingFile(
103 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
104 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
107 "sample-profile-max-propagate-iterations", cl::init(100),
108 cl::desc("Maximum number of iterations to go through when propagating "
109 "sample block/edge weights through the CFG."));
111 static cl::opt<unsigned> SampleProfileRecordCoverage(
112 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
113 cl::desc("Emit a warning if less than N% of records in the input profile "
114 "are matched to the IR."));
116 static cl::opt<unsigned> SampleProfileSampleCoverage(
117 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
118 cl::desc("Emit a warning if less than N% of samples in the input profile "
119 "are matched to the IR."));
121 static cl::opt<bool> NoWarnSampleUnused(
122 "no-warn-sample-unused", cl::init(false), cl::Hidden,
123 cl::desc("Use this option to turn off/on warnings about function with "
124 "samples but without debug information to use those samples. "));
126 static cl::opt<bool> ProfileSampleAccurate(
127 "profile-sample-accurate", cl::Hidden, cl::init(false),
128 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
129 "callsite and function as having 0 samples. Otherwise, treat "
130 "un-sampled callsites and functions conservatively as unknown. "));
132 namespace {
134 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
135 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
136 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
137 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
138 using BlockEdgeMap =
139 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
141 class SampleCoverageTracker {
142 public:
143 SampleCoverageTracker() = default;
145 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
146 uint32_t Discriminator, uint64_t Samples);
147 unsigned computeCoverage(unsigned Used, unsigned Total) const;
148 unsigned countUsedRecords(const FunctionSamples *FS,
149 ProfileSummaryInfo *PSI) const;
150 unsigned countBodyRecords(const FunctionSamples *FS,
151 ProfileSummaryInfo *PSI) const;
152 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
153 uint64_t countBodySamples(const FunctionSamples *FS,
154 ProfileSummaryInfo *PSI) const;
156 void clear() {
157 SampleCoverage.clear();
158 TotalUsedSamples = 0;
161 private:
162 using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
163 using FunctionSamplesCoverageMap =
164 DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
166 /// Coverage map for sampling records.
168 /// This map keeps a record of sampling records that have been matched to
169 /// an IR instruction. This is used to detect some form of staleness in
170 /// profiles (see flag -sample-profile-check-coverage).
172 /// Each entry in the map corresponds to a FunctionSamples instance. This is
173 /// another map that counts how many times the sample record at the
174 /// given location has been used.
175 FunctionSamplesCoverageMap SampleCoverage;
177 /// Number of samples used from the profile.
179 /// When a sampling record is used for the first time, the samples from
180 /// that record are added to this accumulator. Coverage is later computed
181 /// based on the total number of samples available in this function and
182 /// its callsites.
184 /// Note that this accumulator tracks samples used from a single function
185 /// and all the inlined callsites. Strictly, we should have a map of counters
186 /// keyed by FunctionSamples pointers, but these stats are cleared after
187 /// every function, so we just need to keep a single counter.
188 uint64_t TotalUsedSamples = 0;
191 class GUIDToFuncNameMapper {
192 public:
193 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
194 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
195 : CurrentReader(Reader), CurrentModule(M),
196 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
197 if (CurrentReader.getFormat() != SPF_Compact_Binary)
198 return;
200 for (const auto &F : CurrentModule) {
201 StringRef OrigName = F.getName();
202 CurrentGUIDToFuncNameMap.insert(
203 {Function::getGUID(OrigName), OrigName});
205 // Local to global var promotion used by optimization like thinlto
206 // will rename the var and add suffix like ".llvm.xxx" to the
207 // original local name. In sample profile, the suffixes of function
208 // names are all stripped. Since it is possible that the mapper is
209 // built in post-thin-link phase and var promotion has been done,
210 // we need to add the substring of function name without the suffix
211 // into the GUIDToFuncNameMap.
212 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
213 if (CanonName != OrigName)
214 CurrentGUIDToFuncNameMap.insert(
215 {Function::getGUID(CanonName), CanonName});
218 // Update GUIDToFuncNameMap for each function including inlinees.
219 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
222 ~GUIDToFuncNameMapper() {
223 if (CurrentReader.getFormat() != SPF_Compact_Binary)
224 return;
226 CurrentGUIDToFuncNameMap.clear();
228 // Reset GUIDToFuncNameMap for of each function as they're no
229 // longer valid at this point.
230 SetGUIDToFuncNameMapForAll(nullptr);
233 private:
234 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
235 std::queue<FunctionSamples *> FSToUpdate;
236 for (auto &IFS : CurrentReader.getProfiles()) {
237 FSToUpdate.push(&IFS.second);
240 while (!FSToUpdate.empty()) {
241 FunctionSamples *FS = FSToUpdate.front();
242 FSToUpdate.pop();
243 FS->GUIDToFuncNameMap = Map;
244 for (const auto &ICS : FS->getCallsiteSamples()) {
245 const FunctionSamplesMap &FSMap = ICS.second;
246 for (auto &IFS : FSMap) {
247 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
248 FSToUpdate.push(&FS);
254 SampleProfileReader &CurrentReader;
255 Module &CurrentModule;
256 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
259 /// Sample profile pass.
261 /// This pass reads profile data from the file specified by
262 /// -sample-profile-file and annotates every affected function with the
263 /// profile information found in that file.
264 class SampleProfileLoader {
265 public:
266 SampleProfileLoader(
267 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
268 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
269 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
270 : GetAC(std::move(GetAssumptionCache)),
271 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
272 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
274 bool doInitialization(Module &M);
275 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
276 ProfileSummaryInfo *_PSI);
278 void dump() { Reader->dump(); }
280 protected:
281 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
282 unsigned getFunctionLoc(Function &F);
283 bool emitAnnotations(Function &F);
284 ErrorOr<uint64_t> getInstWeight(const Instruction &I);
285 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
286 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
287 std::vector<const FunctionSamples *>
288 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
289 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
290 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
291 bool inlineCallInstruction(Instruction *I);
292 bool inlineHotFunctions(Function &F,
293 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
294 void printEdgeWeight(raw_ostream &OS, Edge E);
295 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
296 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
297 bool computeBlockWeights(Function &F);
298 void findEquivalenceClasses(Function &F);
299 template <bool IsPostDom>
300 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
301 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
303 void propagateWeights(Function &F);
304 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
305 void buildEdges(Function &F);
306 bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
307 void computeDominanceAndLoopInfo(Function &F);
308 void clearFunctionData();
310 /// Map basic blocks to their computed weights.
312 /// The weight of a basic block is defined to be the maximum
313 /// of all the instruction weights in that block.
314 BlockWeightMap BlockWeights;
316 /// Map edges to their computed weights.
318 /// Edge weights are computed by propagating basic block weights in
319 /// SampleProfile::propagateWeights.
320 EdgeWeightMap EdgeWeights;
322 /// Set of visited blocks during propagation.
323 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
325 /// Set of visited edges during propagation.
326 SmallSet<Edge, 32> VisitedEdges;
328 /// Equivalence classes for block weights.
330 /// Two blocks BB1 and BB2 are in the same equivalence class if they
331 /// dominate and post-dominate each other, and they are in the same loop
332 /// nest. When this happens, the two blocks are guaranteed to execute
333 /// the same number of times.
334 EquivalenceClassMap EquivalenceClass;
336 /// Map from function name to Function *. Used to find the function from
337 /// the function name. If the function name contains suffix, additional
338 /// entry is added to map from the stripped name to the function if there
339 /// is one-to-one mapping.
340 StringMap<Function *> SymbolMap;
342 /// Dominance, post-dominance and loop information.
343 std::unique_ptr<DominatorTree> DT;
344 std::unique_ptr<PostDominatorTree> PDT;
345 std::unique_ptr<LoopInfo> LI;
347 std::function<AssumptionCache &(Function &)> GetAC;
348 std::function<TargetTransformInfo &(Function &)> GetTTI;
350 /// Predecessors for each basic block in the CFG.
351 BlockEdgeMap Predecessors;
353 /// Successors for each basic block in the CFG.
354 BlockEdgeMap Successors;
356 SampleCoverageTracker CoverageTracker;
358 /// Profile reader object.
359 std::unique_ptr<SampleProfileReader> Reader;
361 /// Samples collected for the body of this function.
362 FunctionSamples *Samples = nullptr;
364 /// Name of the profile file to load.
365 std::string Filename;
367 /// Name of the profile remapping file to load.
368 std::string RemappingFilename;
370 /// Flag indicating whether the profile input loaded successfully.
371 bool ProfileIsValid = false;
373 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
375 /// In this phase, in annotation, we should not promote indirect calls.
376 /// Instead, we will mark GUIDs that needs to be annotated to the function.
377 bool IsThinLTOPreLink;
379 /// Profile Summary Info computed from sample profile.
380 ProfileSummaryInfo *PSI = nullptr;
382 /// Total number of samples collected in this profile.
384 /// This is the sum of all the samples collected in all the functions executed
385 /// at runtime.
386 uint64_t TotalCollectedSamples = 0;
388 /// Optimization Remark Emitter used to emit diagnostic remarks.
389 OptimizationRemarkEmitter *ORE = nullptr;
391 // Information recorded when we declined to inline a call site
392 // because we have determined it is too cold is accumulated for
393 // each callee function. Initially this is just the entry count.
394 struct NotInlinedProfileInfo {
395 uint64_t entryCount;
397 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
399 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
400 // all the function symbols defined or declared in current module.
401 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
404 class SampleProfileLoaderLegacyPass : public ModulePass {
405 public:
406 // Class identification, replacement for typeinfo
407 static char ID;
409 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
410 bool IsThinLTOPreLink = false)
411 : ModulePass(ID),
412 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
413 [&](Function &F) -> AssumptionCache & {
414 return ACT->getAssumptionCache(F);
416 [&](Function &F) -> TargetTransformInfo & {
417 return TTIWP->getTTI(F);
418 }) {
419 initializeSampleProfileLoaderLegacyPassPass(
420 *PassRegistry::getPassRegistry());
423 void dump() { SampleLoader.dump(); }
425 bool doInitialization(Module &M) override {
426 return SampleLoader.doInitialization(M);
429 StringRef getPassName() const override { return "Sample profile pass"; }
430 bool runOnModule(Module &M) override;
432 void getAnalysisUsage(AnalysisUsage &AU) const override {
433 AU.addRequired<AssumptionCacheTracker>();
434 AU.addRequired<TargetTransformInfoWrapperPass>();
435 AU.addRequired<ProfileSummaryInfoWrapperPass>();
438 private:
439 SampleProfileLoader SampleLoader;
440 AssumptionCacheTracker *ACT = nullptr;
441 TargetTransformInfoWrapperPass *TTIWP = nullptr;
444 } // end anonymous namespace
446 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
448 /// Functions that were inlined in the original binary will be represented
449 /// in the inline stack in the sample profile. If the profile shows that
450 /// the original inline decision was "good" (i.e., the callsite is executed
451 /// frequently), then we will recreate the inline decision and apply the
452 /// profile from the inlined callsite.
454 /// To decide whether an inlined callsite is hot, we compare the callsite
455 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
456 /// regarded as hot if the count is above the cutoff value.
457 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
458 ProfileSummaryInfo *PSI) {
459 if (!CallsiteFS)
460 return false; // The callsite was not inlined in the original binary.
462 assert(PSI && "PSI is expected to be non null");
463 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
464 return PSI->isHotCount(CallsiteTotalSamples);
467 /// Mark as used the sample record for the given function samples at
468 /// (LineOffset, Discriminator).
470 /// \returns true if this is the first time we mark the given record.
471 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
472 uint32_t LineOffset,
473 uint32_t Discriminator,
474 uint64_t Samples) {
475 LineLocation Loc(LineOffset, Discriminator);
476 unsigned &Count = SampleCoverage[FS][Loc];
477 bool FirstTime = (++Count == 1);
478 if (FirstTime)
479 TotalUsedSamples += Samples;
480 return FirstTime;
483 /// Return the number of sample records that were applied from this profile.
485 /// This count does not include records from cold inlined callsites.
486 unsigned
487 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
488 ProfileSummaryInfo *PSI) const {
489 auto I = SampleCoverage.find(FS);
491 // The size of the coverage map for FS represents the number of records
492 // that were marked used at least once.
493 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
495 // If there are inlined callsites in this function, count the samples found
496 // in the respective bodies. However, do not bother counting callees with 0
497 // total samples, these are callees that were never invoked at runtime.
498 for (const auto &I : FS->getCallsiteSamples())
499 for (const auto &J : I.second) {
500 const FunctionSamples *CalleeSamples = &J.second;
501 if (callsiteIsHot(CalleeSamples, PSI))
502 Count += countUsedRecords(CalleeSamples, PSI);
505 return Count;
508 /// Return the number of sample records in the body of this profile.
510 /// This count does not include records from cold inlined callsites.
511 unsigned
512 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
513 ProfileSummaryInfo *PSI) const {
514 unsigned Count = FS->getBodySamples().size();
516 // Only count records in hot callsites.
517 for (const auto &I : FS->getCallsiteSamples())
518 for (const auto &J : I.second) {
519 const FunctionSamples *CalleeSamples = &J.second;
520 if (callsiteIsHot(CalleeSamples, PSI))
521 Count += countBodyRecords(CalleeSamples, PSI);
524 return Count;
527 /// Return the number of samples collected in the body of this profile.
529 /// This count does not include samples from cold inlined callsites.
530 uint64_t
531 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
532 ProfileSummaryInfo *PSI) const {
533 uint64_t Total = 0;
534 for (const auto &I : FS->getBodySamples())
535 Total += I.second.getSamples();
537 // Only count samples in hot callsites.
538 for (const auto &I : FS->getCallsiteSamples())
539 for (const auto &J : I.second) {
540 const FunctionSamples *CalleeSamples = &J.second;
541 if (callsiteIsHot(CalleeSamples, PSI))
542 Total += countBodySamples(CalleeSamples, PSI);
545 return Total;
548 /// Return the fraction of sample records used in this profile.
550 /// The returned value is an unsigned integer in the range 0-100 indicating
551 /// the percentage of sample records that were used while applying this
552 /// profile to the associated function.
553 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
554 unsigned Total) const {
555 assert(Used <= Total &&
556 "number of used records cannot exceed the total number of records");
557 return Total > 0 ? Used * 100 / Total : 100;
560 /// Clear all the per-function data used to load samples and propagate weights.
561 void SampleProfileLoader::clearFunctionData() {
562 BlockWeights.clear();
563 EdgeWeights.clear();
564 VisitedBlocks.clear();
565 VisitedEdges.clear();
566 EquivalenceClass.clear();
567 DT = nullptr;
568 PDT = nullptr;
569 LI = nullptr;
570 Predecessors.clear();
571 Successors.clear();
572 CoverageTracker.clear();
575 #ifndef NDEBUG
576 /// Print the weight of edge \p E on stream \p OS.
578 /// \param OS Stream to emit the output to.
579 /// \param E Edge to print.
580 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
581 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
582 << "]: " << EdgeWeights[E] << "\n";
585 /// Print the equivalence class of block \p BB on stream \p OS.
587 /// \param OS Stream to emit the output to.
588 /// \param BB Block to print.
589 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
590 const BasicBlock *BB) {
591 const BasicBlock *Equiv = EquivalenceClass[BB];
592 OS << "equivalence[" << BB->getName()
593 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
596 /// Print the weight of block \p BB on stream \p OS.
598 /// \param OS Stream to emit the output to.
599 /// \param BB Block to print.
600 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
601 const BasicBlock *BB) const {
602 const auto &I = BlockWeights.find(BB);
603 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
604 OS << "weight[" << BB->getName() << "]: " << W << "\n";
606 #endif
608 /// Get the weight for an instruction.
610 /// The "weight" of an instruction \p Inst is the number of samples
611 /// collected on that instruction at runtime. To retrieve it, we
612 /// need to compute the line number of \p Inst relative to the start of its
613 /// function. We use HeaderLineno to compute the offset. We then
614 /// look up the samples collected for \p Inst using BodySamples.
616 /// \param Inst Instruction to query.
618 /// \returns the weight of \p Inst.
619 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
620 const DebugLoc &DLoc = Inst.getDebugLoc();
621 if (!DLoc)
622 return std::error_code();
624 const FunctionSamples *FS = findFunctionSamples(Inst);
625 if (!FS)
626 return std::error_code();
628 // Ignore all intrinsics, phinodes and branch instructions.
629 // Branch and phinodes instruction usually contains debug info from sources outside of
630 // the residing basic block, thus we ignore them during annotation.
631 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
632 return std::error_code();
634 // If a direct call/invoke instruction is inlined in profile
635 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
636 // it means that the inlined callsite has no sample, thus the call
637 // instruction should have 0 count.
638 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
639 !ImmutableCallSite(&Inst).isIndirectCall() &&
640 findCalleeFunctionSamples(Inst))
641 return 0;
643 const DILocation *DIL = DLoc;
644 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
645 uint32_t Discriminator = DIL->getBaseDiscriminator();
646 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
647 if (R) {
648 bool FirstMark =
649 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
650 if (FirstMark) {
651 ORE->emit([&]() {
652 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
653 Remark << "Applied " << ore::NV("NumSamples", *R);
654 Remark << " samples from profile (offset: ";
655 Remark << ore::NV("LineOffset", LineOffset);
656 if (Discriminator) {
657 Remark << ".";
658 Remark << ore::NV("Discriminator", Discriminator);
660 Remark << ")";
661 return Remark;
664 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
665 << DIL->getBaseDiscriminator() << ":" << Inst
666 << " (line offset: " << LineOffset << "."
667 << DIL->getBaseDiscriminator() << " - weight: " << R.get()
668 << ")\n");
670 return R;
673 /// Compute the weight of a basic block.
675 /// The weight of basic block \p BB is the maximum weight of all the
676 /// instructions in BB.
678 /// \param BB The basic block to query.
680 /// \returns the weight for \p BB.
681 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
682 uint64_t Max = 0;
683 bool HasWeight = false;
684 for (auto &I : BB->getInstList()) {
685 const ErrorOr<uint64_t> &R = getInstWeight(I);
686 if (R) {
687 Max = std::max(Max, R.get());
688 HasWeight = true;
691 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
694 /// Compute and store the weights of every basic block.
696 /// This populates the BlockWeights map by computing
697 /// the weights of every basic block in the CFG.
699 /// \param F The function to query.
700 bool SampleProfileLoader::computeBlockWeights(Function &F) {
701 bool Changed = false;
702 LLVM_DEBUG(dbgs() << "Block weights\n");
703 for (const auto &BB : F) {
704 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
705 if (Weight) {
706 BlockWeights[&BB] = Weight.get();
707 VisitedBlocks.insert(&BB);
708 Changed = true;
710 LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
713 return Changed;
716 /// Get the FunctionSamples for a call instruction.
718 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
719 /// instance in which that call instruction is calling to. It contains
720 /// all samples that resides in the inlined instance. We first find the
721 /// inlined instance in which the call instruction is from, then we
722 /// traverse its children to find the callsite with the matching
723 /// location.
725 /// \param Inst Call/Invoke instruction to query.
727 /// \returns The FunctionSamples pointer to the inlined instance.
728 const FunctionSamples *
729 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
730 const DILocation *DIL = Inst.getDebugLoc();
731 if (!DIL) {
732 return nullptr;
735 StringRef CalleeName;
736 if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
737 if (Function *Callee = CI->getCalledFunction())
738 CalleeName = Callee->getName();
740 const FunctionSamples *FS = findFunctionSamples(Inst);
741 if (FS == nullptr)
742 return nullptr;
744 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
745 DIL->getBaseDiscriminator()),
746 CalleeName);
749 /// Returns a vector of FunctionSamples that are the indirect call targets
750 /// of \p Inst. The vector is sorted by the total number of samples. Stores
751 /// the total call count of the indirect call in \p Sum.
752 std::vector<const FunctionSamples *>
753 SampleProfileLoader::findIndirectCallFunctionSamples(
754 const Instruction &Inst, uint64_t &Sum) const {
755 const DILocation *DIL = Inst.getDebugLoc();
756 std::vector<const FunctionSamples *> R;
758 if (!DIL) {
759 return R;
762 const FunctionSamples *FS = findFunctionSamples(Inst);
763 if (FS == nullptr)
764 return R;
766 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
767 uint32_t Discriminator = DIL->getBaseDiscriminator();
769 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
770 Sum = 0;
771 if (T)
772 for (const auto &T_C : T.get())
773 Sum += T_C.second;
774 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
775 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
776 if (M->empty())
777 return R;
778 for (const auto &NameFS : *M) {
779 Sum += NameFS.second.getEntrySamples();
780 R.push_back(&NameFS.second);
782 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
783 if (L->getEntrySamples() != R->getEntrySamples())
784 return L->getEntrySamples() > R->getEntrySamples();
785 return FunctionSamples::getGUID(L->getName()) <
786 FunctionSamples::getGUID(R->getName());
789 return R;
792 /// Get the FunctionSamples for an instruction.
794 /// The FunctionSamples of an instruction \p Inst is the inlined instance
795 /// in which that instruction is coming from. We traverse the inline stack
796 /// of that instruction, and match it with the tree nodes in the profile.
798 /// \param Inst Instruction to query.
800 /// \returns the FunctionSamples pointer to the inlined instance.
801 const FunctionSamples *
802 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
803 const DILocation *DIL = Inst.getDebugLoc();
804 if (!DIL)
805 return Samples;
807 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
808 if (it.second)
809 it.first->second = Samples->findFunctionSamples(DIL);
810 return it.first->second;
813 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
814 assert(isa<CallInst>(I) || isa<InvokeInst>(I));
815 CallSite CS(I);
816 Function *CalledFunction = CS.getCalledFunction();
817 assert(CalledFunction);
818 DebugLoc DLoc = I->getDebugLoc();
819 BasicBlock *BB = I->getParent();
820 InlineParams Params = getInlineParams();
821 Params.ComputeFullInlineCost = true;
822 // Checks if there is anything in the reachable portion of the callee at
823 // this callsite that makes this inlining potentially illegal. Need to
824 // set ComputeFullInlineCost, otherwise getInlineCost may return early
825 // when cost exceeds threshold without checking all IRs in the callee.
826 // The acutal cost does not matter because we only checks isNever() to
827 // see if it is legal to inline the callsite.
828 InlineCost Cost =
829 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
830 None, nullptr, nullptr);
831 if (Cost.isNever()) {
832 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
833 << "incompatible inlining");
834 return false;
836 InlineFunctionInfo IFI(nullptr, &GetAC);
837 if (InlineFunction(CS, IFI)) {
838 // The call to InlineFunction erases I, so we can't pass it here.
839 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
840 << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
841 << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
842 return true;
844 return false;
847 /// Iteratively inline hot callsites of a function.
849 /// Iteratively traverse all callsites of the function \p F, and find if
850 /// the corresponding inlined instance exists and is hot in profile. If
851 /// it is hot enough, inline the callsites and adds new callsites of the
852 /// callee into the caller. If the call is an indirect call, first promote
853 /// it to direct call. Each indirect call is limited with a single target.
855 /// \param F function to perform iterative inlining.
856 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
857 /// inlined in the profiled binary.
859 /// \returns True if there is any inline happened.
860 bool SampleProfileLoader::inlineHotFunctions(
861 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
862 DenseSet<Instruction *> PromotedInsns;
864 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
865 bool Changed = false;
866 while (true) {
867 bool LocalChanged = false;
868 SmallVector<Instruction *, 10> CIS;
869 for (auto &BB : F) {
870 bool Hot = false;
871 SmallVector<Instruction *, 10> Candidates;
872 for (auto &I : BB.getInstList()) {
873 const FunctionSamples *FS = nullptr;
874 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
875 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
876 Candidates.push_back(&I);
877 if (FS->getEntrySamples() > 0)
878 localNotInlinedCallSites.try_emplace(&I, FS);
879 if (callsiteIsHot(FS, PSI))
880 Hot = true;
883 if (Hot) {
884 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
887 for (auto I : CIS) {
888 Function *CalledFunction = CallSite(I).getCalledFunction();
889 // Do not inline recursive calls.
890 if (CalledFunction == &F)
891 continue;
892 if (CallSite(I).isIndirectCall()) {
893 if (PromotedInsns.count(I))
894 continue;
895 uint64_t Sum;
896 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
897 if (IsThinLTOPreLink) {
898 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
899 PSI->getOrCompHotCountThreshold());
900 continue;
902 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
903 // If it is a recursive call, we do not inline it as it could bloat
904 // the code exponentially. There is way to better handle this, e.g.
905 // clone the caller first, and inline the cloned caller if it is
906 // recursive. As llvm does not inline recursive calls, we will
907 // simply ignore it instead of handling it explicitly.
908 if (CalleeFunctionName == F.getName())
909 continue;
911 if (!callsiteIsHot(FS, PSI))
912 continue;
914 const char *Reason = "Callee function not available";
915 auto R = SymbolMap.find(CalleeFunctionName);
916 if (R != SymbolMap.end() && R->getValue() &&
917 !R->getValue()->isDeclaration() &&
918 R->getValue()->getSubprogram() &&
919 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
920 uint64_t C = FS->getEntrySamples();
921 Instruction *DI =
922 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
923 Sum -= C;
924 PromotedInsns.insert(I);
925 // If profile mismatches, we should not attempt to inline DI.
926 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
927 inlineCallInstruction(DI)) {
928 localNotInlinedCallSites.erase(I);
929 LocalChanged = true;
931 } else {
932 LLVM_DEBUG(dbgs()
933 << "\nFailed to promote indirect call to "
934 << CalleeFunctionName << " because " << Reason << "\n");
937 } else if (CalledFunction && CalledFunction->getSubprogram() &&
938 !CalledFunction->isDeclaration()) {
939 if (inlineCallInstruction(I)) {
940 localNotInlinedCallSites.erase(I);
941 LocalChanged = true;
943 } else if (IsThinLTOPreLink) {
944 findCalleeFunctionSamples(*I)->findInlinedFunctions(
945 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
948 if (LocalChanged) {
949 Changed = true;
950 } else {
951 break;
955 // Accumulate not inlined callsite information into notInlinedSamples
956 for (const auto &Pair : localNotInlinedCallSites) {
957 Instruction *I = Pair.getFirst();
958 Function *Callee = CallSite(I).getCalledFunction();
959 if (!Callee || Callee->isDeclaration())
960 continue;
961 const FunctionSamples *FS = Pair.getSecond();
962 auto pair =
963 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
964 pair.first->second.entryCount += FS->getEntrySamples();
966 return Changed;
969 /// Find equivalence classes for the given block.
971 /// This finds all the blocks that are guaranteed to execute the same
972 /// number of times as \p BB1. To do this, it traverses all the
973 /// descendants of \p BB1 in the dominator or post-dominator tree.
975 /// A block BB2 will be in the same equivalence class as \p BB1 if
976 /// the following holds:
978 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
979 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
980 /// dominate BB1 in the post-dominator tree.
982 /// 2- Both BB2 and \p BB1 must be in the same loop.
984 /// For every block BB2 that meets those two requirements, we set BB2's
985 /// equivalence class to \p BB1.
987 /// \param BB1 Block to check.
988 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
989 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
990 /// with blocks from \p BB1's dominator tree, then
991 /// this is the post-dominator tree, and vice versa.
992 template <bool IsPostDom>
993 void SampleProfileLoader::findEquivalencesFor(
994 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
995 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
996 const BasicBlock *EC = EquivalenceClass[BB1];
997 uint64_t Weight = BlockWeights[EC];
998 for (const auto *BB2 : Descendants) {
999 bool IsDomParent = DomTree->dominates(BB2, BB1);
1000 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1001 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1002 EquivalenceClass[BB2] = EC;
1003 // If BB2 is visited, then the entire EC should be marked as visited.
1004 if (VisitedBlocks.count(BB2)) {
1005 VisitedBlocks.insert(EC);
1008 // If BB2 is heavier than BB1, make BB2 have the same weight
1009 // as BB1.
1011 // Note that we don't worry about the opposite situation here
1012 // (when BB2 is lighter than BB1). We will deal with this
1013 // during the propagation phase. Right now, we just want to
1014 // make sure that BB1 has the largest weight of all the
1015 // members of its equivalence set.
1016 Weight = std::max(Weight, BlockWeights[BB2]);
1019 if (EC == &EC->getParent()->getEntryBlock()) {
1020 BlockWeights[EC] = Samples->getHeadSamples() + 1;
1021 } else {
1022 BlockWeights[EC] = Weight;
1026 /// Find equivalence classes.
1028 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1029 /// the weights of all the blocks in the same equivalence class to the same
1030 /// weight. To compute the concept of equivalence, we use dominance and loop
1031 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1032 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1034 /// \param F The function to query.
1035 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1036 SmallVector<BasicBlock *, 8> DominatedBBs;
1037 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1038 // Find equivalence sets based on dominance and post-dominance information.
1039 for (auto &BB : F) {
1040 BasicBlock *BB1 = &BB;
1042 // Compute BB1's equivalence class once.
1043 if (EquivalenceClass.count(BB1)) {
1044 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1045 continue;
1048 // By default, blocks are in their own equivalence class.
1049 EquivalenceClass[BB1] = BB1;
1051 // Traverse all the blocks dominated by BB1. We are looking for
1052 // every basic block BB2 such that:
1054 // 1- BB1 dominates BB2.
1055 // 2- BB2 post-dominates BB1.
1056 // 3- BB1 and BB2 are in the same loop nest.
1058 // If all those conditions hold, it means that BB2 is executed
1059 // as many times as BB1, so they are placed in the same equivalence
1060 // class by making BB2's equivalence class be BB1.
1061 DominatedBBs.clear();
1062 DT->getDescendants(BB1, DominatedBBs);
1063 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1065 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1068 // Assign weights to equivalence classes.
1070 // All the basic blocks in the same equivalence class will execute
1071 // the same number of times. Since we know that the head block in
1072 // each equivalence class has the largest weight, assign that weight
1073 // to all the blocks in that equivalence class.
1074 LLVM_DEBUG(
1075 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1076 for (auto &BI : F) {
1077 const BasicBlock *BB = &BI;
1078 const BasicBlock *EquivBB = EquivalenceClass[BB];
1079 if (BB != EquivBB)
1080 BlockWeights[BB] = BlockWeights[EquivBB];
1081 LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1085 /// Visit the given edge to decide if it has a valid weight.
1087 /// If \p E has not been visited before, we copy to \p UnknownEdge
1088 /// and increment the count of unknown edges.
1090 /// \param E Edge to visit.
1091 /// \param NumUnknownEdges Current number of unknown edges.
1092 /// \param UnknownEdge Set if E has not been visited before.
1094 /// \returns E's weight, if known. Otherwise, return 0.
1095 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1096 Edge *UnknownEdge) {
1097 if (!VisitedEdges.count(E)) {
1098 (*NumUnknownEdges)++;
1099 *UnknownEdge = E;
1100 return 0;
1103 return EdgeWeights[E];
1106 /// Propagate weights through incoming/outgoing edges.
1108 /// If the weight of a basic block is known, and there is only one edge
1109 /// with an unknown weight, we can calculate the weight of that edge.
1111 /// Similarly, if all the edges have a known count, we can calculate the
1112 /// count of the basic block, if needed.
1114 /// \param F Function to process.
1115 /// \param UpdateBlockCount Whether we should update basic block counts that
1116 /// has already been annotated.
1118 /// \returns True if new weights were assigned to edges or blocks.
1119 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1120 bool UpdateBlockCount) {
1121 bool Changed = false;
1122 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1123 for (const auto &BI : F) {
1124 const BasicBlock *BB = &BI;
1125 const BasicBlock *EC = EquivalenceClass[BB];
1127 // Visit all the predecessor and successor edges to determine
1128 // which ones have a weight assigned already. Note that it doesn't
1129 // matter that we only keep track of a single unknown edge. The
1130 // only case we are interested in handling is when only a single
1131 // edge is unknown (see setEdgeOrBlockWeight).
1132 for (unsigned i = 0; i < 2; i++) {
1133 uint64_t TotalWeight = 0;
1134 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1135 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1137 if (i == 0) {
1138 // First, visit all predecessor edges.
1139 NumTotalEdges = Predecessors[BB].size();
1140 for (auto *Pred : Predecessors[BB]) {
1141 Edge E = std::make_pair(Pred, BB);
1142 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1143 if (E.first == E.second)
1144 SelfReferentialEdge = E;
1146 if (NumTotalEdges == 1) {
1147 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1149 } else {
1150 // On the second round, visit all successor edges.
1151 NumTotalEdges = Successors[BB].size();
1152 for (auto *Succ : Successors[BB]) {
1153 Edge E = std::make_pair(BB, Succ);
1154 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1156 if (NumTotalEdges == 1) {
1157 SingleEdge = std::make_pair(BB, Successors[BB][0]);
1161 // After visiting all the edges, there are three cases that we
1162 // can handle immediately:
1164 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1165 // In this case, we simply check that the sum of all the edges
1166 // is the same as BB's weight. If not, we change BB's weight
1167 // to match. Additionally, if BB had not been visited before,
1168 // we mark it visited.
1170 // - Only one edge is unknown and BB has already been visited.
1171 // In this case, we can compute the weight of the edge by
1172 // subtracting the total block weight from all the known
1173 // edge weights. If the edges weight more than BB, then the
1174 // edge of the last remaining edge is set to zero.
1176 // - There exists a self-referential edge and the weight of BB is
1177 // known. In this case, this edge can be based on BB's weight.
1178 // We add up all the other known edges and set the weight on
1179 // the self-referential edge as we did in the previous case.
1181 // In any other case, we must continue iterating. Eventually,
1182 // all edges will get a weight, or iteration will stop when
1183 // it reaches SampleProfileMaxPropagateIterations.
1184 if (NumUnknownEdges <= 1) {
1185 uint64_t &BBWeight = BlockWeights[EC];
1186 if (NumUnknownEdges == 0) {
1187 if (!VisitedBlocks.count(EC)) {
1188 // If we already know the weight of all edges, the weight of the
1189 // basic block can be computed. It should be no larger than the sum
1190 // of all edge weights.
1191 if (TotalWeight > BBWeight) {
1192 BBWeight = TotalWeight;
1193 Changed = true;
1194 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1195 << " known. Set weight for block: ";
1196 printBlockWeight(dbgs(), BB););
1198 } else if (NumTotalEdges == 1 &&
1199 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1200 // If there is only one edge for the visited basic block, use the
1201 // block weight to adjust edge weight if edge weight is smaller.
1202 EdgeWeights[SingleEdge] = BlockWeights[EC];
1203 Changed = true;
1205 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1206 // If there is a single unknown edge and the block has been
1207 // visited, then we can compute E's weight.
1208 if (BBWeight >= TotalWeight)
1209 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1210 else
1211 EdgeWeights[UnknownEdge] = 0;
1212 const BasicBlock *OtherEC;
1213 if (i == 0)
1214 OtherEC = EquivalenceClass[UnknownEdge.first];
1215 else
1216 OtherEC = EquivalenceClass[UnknownEdge.second];
1217 // Edge weights should never exceed the BB weights it connects.
1218 if (VisitedBlocks.count(OtherEC) &&
1219 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1220 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1221 VisitedEdges.insert(UnknownEdge);
1222 Changed = true;
1223 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1224 printEdgeWeight(dbgs(), UnknownEdge));
1226 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1227 // If a block Weights 0, all its in/out edges should weight 0.
1228 if (i == 0) {
1229 for (auto *Pred : Predecessors[BB]) {
1230 Edge E = std::make_pair(Pred, BB);
1231 EdgeWeights[E] = 0;
1232 VisitedEdges.insert(E);
1234 } else {
1235 for (auto *Succ : Successors[BB]) {
1236 Edge E = std::make_pair(BB, Succ);
1237 EdgeWeights[E] = 0;
1238 VisitedEdges.insert(E);
1241 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1242 uint64_t &BBWeight = BlockWeights[BB];
1243 // We have a self-referential edge and the weight of BB is known.
1244 if (BBWeight >= TotalWeight)
1245 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1246 else
1247 EdgeWeights[SelfReferentialEdge] = 0;
1248 VisitedEdges.insert(SelfReferentialEdge);
1249 Changed = true;
1250 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1251 printEdgeWeight(dbgs(), SelfReferentialEdge));
1253 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1254 BlockWeights[EC] = TotalWeight;
1255 VisitedBlocks.insert(EC);
1256 Changed = true;
1261 return Changed;
1264 /// Build in/out edge lists for each basic block in the CFG.
1266 /// We are interested in unique edges. If a block B1 has multiple
1267 /// edges to another block B2, we only add a single B1->B2 edge.
1268 void SampleProfileLoader::buildEdges(Function &F) {
1269 for (auto &BI : F) {
1270 BasicBlock *B1 = &BI;
1272 // Add predecessors for B1.
1273 SmallPtrSet<BasicBlock *, 16> Visited;
1274 if (!Predecessors[B1].empty())
1275 llvm_unreachable("Found a stale predecessors list in a basic block.");
1276 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1277 BasicBlock *B2 = *PI;
1278 if (Visited.insert(B2).second)
1279 Predecessors[B1].push_back(B2);
1282 // Add successors for B1.
1283 Visited.clear();
1284 if (!Successors[B1].empty())
1285 llvm_unreachable("Found a stale successors list in a basic block.");
1286 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1287 BasicBlock *B2 = *SI;
1288 if (Visited.insert(B2).second)
1289 Successors[B1].push_back(B2);
1294 /// Returns the sorted CallTargetMap \p M by count in descending order.
1295 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1296 const SampleRecord::CallTargetMap & M) {
1297 SmallVector<InstrProfValueData, 2> R;
1298 for (const auto &I : SampleRecord::SortCallTargets(M)) {
1299 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1301 return R;
1304 /// Propagate weights into edges
1306 /// The following rules are applied to every block BB in the CFG:
1308 /// - If BB has a single predecessor/successor, then the weight
1309 /// of that edge is the weight of the block.
1311 /// - If all incoming or outgoing edges are known except one, and the
1312 /// weight of the block is already known, the weight of the unknown
1313 /// edge will be the weight of the block minus the sum of all the known
1314 /// edges. If the sum of all the known edges is larger than BB's weight,
1315 /// we set the unknown edge weight to zero.
1317 /// - If there is a self-referential edge, and the weight of the block is
1318 /// known, the weight for that edge is set to the weight of the block
1319 /// minus the weight of the other incoming edges to that block (if
1320 /// known).
1321 void SampleProfileLoader::propagateWeights(Function &F) {
1322 bool Changed = true;
1323 unsigned I = 0;
1325 // If BB weight is larger than its corresponding loop's header BB weight,
1326 // use the BB weight to replace the loop header BB weight.
1327 for (auto &BI : F) {
1328 BasicBlock *BB = &BI;
1329 Loop *L = LI->getLoopFor(BB);
1330 if (!L) {
1331 continue;
1333 BasicBlock *Header = L->getHeader();
1334 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1335 BlockWeights[Header] = BlockWeights[BB];
1339 // Before propagation starts, build, for each block, a list of
1340 // unique predecessors and successors. This is necessary to handle
1341 // identical edges in multiway branches. Since we visit all blocks and all
1342 // edges of the CFG, it is cleaner to build these lists once at the start
1343 // of the pass.
1344 buildEdges(F);
1346 // Propagate until we converge or we go past the iteration limit.
1347 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1348 Changed = propagateThroughEdges(F, false);
1351 // The first propagation propagates BB counts from annotated BBs to unknown
1352 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1353 // to propagate edge weights.
1354 VisitedEdges.clear();
1355 Changed = true;
1356 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1357 Changed = propagateThroughEdges(F, false);
1360 // The 3rd propagation pass allows adjust annotated BB weights that are
1361 // obviously wrong.
1362 Changed = true;
1363 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1364 Changed = propagateThroughEdges(F, true);
1367 // Generate MD_prof metadata for every branch instruction using the
1368 // edge weights computed during propagation.
1369 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1370 LLVMContext &Ctx = F.getContext();
1371 MDBuilder MDB(Ctx);
1372 for (auto &BI : F) {
1373 BasicBlock *BB = &BI;
1375 if (BlockWeights[BB]) {
1376 for (auto &I : BB->getInstList()) {
1377 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1378 continue;
1379 CallSite CS(&I);
1380 if (!CS.getCalledFunction()) {
1381 const DebugLoc &DLoc = I.getDebugLoc();
1382 if (!DLoc)
1383 continue;
1384 const DILocation *DIL = DLoc;
1385 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1386 uint32_t Discriminator = DIL->getBaseDiscriminator();
1388 const FunctionSamples *FS = findFunctionSamples(I);
1389 if (!FS)
1390 continue;
1391 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1392 if (!T || T.get().empty())
1393 continue;
1394 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1395 GetSortedValueDataFromCallTargets(T.get());
1396 uint64_t Sum;
1397 findIndirectCallFunctionSamples(I, Sum);
1398 annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1399 SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1400 SortedCallTargets.size());
1401 } else if (!isa<IntrinsicInst>(&I)) {
1402 I.setMetadata(LLVMContext::MD_prof,
1403 MDB.createBranchWeights(
1404 {static_cast<uint32_t>(BlockWeights[BB])}));
1408 Instruction *TI = BB->getTerminator();
1409 if (TI->getNumSuccessors() == 1)
1410 continue;
1411 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1412 continue;
1414 DebugLoc BranchLoc = TI->getDebugLoc();
1415 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1416 << ((BranchLoc) ? Twine(BranchLoc.getLine())
1417 : Twine("<UNKNOWN LOCATION>"))
1418 << ".\n");
1419 SmallVector<uint32_t, 4> Weights;
1420 uint32_t MaxWeight = 0;
1421 Instruction *MaxDestInst;
1422 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1423 BasicBlock *Succ = TI->getSuccessor(I);
1424 Edge E = std::make_pair(BB, Succ);
1425 uint64_t Weight = EdgeWeights[E];
1426 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1427 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1428 // if needed. Sample counts in profiles are 64-bit unsigned values,
1429 // but internally branch weights are expressed as 32-bit values.
1430 if (Weight > std::numeric_limits<uint32_t>::max()) {
1431 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1432 Weight = std::numeric_limits<uint32_t>::max();
1434 // Weight is added by one to avoid propagation errors introduced by
1435 // 0 weights.
1436 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1437 if (Weight != 0) {
1438 if (Weight > MaxWeight) {
1439 MaxWeight = Weight;
1440 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1445 uint64_t TempWeight;
1446 // Only set weights if there is at least one non-zero weight.
1447 // In any other case, let the analyzer set weights.
1448 // Do not set weights if the weights are present. In ThinLTO, the profile
1449 // annotation is done twice. If the first annotation already set the
1450 // weights, the second pass does not need to set it.
1451 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1452 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1453 TI->setMetadata(LLVMContext::MD_prof,
1454 MDB.createBranchWeights(Weights));
1455 ORE->emit([&]() {
1456 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1457 << "most popular destination for conditional branches at "
1458 << ore::NV("CondBranchesLoc", BranchLoc);
1460 } else {
1461 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1466 /// Get the line number for the function header.
1468 /// This looks up function \p F in the current compilation unit and
1469 /// retrieves the line number where the function is defined. This is
1470 /// line 0 for all the samples read from the profile file. Every line
1471 /// number is relative to this line.
1473 /// \param F Function object to query.
1475 /// \returns the line number where \p F is defined. If it returns 0,
1476 /// it means that there is no debug information available for \p F.
1477 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1478 if (DISubprogram *S = F.getSubprogram())
1479 return S->getLine();
1481 if (NoWarnSampleUnused)
1482 return 0;
1484 // If the start of \p F is missing, emit a diagnostic to inform the user
1485 // about the missed opportunity.
1486 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1487 "No debug information found in function " + F.getName() +
1488 ": Function profile not used",
1489 DS_Warning));
1490 return 0;
1493 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1494 DT.reset(new DominatorTree);
1495 DT->recalculate(F);
1497 PDT.reset(new PostDominatorTree(F));
1499 LI.reset(new LoopInfo);
1500 LI->analyze(*DT);
1503 /// Generate branch weight metadata for all branches in \p F.
1505 /// Branch weights are computed out of instruction samples using a
1506 /// propagation heuristic. Propagation proceeds in 3 phases:
1508 /// 1- Assignment of block weights. All the basic blocks in the function
1509 /// are initial assigned the same weight as their most frequently
1510 /// executed instruction.
1512 /// 2- Creation of equivalence classes. Since samples may be missing from
1513 /// blocks, we can fill in the gaps by setting the weights of all the
1514 /// blocks in the same equivalence class to the same weight. To compute
1515 /// the concept of equivalence, we use dominance and loop information.
1516 /// Two blocks B1 and B2 are in the same equivalence class if B1
1517 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1519 /// 3- Propagation of block weights into edges. This uses a simple
1520 /// propagation heuristic. The following rules are applied to every
1521 /// block BB in the CFG:
1523 /// - If BB has a single predecessor/successor, then the weight
1524 /// of that edge is the weight of the block.
1526 /// - If all the edges are known except one, and the weight of the
1527 /// block is already known, the weight of the unknown edge will
1528 /// be the weight of the block minus the sum of all the known
1529 /// edges. If the sum of all the known edges is larger than BB's weight,
1530 /// we set the unknown edge weight to zero.
1532 /// - If there is a self-referential edge, and the weight of the block is
1533 /// known, the weight for that edge is set to the weight of the block
1534 /// minus the weight of the other incoming edges to that block (if
1535 /// known).
1537 /// Since this propagation is not guaranteed to finalize for every CFG, we
1538 /// only allow it to proceed for a limited number of iterations (controlled
1539 /// by -sample-profile-max-propagate-iterations).
1541 /// FIXME: Try to replace this propagation heuristic with a scheme
1542 /// that is guaranteed to finalize. A work-list approach similar to
1543 /// the standard value propagation algorithm used by SSA-CCP might
1544 /// work here.
1546 /// Once all the branch weights are computed, we emit the MD_prof
1547 /// metadata on BB using the computed values for each of its branches.
1549 /// \param F The function to query.
1551 /// \returns true if \p F was modified. Returns false, otherwise.
1552 bool SampleProfileLoader::emitAnnotations(Function &F) {
1553 bool Changed = false;
1555 if (getFunctionLoc(F) == 0)
1556 return false;
1558 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1559 << F.getName() << ": " << getFunctionLoc(F) << "\n");
1561 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1562 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1564 // Compute basic block weights.
1565 Changed |= computeBlockWeights(F);
1567 if (Changed) {
1568 // Add an entry count to the function using the samples gathered at the
1569 // function entry.
1570 // Sets the GUIDs that are inlined in the profiled binary. This is used
1571 // for ThinLink to make correct liveness analysis, and also make the IR
1572 // match the profiled binary before annotation.
1573 F.setEntryCount(
1574 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1575 &InlinedGUIDs);
1577 // Compute dominance and loop info needed for propagation.
1578 computeDominanceAndLoopInfo(F);
1580 // Find equivalence classes.
1581 findEquivalenceClasses(F);
1583 // Propagate weights to all edges.
1584 propagateWeights(F);
1587 // If coverage checking was requested, compute it now.
1588 if (SampleProfileRecordCoverage) {
1589 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1590 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1591 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1592 if (Coverage < SampleProfileRecordCoverage) {
1593 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1594 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1595 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1596 Twine(Coverage) + "%) were applied",
1597 DS_Warning));
1601 if (SampleProfileSampleCoverage) {
1602 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1603 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1604 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1605 if (Coverage < SampleProfileSampleCoverage) {
1606 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1607 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1608 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1609 Twine(Coverage) + "%) were applied",
1610 DS_Warning));
1613 return Changed;
1616 char SampleProfileLoaderLegacyPass::ID = 0;
1618 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1619 "Sample Profile loader", false, false)
1620 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1621 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1622 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1623 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1624 "Sample Profile loader", false, false)
1626 bool SampleProfileLoader::doInitialization(Module &M) {
1627 auto &Ctx = M.getContext();
1628 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1629 if (std::error_code EC = ReaderOrErr.getError()) {
1630 std::string Msg = "Could not open profile: " + EC.message();
1631 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1632 return false;
1634 Reader = std::move(ReaderOrErr.get());
1635 Reader->collectFuncsToUse(M);
1636 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1638 if (!RemappingFilename.empty()) {
1639 // Apply profile remappings to the loaded profile data if requested.
1640 // For now, we only support remapping symbols encoded using the Itanium
1641 // C++ ABI's name mangling scheme.
1642 ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1643 RemappingFilename, Ctx, std::move(Reader));
1644 if (std::error_code EC = ReaderOrErr.getError()) {
1645 std::string Msg = "Could not open profile remapping file: " + EC.message();
1646 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1647 return false;
1649 Reader = std::move(ReaderOrErr.get());
1650 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1652 return true;
1655 ModulePass *llvm::createSampleProfileLoaderPass() {
1656 return new SampleProfileLoaderLegacyPass();
1659 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1660 return new SampleProfileLoaderLegacyPass(Name);
1663 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1664 ProfileSummaryInfo *_PSI) {
1665 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1666 if (!ProfileIsValid)
1667 return false;
1669 PSI = _PSI;
1670 if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1671 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1672 ProfileSummary::PSK_Sample);
1674 // Compute the total number of samples collected in this profile.
1675 for (const auto &I : Reader->getProfiles())
1676 TotalCollectedSamples += I.second.getTotalSamples();
1678 // Populate the symbol map.
1679 for (const auto &N_F : M.getValueSymbolTable()) {
1680 StringRef OrigName = N_F.getKey();
1681 Function *F = dyn_cast<Function>(N_F.getValue());
1682 if (F == nullptr)
1683 continue;
1684 SymbolMap[OrigName] = F;
1685 auto pos = OrigName.find('.');
1686 if (pos != StringRef::npos) {
1687 StringRef NewName = OrigName.substr(0, pos);
1688 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1689 // Failiing to insert means there is already an entry in SymbolMap,
1690 // thus there are multiple functions that are mapped to the same
1691 // stripped name. In this case of name conflicting, set the value
1692 // to nullptr to avoid confusion.
1693 if (!r.second)
1694 r.first->second = nullptr;
1698 bool retval = false;
1699 for (auto &F : M)
1700 if (!F.isDeclaration()) {
1701 clearFunctionData();
1702 retval |= runOnFunction(F, AM);
1705 // Account for cold calls not inlined....
1706 for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1707 notInlinedCallInfo)
1708 updateProfileCallee(pair.first, pair.second.entryCount);
1710 return retval;
1713 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1714 ACT = &getAnalysis<AssumptionCacheTracker>();
1715 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1716 ProfileSummaryInfo *PSI =
1717 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1718 return SampleLoader.runOnModule(M, nullptr, PSI);
1721 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1723 DILocation2SampleMap.clear();
1724 // By default the entry count is initialized to -1, which will be treated
1725 // conservatively by getEntryCount as the same as unknown (None). This is
1726 // to avoid newly added code to be treated as cold. If we have samples
1727 // this will be overwritten in emitAnnotations.
1728 // If ProfileSampleAccurate is true or F has profile-sample-accurate
1729 // attribute, initialize the entry count to 0 so callsites or functions
1730 // unsampled will be treated as cold.
1731 uint64_t initialEntryCount =
1732 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
1734 : -1;
1735 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1736 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1737 if (AM) {
1738 auto &FAM =
1739 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1740 .getManager();
1741 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1742 } else {
1743 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1744 ORE = OwnedORE.get();
1746 Samples = Reader->getSamplesFor(F);
1747 if (Samples && !Samples->empty())
1748 return emitAnnotations(F);
1749 return false;
1752 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1753 ModuleAnalysisManager &AM) {
1754 FunctionAnalysisManager &FAM =
1755 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1757 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1758 return FAM.getResult<AssumptionAnalysis>(F);
1760 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1761 return FAM.getResult<TargetIRAnalysis>(F);
1764 SampleProfileLoader SampleLoader(
1765 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1766 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1767 : ProfileRemappingFileName,
1768 IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1770 SampleLoader.doInitialization(M);
1772 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1773 if (!SampleLoader.runOnModule(M, &AM, PSI))
1774 return PreservedAnalyses::all();
1776 return PreservedAnalyses::none();