[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineLoadStoreAlloca.cpp
blob79c2453e99f8e6d0896045ae96ef4612dd3b6b85
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
30 #define DEBUG_TYPE "instcombine"
32 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable. This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40 return GV->isConstant();
42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43 if (CE->getOpcode() == Instruction::BitCast ||
44 CE->getOpcode() == Instruction::AddrSpaceCast ||
45 CE->getOpcode() == Instruction::GetElementPtr)
46 return pointsToConstantGlobal(CE->getOperand(0));
48 return false;
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60 SmallVectorImpl<Instruction *> &ToDelete) {
61 // We track lifetime intrinsics as we encounter them. If we decide to go
62 // ahead and replace the value with the global, this lets the caller quickly
63 // eliminate the markers.
65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66 ValuesToInspect.emplace_back(V, false);
67 while (!ValuesToInspect.empty()) {
68 auto ValuePair = ValuesToInspect.pop_back_val();
69 const bool IsOffset = ValuePair.second;
70 for (auto &U : ValuePair.first->uses()) {
71 auto *I = cast<Instruction>(U.getUser());
73 if (auto *LI = dyn_cast<LoadInst>(I)) {
74 // Ignore non-volatile loads, they are always ok.
75 if (!LI->isSimple()) return false;
76 continue;
79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80 // If uses of the bitcast are ok, we are ok.
81 ValuesToInspect.emplace_back(I, IsOffset);
82 continue;
84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85 // If the GEP has all zero indices, it doesn't offset the pointer. If it
86 // doesn't, it does.
87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88 continue;
91 if (auto *Call = dyn_cast<CallBase>(I)) {
92 // If this is the function being called then we treat it like a load and
93 // ignore it.
94 if (Call->isCallee(&U))
95 continue;
97 unsigned DataOpNo = Call->getDataOperandNo(&U);
98 bool IsArgOperand = Call->isArgOperand(&U);
100 // Inalloca arguments are clobbered by the call.
101 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102 return false;
104 // If this is a readonly/readnone call site, then we know it is just a
105 // load (but one that potentially returns the value itself), so we can
106 // ignore it if we know that the value isn't captured.
107 if (Call->onlyReadsMemory() &&
108 (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109 continue;
111 // If this is being passed as a byval argument, the caller is making a
112 // copy, so it is only a read of the alloca.
113 if (IsArgOperand && Call->isByValArgument(DataOpNo))
114 continue;
117 // Lifetime intrinsics can be handled by the caller.
118 if (I->isLifetimeStartOrEnd()) {
119 assert(I->use_empty() && "Lifetime markers have no result to use!");
120 ToDelete.push_back(I);
121 continue;
124 // If this is isn't our memcpy/memmove, reject it as something we can't
125 // handle.
126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127 if (!MI)
128 return false;
130 // If the transfer is using the alloca as a source of the transfer, then
131 // ignore it since it is a load (unless the transfer is volatile).
132 if (U.getOperandNo() == 1) {
133 if (MI->isVolatile()) return false;
134 continue;
137 // If we already have seen a copy, reject the second one.
138 if (TheCopy) return false;
140 // If the pointer has been offset from the start of the alloca, we can't
141 // safely handle this.
142 if (IsOffset) return false;
144 // If the memintrinsic isn't using the alloca as the dest, reject it.
145 if (U.getOperandNo() != 0) return false;
147 // If the source of the memcpy/move is not a constant global, reject it.
148 if (!pointsToConstantGlobal(MI->getSource()))
149 return false;
151 // Otherwise, the transform is safe. Remember the copy instruction.
152 TheCopy = MI;
155 return true;
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global. If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163 SmallVectorImpl<Instruction *> &ToDelete) {
164 MemTransferInst *TheCopy = nullptr;
165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166 return TheCopy;
167 return nullptr;
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172 const DataLayout &DL) {
173 if (AI->isArrayAllocation())
174 return false;
175 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176 if (!AllocaSize)
177 return false;
178 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(),
179 APInt(64, AllocaSize), DL);
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183 // Check for array size of 1 (scalar allocation).
184 if (!AI.isArrayAllocation()) {
185 // i32 1 is the canonical array size for scalar allocations.
186 if (AI.getArraySize()->getType()->isIntegerTy(32))
187 return nullptr;
189 // Canonicalize it.
190 Value *V = IC.Builder.getInt32(1);
191 AI.setOperand(0, V);
192 return &AI;
195 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
196 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
197 if (C->getValue().getActiveBits() <= 64) {
198 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
199 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
200 New->setAlignment(AI.getAlignment());
202 // Scan to the end of the allocation instructions, to skip over a block of
203 // allocas if possible...also skip interleaved debug info
205 BasicBlock::iterator It(New);
206 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
207 ++It;
209 // Now that I is pointing to the first non-allocation-inst in the block,
210 // insert our getelementptr instruction...
212 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
213 Value *NullIdx = Constant::getNullValue(IdxTy);
214 Value *Idx[2] = {NullIdx, NullIdx};
215 Instruction *GEP = GetElementPtrInst::CreateInBounds(
216 NewTy, New, Idx, New->getName() + ".sub");
217 IC.InsertNewInstBefore(GEP, *It);
219 // Now make everything use the getelementptr instead of the original
220 // allocation.
221 return IC.replaceInstUsesWith(AI, GEP);
225 if (isa<UndefValue>(AI.getArraySize()))
226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
228 // Ensure that the alloca array size argument has type intptr_t, so that
229 // any casting is exposed early.
230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
231 if (AI.getArraySize()->getType() != IntPtrTy) {
232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
233 AI.setOperand(0, V);
234 return &AI;
237 return nullptr;
240 namespace {
241 // If I and V are pointers in different address space, it is not allowed to
242 // use replaceAllUsesWith since I and V have different types. A
243 // non-target-specific transformation should not use addrspacecast on V since
244 // the two address space may be disjoint depending on target.
246 // This class chases down uses of the old pointer until reaching the load
247 // instructions, then replaces the old pointer in the load instructions with
248 // the new pointer. If during the chasing it sees bitcast or GEP, it will
249 // create new bitcast or GEP with the new pointer and use them in the load
250 // instruction.
251 class PointerReplacer {
252 public:
253 PointerReplacer(InstCombiner &IC) : IC(IC) {}
254 void replacePointer(Instruction &I, Value *V);
256 private:
257 void findLoadAndReplace(Instruction &I);
258 void replace(Instruction *I);
259 Value *getReplacement(Value *I);
261 SmallVector<Instruction *, 4> Path;
262 MapVector<Value *, Value *> WorkMap;
263 InstCombiner &IC;
265 } // end anonymous namespace
267 void PointerReplacer::findLoadAndReplace(Instruction &I) {
268 for (auto U : I.users()) {
269 auto *Inst = dyn_cast<Instruction>(&*U);
270 if (!Inst)
271 return;
272 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
273 if (isa<LoadInst>(Inst)) {
274 for (auto P : Path)
275 replace(P);
276 replace(Inst);
277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
278 Path.push_back(Inst);
279 findLoadAndReplace(*Inst);
280 Path.pop_back();
281 } else {
282 return;
287 Value *PointerReplacer::getReplacement(Value *V) {
288 auto Loc = WorkMap.find(V);
289 if (Loc != WorkMap.end())
290 return Loc->second;
291 return nullptr;
294 void PointerReplacer::replace(Instruction *I) {
295 if (getReplacement(I))
296 return;
298 if (auto *LT = dyn_cast<LoadInst>(I)) {
299 auto *V = getReplacement(LT->getPointerOperand());
300 assert(V && "Operand not replaced");
301 auto *NewI = new LoadInst(I->getType(), V);
302 NewI->takeName(LT);
303 IC.InsertNewInstWith(NewI, *LT);
304 IC.replaceInstUsesWith(*LT, NewI);
305 WorkMap[LT] = NewI;
306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307 auto *V = getReplacement(GEP->getPointerOperand());
308 assert(V && "Operand not replaced");
309 SmallVector<Value *, 8> Indices;
310 Indices.append(GEP->idx_begin(), GEP->idx_end());
311 auto *NewI = GetElementPtrInst::Create(
312 V->getType()->getPointerElementType(), V, Indices);
313 IC.InsertNewInstWith(NewI, *GEP);
314 NewI->takeName(GEP);
315 WorkMap[GEP] = NewI;
316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317 auto *V = getReplacement(BC->getOperand(0));
318 assert(V && "Operand not replaced");
319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320 V->getType()->getPointerAddressSpace());
321 auto *NewI = new BitCastInst(V, NewT);
322 IC.InsertNewInstWith(NewI, *BC);
323 NewI->takeName(BC);
324 WorkMap[BC] = NewI;
325 } else {
326 llvm_unreachable("should never reach here");
330 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
331 #ifndef NDEBUG
332 auto *PT = cast<PointerType>(I.getType());
333 auto *NT = cast<PointerType>(V->getType());
334 assert(PT != NT && PT->getElementType() == NT->getElementType() &&
335 "Invalid usage");
336 #endif
337 WorkMap[&I] = V;
338 findLoadAndReplace(I);
341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
342 if (auto *I = simplifyAllocaArraySize(*this, AI))
343 return I;
345 if (AI.getAllocatedType()->isSized()) {
346 // If the alignment is 0 (unspecified), assign it the preferred alignment.
347 if (AI.getAlignment() == 0)
348 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
350 // Move all alloca's of zero byte objects to the entry block and merge them
351 // together. Note that we only do this for alloca's, because malloc should
352 // allocate and return a unique pointer, even for a zero byte allocation.
353 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
354 // For a zero sized alloca there is no point in doing an array allocation.
355 // This is helpful if the array size is a complicated expression not used
356 // elsewhere.
357 if (AI.isArrayAllocation()) {
358 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
359 return &AI;
362 // Get the first instruction in the entry block.
363 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
364 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
365 if (FirstInst != &AI) {
366 // If the entry block doesn't start with a zero-size alloca then move
367 // this one to the start of the entry block. There is no problem with
368 // dominance as the array size was forced to a constant earlier already.
369 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
370 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
371 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
372 AI.moveBefore(FirstInst);
373 return &AI;
376 // If the alignment of the entry block alloca is 0 (unspecified),
377 // assign it the preferred alignment.
378 if (EntryAI->getAlignment() == 0)
379 EntryAI->setAlignment(
380 DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
381 // Replace this zero-sized alloca with the one at the start of the entry
382 // block after ensuring that the address will be aligned enough for both
383 // types.
384 unsigned MaxAlign = std::max(EntryAI->getAlignment(),
385 AI.getAlignment());
386 EntryAI->setAlignment(MaxAlign);
387 if (AI.getType() != EntryAI->getType())
388 return new BitCastInst(EntryAI, AI.getType());
389 return replaceInstUsesWith(AI, EntryAI);
394 if (AI.getAlignment()) {
395 // Check to see if this allocation is only modified by a memcpy/memmove from
396 // a constant global whose alignment is equal to or exceeds that of the
397 // allocation. If this is the case, we can change all users to use
398 // the constant global instead. This is commonly produced by the CFE by
399 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
400 // is only subsequently read.
401 SmallVector<Instruction *, 4> ToDelete;
402 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
403 unsigned SourceAlign = getOrEnforceKnownAlignment(
404 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
405 if (AI.getAlignment() <= SourceAlign &&
406 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
407 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
408 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
409 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
410 eraseInstFromFunction(*ToDelete[i]);
411 Constant *TheSrc = cast<Constant>(Copy->getSource());
412 auto *SrcTy = TheSrc->getType();
413 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
414 SrcTy->getPointerAddressSpace());
415 Constant *Cast =
416 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
417 if (AI.getType()->getPointerAddressSpace() ==
418 SrcTy->getPointerAddressSpace()) {
419 Instruction *NewI = replaceInstUsesWith(AI, Cast);
420 eraseInstFromFunction(*Copy);
421 ++NumGlobalCopies;
422 return NewI;
423 } else {
424 PointerReplacer PtrReplacer(*this);
425 PtrReplacer.replacePointer(AI, Cast);
426 ++NumGlobalCopies;
432 // At last, use the generic allocation site handler to aggressively remove
433 // unused allocas.
434 return visitAllocSite(AI);
437 // Are we allowed to form a atomic load or store of this type?
438 static bool isSupportedAtomicType(Type *Ty) {
439 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
442 /// Helper to combine a load to a new type.
444 /// This just does the work of combining a load to a new type. It handles
445 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
446 /// loaded *value* type. This will convert it to a pointer, cast the operand to
447 /// that pointer type, load it, etc.
449 /// Note that this will create all of the instructions with whatever insert
450 /// point the \c InstCombiner currently is using.
451 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
452 const Twine &Suffix = "") {
453 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
454 "can't fold an atomic load to requested type");
456 Value *Ptr = LI.getPointerOperand();
457 unsigned AS = LI.getPointerAddressSpace();
458 Value *NewPtr = nullptr;
459 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
460 NewPtr->getType()->getPointerElementType() == NewTy &&
461 NewPtr->getType()->getPointerAddressSpace() == AS))
462 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
464 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
465 NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
466 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
467 copyMetadataForLoad(*NewLoad, LI);
468 return NewLoad;
471 /// Combine a store to a new type.
473 /// Returns the newly created store instruction.
474 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
475 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
476 "can't fold an atomic store of requested type");
478 Value *Ptr = SI.getPointerOperand();
479 unsigned AS = SI.getPointerAddressSpace();
480 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
481 SI.getAllMetadata(MD);
483 StoreInst *NewStore = IC.Builder.CreateAlignedStore(
484 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
485 SI.getAlignment(), SI.isVolatile());
486 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
487 for (const auto &MDPair : MD) {
488 unsigned ID = MDPair.first;
489 MDNode *N = MDPair.second;
490 // Note, essentially every kind of metadata should be preserved here! This
491 // routine is supposed to clone a store instruction changing *only its
492 // type*. The only metadata it makes sense to drop is metadata which is
493 // invalidated when the pointer type changes. This should essentially
494 // never be the case in LLVM, but we explicitly switch over only known
495 // metadata to be conservatively correct. If you are adding metadata to
496 // LLVM which pertains to stores, you almost certainly want to add it
497 // here.
498 switch (ID) {
499 case LLVMContext::MD_dbg:
500 case LLVMContext::MD_tbaa:
501 case LLVMContext::MD_prof:
502 case LLVMContext::MD_fpmath:
503 case LLVMContext::MD_tbaa_struct:
504 case LLVMContext::MD_alias_scope:
505 case LLVMContext::MD_noalias:
506 case LLVMContext::MD_nontemporal:
507 case LLVMContext::MD_mem_parallel_loop_access:
508 case LLVMContext::MD_access_group:
509 // All of these directly apply.
510 NewStore->setMetadata(ID, N);
511 break;
512 case LLVMContext::MD_invariant_load:
513 case LLVMContext::MD_nonnull:
514 case LLVMContext::MD_range:
515 case LLVMContext::MD_align:
516 case LLVMContext::MD_dereferenceable:
517 case LLVMContext::MD_dereferenceable_or_null:
518 // These don't apply for stores.
519 break;
523 return NewStore;
526 /// Returns true if instruction represent minmax pattern like:
527 /// select ((cmp load V1, load V2), V1, V2).
528 static bool isMinMaxWithLoads(Value *V) {
529 assert(V->getType()->isPointerTy() && "Expected pointer type.");
530 // Ignore possible ty* to ixx* bitcast.
531 V = peekThroughBitcast(V);
532 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
533 // pattern.
534 CmpInst::Predicate Pred;
535 Instruction *L1;
536 Instruction *L2;
537 Value *LHS;
538 Value *RHS;
539 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
540 m_Value(LHS), m_Value(RHS))))
541 return false;
542 return (match(L1, m_Load(m_Specific(LHS))) &&
543 match(L2, m_Load(m_Specific(RHS)))) ||
544 (match(L1, m_Load(m_Specific(RHS))) &&
545 match(L2, m_Load(m_Specific(LHS))));
548 /// Combine loads to match the type of their uses' value after looking
549 /// through intervening bitcasts.
551 /// The core idea here is that if the result of a load is used in an operation,
552 /// we should load the type most conducive to that operation. For example, when
553 /// loading an integer and converting that immediately to a pointer, we should
554 /// instead directly load a pointer.
556 /// However, this routine must never change the width of a load or the number of
557 /// loads as that would introduce a semantic change. This combine is expected to
558 /// be a semantic no-op which just allows loads to more closely model the types
559 /// of their consuming operations.
561 /// Currently, we also refuse to change the precise type used for an atomic load
562 /// or a volatile load. This is debatable, and might be reasonable to change
563 /// later. However, it is risky in case some backend or other part of LLVM is
564 /// relying on the exact type loaded to select appropriate atomic operations.
565 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
566 // FIXME: We could probably with some care handle both volatile and ordered
567 // atomic loads here but it isn't clear that this is important.
568 if (!LI.isUnordered())
569 return nullptr;
571 if (LI.use_empty())
572 return nullptr;
574 // swifterror values can't be bitcasted.
575 if (LI.getPointerOperand()->isSwiftError())
576 return nullptr;
578 Type *Ty = LI.getType();
579 const DataLayout &DL = IC.getDataLayout();
581 // Try to canonicalize loads which are only ever stored to operate over
582 // integers instead of any other type. We only do this when the loaded type
583 // is sized and has a size exactly the same as its store size and the store
584 // size is a legal integer type.
585 // Do not perform canonicalization if minmax pattern is found (to avoid
586 // infinite loop).
587 if (!Ty->isIntegerTy() && Ty->isSized() &&
588 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
589 DL.typeSizeEqualsStoreSize(Ty) &&
590 !DL.isNonIntegralPointerType(Ty) &&
591 !isMinMaxWithLoads(
592 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
593 if (all_of(LI.users(), [&LI](User *U) {
594 auto *SI = dyn_cast<StoreInst>(U);
595 return SI && SI->getPointerOperand() != &LI &&
596 !SI->getPointerOperand()->isSwiftError();
597 })) {
598 LoadInst *NewLoad = combineLoadToNewType(
599 IC, LI,
600 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
601 // Replace all the stores with stores of the newly loaded value.
602 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
603 auto *SI = cast<StoreInst>(*UI++);
604 IC.Builder.SetInsertPoint(SI);
605 combineStoreToNewValue(IC, *SI, NewLoad);
606 IC.eraseInstFromFunction(*SI);
608 assert(LI.use_empty() && "Failed to remove all users of the load!");
609 // Return the old load so the combiner can delete it safely.
610 return &LI;
614 // Fold away bit casts of the loaded value by loading the desired type.
615 // We can do this for BitCastInsts as well as casts from and to pointer types,
616 // as long as those are noops (i.e., the source or dest type have the same
617 // bitwidth as the target's pointers).
618 if (LI.hasOneUse())
619 if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
620 if (CI->isNoopCast(DL))
621 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
622 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
623 CI->replaceAllUsesWith(NewLoad);
624 IC.eraseInstFromFunction(*CI);
625 return &LI;
628 // FIXME: We should also canonicalize loads of vectors when their elements are
629 // cast to other types.
630 return nullptr;
633 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
634 // FIXME: We could probably with some care handle both volatile and atomic
635 // stores here but it isn't clear that this is important.
636 if (!LI.isSimple())
637 return nullptr;
639 Type *T = LI.getType();
640 if (!T->isAggregateType())
641 return nullptr;
643 StringRef Name = LI.getName();
644 assert(LI.getAlignment() && "Alignment must be set at this point");
646 if (auto *ST = dyn_cast<StructType>(T)) {
647 // If the struct only have one element, we unpack.
648 auto NumElements = ST->getNumElements();
649 if (NumElements == 1) {
650 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
651 ".unpack");
652 AAMDNodes AAMD;
653 LI.getAAMetadata(AAMD);
654 NewLoad->setAAMetadata(AAMD);
655 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
656 UndefValue::get(T), NewLoad, 0, Name));
659 // We don't want to break loads with padding here as we'd loose
660 // the knowledge that padding exists for the rest of the pipeline.
661 const DataLayout &DL = IC.getDataLayout();
662 auto *SL = DL.getStructLayout(ST);
663 if (SL->hasPadding())
664 return nullptr;
666 auto Align = LI.getAlignment();
667 if (!Align)
668 Align = DL.getABITypeAlignment(ST);
670 auto *Addr = LI.getPointerOperand();
671 auto *IdxType = Type::getInt32Ty(T->getContext());
672 auto *Zero = ConstantInt::get(IdxType, 0);
674 Value *V = UndefValue::get(T);
675 for (unsigned i = 0; i < NumElements; i++) {
676 Value *Indices[2] = {
677 Zero,
678 ConstantInt::get(IdxType, i),
680 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
681 Name + ".elt");
682 auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
683 auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr,
684 EltAlign, Name + ".unpack");
685 // Propagate AA metadata. It'll still be valid on the narrowed load.
686 AAMDNodes AAMD;
687 LI.getAAMetadata(AAMD);
688 L->setAAMetadata(AAMD);
689 V = IC.Builder.CreateInsertValue(V, L, i);
692 V->setName(Name);
693 return IC.replaceInstUsesWith(LI, V);
696 if (auto *AT = dyn_cast<ArrayType>(T)) {
697 auto *ET = AT->getElementType();
698 auto NumElements = AT->getNumElements();
699 if (NumElements == 1) {
700 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
701 AAMDNodes AAMD;
702 LI.getAAMetadata(AAMD);
703 NewLoad->setAAMetadata(AAMD);
704 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
705 UndefValue::get(T), NewLoad, 0, Name));
708 // Bail out if the array is too large. Ideally we would like to optimize
709 // arrays of arbitrary size but this has a terrible impact on compile time.
710 // The threshold here is chosen arbitrarily, maybe needs a little bit of
711 // tuning.
712 if (NumElements > IC.MaxArraySizeForCombine)
713 return nullptr;
715 const DataLayout &DL = IC.getDataLayout();
716 auto EltSize = DL.getTypeAllocSize(ET);
717 auto Align = LI.getAlignment();
718 if (!Align)
719 Align = DL.getABITypeAlignment(T);
721 auto *Addr = LI.getPointerOperand();
722 auto *IdxType = Type::getInt64Ty(T->getContext());
723 auto *Zero = ConstantInt::get(IdxType, 0);
725 Value *V = UndefValue::get(T);
726 uint64_t Offset = 0;
727 for (uint64_t i = 0; i < NumElements; i++) {
728 Value *Indices[2] = {
729 Zero,
730 ConstantInt::get(IdxType, i),
732 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
733 Name + ".elt");
734 auto *L = IC.Builder.CreateAlignedLoad(
735 AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack");
736 AAMDNodes AAMD;
737 LI.getAAMetadata(AAMD);
738 L->setAAMetadata(AAMD);
739 V = IC.Builder.CreateInsertValue(V, L, i);
740 Offset += EltSize;
743 V->setName(Name);
744 return IC.replaceInstUsesWith(LI, V);
747 return nullptr;
750 // If we can determine that all possible objects pointed to by the provided
751 // pointer value are, not only dereferenceable, but also definitively less than
752 // or equal to the provided maximum size, then return true. Otherwise, return
753 // false (constant global values and allocas fall into this category).
755 // FIXME: This should probably live in ValueTracking (or similar).
756 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
757 const DataLayout &DL) {
758 SmallPtrSet<Value *, 4> Visited;
759 SmallVector<Value *, 4> Worklist(1, V);
761 do {
762 Value *P = Worklist.pop_back_val();
763 P = P->stripPointerCasts();
765 if (!Visited.insert(P).second)
766 continue;
768 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
769 Worklist.push_back(SI->getTrueValue());
770 Worklist.push_back(SI->getFalseValue());
771 continue;
774 if (PHINode *PN = dyn_cast<PHINode>(P)) {
775 for (Value *IncValue : PN->incoming_values())
776 Worklist.push_back(IncValue);
777 continue;
780 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
781 if (GA->isInterposable())
782 return false;
783 Worklist.push_back(GA->getAliasee());
784 continue;
787 // If we know how big this object is, and it is less than MaxSize, continue
788 // searching. Otherwise, return false.
789 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
790 if (!AI->getAllocatedType()->isSized())
791 return false;
793 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
794 if (!CS)
795 return false;
797 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
798 // Make sure that, even if the multiplication below would wrap as an
799 // uint64_t, we still do the right thing.
800 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
801 return false;
802 continue;
805 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
806 if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
807 return false;
809 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
810 if (InitSize > MaxSize)
811 return false;
812 continue;
815 return false;
816 } while (!Worklist.empty());
818 return true;
821 // If we're indexing into an object of a known size, and the outer index is
822 // not a constant, but having any value but zero would lead to undefined
823 // behavior, replace it with zero.
825 // For example, if we have:
826 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
827 // ...
828 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
829 // ... = load i32* %arrayidx, align 4
830 // Then we know that we can replace %x in the GEP with i64 0.
832 // FIXME: We could fold any GEP index to zero that would cause UB if it were
833 // not zero. Currently, we only handle the first such index. Also, we could
834 // also search through non-zero constant indices if we kept track of the
835 // offsets those indices implied.
836 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
837 Instruction *MemI, unsigned &Idx) {
838 if (GEPI->getNumOperands() < 2)
839 return false;
841 // Find the first non-zero index of a GEP. If all indices are zero, return
842 // one past the last index.
843 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
844 unsigned I = 1;
845 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
846 Value *V = GEPI->getOperand(I);
847 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
848 if (CI->isZero())
849 continue;
851 break;
854 return I;
857 // Skip through initial 'zero' indices, and find the corresponding pointer
858 // type. See if the next index is not a constant.
859 Idx = FirstNZIdx(GEPI);
860 if (Idx == GEPI->getNumOperands())
861 return false;
862 if (isa<Constant>(GEPI->getOperand(Idx)))
863 return false;
865 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
866 Type *AllocTy =
867 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
868 if (!AllocTy || !AllocTy->isSized())
869 return false;
870 const DataLayout &DL = IC.getDataLayout();
871 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
873 // If there are more indices after the one we might replace with a zero, make
874 // sure they're all non-negative. If any of them are negative, the overall
875 // address being computed might be before the base address determined by the
876 // first non-zero index.
877 auto IsAllNonNegative = [&]() {
878 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
879 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
880 if (Known.isNonNegative())
881 continue;
882 return false;
885 return true;
888 // FIXME: If the GEP is not inbounds, and there are extra indices after the
889 // one we'll replace, those could cause the address computation to wrap
890 // (rendering the IsAllNonNegative() check below insufficient). We can do
891 // better, ignoring zero indices (and other indices we can prove small
892 // enough not to wrap).
893 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
894 return false;
896 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
897 // also known to be dereferenceable.
898 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
899 IsAllNonNegative();
902 // If we're indexing into an object with a variable index for the memory
903 // access, but the object has only one element, we can assume that the index
904 // will always be zero. If we replace the GEP, return it.
905 template <typename T>
906 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
907 T &MemI) {
908 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
909 unsigned Idx;
910 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
911 Instruction *NewGEPI = GEPI->clone();
912 NewGEPI->setOperand(Idx,
913 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
914 NewGEPI->insertBefore(GEPI);
915 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
916 return NewGEPI;
920 return nullptr;
923 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
924 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
925 return false;
927 auto *Ptr = SI.getPointerOperand();
928 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
929 Ptr = GEPI->getOperand(0);
930 return (isa<ConstantPointerNull>(Ptr) &&
931 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
934 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
935 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
936 const Value *GEPI0 = GEPI->getOperand(0);
937 if (isa<ConstantPointerNull>(GEPI0) &&
938 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
939 return true;
941 if (isa<UndefValue>(Op) ||
942 (isa<ConstantPointerNull>(Op) &&
943 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
944 return true;
945 return false;
948 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
949 Value *Op = LI.getOperand(0);
951 // Try to canonicalize the loaded type.
952 if (Instruction *Res = combineLoadToOperationType(*this, LI))
953 return Res;
955 // Attempt to improve the alignment.
956 unsigned KnownAlign = getOrEnforceKnownAlignment(
957 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
958 unsigned LoadAlign = LI.getAlignment();
959 unsigned EffectiveLoadAlign =
960 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
962 if (KnownAlign > EffectiveLoadAlign)
963 LI.setAlignment(KnownAlign);
964 else if (LoadAlign == 0)
965 LI.setAlignment(EffectiveLoadAlign);
967 // Replace GEP indices if possible.
968 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
969 Worklist.Add(NewGEPI);
970 return &LI;
973 if (Instruction *Res = unpackLoadToAggregate(*this, LI))
974 return Res;
976 // Do really simple store-to-load forwarding and load CSE, to catch cases
977 // where there are several consecutive memory accesses to the same location,
978 // separated by a few arithmetic operations.
979 BasicBlock::iterator BBI(LI);
980 bool IsLoadCSE = false;
981 if (Value *AvailableVal = FindAvailableLoadedValue(
982 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
983 if (IsLoadCSE)
984 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
986 return replaceInstUsesWith(
987 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
988 LI.getName() + ".cast"));
991 // None of the following transforms are legal for volatile/ordered atomic
992 // loads. Most of them do apply for unordered atomics.
993 if (!LI.isUnordered()) return nullptr;
995 // load(gep null, ...) -> unreachable
996 // load null/undef -> unreachable
997 // TODO: Consider a target hook for valid address spaces for this xforms.
998 if (canSimplifyNullLoadOrGEP(LI, Op)) {
999 // Insert a new store to null instruction before the load to indicate
1000 // that this code is not reachable. We do this instead of inserting
1001 // an unreachable instruction directly because we cannot modify the
1002 // CFG.
1003 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1004 Constant::getNullValue(Op->getType()), &LI);
1005 SI->setDebugLoc(LI.getDebugLoc());
1006 return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1009 if (Op->hasOneUse()) {
1010 // Change select and PHI nodes to select values instead of addresses: this
1011 // helps alias analysis out a lot, allows many others simplifications, and
1012 // exposes redundancy in the code.
1014 // Note that we cannot do the transformation unless we know that the
1015 // introduced loads cannot trap! Something like this is valid as long as
1016 // the condition is always false: load (select bool %C, int* null, int* %G),
1017 // but it would not be valid if we transformed it to load from null
1018 // unconditionally.
1020 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1021 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1022 unsigned Align = LI.getAlignment();
1023 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), Align,
1024 DL, SI) &&
1025 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), Align,
1026 DL, SI)) {
1027 LoadInst *V1 =
1028 Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1029 SI->getOperand(1)->getName() + ".val");
1030 LoadInst *V2 =
1031 Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1032 SI->getOperand(2)->getName() + ".val");
1033 assert(LI.isUnordered() && "implied by above");
1034 V1->setAlignment(Align);
1035 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1036 V2->setAlignment(Align);
1037 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1038 return SelectInst::Create(SI->getCondition(), V1, V2);
1041 // load (select (cond, null, P)) -> load P
1042 if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1043 !NullPointerIsDefined(SI->getFunction(),
1044 LI.getPointerAddressSpace())) {
1045 LI.setOperand(0, SI->getOperand(2));
1046 return &LI;
1049 // load (select (cond, P, null)) -> load P
1050 if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1051 !NullPointerIsDefined(SI->getFunction(),
1052 LI.getPointerAddressSpace())) {
1053 LI.setOperand(0, SI->getOperand(1));
1054 return &LI;
1058 return nullptr;
1061 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1063 /// \returns underlying value that was "cast", or nullptr otherwise.
1065 /// For example, if we have:
1067 /// %E0 = extractelement <2 x double> %U, i32 0
1068 /// %V0 = insertvalue [2 x double] undef, double %E0, 0
1069 /// %E1 = extractelement <2 x double> %U, i32 1
1070 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1072 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1073 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1074 /// Note that %U may contain non-undef values where %V1 has undef.
1075 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1076 Value *U = nullptr;
1077 while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1078 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1079 if (!E)
1080 return nullptr;
1081 auto *W = E->getVectorOperand();
1082 if (!U)
1083 U = W;
1084 else if (U != W)
1085 return nullptr;
1086 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1087 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1088 return nullptr;
1089 V = IV->getAggregateOperand();
1091 if (!isa<UndefValue>(V) ||!U)
1092 return nullptr;
1094 auto *UT = cast<VectorType>(U->getType());
1095 auto *VT = V->getType();
1096 // Check that types UT and VT are bitwise isomorphic.
1097 const auto &DL = IC.getDataLayout();
1098 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1099 return nullptr;
1101 if (auto *AT = dyn_cast<ArrayType>(VT)) {
1102 if (AT->getNumElements() != UT->getNumElements())
1103 return nullptr;
1104 } else {
1105 auto *ST = cast<StructType>(VT);
1106 if (ST->getNumElements() != UT->getNumElements())
1107 return nullptr;
1108 for (const auto *EltT : ST->elements()) {
1109 if (EltT != UT->getElementType())
1110 return nullptr;
1113 return U;
1116 /// Combine stores to match the type of value being stored.
1118 /// The core idea here is that the memory does not have any intrinsic type and
1119 /// where we can we should match the type of a store to the type of value being
1120 /// stored.
1122 /// However, this routine must never change the width of a store or the number of
1123 /// stores as that would introduce a semantic change. This combine is expected to
1124 /// be a semantic no-op which just allows stores to more closely model the types
1125 /// of their incoming values.
1127 /// Currently, we also refuse to change the precise type used for an atomic or
1128 /// volatile store. This is debatable, and might be reasonable to change later.
1129 /// However, it is risky in case some backend or other part of LLVM is relying
1130 /// on the exact type stored to select appropriate atomic operations.
1132 /// \returns true if the store was successfully combined away. This indicates
1133 /// the caller must erase the store instruction. We have to let the caller erase
1134 /// the store instruction as otherwise there is no way to signal whether it was
1135 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1136 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1137 // FIXME: We could probably with some care handle both volatile and ordered
1138 // atomic stores here but it isn't clear that this is important.
1139 if (!SI.isUnordered())
1140 return false;
1142 // swifterror values can't be bitcasted.
1143 if (SI.getPointerOperand()->isSwiftError())
1144 return false;
1146 Value *V = SI.getValueOperand();
1148 // Fold away bit casts of the stored value by storing the original type.
1149 if (auto *BC = dyn_cast<BitCastInst>(V)) {
1150 V = BC->getOperand(0);
1151 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1152 combineStoreToNewValue(IC, SI, V);
1153 return true;
1157 if (Value *U = likeBitCastFromVector(IC, V))
1158 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1159 combineStoreToNewValue(IC, SI, U);
1160 return true;
1163 // FIXME: We should also canonicalize stores of vectors when their elements
1164 // are cast to other types.
1165 return false;
1168 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1169 // FIXME: We could probably with some care handle both volatile and atomic
1170 // stores here but it isn't clear that this is important.
1171 if (!SI.isSimple())
1172 return false;
1174 Value *V = SI.getValueOperand();
1175 Type *T = V->getType();
1177 if (!T->isAggregateType())
1178 return false;
1180 if (auto *ST = dyn_cast<StructType>(T)) {
1181 // If the struct only have one element, we unpack.
1182 unsigned Count = ST->getNumElements();
1183 if (Count == 1) {
1184 V = IC.Builder.CreateExtractValue(V, 0);
1185 combineStoreToNewValue(IC, SI, V);
1186 return true;
1189 // We don't want to break loads with padding here as we'd loose
1190 // the knowledge that padding exists for the rest of the pipeline.
1191 const DataLayout &DL = IC.getDataLayout();
1192 auto *SL = DL.getStructLayout(ST);
1193 if (SL->hasPadding())
1194 return false;
1196 auto Align = SI.getAlignment();
1197 if (!Align)
1198 Align = DL.getABITypeAlignment(ST);
1200 SmallString<16> EltName = V->getName();
1201 EltName += ".elt";
1202 auto *Addr = SI.getPointerOperand();
1203 SmallString<16> AddrName = Addr->getName();
1204 AddrName += ".repack";
1206 auto *IdxType = Type::getInt32Ty(ST->getContext());
1207 auto *Zero = ConstantInt::get(IdxType, 0);
1208 for (unsigned i = 0; i < Count; i++) {
1209 Value *Indices[2] = {
1210 Zero,
1211 ConstantInt::get(IdxType, i),
1213 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1214 AddrName);
1215 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1216 auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1217 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1218 AAMDNodes AAMD;
1219 SI.getAAMetadata(AAMD);
1220 NS->setAAMetadata(AAMD);
1223 return true;
1226 if (auto *AT = dyn_cast<ArrayType>(T)) {
1227 // If the array only have one element, we unpack.
1228 auto NumElements = AT->getNumElements();
1229 if (NumElements == 1) {
1230 V = IC.Builder.CreateExtractValue(V, 0);
1231 combineStoreToNewValue(IC, SI, V);
1232 return true;
1235 // Bail out if the array is too large. Ideally we would like to optimize
1236 // arrays of arbitrary size but this has a terrible impact on compile time.
1237 // The threshold here is chosen arbitrarily, maybe needs a little bit of
1238 // tuning.
1239 if (NumElements > IC.MaxArraySizeForCombine)
1240 return false;
1242 const DataLayout &DL = IC.getDataLayout();
1243 auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1244 auto Align = SI.getAlignment();
1245 if (!Align)
1246 Align = DL.getABITypeAlignment(T);
1248 SmallString<16> EltName = V->getName();
1249 EltName += ".elt";
1250 auto *Addr = SI.getPointerOperand();
1251 SmallString<16> AddrName = Addr->getName();
1252 AddrName += ".repack";
1254 auto *IdxType = Type::getInt64Ty(T->getContext());
1255 auto *Zero = ConstantInt::get(IdxType, 0);
1257 uint64_t Offset = 0;
1258 for (uint64_t i = 0; i < NumElements; i++) {
1259 Value *Indices[2] = {
1260 Zero,
1261 ConstantInt::get(IdxType, i),
1263 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1264 AddrName);
1265 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1266 auto EltAlign = MinAlign(Align, Offset);
1267 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1268 AAMDNodes AAMD;
1269 SI.getAAMetadata(AAMD);
1270 NS->setAAMetadata(AAMD);
1271 Offset += EltSize;
1274 return true;
1277 return false;
1280 /// equivalentAddressValues - Test if A and B will obviously have the same
1281 /// value. This includes recognizing that %t0 and %t1 will have the same
1282 /// value in code like this:
1283 /// %t0 = getelementptr \@a, 0, 3
1284 /// store i32 0, i32* %t0
1285 /// %t1 = getelementptr \@a, 0, 3
1286 /// %t2 = load i32* %t1
1288 static bool equivalentAddressValues(Value *A, Value *B) {
1289 // Test if the values are trivially equivalent.
1290 if (A == B) return true;
1292 // Test if the values come form identical arithmetic instructions.
1293 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1294 // its only used to compare two uses within the same basic block, which
1295 // means that they'll always either have the same value or one of them
1296 // will have an undefined value.
1297 if (isa<BinaryOperator>(A) ||
1298 isa<CastInst>(A) ||
1299 isa<PHINode>(A) ||
1300 isa<GetElementPtrInst>(A))
1301 if (Instruction *BI = dyn_cast<Instruction>(B))
1302 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1303 return true;
1305 // Otherwise they may not be equivalent.
1306 return false;
1309 /// Converts store (bitcast (load (bitcast (select ...)))) to
1310 /// store (load (select ...)), where select is minmax:
1311 /// select ((cmp load V1, load V2), V1, V2).
1312 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1313 StoreInst &SI) {
1314 // bitcast?
1315 if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1316 return false;
1317 // load? integer?
1318 Value *LoadAddr;
1319 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1320 return false;
1321 auto *LI = cast<LoadInst>(SI.getValueOperand());
1322 if (!LI->getType()->isIntegerTy())
1323 return false;
1324 if (!isMinMaxWithLoads(LoadAddr))
1325 return false;
1327 if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1328 auto *SI = dyn_cast<StoreInst>(U);
1329 return SI && SI->getPointerOperand() != LI &&
1330 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1331 !SI->getPointerOperand()->isSwiftError();
1333 return false;
1335 IC.Builder.SetInsertPoint(LI);
1336 LoadInst *NewLI = combineLoadToNewType(
1337 IC, *LI, LoadAddr->getType()->getPointerElementType());
1338 // Replace all the stores with stores of the newly loaded value.
1339 for (auto *UI : LI->users()) {
1340 auto *USI = cast<StoreInst>(UI);
1341 IC.Builder.SetInsertPoint(USI);
1342 combineStoreToNewValue(IC, *USI, NewLI);
1344 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1345 IC.eraseInstFromFunction(*LI);
1346 return true;
1349 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1350 Value *Val = SI.getOperand(0);
1351 Value *Ptr = SI.getOperand(1);
1353 // Try to canonicalize the stored type.
1354 if (combineStoreToValueType(*this, SI))
1355 return eraseInstFromFunction(SI);
1357 // Attempt to improve the alignment.
1358 unsigned KnownAlign = getOrEnforceKnownAlignment(
1359 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
1360 unsigned StoreAlign = SI.getAlignment();
1361 unsigned EffectiveStoreAlign =
1362 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1364 if (KnownAlign > EffectiveStoreAlign)
1365 SI.setAlignment(KnownAlign);
1366 else if (StoreAlign == 0)
1367 SI.setAlignment(EffectiveStoreAlign);
1369 // Try to canonicalize the stored type.
1370 if (unpackStoreToAggregate(*this, SI))
1371 return eraseInstFromFunction(SI);
1373 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1374 return eraseInstFromFunction(SI);
1376 // Replace GEP indices if possible.
1377 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1378 Worklist.Add(NewGEPI);
1379 return &SI;
1382 // Don't hack volatile/ordered stores.
1383 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1384 if (!SI.isUnordered()) return nullptr;
1386 // If the RHS is an alloca with a single use, zapify the store, making the
1387 // alloca dead.
1388 if (Ptr->hasOneUse()) {
1389 if (isa<AllocaInst>(Ptr))
1390 return eraseInstFromFunction(SI);
1391 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1392 if (isa<AllocaInst>(GEP->getOperand(0))) {
1393 if (GEP->getOperand(0)->hasOneUse())
1394 return eraseInstFromFunction(SI);
1399 // If we have a store to a location which is known constant, we can conclude
1400 // that the store must be storing the constant value (else the memory
1401 // wouldn't be constant), and this must be a noop.
1402 if (AA->pointsToConstantMemory(Ptr))
1403 return eraseInstFromFunction(SI);
1405 // Do really simple DSE, to catch cases where there are several consecutive
1406 // stores to the same location, separated by a few arithmetic operations. This
1407 // situation often occurs with bitfield accesses.
1408 BasicBlock::iterator BBI(SI);
1409 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1410 --ScanInsts) {
1411 --BBI;
1412 // Don't count debug info directives, lest they affect codegen,
1413 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1414 if (isa<DbgInfoIntrinsic>(BBI) ||
1415 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1416 ScanInsts++;
1417 continue;
1420 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1421 // Prev store isn't volatile, and stores to the same location?
1422 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1423 SI.getOperand(1))) {
1424 ++NumDeadStore;
1425 ++BBI;
1426 eraseInstFromFunction(*PrevSI);
1427 continue;
1429 break;
1432 // If this is a load, we have to stop. However, if the loaded value is from
1433 // the pointer we're loading and is producing the pointer we're storing,
1434 // then *this* store is dead (X = load P; store X -> P).
1435 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1436 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1437 assert(SI.isUnordered() && "can't eliminate ordering operation");
1438 return eraseInstFromFunction(SI);
1441 // Otherwise, this is a load from some other location. Stores before it
1442 // may not be dead.
1443 break;
1446 // Don't skip over loads, throws or things that can modify memory.
1447 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1448 break;
1451 // store X, null -> turns into 'unreachable' in SimplifyCFG
1452 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1453 if (canSimplifyNullStoreOrGEP(SI)) {
1454 if (!isa<UndefValue>(Val)) {
1455 SI.setOperand(0, UndefValue::get(Val->getType()));
1456 if (Instruction *U = dyn_cast<Instruction>(Val))
1457 Worklist.Add(U); // Dropped a use.
1459 return nullptr; // Do not modify these!
1462 // store undef, Ptr -> noop
1463 if (isa<UndefValue>(Val))
1464 return eraseInstFromFunction(SI);
1466 // If this store is the second-to-last instruction in the basic block
1467 // (excluding debug info and bitcasts of pointers) and if the block ends with
1468 // an unconditional branch, try to move the store to the successor block.
1469 BBI = SI.getIterator();
1470 do {
1471 ++BBI;
1472 } while (isa<DbgInfoIntrinsic>(BBI) ||
1473 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1475 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1476 if (BI->isUnconditional())
1477 mergeStoreIntoSuccessor(SI);
1479 return nullptr;
1482 /// Try to transform:
1483 /// if () { *P = v1; } else { *P = v2 }
1484 /// or:
1485 /// *P = v1; if () { *P = v2; }
1486 /// into a phi node with a store in the successor.
1487 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1488 assert(SI.isUnordered() &&
1489 "This code has not been audited for volatile or ordered store case.");
1491 // Check if the successor block has exactly 2 incoming edges.
1492 BasicBlock *StoreBB = SI.getParent();
1493 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1494 if (!DestBB->hasNPredecessors(2))
1495 return false;
1497 // Capture the other block (the block that doesn't contain our store).
1498 pred_iterator PredIter = pred_begin(DestBB);
1499 if (*PredIter == StoreBB)
1500 ++PredIter;
1501 BasicBlock *OtherBB = *PredIter;
1503 // Bail out if all of the relevant blocks aren't distinct. This can happen,
1504 // for example, if SI is in an infinite loop.
1505 if (StoreBB == DestBB || OtherBB == DestBB)
1506 return false;
1508 // Verify that the other block ends in a branch and is not otherwise empty.
1509 BasicBlock::iterator BBI(OtherBB->getTerminator());
1510 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1511 if (!OtherBr || BBI == OtherBB->begin())
1512 return false;
1514 // If the other block ends in an unconditional branch, check for the 'if then
1515 // else' case. There is an instruction before the branch.
1516 StoreInst *OtherStore = nullptr;
1517 if (OtherBr->isUnconditional()) {
1518 --BBI;
1519 // Skip over debugging info.
1520 while (isa<DbgInfoIntrinsic>(BBI) ||
1521 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1522 if (BBI==OtherBB->begin())
1523 return false;
1524 --BBI;
1526 // If this isn't a store, isn't a store to the same location, or is not the
1527 // right kind of store, bail out.
1528 OtherStore = dyn_cast<StoreInst>(BBI);
1529 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1530 !SI.isSameOperationAs(OtherStore))
1531 return false;
1532 } else {
1533 // Otherwise, the other block ended with a conditional branch. If one of the
1534 // destinations is StoreBB, then we have the if/then case.
1535 if (OtherBr->getSuccessor(0) != StoreBB &&
1536 OtherBr->getSuccessor(1) != StoreBB)
1537 return false;
1539 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1540 // if/then triangle. See if there is a store to the same ptr as SI that
1541 // lives in OtherBB.
1542 for (;; --BBI) {
1543 // Check to see if we find the matching store.
1544 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1545 if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1546 !SI.isSameOperationAs(OtherStore))
1547 return false;
1548 break;
1550 // If we find something that may be using or overwriting the stored
1551 // value, or if we run out of instructions, we can't do the transform.
1552 if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1553 BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1554 return false;
1557 // In order to eliminate the store in OtherBr, we have to make sure nothing
1558 // reads or overwrites the stored value in StoreBB.
1559 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1560 // FIXME: This should really be AA driven.
1561 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1562 return false;
1566 // Insert a PHI node now if we need it.
1567 Value *MergedVal = OtherStore->getOperand(0);
1568 // The debug locations of the original instructions might differ. Merge them.
1569 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1570 OtherStore->getDebugLoc());
1571 if (MergedVal != SI.getOperand(0)) {
1572 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1573 PN->addIncoming(SI.getOperand(0), SI.getParent());
1574 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1575 MergedVal = InsertNewInstBefore(PN, DestBB->front());
1576 PN->setDebugLoc(MergedLoc);
1579 // Advance to a place where it is safe to insert the new store and insert it.
1580 BBI = DestBB->getFirstInsertionPt();
1581 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1582 SI.isVolatile(), SI.getAlignment(),
1583 SI.getOrdering(), SI.getSyncScopeID());
1584 InsertNewInstBefore(NewSI, *BBI);
1585 NewSI->setDebugLoc(MergedLoc);
1587 // If the two stores had AA tags, merge them.
1588 AAMDNodes AATags;
1589 SI.getAAMetadata(AATags);
1590 if (AATags) {
1591 OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1592 NewSI->setAAMetadata(AATags);
1595 // Nuke the old stores.
1596 eraseInstFromFunction(SI);
1597 eraseInstFromFunction(*OtherStore);
1598 return true;