[llvm-objdump] - Remove one overload of reportError. NFCI.
[llvm-complete.git] / lib / Transforms / Instrumentation / MemorySanitizer.cpp
blobb25cbed1bb021aacc6aa9fc8e3652222fb62f1a7
1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 /// Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 /// Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91 ///
92 /// Instrumenting inline assembly.
93 ///
94 /// For inline assembly code LLVM has little idea about which memory locations
95 /// become initialized depending on the arguments. It can be possible to figure
96 /// out which arguments are meant to point to inputs and outputs, but the
97 /// actual semantics can be only visible at runtime. In the Linux kernel it's
98 /// also possible that the arguments only indicate the offset for a base taken
99 /// from a segment register, so it's dangerous to treat any asm() arguments as
100 /// pointers. We take a conservative approach generating calls to
101 /// __msan_instrument_asm_store(ptr, size)
102 /// , which defer the memory unpoisoning to the runtime library.
103 /// The latter can perform more complex address checks to figure out whether
104 /// it's safe to touch the shadow memory.
105 /// Like with atomic operations, we call __msan_instrument_asm_store() before
106 /// the assembly call, so that changes to the shadow memory will be seen by
107 /// other threads together with main memory initialization.
109 /// KernelMemorySanitizer (KMSAN) implementation.
111 /// The major differences between KMSAN and MSan instrumentation are:
112 /// - KMSAN always tracks the origins and implies msan-keep-going=true;
113 /// - KMSAN allocates shadow and origin memory for each page separately, so
114 /// there are no explicit accesses to shadow and origin in the
115 /// instrumentation.
116 /// Shadow and origin values for a particular X-byte memory location
117 /// (X=1,2,4,8) are accessed through pointers obtained via the
118 /// __msan_metadata_ptr_for_load_X(ptr)
119 /// __msan_metadata_ptr_for_store_X(ptr)
120 /// functions. The corresponding functions check that the X-byte accesses
121 /// are possible and returns the pointers to shadow and origin memory.
122 /// Arbitrary sized accesses are handled with:
123 /// __msan_metadata_ptr_for_load_n(ptr, size)
124 /// __msan_metadata_ptr_for_store_n(ptr, size);
125 /// - TLS variables are stored in a single per-task struct. A call to a
126 /// function __msan_get_context_state() returning a pointer to that struct
127 /// is inserted into every instrumented function before the entry block;
128 /// - __msan_warning() takes a 32-bit origin parameter;
129 /// - local variables are poisoned with __msan_poison_alloca() upon function
130 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the
131 /// function;
132 /// - the pass doesn't declare any global variables or add global constructors
133 /// to the translation unit.
135 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm
136 /// calls, making sure we're on the safe side wrt. possible false positives.
138 /// KernelMemorySanitizer only supports X86_64 at the moment.
140 //===----------------------------------------------------------------------===//
142 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
143 #include "llvm/ADT/APInt.h"
144 #include "llvm/ADT/ArrayRef.h"
145 #include "llvm/ADT/DepthFirstIterator.h"
146 #include "llvm/ADT/SmallSet.h"
147 #include "llvm/ADT/SmallString.h"
148 #include "llvm/ADT/SmallVector.h"
149 #include "llvm/ADT/StringExtras.h"
150 #include "llvm/ADT/StringRef.h"
151 #include "llvm/ADT/Triple.h"
152 #include "llvm/Analysis/TargetLibraryInfo.h"
153 #include "llvm/IR/Argument.h"
154 #include "llvm/IR/Attributes.h"
155 #include "llvm/IR/BasicBlock.h"
156 #include "llvm/IR/CallSite.h"
157 #include "llvm/IR/CallingConv.h"
158 #include "llvm/IR/Constant.h"
159 #include "llvm/IR/Constants.h"
160 #include "llvm/IR/DataLayout.h"
161 #include "llvm/IR/DerivedTypes.h"
162 #include "llvm/IR/Function.h"
163 #include "llvm/IR/GlobalValue.h"
164 #include "llvm/IR/GlobalVariable.h"
165 #include "llvm/IR/IRBuilder.h"
166 #include "llvm/IR/InlineAsm.h"
167 #include "llvm/IR/InstVisitor.h"
168 #include "llvm/IR/InstrTypes.h"
169 #include "llvm/IR/Instruction.h"
170 #include "llvm/IR/Instructions.h"
171 #include "llvm/IR/IntrinsicInst.h"
172 #include "llvm/IR/Intrinsics.h"
173 #include "llvm/IR/LLVMContext.h"
174 #include "llvm/IR/MDBuilder.h"
175 #include "llvm/IR/Module.h"
176 #include "llvm/IR/Type.h"
177 #include "llvm/IR/Value.h"
178 #include "llvm/IR/ValueMap.h"
179 #include "llvm/Pass.h"
180 #include "llvm/Support/AtomicOrdering.h"
181 #include "llvm/Support/Casting.h"
182 #include "llvm/Support/CommandLine.h"
183 #include "llvm/Support/Compiler.h"
184 #include "llvm/Support/Debug.h"
185 #include "llvm/Support/ErrorHandling.h"
186 #include "llvm/Support/MathExtras.h"
187 #include "llvm/Support/raw_ostream.h"
188 #include "llvm/Transforms/Instrumentation.h"
189 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
190 #include "llvm/Transforms/Utils/Local.h"
191 #include "llvm/Transforms/Utils/ModuleUtils.h"
192 #include <algorithm>
193 #include <cassert>
194 #include <cstddef>
195 #include <cstdint>
196 #include <memory>
197 #include <string>
198 #include <tuple>
200 using namespace llvm;
202 #define DEBUG_TYPE "msan"
204 static const unsigned kOriginSize = 4;
205 static const unsigned kMinOriginAlignment = 4;
206 static const unsigned kShadowTLSAlignment = 8;
208 // These constants must be kept in sync with the ones in msan.h.
209 static const unsigned kParamTLSSize = 800;
210 static const unsigned kRetvalTLSSize = 800;
212 // Accesses sizes are powers of two: 1, 2, 4, 8.
213 static const size_t kNumberOfAccessSizes = 4;
215 /// Track origins of uninitialized values.
217 /// Adds a section to MemorySanitizer report that points to the allocation
218 /// (stack or heap) the uninitialized bits came from originally.
219 static cl::opt<int> ClTrackOrigins("msan-track-origins",
220 cl::desc("Track origins (allocation sites) of poisoned memory"),
221 cl::Hidden, cl::init(0));
223 static cl::opt<bool> ClKeepGoing("msan-keep-going",
224 cl::desc("keep going after reporting a UMR"),
225 cl::Hidden, cl::init(false));
227 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
228 cl::desc("poison uninitialized stack variables"),
229 cl::Hidden, cl::init(true));
231 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
232 cl::desc("poison uninitialized stack variables with a call"),
233 cl::Hidden, cl::init(false));
235 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
236 cl::desc("poison uninitialized stack variables with the given pattern"),
237 cl::Hidden, cl::init(0xff));
239 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
240 cl::desc("poison undef temps"),
241 cl::Hidden, cl::init(true));
243 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
244 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
245 cl::Hidden, cl::init(true));
247 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
248 cl::desc("exact handling of relational integer ICmp"),
249 cl::Hidden, cl::init(false));
251 static cl::opt<bool> ClHandleLifetimeIntrinsics(
252 "msan-handle-lifetime-intrinsics",
253 cl::desc(
254 "when possible, poison scoped variables at the beginning of the scope "
255 "(slower, but more precise)"),
256 cl::Hidden, cl::init(true));
258 // When compiling the Linux kernel, we sometimes see false positives related to
259 // MSan being unable to understand that inline assembly calls may initialize
260 // local variables.
261 // This flag makes the compiler conservatively unpoison every memory location
262 // passed into an assembly call. Note that this may cause false positives.
263 // Because it's impossible to figure out the array sizes, we can only unpoison
264 // the first sizeof(type) bytes for each type* pointer.
265 // The instrumentation is only enabled in KMSAN builds, and only if
266 // -msan-handle-asm-conservative is on. This is done because we may want to
267 // quickly disable assembly instrumentation when it breaks.
268 static cl::opt<bool> ClHandleAsmConservative(
269 "msan-handle-asm-conservative",
270 cl::desc("conservative handling of inline assembly"), cl::Hidden,
271 cl::init(true));
273 // This flag controls whether we check the shadow of the address
274 // operand of load or store. Such bugs are very rare, since load from
275 // a garbage address typically results in SEGV, but still happen
276 // (e.g. only lower bits of address are garbage, or the access happens
277 // early at program startup where malloc-ed memory is more likely to
278 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
279 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
280 cl::desc("report accesses through a pointer which has poisoned shadow"),
281 cl::Hidden, cl::init(true));
283 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
284 cl::desc("print out instructions with default strict semantics"),
285 cl::Hidden, cl::init(false));
287 static cl::opt<int> ClInstrumentationWithCallThreshold(
288 "msan-instrumentation-with-call-threshold",
289 cl::desc(
290 "If the function being instrumented requires more than "
291 "this number of checks and origin stores, use callbacks instead of "
292 "inline checks (-1 means never use callbacks)."),
293 cl::Hidden, cl::init(3500));
295 static cl::opt<bool>
296 ClEnableKmsan("msan-kernel",
297 cl::desc("Enable KernelMemorySanitizer instrumentation"),
298 cl::Hidden, cl::init(false));
300 // This is an experiment to enable handling of cases where shadow is a non-zero
301 // compile-time constant. For some unexplainable reason they were silently
302 // ignored in the instrumentation.
303 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
304 cl::desc("Insert checks for constant shadow values"),
305 cl::Hidden, cl::init(false));
307 // This is off by default because of a bug in gold:
308 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
309 static cl::opt<bool> ClWithComdat("msan-with-comdat",
310 cl::desc("Place MSan constructors in comdat sections"),
311 cl::Hidden, cl::init(false));
313 // These options allow to specify custom memory map parameters
314 // See MemoryMapParams for details.
315 static cl::opt<uint64_t> ClAndMask("msan-and-mask",
316 cl::desc("Define custom MSan AndMask"),
317 cl::Hidden, cl::init(0));
319 static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
320 cl::desc("Define custom MSan XorMask"),
321 cl::Hidden, cl::init(0));
323 static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
324 cl::desc("Define custom MSan ShadowBase"),
325 cl::Hidden, cl::init(0));
327 static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
328 cl::desc("Define custom MSan OriginBase"),
329 cl::Hidden, cl::init(0));
331 static const char *const kMsanModuleCtorName = "msan.module_ctor";
332 static const char *const kMsanInitName = "__msan_init";
334 namespace {
336 // Memory map parameters used in application-to-shadow address calculation.
337 // Offset = (Addr & ~AndMask) ^ XorMask
338 // Shadow = ShadowBase + Offset
339 // Origin = OriginBase + Offset
340 struct MemoryMapParams {
341 uint64_t AndMask;
342 uint64_t XorMask;
343 uint64_t ShadowBase;
344 uint64_t OriginBase;
347 struct PlatformMemoryMapParams {
348 const MemoryMapParams *bits32;
349 const MemoryMapParams *bits64;
352 } // end anonymous namespace
354 // i386 Linux
355 static const MemoryMapParams Linux_I386_MemoryMapParams = {
356 0x000080000000, // AndMask
357 0, // XorMask (not used)
358 0, // ShadowBase (not used)
359 0x000040000000, // OriginBase
362 // x86_64 Linux
363 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
364 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING
365 0x400000000000, // AndMask
366 0, // XorMask (not used)
367 0, // ShadowBase (not used)
368 0x200000000000, // OriginBase
369 #else
370 0, // AndMask (not used)
371 0x500000000000, // XorMask
372 0, // ShadowBase (not used)
373 0x100000000000, // OriginBase
374 #endif
377 // mips64 Linux
378 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
379 0, // AndMask (not used)
380 0x008000000000, // XorMask
381 0, // ShadowBase (not used)
382 0x002000000000, // OriginBase
385 // ppc64 Linux
386 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
387 0xE00000000000, // AndMask
388 0x100000000000, // XorMask
389 0x080000000000, // ShadowBase
390 0x1C0000000000, // OriginBase
393 // aarch64 Linux
394 static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
395 0, // AndMask (not used)
396 0x06000000000, // XorMask
397 0, // ShadowBase (not used)
398 0x01000000000, // OriginBase
401 // i386 FreeBSD
402 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
403 0x000180000000, // AndMask
404 0x000040000000, // XorMask
405 0x000020000000, // ShadowBase
406 0x000700000000, // OriginBase
409 // x86_64 FreeBSD
410 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
411 0xc00000000000, // AndMask
412 0x200000000000, // XorMask
413 0x100000000000, // ShadowBase
414 0x380000000000, // OriginBase
417 // x86_64 NetBSD
418 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
419 0, // AndMask
420 0x500000000000, // XorMask
421 0, // ShadowBase
422 0x100000000000, // OriginBase
425 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
426 &Linux_I386_MemoryMapParams,
427 &Linux_X86_64_MemoryMapParams,
430 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
431 nullptr,
432 &Linux_MIPS64_MemoryMapParams,
435 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
436 nullptr,
437 &Linux_PowerPC64_MemoryMapParams,
440 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
441 nullptr,
442 &Linux_AArch64_MemoryMapParams,
445 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
446 &FreeBSD_I386_MemoryMapParams,
447 &FreeBSD_X86_64_MemoryMapParams,
450 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
451 nullptr,
452 &NetBSD_X86_64_MemoryMapParams,
455 namespace {
457 /// Instrument functions of a module to detect uninitialized reads.
459 /// Instantiating MemorySanitizer inserts the msan runtime library API function
460 /// declarations into the module if they don't exist already. Instantiating
461 /// ensures the __msan_init function is in the list of global constructors for
462 /// the module.
463 class MemorySanitizer {
464 public:
465 MemorySanitizer(Module &M, MemorySanitizerOptions Options) {
466 this->CompileKernel =
467 ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : Options.Kernel;
468 if (ClTrackOrigins.getNumOccurrences() > 0)
469 this->TrackOrigins = ClTrackOrigins;
470 else
471 this->TrackOrigins = this->CompileKernel ? 2 : Options.TrackOrigins;
472 this->Recover = ClKeepGoing.getNumOccurrences() > 0
473 ? ClKeepGoing
474 : (this->CompileKernel | Options.Recover);
475 initializeModule(M);
478 // MSan cannot be moved or copied because of MapParams.
479 MemorySanitizer(MemorySanitizer &&) = delete;
480 MemorySanitizer &operator=(MemorySanitizer &&) = delete;
481 MemorySanitizer(const MemorySanitizer &) = delete;
482 MemorySanitizer &operator=(const MemorySanitizer &) = delete;
484 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
486 private:
487 friend struct MemorySanitizerVisitor;
488 friend struct VarArgAMD64Helper;
489 friend struct VarArgMIPS64Helper;
490 friend struct VarArgAArch64Helper;
491 friend struct VarArgPowerPC64Helper;
493 void initializeModule(Module &M);
494 void initializeCallbacks(Module &M);
495 void createKernelApi(Module &M);
496 void createUserspaceApi(Module &M);
498 /// True if we're compiling the Linux kernel.
499 bool CompileKernel;
500 /// Track origins (allocation points) of uninitialized values.
501 int TrackOrigins;
502 bool Recover;
504 LLVMContext *C;
505 Type *IntptrTy;
506 Type *OriginTy;
508 // XxxTLS variables represent the per-thread state in MSan and per-task state
509 // in KMSAN.
510 // For the userspace these point to thread-local globals. In the kernel land
511 // they point to the members of a per-task struct obtained via a call to
512 // __msan_get_context_state().
514 /// Thread-local shadow storage for function parameters.
515 Value *ParamTLS;
517 /// Thread-local origin storage for function parameters.
518 Value *ParamOriginTLS;
520 /// Thread-local shadow storage for function return value.
521 Value *RetvalTLS;
523 /// Thread-local origin storage for function return value.
524 Value *RetvalOriginTLS;
526 /// Thread-local shadow storage for in-register va_arg function
527 /// parameters (x86_64-specific).
528 Value *VAArgTLS;
530 /// Thread-local shadow storage for in-register va_arg function
531 /// parameters (x86_64-specific).
532 Value *VAArgOriginTLS;
534 /// Thread-local shadow storage for va_arg overflow area
535 /// (x86_64-specific).
536 Value *VAArgOverflowSizeTLS;
538 /// Thread-local space used to pass origin value to the UMR reporting
539 /// function.
540 Value *OriginTLS;
542 /// Are the instrumentation callbacks set up?
543 bool CallbacksInitialized = false;
545 /// The run-time callback to print a warning.
546 FunctionCallee WarningFn;
548 // These arrays are indexed by log2(AccessSize).
549 FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
550 FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
552 /// Run-time helper that generates a new origin value for a stack
553 /// allocation.
554 FunctionCallee MsanSetAllocaOrigin4Fn;
556 /// Run-time helper that poisons stack on function entry.
557 FunctionCallee MsanPoisonStackFn;
559 /// Run-time helper that records a store (or any event) of an
560 /// uninitialized value and returns an updated origin id encoding this info.
561 FunctionCallee MsanChainOriginFn;
563 /// MSan runtime replacements for memmove, memcpy and memset.
564 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
566 /// KMSAN callback for task-local function argument shadow.
567 StructType *MsanContextStateTy;
568 FunctionCallee MsanGetContextStateFn;
570 /// Functions for poisoning/unpoisoning local variables
571 FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
573 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
574 /// pointers.
575 FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
576 FunctionCallee MsanMetadataPtrForLoad_1_8[4];
577 FunctionCallee MsanMetadataPtrForStore_1_8[4];
578 FunctionCallee MsanInstrumentAsmStoreFn;
580 /// Helper to choose between different MsanMetadataPtrXxx().
581 FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
583 /// Memory map parameters used in application-to-shadow calculation.
584 const MemoryMapParams *MapParams;
586 /// Custom memory map parameters used when -msan-shadow-base or
587 // -msan-origin-base is provided.
588 MemoryMapParams CustomMapParams;
590 MDNode *ColdCallWeights;
592 /// Branch weights for origin store.
593 MDNode *OriginStoreWeights;
595 /// An empty volatile inline asm that prevents callback merge.
596 InlineAsm *EmptyAsm;
598 Function *MsanCtorFunction;
601 /// A legacy function pass for msan instrumentation.
603 /// Instruments functions to detect unitialized reads.
604 struct MemorySanitizerLegacyPass : public FunctionPass {
605 // Pass identification, replacement for typeid.
606 static char ID;
608 MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
609 : FunctionPass(ID), Options(Options) {}
610 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
612 void getAnalysisUsage(AnalysisUsage &AU) const override {
613 AU.addRequired<TargetLibraryInfoWrapperPass>();
616 bool runOnFunction(Function &F) override {
617 return MSan->sanitizeFunction(
618 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
620 bool doInitialization(Module &M) override;
622 Optional<MemorySanitizer> MSan;
623 MemorySanitizerOptions Options;
626 } // end anonymous namespace
628 PreservedAnalyses MemorySanitizerPass::run(Function &F,
629 FunctionAnalysisManager &FAM) {
630 MemorySanitizer Msan(*F.getParent(), Options);
631 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
632 return PreservedAnalyses::none();
633 return PreservedAnalyses::all();
636 char MemorySanitizerLegacyPass::ID = 0;
638 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
639 "MemorySanitizer: detects uninitialized reads.", false,
640 false)
641 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
642 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
643 "MemorySanitizer: detects uninitialized reads.", false,
644 false)
646 FunctionPass *
647 llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
648 return new MemorySanitizerLegacyPass(Options);
651 /// Create a non-const global initialized with the given string.
653 /// Creates a writable global for Str so that we can pass it to the
654 /// run-time lib. Runtime uses first 4 bytes of the string to store the
655 /// frame ID, so the string needs to be mutable.
656 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
657 StringRef Str) {
658 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
659 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
660 GlobalValue::PrivateLinkage, StrConst, "");
663 /// Create KMSAN API callbacks.
664 void MemorySanitizer::createKernelApi(Module &M) {
665 IRBuilder<> IRB(*C);
667 // These will be initialized in insertKmsanPrologue().
668 RetvalTLS = nullptr;
669 RetvalOriginTLS = nullptr;
670 ParamTLS = nullptr;
671 ParamOriginTLS = nullptr;
672 VAArgTLS = nullptr;
673 VAArgOriginTLS = nullptr;
674 VAArgOverflowSizeTLS = nullptr;
675 // OriginTLS is unused in the kernel.
676 OriginTLS = nullptr;
678 // __msan_warning() in the kernel takes an origin.
679 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
680 IRB.getInt32Ty());
681 // Requests the per-task context state (kmsan_context_state*) from the
682 // runtime library.
683 MsanContextStateTy = StructType::get(
684 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
685 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
686 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
687 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
688 IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
689 OriginTy);
690 MsanGetContextStateFn = M.getOrInsertFunction(
691 "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
693 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
694 PointerType::get(IRB.getInt32Ty(), 0));
696 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
697 std::string name_load =
698 "__msan_metadata_ptr_for_load_" + std::to_string(size);
699 std::string name_store =
700 "__msan_metadata_ptr_for_store_" + std::to_string(size);
701 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
702 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
703 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
704 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
707 MsanMetadataPtrForLoadN = M.getOrInsertFunction(
708 "__msan_metadata_ptr_for_load_n", RetTy,
709 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
710 MsanMetadataPtrForStoreN = M.getOrInsertFunction(
711 "__msan_metadata_ptr_for_store_n", RetTy,
712 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
714 // Functions for poisoning and unpoisoning memory.
715 MsanPoisonAllocaFn =
716 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
717 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
718 MsanUnpoisonAllocaFn = M.getOrInsertFunction(
719 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
722 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
723 return M.getOrInsertGlobal(Name, Ty, [&] {
724 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
725 nullptr, Name, nullptr,
726 GlobalVariable::InitialExecTLSModel);
730 /// Insert declarations for userspace-specific functions and globals.
731 void MemorySanitizer::createUserspaceApi(Module &M) {
732 IRBuilder<> IRB(*C);
733 // Create the callback.
734 // FIXME: this function should have "Cold" calling conv,
735 // which is not yet implemented.
736 StringRef WarningFnName = Recover ? "__msan_warning"
737 : "__msan_warning_noreturn";
738 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
740 // Create the global TLS variables.
741 RetvalTLS =
742 getOrInsertGlobal(M, "__msan_retval_tls",
743 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
745 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
747 ParamTLS =
748 getOrInsertGlobal(M, "__msan_param_tls",
749 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
751 ParamOriginTLS =
752 getOrInsertGlobal(M, "__msan_param_origin_tls",
753 ArrayType::get(OriginTy, kParamTLSSize / 4));
755 VAArgTLS =
756 getOrInsertGlobal(M, "__msan_va_arg_tls",
757 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
759 VAArgOriginTLS =
760 getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
761 ArrayType::get(OriginTy, kParamTLSSize / 4));
763 VAArgOverflowSizeTLS =
764 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
765 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
767 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
768 AccessSizeIndex++) {
769 unsigned AccessSize = 1 << AccessSizeIndex;
770 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
771 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
772 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
773 IRB.getInt32Ty());
775 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
776 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
777 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
778 IRB.getInt8PtrTy(), IRB.getInt32Ty());
781 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
782 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
783 IRB.getInt8PtrTy(), IntptrTy);
784 MsanPoisonStackFn =
785 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
786 IRB.getInt8PtrTy(), IntptrTy);
789 /// Insert extern declaration of runtime-provided functions and globals.
790 void MemorySanitizer::initializeCallbacks(Module &M) {
791 // Only do this once.
792 if (CallbacksInitialized)
793 return;
795 IRBuilder<> IRB(*C);
796 // Initialize callbacks that are common for kernel and userspace
797 // instrumentation.
798 MsanChainOriginFn = M.getOrInsertFunction(
799 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
800 MemmoveFn = M.getOrInsertFunction(
801 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
802 IRB.getInt8PtrTy(), IntptrTy);
803 MemcpyFn = M.getOrInsertFunction(
804 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
805 IntptrTy);
806 MemsetFn = M.getOrInsertFunction(
807 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
808 IntptrTy);
809 // We insert an empty inline asm after __msan_report* to avoid callback merge.
810 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
811 StringRef(""), StringRef(""),
812 /*hasSideEffects=*/true);
814 MsanInstrumentAsmStoreFn =
815 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
816 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
818 if (CompileKernel) {
819 createKernelApi(M);
820 } else {
821 createUserspaceApi(M);
823 CallbacksInitialized = true;
826 FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
827 int size) {
828 FunctionCallee *Fns =
829 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
830 switch (size) {
831 case 1:
832 return Fns[0];
833 case 2:
834 return Fns[1];
835 case 4:
836 return Fns[2];
837 case 8:
838 return Fns[3];
839 default:
840 return nullptr;
844 /// Module-level initialization.
846 /// inserts a call to __msan_init to the module's constructor list.
847 void MemorySanitizer::initializeModule(Module &M) {
848 auto &DL = M.getDataLayout();
850 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
851 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
852 // Check the overrides first
853 if (ShadowPassed || OriginPassed) {
854 CustomMapParams.AndMask = ClAndMask;
855 CustomMapParams.XorMask = ClXorMask;
856 CustomMapParams.ShadowBase = ClShadowBase;
857 CustomMapParams.OriginBase = ClOriginBase;
858 MapParams = &CustomMapParams;
859 } else {
860 Triple TargetTriple(M.getTargetTriple());
861 switch (TargetTriple.getOS()) {
862 case Triple::FreeBSD:
863 switch (TargetTriple.getArch()) {
864 case Triple::x86_64:
865 MapParams = FreeBSD_X86_MemoryMapParams.bits64;
866 break;
867 case Triple::x86:
868 MapParams = FreeBSD_X86_MemoryMapParams.bits32;
869 break;
870 default:
871 report_fatal_error("unsupported architecture");
873 break;
874 case Triple::NetBSD:
875 switch (TargetTriple.getArch()) {
876 case Triple::x86_64:
877 MapParams = NetBSD_X86_MemoryMapParams.bits64;
878 break;
879 default:
880 report_fatal_error("unsupported architecture");
882 break;
883 case Triple::Linux:
884 switch (TargetTriple.getArch()) {
885 case Triple::x86_64:
886 MapParams = Linux_X86_MemoryMapParams.bits64;
887 break;
888 case Triple::x86:
889 MapParams = Linux_X86_MemoryMapParams.bits32;
890 break;
891 case Triple::mips64:
892 case Triple::mips64el:
893 MapParams = Linux_MIPS_MemoryMapParams.bits64;
894 break;
895 case Triple::ppc64:
896 case Triple::ppc64le:
897 MapParams = Linux_PowerPC_MemoryMapParams.bits64;
898 break;
899 case Triple::aarch64:
900 case Triple::aarch64_be:
901 MapParams = Linux_ARM_MemoryMapParams.bits64;
902 break;
903 default:
904 report_fatal_error("unsupported architecture");
906 break;
907 default:
908 report_fatal_error("unsupported operating system");
912 C = &(M.getContext());
913 IRBuilder<> IRB(*C);
914 IntptrTy = IRB.getIntPtrTy(DL);
915 OriginTy = IRB.getInt32Ty();
917 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
918 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
920 if (!CompileKernel) {
921 std::tie(MsanCtorFunction, std::ignore) =
922 getOrCreateSanitizerCtorAndInitFunctions(
923 M, kMsanModuleCtorName, kMsanInitName,
924 /*InitArgTypes=*/{},
925 /*InitArgs=*/{},
926 // This callback is invoked when the functions are created the first
927 // time. Hook them into the global ctors list in that case:
928 [&](Function *Ctor, FunctionCallee) {
929 if (!ClWithComdat) {
930 appendToGlobalCtors(M, Ctor, 0);
931 return;
933 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
934 Ctor->setComdat(MsanCtorComdat);
935 appendToGlobalCtors(M, Ctor, 0, Ctor);
938 if (TrackOrigins)
939 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
940 return new GlobalVariable(
941 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
942 IRB.getInt32(TrackOrigins), "__msan_track_origins");
945 if (Recover)
946 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
947 return new GlobalVariable(M, IRB.getInt32Ty(), true,
948 GlobalValue::WeakODRLinkage,
949 IRB.getInt32(Recover), "__msan_keep_going");
954 bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
955 MSan.emplace(M, Options);
956 return true;
959 namespace {
961 /// A helper class that handles instrumentation of VarArg
962 /// functions on a particular platform.
964 /// Implementations are expected to insert the instrumentation
965 /// necessary to propagate argument shadow through VarArg function
966 /// calls. Visit* methods are called during an InstVisitor pass over
967 /// the function, and should avoid creating new basic blocks. A new
968 /// instance of this class is created for each instrumented function.
969 struct VarArgHelper {
970 virtual ~VarArgHelper() = default;
972 /// Visit a CallSite.
973 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
975 /// Visit a va_start call.
976 virtual void visitVAStartInst(VAStartInst &I) = 0;
978 /// Visit a va_copy call.
979 virtual void visitVACopyInst(VACopyInst &I) = 0;
981 /// Finalize function instrumentation.
983 /// This method is called after visiting all interesting (see above)
984 /// instructions in a function.
985 virtual void finalizeInstrumentation() = 0;
988 struct MemorySanitizerVisitor;
990 } // end anonymous namespace
992 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
993 MemorySanitizerVisitor &Visitor);
995 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
996 if (TypeSize <= 8) return 0;
997 return Log2_32_Ceil((TypeSize + 7) / 8);
1000 namespace {
1002 /// This class does all the work for a given function. Store and Load
1003 /// instructions store and load corresponding shadow and origin
1004 /// values. Most instructions propagate shadow from arguments to their
1005 /// return values. Certain instructions (most importantly, BranchInst)
1006 /// test their argument shadow and print reports (with a runtime call) if it's
1007 /// non-zero.
1008 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
1009 Function &F;
1010 MemorySanitizer &MS;
1011 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
1012 ValueMap<Value*, Value*> ShadowMap, OriginMap;
1013 std::unique_ptr<VarArgHelper> VAHelper;
1014 const TargetLibraryInfo *TLI;
1015 BasicBlock *ActualFnStart;
1017 // The following flags disable parts of MSan instrumentation based on
1018 // blacklist contents and command-line options.
1019 bool InsertChecks;
1020 bool PropagateShadow;
1021 bool PoisonStack;
1022 bool PoisonUndef;
1023 bool CheckReturnValue;
1025 struct ShadowOriginAndInsertPoint {
1026 Value *Shadow;
1027 Value *Origin;
1028 Instruction *OrigIns;
1030 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
1031 : Shadow(S), Origin(O), OrigIns(I) {}
1033 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
1034 bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
1035 SmallSet<AllocaInst *, 16> AllocaSet;
1036 SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
1037 SmallVector<StoreInst *, 16> StoreList;
1039 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
1040 const TargetLibraryInfo &TLI)
1041 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
1042 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
1043 InsertChecks = SanitizeFunction;
1044 PropagateShadow = SanitizeFunction;
1045 PoisonStack = SanitizeFunction && ClPoisonStack;
1046 PoisonUndef = SanitizeFunction && ClPoisonUndef;
1047 // FIXME: Consider using SpecialCaseList to specify a list of functions that
1048 // must always return fully initialized values. For now, we hardcode "main".
1049 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
1051 MS.initializeCallbacks(*F.getParent());
1052 if (MS.CompileKernel)
1053 ActualFnStart = insertKmsanPrologue(F);
1054 else
1055 ActualFnStart = &F.getEntryBlock();
1057 LLVM_DEBUG(if (!InsertChecks) dbgs()
1058 << "MemorySanitizer is not inserting checks into '"
1059 << F.getName() << "'\n");
1062 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
1063 if (MS.TrackOrigins <= 1) return V;
1064 return IRB.CreateCall(MS.MsanChainOriginFn, V);
1067 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
1068 const DataLayout &DL = F.getParent()->getDataLayout();
1069 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1070 if (IntptrSize == kOriginSize) return Origin;
1071 assert(IntptrSize == kOriginSize * 2);
1072 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
1073 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
1076 /// Fill memory range with the given origin value.
1077 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
1078 unsigned Size, unsigned Alignment) {
1079 const DataLayout &DL = F.getParent()->getDataLayout();
1080 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
1081 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
1082 assert(IntptrAlignment >= kMinOriginAlignment);
1083 assert(IntptrSize >= kOriginSize);
1085 unsigned Ofs = 0;
1086 unsigned CurrentAlignment = Alignment;
1087 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
1088 Value *IntptrOrigin = originToIntptr(IRB, Origin);
1089 Value *IntptrOriginPtr =
1090 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
1091 for (unsigned i = 0; i < Size / IntptrSize; ++i) {
1092 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
1093 : IntptrOriginPtr;
1094 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
1095 Ofs += IntptrSize / kOriginSize;
1096 CurrentAlignment = IntptrAlignment;
1100 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
1101 Value *GEP =
1102 i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
1103 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
1104 CurrentAlignment = kMinOriginAlignment;
1108 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
1109 Value *OriginPtr, unsigned Alignment, bool AsCall) {
1110 const DataLayout &DL = F.getParent()->getDataLayout();
1111 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1112 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
1113 if (Shadow->getType()->isAggregateType()) {
1114 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1115 OriginAlignment);
1116 } else {
1117 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1118 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
1119 if (ConstantShadow) {
1120 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
1121 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
1122 OriginAlignment);
1123 return;
1126 unsigned TypeSizeInBits =
1127 DL.getTypeSizeInBits(ConvertedShadow->getType());
1128 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1129 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1130 FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
1131 Value *ConvertedShadow2 = IRB.CreateZExt(
1132 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1133 IRB.CreateCall(Fn, {ConvertedShadow2,
1134 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
1135 Origin});
1136 } else {
1137 Value *Cmp = IRB.CreateICmpNE(
1138 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
1139 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1140 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
1141 IRBuilder<> IRBNew(CheckTerm);
1142 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
1143 OriginAlignment);
1148 void materializeStores(bool InstrumentWithCalls) {
1149 for (StoreInst *SI : StoreList) {
1150 IRBuilder<> IRB(SI);
1151 Value *Val = SI->getValueOperand();
1152 Value *Addr = SI->getPointerOperand();
1153 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
1154 Value *ShadowPtr, *OriginPtr;
1155 Type *ShadowTy = Shadow->getType();
1156 unsigned Alignment = SI->getAlignment();
1157 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1158 std::tie(ShadowPtr, OriginPtr) =
1159 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
1161 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
1162 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
1163 (void)NewSI;
1165 if (SI->isAtomic())
1166 SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
1168 if (MS.TrackOrigins && !SI->isAtomic())
1169 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
1170 OriginAlignment, InstrumentWithCalls);
1174 /// Helper function to insert a warning at IRB's current insert point.
1175 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
1176 if (!Origin)
1177 Origin = (Value *)IRB.getInt32(0);
1178 if (MS.CompileKernel) {
1179 IRB.CreateCall(MS.WarningFn, Origin);
1180 } else {
1181 if (MS.TrackOrigins) {
1182 IRB.CreateStore(Origin, MS.OriginTLS);
1184 IRB.CreateCall(MS.WarningFn, {});
1186 IRB.CreateCall(MS.EmptyAsm, {});
1187 // FIXME: Insert UnreachableInst if !MS.Recover?
1188 // This may invalidate some of the following checks and needs to be done
1189 // at the very end.
1192 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
1193 bool AsCall) {
1194 IRBuilder<> IRB(OrigIns);
1195 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
1196 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
1197 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
1199 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
1200 if (ConstantShadow) {
1201 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
1202 insertWarningFn(IRB, Origin);
1204 return;
1207 const DataLayout &DL = OrigIns->getModule()->getDataLayout();
1209 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
1210 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
1211 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
1212 FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
1213 Value *ConvertedShadow2 =
1214 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
1215 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
1216 ? Origin
1217 : (Value *)IRB.getInt32(0)});
1218 } else {
1219 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
1220 getCleanShadow(ConvertedShadow), "_mscmp");
1221 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1222 Cmp, OrigIns,
1223 /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
1225 IRB.SetInsertPoint(CheckTerm);
1226 insertWarningFn(IRB, Origin);
1227 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
1231 void materializeChecks(bool InstrumentWithCalls) {
1232 for (const auto &ShadowData : InstrumentationList) {
1233 Instruction *OrigIns = ShadowData.OrigIns;
1234 Value *Shadow = ShadowData.Shadow;
1235 Value *Origin = ShadowData.Origin;
1236 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
1238 LLVM_DEBUG(dbgs() << "DONE:\n" << F);
1241 BasicBlock *insertKmsanPrologue(Function &F) {
1242 BasicBlock *ret =
1243 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
1244 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
1245 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
1246 Constant *Zero = IRB.getInt32(0);
1247 MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1248 {Zero, IRB.getInt32(0)}, "param_shadow");
1249 MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1250 {Zero, IRB.getInt32(1)}, "retval_shadow");
1251 MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1252 {Zero, IRB.getInt32(2)}, "va_arg_shadow");
1253 MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1254 {Zero, IRB.getInt32(3)}, "va_arg_origin");
1255 MS.VAArgOverflowSizeTLS =
1256 IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1257 {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
1258 MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1259 {Zero, IRB.getInt32(5)}, "param_origin");
1260 MS.RetvalOriginTLS =
1261 IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
1262 {Zero, IRB.getInt32(6)}, "retval_origin");
1263 return ret;
1266 /// Add MemorySanitizer instrumentation to a function.
1267 bool runOnFunction() {
1268 // In the presence of unreachable blocks, we may see Phi nodes with
1269 // incoming nodes from such blocks. Since InstVisitor skips unreachable
1270 // blocks, such nodes will not have any shadow value associated with them.
1271 // It's easier to remove unreachable blocks than deal with missing shadow.
1272 removeUnreachableBlocks(F);
1274 // Iterate all BBs in depth-first order and create shadow instructions
1275 // for all instructions (where applicable).
1276 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
1277 for (BasicBlock *BB : depth_first(ActualFnStart))
1278 visit(*BB);
1280 // Finalize PHI nodes.
1281 for (PHINode *PN : ShadowPHINodes) {
1282 PHINode *PNS = cast<PHINode>(getShadow(PN));
1283 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
1284 size_t NumValues = PN->getNumIncomingValues();
1285 for (size_t v = 0; v < NumValues; v++) {
1286 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
1287 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
1291 VAHelper->finalizeInstrumentation();
1293 // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
1294 // instrumenting only allocas.
1295 if (InstrumentLifetimeStart) {
1296 for (auto Item : LifetimeStartList) {
1297 instrumentAlloca(*Item.second, Item.first);
1298 AllocaSet.erase(Item.second);
1301 // Poison the allocas for which we didn't instrument the corresponding
1302 // lifetime intrinsics.
1303 for (AllocaInst *AI : AllocaSet)
1304 instrumentAlloca(*AI);
1306 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
1307 InstrumentationList.size() + StoreList.size() >
1308 (unsigned)ClInstrumentationWithCallThreshold;
1310 // Insert shadow value checks.
1311 materializeChecks(InstrumentWithCalls);
1313 // Delayed instrumentation of StoreInst.
1314 // This may not add new address checks.
1315 materializeStores(InstrumentWithCalls);
1317 return true;
1320 /// Compute the shadow type that corresponds to a given Value.
1321 Type *getShadowTy(Value *V) {
1322 return getShadowTy(V->getType());
1325 /// Compute the shadow type that corresponds to a given Type.
1326 Type *getShadowTy(Type *OrigTy) {
1327 if (!OrigTy->isSized()) {
1328 return nullptr;
1330 // For integer type, shadow is the same as the original type.
1331 // This may return weird-sized types like i1.
1332 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
1333 return IT;
1334 const DataLayout &DL = F.getParent()->getDataLayout();
1335 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
1336 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
1337 return VectorType::get(IntegerType::get(*MS.C, EltSize),
1338 VT->getNumElements());
1340 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
1341 return ArrayType::get(getShadowTy(AT->getElementType()),
1342 AT->getNumElements());
1344 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1345 SmallVector<Type*, 4> Elements;
1346 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1347 Elements.push_back(getShadowTy(ST->getElementType(i)));
1348 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
1349 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
1350 return Res;
1352 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
1353 return IntegerType::get(*MS.C, TypeSize);
1356 /// Flatten a vector type.
1357 Type *getShadowTyNoVec(Type *ty) {
1358 if (VectorType *vt = dyn_cast<VectorType>(ty))
1359 return IntegerType::get(*MS.C, vt->getBitWidth());
1360 return ty;
1363 /// Convert a shadow value to it's flattened variant.
1364 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
1365 Type *Ty = V->getType();
1366 Type *NoVecTy = getShadowTyNoVec(Ty);
1367 if (Ty == NoVecTy) return V;
1368 return IRB.CreateBitCast(V, NoVecTy);
1371 /// Compute the integer shadow offset that corresponds to a given
1372 /// application address.
1374 /// Offset = (Addr & ~AndMask) ^ XorMask
1375 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
1376 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
1378 uint64_t AndMask = MS.MapParams->AndMask;
1379 if (AndMask)
1380 OffsetLong =
1381 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
1383 uint64_t XorMask = MS.MapParams->XorMask;
1384 if (XorMask)
1385 OffsetLong =
1386 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
1387 return OffsetLong;
1390 /// Compute the shadow and origin addresses corresponding to a given
1391 /// application address.
1393 /// Shadow = ShadowBase + Offset
1394 /// Origin = (OriginBase + Offset) & ~3ULL
1395 std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr,
1396 IRBuilder<> &IRB,
1397 Type *ShadowTy,
1398 unsigned Alignment) {
1399 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
1400 Value *ShadowLong = ShadowOffset;
1401 uint64_t ShadowBase = MS.MapParams->ShadowBase;
1402 if (ShadowBase != 0) {
1403 ShadowLong =
1404 IRB.CreateAdd(ShadowLong,
1405 ConstantInt::get(MS.IntptrTy, ShadowBase));
1407 Value *ShadowPtr =
1408 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1409 Value *OriginPtr = nullptr;
1410 if (MS.TrackOrigins) {
1411 Value *OriginLong = ShadowOffset;
1412 uint64_t OriginBase = MS.MapParams->OriginBase;
1413 if (OriginBase != 0)
1414 OriginLong = IRB.CreateAdd(OriginLong,
1415 ConstantInt::get(MS.IntptrTy, OriginBase));
1416 if (Alignment < kMinOriginAlignment) {
1417 uint64_t Mask = kMinOriginAlignment - 1;
1418 OriginLong =
1419 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
1421 OriginPtr =
1422 IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
1424 return std::make_pair(ShadowPtr, OriginPtr);
1427 std::pair<Value *, Value *>
1428 getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
1429 unsigned Alignment, bool isStore) {
1430 Value *ShadowOriginPtrs;
1431 const DataLayout &DL = F.getParent()->getDataLayout();
1432 int Size = DL.getTypeStoreSize(ShadowTy);
1434 FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
1435 Value *AddrCast =
1436 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
1437 if (Getter) {
1438 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
1439 } else {
1440 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
1441 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
1442 : MS.MsanMetadataPtrForLoadN,
1443 {AddrCast, SizeVal});
1445 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
1446 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
1447 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
1449 return std::make_pair(ShadowPtr, OriginPtr);
1452 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
1453 Type *ShadowTy,
1454 unsigned Alignment,
1455 bool isStore) {
1456 std::pair<Value *, Value *> ret;
1457 if (MS.CompileKernel)
1458 ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore);
1459 else
1460 ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
1461 return ret;
1464 /// Compute the shadow address for a given function argument.
1466 /// Shadow = ParamTLS+ArgOffset.
1467 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
1468 int ArgOffset) {
1469 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
1470 if (ArgOffset)
1471 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1472 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1473 "_msarg");
1476 /// Compute the origin address for a given function argument.
1477 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1478 int ArgOffset) {
1479 if (!MS.TrackOrigins)
1480 return nullptr;
1481 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1482 if (ArgOffset)
1483 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1484 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1485 "_msarg_o");
1488 /// Compute the shadow address for a retval.
1489 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1490 return IRB.CreatePointerCast(MS.RetvalTLS,
1491 PointerType::get(getShadowTy(A), 0),
1492 "_msret");
1495 /// Compute the origin address for a retval.
1496 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1497 // We keep a single origin for the entire retval. Might be too optimistic.
1498 return MS.RetvalOriginTLS;
1501 /// Set SV to be the shadow value for V.
1502 void setShadow(Value *V, Value *SV) {
1503 assert(!ShadowMap.count(V) && "Values may only have one shadow");
1504 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1507 /// Set Origin to be the origin value for V.
1508 void setOrigin(Value *V, Value *Origin) {
1509 if (!MS.TrackOrigins) return;
1510 assert(!OriginMap.count(V) && "Values may only have one origin");
1511 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
1512 OriginMap[V] = Origin;
1515 Constant *getCleanShadow(Type *OrigTy) {
1516 Type *ShadowTy = getShadowTy(OrigTy);
1517 if (!ShadowTy)
1518 return nullptr;
1519 return Constant::getNullValue(ShadowTy);
1522 /// Create a clean shadow value for a given value.
1524 /// Clean shadow (all zeroes) means all bits of the value are defined
1525 /// (initialized).
1526 Constant *getCleanShadow(Value *V) {
1527 return getCleanShadow(V->getType());
1530 /// Create a dirty shadow of a given shadow type.
1531 Constant *getPoisonedShadow(Type *ShadowTy) {
1532 assert(ShadowTy);
1533 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1534 return Constant::getAllOnesValue(ShadowTy);
1535 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1536 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1537 getPoisonedShadow(AT->getElementType()));
1538 return ConstantArray::get(AT, Vals);
1540 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1541 SmallVector<Constant *, 4> Vals;
1542 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1543 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1544 return ConstantStruct::get(ST, Vals);
1546 llvm_unreachable("Unexpected shadow type");
1549 /// Create a dirty shadow for a given value.
1550 Constant *getPoisonedShadow(Value *V) {
1551 Type *ShadowTy = getShadowTy(V);
1552 if (!ShadowTy)
1553 return nullptr;
1554 return getPoisonedShadow(ShadowTy);
1557 /// Create a clean (zero) origin.
1558 Value *getCleanOrigin() {
1559 return Constant::getNullValue(MS.OriginTy);
1562 /// Get the shadow value for a given Value.
1564 /// This function either returns the value set earlier with setShadow,
1565 /// or extracts if from ParamTLS (for function arguments).
1566 Value *getShadow(Value *V) {
1567 if (!PropagateShadow) return getCleanShadow(V);
1568 if (Instruction *I = dyn_cast<Instruction>(V)) {
1569 if (I->getMetadata("nosanitize"))
1570 return getCleanShadow(V);
1571 // For instructions the shadow is already stored in the map.
1572 Value *Shadow = ShadowMap[V];
1573 if (!Shadow) {
1574 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1575 (void)I;
1576 assert(Shadow && "No shadow for a value");
1578 return Shadow;
1580 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1581 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1582 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1583 (void)U;
1584 return AllOnes;
1586 if (Argument *A = dyn_cast<Argument>(V)) {
1587 // For arguments we compute the shadow on demand and store it in the map.
1588 Value **ShadowPtr = &ShadowMap[V];
1589 if (*ShadowPtr)
1590 return *ShadowPtr;
1591 Function *F = A->getParent();
1592 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
1593 unsigned ArgOffset = 0;
1594 const DataLayout &DL = F->getParent()->getDataLayout();
1595 for (auto &FArg : F->args()) {
1596 if (!FArg.getType()->isSized()) {
1597 LLVM_DEBUG(dbgs() << "Arg is not sized\n");
1598 continue;
1600 unsigned Size =
1601 FArg.hasByValAttr()
1602 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1603 : DL.getTypeAllocSize(FArg.getType());
1604 if (A == &FArg) {
1605 bool Overflow = ArgOffset + Size > kParamTLSSize;
1606 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1607 if (FArg.hasByValAttr()) {
1608 // ByVal pointer itself has clean shadow. We copy the actual
1609 // argument shadow to the underlying memory.
1610 // Figure out maximal valid memcpy alignment.
1611 unsigned ArgAlign = FArg.getParamAlignment();
1612 if (ArgAlign == 0) {
1613 Type *EltType = A->getType()->getPointerElementType();
1614 ArgAlign = DL.getABITypeAlignment(EltType);
1616 Value *CpShadowPtr =
1617 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
1618 /*isStore*/ true)
1619 .first;
1620 // TODO(glider): need to copy origins.
1621 if (Overflow) {
1622 // ParamTLS overflow.
1623 EntryIRB.CreateMemSet(
1624 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
1625 Size, ArgAlign);
1626 } else {
1627 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1628 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
1629 CopyAlign, Size);
1630 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
1631 (void)Cpy;
1633 *ShadowPtr = getCleanShadow(V);
1634 } else {
1635 if (Overflow) {
1636 // ParamTLS overflow.
1637 *ShadowPtr = getCleanShadow(V);
1638 } else {
1639 *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
1640 kShadowTLSAlignment);
1643 LLVM_DEBUG(dbgs()
1644 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n");
1645 if (MS.TrackOrigins && !Overflow) {
1646 Value *OriginPtr =
1647 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1648 setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
1649 } else {
1650 setOrigin(A, getCleanOrigin());
1653 ArgOffset += alignTo(Size, kShadowTLSAlignment);
1655 assert(*ShadowPtr && "Could not find shadow for an argument");
1656 return *ShadowPtr;
1658 // For everything else the shadow is zero.
1659 return getCleanShadow(V);
1662 /// Get the shadow for i-th argument of the instruction I.
1663 Value *getShadow(Instruction *I, int i) {
1664 return getShadow(I->getOperand(i));
1667 /// Get the origin for a value.
1668 Value *getOrigin(Value *V) {
1669 if (!MS.TrackOrigins) return nullptr;
1670 if (!PropagateShadow) return getCleanOrigin();
1671 if (isa<Constant>(V)) return getCleanOrigin();
1672 assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1673 "Unexpected value type in getOrigin()");
1674 if (Instruction *I = dyn_cast<Instruction>(V)) {
1675 if (I->getMetadata("nosanitize"))
1676 return getCleanOrigin();
1678 Value *Origin = OriginMap[V];
1679 assert(Origin && "Missing origin");
1680 return Origin;
1683 /// Get the origin for i-th argument of the instruction I.
1684 Value *getOrigin(Instruction *I, int i) {
1685 return getOrigin(I->getOperand(i));
1688 /// Remember the place where a shadow check should be inserted.
1690 /// This location will be later instrumented with a check that will print a
1691 /// UMR warning in runtime if the shadow value is not 0.
1692 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1693 assert(Shadow);
1694 if (!InsertChecks) return;
1695 #ifndef NDEBUG
1696 Type *ShadowTy = Shadow->getType();
1697 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1698 "Can only insert checks for integer and vector shadow types");
1699 #endif
1700 InstrumentationList.push_back(
1701 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1704 /// Remember the place where a shadow check should be inserted.
1706 /// This location will be later instrumented with a check that will print a
1707 /// UMR warning in runtime if the value is not fully defined.
1708 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1709 assert(Val);
1710 Value *Shadow, *Origin;
1711 if (ClCheckConstantShadow) {
1712 Shadow = getShadow(Val);
1713 if (!Shadow) return;
1714 Origin = getOrigin(Val);
1715 } else {
1716 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1717 if (!Shadow) return;
1718 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1720 insertShadowCheck(Shadow, Origin, OrigIns);
1723 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1724 switch (a) {
1725 case AtomicOrdering::NotAtomic:
1726 return AtomicOrdering::NotAtomic;
1727 case AtomicOrdering::Unordered:
1728 case AtomicOrdering::Monotonic:
1729 case AtomicOrdering::Release:
1730 return AtomicOrdering::Release;
1731 case AtomicOrdering::Acquire:
1732 case AtomicOrdering::AcquireRelease:
1733 return AtomicOrdering::AcquireRelease;
1734 case AtomicOrdering::SequentiallyConsistent:
1735 return AtomicOrdering::SequentiallyConsistent;
1737 llvm_unreachable("Unknown ordering");
1740 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1741 switch (a) {
1742 case AtomicOrdering::NotAtomic:
1743 return AtomicOrdering::NotAtomic;
1744 case AtomicOrdering::Unordered:
1745 case AtomicOrdering::Monotonic:
1746 case AtomicOrdering::Acquire:
1747 return AtomicOrdering::Acquire;
1748 case AtomicOrdering::Release:
1749 case AtomicOrdering::AcquireRelease:
1750 return AtomicOrdering::AcquireRelease;
1751 case AtomicOrdering::SequentiallyConsistent:
1752 return AtomicOrdering::SequentiallyConsistent;
1754 llvm_unreachable("Unknown ordering");
1757 // ------------------- Visitors.
1758 using InstVisitor<MemorySanitizerVisitor>::visit;
1759 void visit(Instruction &I) {
1760 if (!I.getMetadata("nosanitize"))
1761 InstVisitor<MemorySanitizerVisitor>::visit(I);
1764 /// Instrument LoadInst
1766 /// Loads the corresponding shadow and (optionally) origin.
1767 /// Optionally, checks that the load address is fully defined.
1768 void visitLoadInst(LoadInst &I) {
1769 assert(I.getType()->isSized() && "Load type must have size");
1770 assert(!I.getMetadata("nosanitize"));
1771 IRBuilder<> IRB(I.getNextNode());
1772 Type *ShadowTy = getShadowTy(&I);
1773 Value *Addr = I.getPointerOperand();
1774 Value *ShadowPtr, *OriginPtr;
1775 unsigned Alignment = I.getAlignment();
1776 if (PropagateShadow) {
1777 std::tie(ShadowPtr, OriginPtr) =
1778 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
1779 setShadow(&I,
1780 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
1781 } else {
1782 setShadow(&I, getCleanShadow(&I));
1785 if (ClCheckAccessAddress)
1786 insertShadowCheck(I.getPointerOperand(), &I);
1788 if (I.isAtomic())
1789 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1791 if (MS.TrackOrigins) {
1792 if (PropagateShadow) {
1793 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1794 setOrigin(
1795 &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
1796 } else {
1797 setOrigin(&I, getCleanOrigin());
1802 /// Instrument StoreInst
1804 /// Stores the corresponding shadow and (optionally) origin.
1805 /// Optionally, checks that the store address is fully defined.
1806 void visitStoreInst(StoreInst &I) {
1807 StoreList.push_back(&I);
1808 if (ClCheckAccessAddress)
1809 insertShadowCheck(I.getPointerOperand(), &I);
1812 void handleCASOrRMW(Instruction &I) {
1813 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1815 IRBuilder<> IRB(&I);
1816 Value *Addr = I.getOperand(0);
1817 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
1818 /*Alignment*/ 1, /*isStore*/ true)
1819 .first;
1821 if (ClCheckAccessAddress)
1822 insertShadowCheck(Addr, &I);
1824 // Only test the conditional argument of cmpxchg instruction.
1825 // The other argument can potentially be uninitialized, but we can not
1826 // detect this situation reliably without possible false positives.
1827 if (isa<AtomicCmpXchgInst>(I))
1828 insertShadowCheck(I.getOperand(1), &I);
1830 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1832 setShadow(&I, getCleanShadow(&I));
1833 setOrigin(&I, getCleanOrigin());
1836 void visitAtomicRMWInst(AtomicRMWInst &I) {
1837 handleCASOrRMW(I);
1838 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1841 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1842 handleCASOrRMW(I);
1843 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1846 // Vector manipulation.
1847 void visitExtractElementInst(ExtractElementInst &I) {
1848 insertShadowCheck(I.getOperand(1), &I);
1849 IRBuilder<> IRB(&I);
1850 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1851 "_msprop"));
1852 setOrigin(&I, getOrigin(&I, 0));
1855 void visitInsertElementInst(InsertElementInst &I) {
1856 insertShadowCheck(I.getOperand(2), &I);
1857 IRBuilder<> IRB(&I);
1858 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1859 I.getOperand(2), "_msprop"));
1860 setOriginForNaryOp(I);
1863 void visitShuffleVectorInst(ShuffleVectorInst &I) {
1864 insertShadowCheck(I.getOperand(2), &I);
1865 IRBuilder<> IRB(&I);
1866 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1867 I.getOperand(2), "_msprop"));
1868 setOriginForNaryOp(I);
1871 // Casts.
1872 void visitSExtInst(SExtInst &I) {
1873 IRBuilder<> IRB(&I);
1874 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1875 setOrigin(&I, getOrigin(&I, 0));
1878 void visitZExtInst(ZExtInst &I) {
1879 IRBuilder<> IRB(&I);
1880 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1881 setOrigin(&I, getOrigin(&I, 0));
1884 void visitTruncInst(TruncInst &I) {
1885 IRBuilder<> IRB(&I);
1886 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1887 setOrigin(&I, getOrigin(&I, 0));
1890 void visitBitCastInst(BitCastInst &I) {
1891 // Special case: if this is the bitcast (there is exactly 1 allowed) between
1892 // a musttail call and a ret, don't instrument. New instructions are not
1893 // allowed after a musttail call.
1894 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1895 if (CI->isMustTailCall())
1896 return;
1897 IRBuilder<> IRB(&I);
1898 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1899 setOrigin(&I, getOrigin(&I, 0));
1902 void visitPtrToIntInst(PtrToIntInst &I) {
1903 IRBuilder<> IRB(&I);
1904 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1905 "_msprop_ptrtoint"));
1906 setOrigin(&I, getOrigin(&I, 0));
1909 void visitIntToPtrInst(IntToPtrInst &I) {
1910 IRBuilder<> IRB(&I);
1911 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1912 "_msprop_inttoptr"));
1913 setOrigin(&I, getOrigin(&I, 0));
1916 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1917 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1918 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1919 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1920 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1921 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1923 /// Propagate shadow for bitwise AND.
1925 /// This code is exact, i.e. if, for example, a bit in the left argument
1926 /// is defined and 0, then neither the value not definedness of the
1927 /// corresponding bit in B don't affect the resulting shadow.
1928 void visitAnd(BinaryOperator &I) {
1929 IRBuilder<> IRB(&I);
1930 // "And" of 0 and a poisoned value results in unpoisoned value.
1931 // 1&1 => 1; 0&1 => 0; p&1 => p;
1932 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1933 // 1&p => p; 0&p => 0; p&p => p;
1934 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1935 Value *S1 = getShadow(&I, 0);
1936 Value *S2 = getShadow(&I, 1);
1937 Value *V1 = I.getOperand(0);
1938 Value *V2 = I.getOperand(1);
1939 if (V1->getType() != S1->getType()) {
1940 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1941 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1943 Value *S1S2 = IRB.CreateAnd(S1, S2);
1944 Value *V1S2 = IRB.CreateAnd(V1, S2);
1945 Value *S1V2 = IRB.CreateAnd(S1, V2);
1946 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1947 setOriginForNaryOp(I);
1950 void visitOr(BinaryOperator &I) {
1951 IRBuilder<> IRB(&I);
1952 // "Or" of 1 and a poisoned value results in unpoisoned value.
1953 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1954 // 1|0 => 1; 0|0 => 0; p|0 => p;
1955 // 1|p => 1; 0|p => p; p|p => p;
1956 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1957 Value *S1 = getShadow(&I, 0);
1958 Value *S2 = getShadow(&I, 1);
1959 Value *V1 = IRB.CreateNot(I.getOperand(0));
1960 Value *V2 = IRB.CreateNot(I.getOperand(1));
1961 if (V1->getType() != S1->getType()) {
1962 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1963 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1965 Value *S1S2 = IRB.CreateAnd(S1, S2);
1966 Value *V1S2 = IRB.CreateAnd(V1, S2);
1967 Value *S1V2 = IRB.CreateAnd(S1, V2);
1968 setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
1969 setOriginForNaryOp(I);
1972 /// Default propagation of shadow and/or origin.
1974 /// This class implements the general case of shadow propagation, used in all
1975 /// cases where we don't know and/or don't care about what the operation
1976 /// actually does. It converts all input shadow values to a common type
1977 /// (extending or truncating as necessary), and bitwise OR's them.
1979 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1980 /// fully initialized), and less prone to false positives.
1982 /// This class also implements the general case of origin propagation. For a
1983 /// Nary operation, result origin is set to the origin of an argument that is
1984 /// not entirely initialized. If there is more than one such arguments, the
1985 /// rightmost of them is picked. It does not matter which one is picked if all
1986 /// arguments are initialized.
1987 template <bool CombineShadow>
1988 class Combiner {
1989 Value *Shadow = nullptr;
1990 Value *Origin = nullptr;
1991 IRBuilder<> &IRB;
1992 MemorySanitizerVisitor *MSV;
1994 public:
1995 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
1996 : IRB(IRB), MSV(MSV) {}
1998 /// Add a pair of shadow and origin values to the mix.
1999 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
2000 if (CombineShadow) {
2001 assert(OpShadow);
2002 if (!Shadow)
2003 Shadow = OpShadow;
2004 else {
2005 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
2006 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
2010 if (MSV->MS.TrackOrigins) {
2011 assert(OpOrigin);
2012 if (!Origin) {
2013 Origin = OpOrigin;
2014 } else {
2015 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
2016 // No point in adding something that might result in 0 origin value.
2017 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
2018 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
2019 Value *Cond =
2020 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
2021 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2025 return *this;
2028 /// Add an application value to the mix.
2029 Combiner &Add(Value *V) {
2030 Value *OpShadow = MSV->getShadow(V);
2031 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
2032 return Add(OpShadow, OpOrigin);
2035 /// Set the current combined values as the given instruction's shadow
2036 /// and origin.
2037 void Done(Instruction *I) {
2038 if (CombineShadow) {
2039 assert(Shadow);
2040 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
2041 MSV->setShadow(I, Shadow);
2043 if (MSV->MS.TrackOrigins) {
2044 assert(Origin);
2045 MSV->setOrigin(I, Origin);
2050 using ShadowAndOriginCombiner = Combiner<true>;
2051 using OriginCombiner = Combiner<false>;
2053 /// Propagate origin for arbitrary operation.
2054 void setOriginForNaryOp(Instruction &I) {
2055 if (!MS.TrackOrigins) return;
2056 IRBuilder<> IRB(&I);
2057 OriginCombiner OC(this, IRB);
2058 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2059 OC.Add(OI->get());
2060 OC.Done(&I);
2063 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
2064 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
2065 "Vector of pointers is not a valid shadow type");
2066 return Ty->isVectorTy() ?
2067 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
2068 Ty->getPrimitiveSizeInBits();
2071 /// Cast between two shadow types, extending or truncating as
2072 /// necessary.
2073 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
2074 bool Signed = false) {
2075 Type *srcTy = V->getType();
2076 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
2077 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
2078 if (srcSizeInBits > 1 && dstSizeInBits == 1)
2079 return IRB.CreateICmpNE(V, getCleanShadow(V));
2081 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
2082 return IRB.CreateIntCast(V, dstTy, Signed);
2083 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
2084 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
2085 return IRB.CreateIntCast(V, dstTy, Signed);
2086 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
2087 Value *V2 =
2088 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
2089 return IRB.CreateBitCast(V2, dstTy);
2090 // TODO: handle struct types.
2093 /// Cast an application value to the type of its own shadow.
2094 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
2095 Type *ShadowTy = getShadowTy(V);
2096 if (V->getType() == ShadowTy)
2097 return V;
2098 if (V->getType()->isPtrOrPtrVectorTy())
2099 return IRB.CreatePtrToInt(V, ShadowTy);
2100 else
2101 return IRB.CreateBitCast(V, ShadowTy);
2104 /// Propagate shadow for arbitrary operation.
2105 void handleShadowOr(Instruction &I) {
2106 IRBuilder<> IRB(&I);
2107 ShadowAndOriginCombiner SC(this, IRB);
2108 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
2109 SC.Add(OI->get());
2110 SC.Done(&I);
2113 void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
2115 // Handle multiplication by constant.
2117 // Handle a special case of multiplication by constant that may have one or
2118 // more zeros in the lower bits. This makes corresponding number of lower bits
2119 // of the result zero as well. We model it by shifting the other operand
2120 // shadow left by the required number of bits. Effectively, we transform
2121 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
2122 // We use multiplication by 2**N instead of shift to cover the case of
2123 // multiplication by 0, which may occur in some elements of a vector operand.
2124 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
2125 Value *OtherArg) {
2126 Constant *ShadowMul;
2127 Type *Ty = ConstArg->getType();
2128 if (Ty->isVectorTy()) {
2129 unsigned NumElements = Ty->getVectorNumElements();
2130 Type *EltTy = Ty->getSequentialElementType();
2131 SmallVector<Constant *, 16> Elements;
2132 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
2133 if (ConstantInt *Elt =
2134 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
2135 const APInt &V = Elt->getValue();
2136 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2137 Elements.push_back(ConstantInt::get(EltTy, V2));
2138 } else {
2139 Elements.push_back(ConstantInt::get(EltTy, 1));
2142 ShadowMul = ConstantVector::get(Elements);
2143 } else {
2144 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
2145 const APInt &V = Elt->getValue();
2146 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
2147 ShadowMul = ConstantInt::get(Ty, V2);
2148 } else {
2149 ShadowMul = ConstantInt::get(Ty, 1);
2153 IRBuilder<> IRB(&I);
2154 setShadow(&I,
2155 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
2156 setOrigin(&I, getOrigin(OtherArg));
2159 void visitMul(BinaryOperator &I) {
2160 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
2161 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
2162 if (constOp0 && !constOp1)
2163 handleMulByConstant(I, constOp0, I.getOperand(1));
2164 else if (constOp1 && !constOp0)
2165 handleMulByConstant(I, constOp1, I.getOperand(0));
2166 else
2167 handleShadowOr(I);
2170 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
2171 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
2172 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
2173 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
2174 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
2175 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
2177 void handleIntegerDiv(Instruction &I) {
2178 IRBuilder<> IRB(&I);
2179 // Strict on the second argument.
2180 insertShadowCheck(I.getOperand(1), &I);
2181 setShadow(&I, getShadow(&I, 0));
2182 setOrigin(&I, getOrigin(&I, 0));
2185 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2186 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
2187 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
2188 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
2190 // Floating point division is side-effect free. We can not require that the
2191 // divisor is fully initialized and must propagate shadow. See PR37523.
2192 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
2193 void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
2195 /// Instrument == and != comparisons.
2197 /// Sometimes the comparison result is known even if some of the bits of the
2198 /// arguments are not.
2199 void handleEqualityComparison(ICmpInst &I) {
2200 IRBuilder<> IRB(&I);
2201 Value *A = I.getOperand(0);
2202 Value *B = I.getOperand(1);
2203 Value *Sa = getShadow(A);
2204 Value *Sb = getShadow(B);
2206 // Get rid of pointers and vectors of pointers.
2207 // For ints (and vectors of ints), types of A and Sa match,
2208 // and this is a no-op.
2209 A = IRB.CreatePointerCast(A, Sa->getType());
2210 B = IRB.CreatePointerCast(B, Sb->getType());
2212 // A == B <==> (C = A^B) == 0
2213 // A != B <==> (C = A^B) != 0
2214 // Sc = Sa | Sb
2215 Value *C = IRB.CreateXor(A, B);
2216 Value *Sc = IRB.CreateOr(Sa, Sb);
2217 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
2218 // Result is defined if one of the following is true
2219 // * there is a defined 1 bit in C
2220 // * C is fully defined
2221 // Si = !(C & ~Sc) && Sc
2222 Value *Zero = Constant::getNullValue(Sc->getType());
2223 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
2224 Value *Si =
2225 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
2226 IRB.CreateICmpEQ(
2227 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
2228 Si->setName("_msprop_icmp");
2229 setShadow(&I, Si);
2230 setOriginForNaryOp(I);
2233 /// Build the lowest possible value of V, taking into account V's
2234 /// uninitialized bits.
2235 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2236 bool isSigned) {
2237 if (isSigned) {
2238 // Split shadow into sign bit and other bits.
2239 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2240 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2241 // Maximise the undefined shadow bit, minimize other undefined bits.
2242 return
2243 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
2244 } else {
2245 // Minimize undefined bits.
2246 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
2250 /// Build the highest possible value of V, taking into account V's
2251 /// uninitialized bits.
2252 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
2253 bool isSigned) {
2254 if (isSigned) {
2255 // Split shadow into sign bit and other bits.
2256 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
2257 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
2258 // Minimise the undefined shadow bit, maximise other undefined bits.
2259 return
2260 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
2261 } else {
2262 // Maximize undefined bits.
2263 return IRB.CreateOr(A, Sa);
2267 /// Instrument relational comparisons.
2269 /// This function does exact shadow propagation for all relational
2270 /// comparisons of integers, pointers and vectors of those.
2271 /// FIXME: output seems suboptimal when one of the operands is a constant
2272 void handleRelationalComparisonExact(ICmpInst &I) {
2273 IRBuilder<> IRB(&I);
2274 Value *A = I.getOperand(0);
2275 Value *B = I.getOperand(1);
2276 Value *Sa = getShadow(A);
2277 Value *Sb = getShadow(B);
2279 // Get rid of pointers and vectors of pointers.
2280 // For ints (and vectors of ints), types of A and Sa match,
2281 // and this is a no-op.
2282 A = IRB.CreatePointerCast(A, Sa->getType());
2283 B = IRB.CreatePointerCast(B, Sb->getType());
2285 // Let [a0, a1] be the interval of possible values of A, taking into account
2286 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
2287 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
2288 bool IsSigned = I.isSigned();
2289 Value *S1 = IRB.CreateICmp(I.getPredicate(),
2290 getLowestPossibleValue(IRB, A, Sa, IsSigned),
2291 getHighestPossibleValue(IRB, B, Sb, IsSigned));
2292 Value *S2 = IRB.CreateICmp(I.getPredicate(),
2293 getHighestPossibleValue(IRB, A, Sa, IsSigned),
2294 getLowestPossibleValue(IRB, B, Sb, IsSigned));
2295 Value *Si = IRB.CreateXor(S1, S2);
2296 setShadow(&I, Si);
2297 setOriginForNaryOp(I);
2300 /// Instrument signed relational comparisons.
2302 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
2303 /// bit of the shadow. Everything else is delegated to handleShadowOr().
2304 void handleSignedRelationalComparison(ICmpInst &I) {
2305 Constant *constOp;
2306 Value *op = nullptr;
2307 CmpInst::Predicate pre;
2308 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
2309 op = I.getOperand(0);
2310 pre = I.getPredicate();
2311 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
2312 op = I.getOperand(1);
2313 pre = I.getSwappedPredicate();
2314 } else {
2315 handleShadowOr(I);
2316 return;
2319 if ((constOp->isNullValue() &&
2320 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
2321 (constOp->isAllOnesValue() &&
2322 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
2323 IRBuilder<> IRB(&I);
2324 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
2325 "_msprop_icmp_s");
2326 setShadow(&I, Shadow);
2327 setOrigin(&I, getOrigin(op));
2328 } else {
2329 handleShadowOr(I);
2333 void visitICmpInst(ICmpInst &I) {
2334 if (!ClHandleICmp) {
2335 handleShadowOr(I);
2336 return;
2338 if (I.isEquality()) {
2339 handleEqualityComparison(I);
2340 return;
2343 assert(I.isRelational());
2344 if (ClHandleICmpExact) {
2345 handleRelationalComparisonExact(I);
2346 return;
2348 if (I.isSigned()) {
2349 handleSignedRelationalComparison(I);
2350 return;
2353 assert(I.isUnsigned());
2354 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
2355 handleRelationalComparisonExact(I);
2356 return;
2359 handleShadowOr(I);
2362 void visitFCmpInst(FCmpInst &I) {
2363 handleShadowOr(I);
2366 void handleShift(BinaryOperator &I) {
2367 IRBuilder<> IRB(&I);
2368 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2369 // Otherwise perform the same shift on S1.
2370 Value *S1 = getShadow(&I, 0);
2371 Value *S2 = getShadow(&I, 1);
2372 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
2373 S2->getType());
2374 Value *V2 = I.getOperand(1);
2375 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
2376 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2377 setOriginForNaryOp(I);
2380 void visitShl(BinaryOperator &I) { handleShift(I); }
2381 void visitAShr(BinaryOperator &I) { handleShift(I); }
2382 void visitLShr(BinaryOperator &I) { handleShift(I); }
2384 /// Instrument llvm.memmove
2386 /// At this point we don't know if llvm.memmove will be inlined or not.
2387 /// If we don't instrument it and it gets inlined,
2388 /// our interceptor will not kick in and we will lose the memmove.
2389 /// If we instrument the call here, but it does not get inlined,
2390 /// we will memove the shadow twice: which is bad in case
2391 /// of overlapping regions. So, we simply lower the intrinsic to a call.
2393 /// Similar situation exists for memcpy and memset.
2394 void visitMemMoveInst(MemMoveInst &I) {
2395 IRBuilder<> IRB(&I);
2396 IRB.CreateCall(
2397 MS.MemmoveFn,
2398 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2399 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2400 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2401 I.eraseFromParent();
2404 // Similar to memmove: avoid copying shadow twice.
2405 // This is somewhat unfortunate as it may slowdown small constant memcpys.
2406 // FIXME: consider doing manual inline for small constant sizes and proper
2407 // alignment.
2408 void visitMemCpyInst(MemCpyInst &I) {
2409 IRBuilder<> IRB(&I);
2410 IRB.CreateCall(
2411 MS.MemcpyFn,
2412 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2413 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2414 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2415 I.eraseFromParent();
2418 // Same as memcpy.
2419 void visitMemSetInst(MemSetInst &I) {
2420 IRBuilder<> IRB(&I);
2421 IRB.CreateCall(
2422 MS.MemsetFn,
2423 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2424 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
2425 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
2426 I.eraseFromParent();
2429 void visitVAStartInst(VAStartInst &I) {
2430 VAHelper->visitVAStartInst(I);
2433 void visitVACopyInst(VACopyInst &I) {
2434 VAHelper->visitVACopyInst(I);
2437 /// Handle vector store-like intrinsics.
2439 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
2440 /// has 1 pointer argument and 1 vector argument, returns void.
2441 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
2442 IRBuilder<> IRB(&I);
2443 Value* Addr = I.getArgOperand(0);
2444 Value *Shadow = getShadow(&I, 1);
2445 Value *ShadowPtr, *OriginPtr;
2447 // We don't know the pointer alignment (could be unaligned SSE store!).
2448 // Have to assume to worst case.
2449 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2450 Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
2451 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
2453 if (ClCheckAccessAddress)
2454 insertShadowCheck(Addr, &I);
2456 // FIXME: factor out common code from materializeStores
2457 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
2458 return true;
2461 /// Handle vector load-like intrinsics.
2463 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
2464 /// has 1 pointer argument, returns a vector.
2465 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
2466 IRBuilder<> IRB(&I);
2467 Value *Addr = I.getArgOperand(0);
2469 Type *ShadowTy = getShadowTy(&I);
2470 Value *ShadowPtr, *OriginPtr;
2471 if (PropagateShadow) {
2472 // We don't know the pointer alignment (could be unaligned SSE load!).
2473 // Have to assume to worst case.
2474 unsigned Alignment = 1;
2475 std::tie(ShadowPtr, OriginPtr) =
2476 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
2477 setShadow(&I,
2478 IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
2479 } else {
2480 setShadow(&I, getCleanShadow(&I));
2483 if (ClCheckAccessAddress)
2484 insertShadowCheck(Addr, &I);
2486 if (MS.TrackOrigins) {
2487 if (PropagateShadow)
2488 setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
2489 else
2490 setOrigin(&I, getCleanOrigin());
2492 return true;
2495 /// Handle (SIMD arithmetic)-like intrinsics.
2497 /// Instrument intrinsics with any number of arguments of the same type,
2498 /// equal to the return type. The type should be simple (no aggregates or
2499 /// pointers; vectors are fine).
2500 /// Caller guarantees that this intrinsic does not access memory.
2501 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
2502 Type *RetTy = I.getType();
2503 if (!(RetTy->isIntOrIntVectorTy() ||
2504 RetTy->isFPOrFPVectorTy() ||
2505 RetTy->isX86_MMXTy()))
2506 return false;
2508 unsigned NumArgOperands = I.getNumArgOperands();
2510 for (unsigned i = 0; i < NumArgOperands; ++i) {
2511 Type *Ty = I.getArgOperand(i)->getType();
2512 if (Ty != RetTy)
2513 return false;
2516 IRBuilder<> IRB(&I);
2517 ShadowAndOriginCombiner SC(this, IRB);
2518 for (unsigned i = 0; i < NumArgOperands; ++i)
2519 SC.Add(I.getArgOperand(i));
2520 SC.Done(&I);
2522 return true;
2525 /// Heuristically instrument unknown intrinsics.
2527 /// The main purpose of this code is to do something reasonable with all
2528 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2529 /// We recognize several classes of intrinsics by their argument types and
2530 /// ModRefBehaviour and apply special intrumentation when we are reasonably
2531 /// sure that we know what the intrinsic does.
2533 /// We special-case intrinsics where this approach fails. See llvm.bswap
2534 /// handling as an example of that.
2535 bool handleUnknownIntrinsic(IntrinsicInst &I) {
2536 unsigned NumArgOperands = I.getNumArgOperands();
2537 if (NumArgOperands == 0)
2538 return false;
2540 if (NumArgOperands == 2 &&
2541 I.getArgOperand(0)->getType()->isPointerTy() &&
2542 I.getArgOperand(1)->getType()->isVectorTy() &&
2543 I.getType()->isVoidTy() &&
2544 !I.onlyReadsMemory()) {
2545 // This looks like a vector store.
2546 return handleVectorStoreIntrinsic(I);
2549 if (NumArgOperands == 1 &&
2550 I.getArgOperand(0)->getType()->isPointerTy() &&
2551 I.getType()->isVectorTy() &&
2552 I.onlyReadsMemory()) {
2553 // This looks like a vector load.
2554 return handleVectorLoadIntrinsic(I);
2557 if (I.doesNotAccessMemory())
2558 if (maybeHandleSimpleNomemIntrinsic(I))
2559 return true;
2561 // FIXME: detect and handle SSE maskstore/maskload
2562 return false;
2565 void handleLifetimeStart(IntrinsicInst &I) {
2566 if (!PoisonStack)
2567 return;
2568 DenseMap<Value *, AllocaInst *> AllocaForValue;
2569 AllocaInst *AI =
2570 llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
2571 if (!AI)
2572 InstrumentLifetimeStart = false;
2573 LifetimeStartList.push_back(std::make_pair(&I, AI));
2576 void handleBswap(IntrinsicInst &I) {
2577 IRBuilder<> IRB(&I);
2578 Value *Op = I.getArgOperand(0);
2579 Type *OpType = Op->getType();
2580 Function *BswapFunc = Intrinsic::getDeclaration(
2581 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2582 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2583 setOrigin(&I, getOrigin(Op));
2586 // Instrument vector convert instrinsic.
2588 // This function instruments intrinsics like cvtsi2ss:
2589 // %Out = int_xxx_cvtyyy(%ConvertOp)
2590 // or
2591 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2592 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2593 // number \p Out elements, and (if has 2 arguments) copies the rest of the
2594 // elements from \p CopyOp.
2595 // In most cases conversion involves floating-point value which may trigger a
2596 // hardware exception when not fully initialized. For this reason we require
2597 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2598 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2599 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2600 // return a fully initialized value.
2601 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2602 IRBuilder<> IRB(&I);
2603 Value *CopyOp, *ConvertOp;
2605 switch (I.getNumArgOperands()) {
2606 case 3:
2607 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2608 LLVM_FALLTHROUGH;
2609 case 2:
2610 CopyOp = I.getArgOperand(0);
2611 ConvertOp = I.getArgOperand(1);
2612 break;
2613 case 1:
2614 ConvertOp = I.getArgOperand(0);
2615 CopyOp = nullptr;
2616 break;
2617 default:
2618 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2621 // The first *NumUsedElements* elements of ConvertOp are converted to the
2622 // same number of output elements. The rest of the output is copied from
2623 // CopyOp, or (if not available) filled with zeroes.
2624 // Combine shadow for elements of ConvertOp that are used in this operation,
2625 // and insert a check.
2626 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2627 // int->any conversion.
2628 Value *ConvertShadow = getShadow(ConvertOp);
2629 Value *AggShadow = nullptr;
2630 if (ConvertOp->getType()->isVectorTy()) {
2631 AggShadow = IRB.CreateExtractElement(
2632 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2633 for (int i = 1; i < NumUsedElements; ++i) {
2634 Value *MoreShadow = IRB.CreateExtractElement(
2635 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2636 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2638 } else {
2639 AggShadow = ConvertShadow;
2641 assert(AggShadow->getType()->isIntegerTy());
2642 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2644 // Build result shadow by zero-filling parts of CopyOp shadow that come from
2645 // ConvertOp.
2646 if (CopyOp) {
2647 assert(CopyOp->getType() == I.getType());
2648 assert(CopyOp->getType()->isVectorTy());
2649 Value *ResultShadow = getShadow(CopyOp);
2650 Type *EltTy = ResultShadow->getType()->getVectorElementType();
2651 for (int i = 0; i < NumUsedElements; ++i) {
2652 ResultShadow = IRB.CreateInsertElement(
2653 ResultShadow, ConstantInt::getNullValue(EltTy),
2654 ConstantInt::get(IRB.getInt32Ty(), i));
2656 setShadow(&I, ResultShadow);
2657 setOrigin(&I, getOrigin(CopyOp));
2658 } else {
2659 setShadow(&I, getCleanShadow(&I));
2660 setOrigin(&I, getCleanOrigin());
2664 // Given a scalar or vector, extract lower 64 bits (or less), and return all
2665 // zeroes if it is zero, and all ones otherwise.
2666 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2667 if (S->getType()->isVectorTy())
2668 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2669 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2670 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2671 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2674 // Given a vector, extract its first element, and return all
2675 // zeroes if it is zero, and all ones otherwise.
2676 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2677 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2678 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2679 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2682 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2683 Type *T = S->getType();
2684 assert(T->isVectorTy());
2685 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2686 return IRB.CreateSExt(S2, T);
2689 // Instrument vector shift instrinsic.
2691 // This function instruments intrinsics like int_x86_avx2_psll_w.
2692 // Intrinsic shifts %In by %ShiftSize bits.
2693 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2694 // size, and the rest is ignored. Behavior is defined even if shift size is
2695 // greater than register (or field) width.
2696 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2697 assert(I.getNumArgOperands() == 2);
2698 IRBuilder<> IRB(&I);
2699 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2700 // Otherwise perform the same shift on S1.
2701 Value *S1 = getShadow(&I, 0);
2702 Value *S2 = getShadow(&I, 1);
2703 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2704 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2705 Value *V1 = I.getOperand(0);
2706 Value *V2 = I.getOperand(1);
2707 Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
2708 {IRB.CreateBitCast(S1, V1->getType()), V2});
2709 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2710 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2711 setOriginForNaryOp(I);
2714 // Get an X86_MMX-sized vector type.
2715 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2716 const unsigned X86_MMXSizeInBits = 64;
2717 assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
2718 "Illegal MMX vector element size");
2719 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2720 X86_MMXSizeInBits / EltSizeInBits);
2723 // Returns a signed counterpart for an (un)signed-saturate-and-pack
2724 // intrinsic.
2725 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2726 switch (id) {
2727 case Intrinsic::x86_sse2_packsswb_128:
2728 case Intrinsic::x86_sse2_packuswb_128:
2729 return Intrinsic::x86_sse2_packsswb_128;
2731 case Intrinsic::x86_sse2_packssdw_128:
2732 case Intrinsic::x86_sse41_packusdw:
2733 return Intrinsic::x86_sse2_packssdw_128;
2735 case Intrinsic::x86_avx2_packsswb:
2736 case Intrinsic::x86_avx2_packuswb:
2737 return Intrinsic::x86_avx2_packsswb;
2739 case Intrinsic::x86_avx2_packssdw:
2740 case Intrinsic::x86_avx2_packusdw:
2741 return Intrinsic::x86_avx2_packssdw;
2743 case Intrinsic::x86_mmx_packsswb:
2744 case Intrinsic::x86_mmx_packuswb:
2745 return Intrinsic::x86_mmx_packsswb;
2747 case Intrinsic::x86_mmx_packssdw:
2748 return Intrinsic::x86_mmx_packssdw;
2749 default:
2750 llvm_unreachable("unexpected intrinsic id");
2754 // Instrument vector pack instrinsic.
2756 // This function instruments intrinsics like x86_mmx_packsswb, that
2757 // packs elements of 2 input vectors into half as many bits with saturation.
2758 // Shadow is propagated with the signed variant of the same intrinsic applied
2759 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2760 // EltSizeInBits is used only for x86mmx arguments.
2761 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2762 assert(I.getNumArgOperands() == 2);
2763 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2764 IRBuilder<> IRB(&I);
2765 Value *S1 = getShadow(&I, 0);
2766 Value *S2 = getShadow(&I, 1);
2767 assert(isX86_MMX || S1->getType()->isVectorTy());
2769 // SExt and ICmpNE below must apply to individual elements of input vectors.
2770 // In case of x86mmx arguments, cast them to appropriate vector types and
2771 // back.
2772 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2773 if (isX86_MMX) {
2774 S1 = IRB.CreateBitCast(S1, T);
2775 S2 = IRB.CreateBitCast(S2, T);
2777 Value *S1_ext = IRB.CreateSExt(
2778 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
2779 Value *S2_ext = IRB.CreateSExt(
2780 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
2781 if (isX86_MMX) {
2782 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2783 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2784 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2787 Function *ShadowFn = Intrinsic::getDeclaration(
2788 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2790 Value *S =
2791 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2792 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2793 setShadow(&I, S);
2794 setOriginForNaryOp(I);
2797 // Instrument sum-of-absolute-differencies intrinsic.
2798 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2799 const unsigned SignificantBitsPerResultElement = 16;
2800 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2801 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2802 unsigned ZeroBitsPerResultElement =
2803 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2805 IRBuilder<> IRB(&I);
2806 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2807 S = IRB.CreateBitCast(S, ResTy);
2808 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2809 ResTy);
2810 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2811 S = IRB.CreateBitCast(S, getShadowTy(&I));
2812 setShadow(&I, S);
2813 setOriginForNaryOp(I);
2816 // Instrument multiply-add intrinsic.
2817 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2818 unsigned EltSizeInBits = 0) {
2819 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2820 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2821 IRBuilder<> IRB(&I);
2822 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2823 S = IRB.CreateBitCast(S, ResTy);
2824 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2825 ResTy);
2826 S = IRB.CreateBitCast(S, getShadowTy(&I));
2827 setShadow(&I, S);
2828 setOriginForNaryOp(I);
2831 // Instrument compare-packed intrinsic.
2832 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2833 // all-ones shadow.
2834 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2835 IRBuilder<> IRB(&I);
2836 Type *ResTy = getShadowTy(&I);
2837 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2838 Value *S = IRB.CreateSExt(
2839 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2840 setShadow(&I, S);
2841 setOriginForNaryOp(I);
2844 // Instrument compare-scalar intrinsic.
2845 // This handles both cmp* intrinsics which return the result in the first
2846 // element of a vector, and comi* which return the result as i32.
2847 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2848 IRBuilder<> IRB(&I);
2849 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2850 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2851 setShadow(&I, S);
2852 setOriginForNaryOp(I);
2855 void handleStmxcsr(IntrinsicInst &I) {
2856 IRBuilder<> IRB(&I);
2857 Value* Addr = I.getArgOperand(0);
2858 Type *Ty = IRB.getInt32Ty();
2859 Value *ShadowPtr =
2860 getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
2861 .first;
2863 IRB.CreateStore(getCleanShadow(Ty),
2864 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
2866 if (ClCheckAccessAddress)
2867 insertShadowCheck(Addr, &I);
2870 void handleLdmxcsr(IntrinsicInst &I) {
2871 if (!InsertChecks) return;
2873 IRBuilder<> IRB(&I);
2874 Value *Addr = I.getArgOperand(0);
2875 Type *Ty = IRB.getInt32Ty();
2876 unsigned Alignment = 1;
2877 Value *ShadowPtr, *OriginPtr;
2878 std::tie(ShadowPtr, OriginPtr) =
2879 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
2881 if (ClCheckAccessAddress)
2882 insertShadowCheck(Addr, &I);
2884 Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
2885 Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
2886 : getCleanOrigin();
2887 insertShadowCheck(Shadow, Origin, &I);
2890 void handleMaskedStore(IntrinsicInst &I) {
2891 IRBuilder<> IRB(&I);
2892 Value *V = I.getArgOperand(0);
2893 Value *Addr = I.getArgOperand(1);
2894 unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
2895 Value *Mask = I.getArgOperand(3);
2896 Value *Shadow = getShadow(V);
2898 Value *ShadowPtr;
2899 Value *OriginPtr;
2900 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
2901 Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
2903 if (ClCheckAccessAddress) {
2904 insertShadowCheck(Addr, &I);
2905 // Uninitialized mask is kind of like uninitialized address, but not as
2906 // scary.
2907 insertShadowCheck(Mask, &I);
2910 IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
2912 if (MS.TrackOrigins) {
2913 auto &DL = F.getParent()->getDataLayout();
2914 paintOrigin(IRB, getOrigin(V), OriginPtr,
2915 DL.getTypeStoreSize(Shadow->getType()),
2916 std::max(Align, kMinOriginAlignment));
2920 bool handleMaskedLoad(IntrinsicInst &I) {
2921 IRBuilder<> IRB(&I);
2922 Value *Addr = I.getArgOperand(0);
2923 unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
2924 Value *Mask = I.getArgOperand(2);
2925 Value *PassThru = I.getArgOperand(3);
2927 Type *ShadowTy = getShadowTy(&I);
2928 Value *ShadowPtr, *OriginPtr;
2929 if (PropagateShadow) {
2930 std::tie(ShadowPtr, OriginPtr) =
2931 getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
2932 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
2933 getShadow(PassThru), "_msmaskedld"));
2934 } else {
2935 setShadow(&I, getCleanShadow(&I));
2938 if (ClCheckAccessAddress) {
2939 insertShadowCheck(Addr, &I);
2940 insertShadowCheck(Mask, &I);
2943 if (MS.TrackOrigins) {
2944 if (PropagateShadow) {
2945 // Choose between PassThru's and the loaded value's origins.
2946 Value *MaskedPassThruShadow = IRB.CreateAnd(
2947 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
2949 Value *Acc = IRB.CreateExtractElement(
2950 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2951 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
2952 ++i) {
2953 Value *More = IRB.CreateExtractElement(
2954 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2955 Acc = IRB.CreateOr(Acc, More);
2958 Value *Origin = IRB.CreateSelect(
2959 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
2960 getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
2962 setOrigin(&I, Origin);
2963 } else {
2964 setOrigin(&I, getCleanOrigin());
2967 return true;
2970 // Instrument BMI / BMI2 intrinsics.
2971 // All of these intrinsics are Z = I(X, Y)
2972 // where the types of all operands and the result match, and are either i32 or i64.
2973 // The following instrumentation happens to work for all of them:
2974 // Sz = I(Sx, Y) | (sext (Sy != 0))
2975 void handleBmiIntrinsic(IntrinsicInst &I) {
2976 IRBuilder<> IRB(&I);
2977 Type *ShadowTy = getShadowTy(&I);
2979 // If any bit of the mask operand is poisoned, then the whole thing is.
2980 Value *SMask = getShadow(&I, 1);
2981 SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
2982 ShadowTy);
2983 // Apply the same intrinsic to the shadow of the first operand.
2984 Value *S = IRB.CreateCall(I.getCalledFunction(),
2985 {getShadow(&I, 0), I.getOperand(1)});
2986 S = IRB.CreateOr(SMask, S);
2987 setShadow(&I, S);
2988 setOriginForNaryOp(I);
2991 void visitIntrinsicInst(IntrinsicInst &I) {
2992 switch (I.getIntrinsicID()) {
2993 case Intrinsic::lifetime_start:
2994 handleLifetimeStart(I);
2995 break;
2996 case Intrinsic::bswap:
2997 handleBswap(I);
2998 break;
2999 case Intrinsic::masked_store:
3000 handleMaskedStore(I);
3001 break;
3002 case Intrinsic::masked_load:
3003 handleMaskedLoad(I);
3004 break;
3005 case Intrinsic::x86_sse_stmxcsr:
3006 handleStmxcsr(I);
3007 break;
3008 case Intrinsic::x86_sse_ldmxcsr:
3009 handleLdmxcsr(I);
3010 break;
3011 case Intrinsic::x86_avx512_vcvtsd2usi64:
3012 case Intrinsic::x86_avx512_vcvtsd2usi32:
3013 case Intrinsic::x86_avx512_vcvtss2usi64:
3014 case Intrinsic::x86_avx512_vcvtss2usi32:
3015 case Intrinsic::x86_avx512_cvttss2usi64:
3016 case Intrinsic::x86_avx512_cvttss2usi:
3017 case Intrinsic::x86_avx512_cvttsd2usi64:
3018 case Intrinsic::x86_avx512_cvttsd2usi:
3019 case Intrinsic::x86_avx512_cvtusi2ss:
3020 case Intrinsic::x86_avx512_cvtusi642sd:
3021 case Intrinsic::x86_avx512_cvtusi642ss:
3022 case Intrinsic::x86_sse2_cvtsd2si64:
3023 case Intrinsic::x86_sse2_cvtsd2si:
3024 case Intrinsic::x86_sse2_cvtsd2ss:
3025 case Intrinsic::x86_sse2_cvttsd2si64:
3026 case Intrinsic::x86_sse2_cvttsd2si:
3027 case Intrinsic::x86_sse_cvtss2si64:
3028 case Intrinsic::x86_sse_cvtss2si:
3029 case Intrinsic::x86_sse_cvttss2si64:
3030 case Intrinsic::x86_sse_cvttss2si:
3031 handleVectorConvertIntrinsic(I, 1);
3032 break;
3033 case Intrinsic::x86_sse_cvtps2pi:
3034 case Intrinsic::x86_sse_cvttps2pi:
3035 handleVectorConvertIntrinsic(I, 2);
3036 break;
3038 case Intrinsic::x86_avx512_psll_w_512:
3039 case Intrinsic::x86_avx512_psll_d_512:
3040 case Intrinsic::x86_avx512_psll_q_512:
3041 case Intrinsic::x86_avx512_pslli_w_512:
3042 case Intrinsic::x86_avx512_pslli_d_512:
3043 case Intrinsic::x86_avx512_pslli_q_512:
3044 case Intrinsic::x86_avx512_psrl_w_512:
3045 case Intrinsic::x86_avx512_psrl_d_512:
3046 case Intrinsic::x86_avx512_psrl_q_512:
3047 case Intrinsic::x86_avx512_psra_w_512:
3048 case Intrinsic::x86_avx512_psra_d_512:
3049 case Intrinsic::x86_avx512_psra_q_512:
3050 case Intrinsic::x86_avx512_psrli_w_512:
3051 case Intrinsic::x86_avx512_psrli_d_512:
3052 case Intrinsic::x86_avx512_psrli_q_512:
3053 case Intrinsic::x86_avx512_psrai_w_512:
3054 case Intrinsic::x86_avx512_psrai_d_512:
3055 case Intrinsic::x86_avx512_psrai_q_512:
3056 case Intrinsic::x86_avx512_psra_q_256:
3057 case Intrinsic::x86_avx512_psra_q_128:
3058 case Intrinsic::x86_avx512_psrai_q_256:
3059 case Intrinsic::x86_avx512_psrai_q_128:
3060 case Intrinsic::x86_avx2_psll_w:
3061 case Intrinsic::x86_avx2_psll_d:
3062 case Intrinsic::x86_avx2_psll_q:
3063 case Intrinsic::x86_avx2_pslli_w:
3064 case Intrinsic::x86_avx2_pslli_d:
3065 case Intrinsic::x86_avx2_pslli_q:
3066 case Intrinsic::x86_avx2_psrl_w:
3067 case Intrinsic::x86_avx2_psrl_d:
3068 case Intrinsic::x86_avx2_psrl_q:
3069 case Intrinsic::x86_avx2_psra_w:
3070 case Intrinsic::x86_avx2_psra_d:
3071 case Intrinsic::x86_avx2_psrli_w:
3072 case Intrinsic::x86_avx2_psrli_d:
3073 case Intrinsic::x86_avx2_psrli_q:
3074 case Intrinsic::x86_avx2_psrai_w:
3075 case Intrinsic::x86_avx2_psrai_d:
3076 case Intrinsic::x86_sse2_psll_w:
3077 case Intrinsic::x86_sse2_psll_d:
3078 case Intrinsic::x86_sse2_psll_q:
3079 case Intrinsic::x86_sse2_pslli_w:
3080 case Intrinsic::x86_sse2_pslli_d:
3081 case Intrinsic::x86_sse2_pslli_q:
3082 case Intrinsic::x86_sse2_psrl_w:
3083 case Intrinsic::x86_sse2_psrl_d:
3084 case Intrinsic::x86_sse2_psrl_q:
3085 case Intrinsic::x86_sse2_psra_w:
3086 case Intrinsic::x86_sse2_psra_d:
3087 case Intrinsic::x86_sse2_psrli_w:
3088 case Intrinsic::x86_sse2_psrli_d:
3089 case Intrinsic::x86_sse2_psrli_q:
3090 case Intrinsic::x86_sse2_psrai_w:
3091 case Intrinsic::x86_sse2_psrai_d:
3092 case Intrinsic::x86_mmx_psll_w:
3093 case Intrinsic::x86_mmx_psll_d:
3094 case Intrinsic::x86_mmx_psll_q:
3095 case Intrinsic::x86_mmx_pslli_w:
3096 case Intrinsic::x86_mmx_pslli_d:
3097 case Intrinsic::x86_mmx_pslli_q:
3098 case Intrinsic::x86_mmx_psrl_w:
3099 case Intrinsic::x86_mmx_psrl_d:
3100 case Intrinsic::x86_mmx_psrl_q:
3101 case Intrinsic::x86_mmx_psra_w:
3102 case Intrinsic::x86_mmx_psra_d:
3103 case Intrinsic::x86_mmx_psrli_w:
3104 case Intrinsic::x86_mmx_psrli_d:
3105 case Intrinsic::x86_mmx_psrli_q:
3106 case Intrinsic::x86_mmx_psrai_w:
3107 case Intrinsic::x86_mmx_psrai_d:
3108 handleVectorShiftIntrinsic(I, /* Variable */ false);
3109 break;
3110 case Intrinsic::x86_avx2_psllv_d:
3111 case Intrinsic::x86_avx2_psllv_d_256:
3112 case Intrinsic::x86_avx512_psllv_d_512:
3113 case Intrinsic::x86_avx2_psllv_q:
3114 case Intrinsic::x86_avx2_psllv_q_256:
3115 case Intrinsic::x86_avx512_psllv_q_512:
3116 case Intrinsic::x86_avx2_psrlv_d:
3117 case Intrinsic::x86_avx2_psrlv_d_256:
3118 case Intrinsic::x86_avx512_psrlv_d_512:
3119 case Intrinsic::x86_avx2_psrlv_q:
3120 case Intrinsic::x86_avx2_psrlv_q_256:
3121 case Intrinsic::x86_avx512_psrlv_q_512:
3122 case Intrinsic::x86_avx2_psrav_d:
3123 case Intrinsic::x86_avx2_psrav_d_256:
3124 case Intrinsic::x86_avx512_psrav_d_512:
3125 case Intrinsic::x86_avx512_psrav_q_128:
3126 case Intrinsic::x86_avx512_psrav_q_256:
3127 case Intrinsic::x86_avx512_psrav_q_512:
3128 handleVectorShiftIntrinsic(I, /* Variable */ true);
3129 break;
3131 case Intrinsic::x86_sse2_packsswb_128:
3132 case Intrinsic::x86_sse2_packssdw_128:
3133 case Intrinsic::x86_sse2_packuswb_128:
3134 case Intrinsic::x86_sse41_packusdw:
3135 case Intrinsic::x86_avx2_packsswb:
3136 case Intrinsic::x86_avx2_packssdw:
3137 case Intrinsic::x86_avx2_packuswb:
3138 case Intrinsic::x86_avx2_packusdw:
3139 handleVectorPackIntrinsic(I);
3140 break;
3142 case Intrinsic::x86_mmx_packsswb:
3143 case Intrinsic::x86_mmx_packuswb:
3144 handleVectorPackIntrinsic(I, 16);
3145 break;
3147 case Intrinsic::x86_mmx_packssdw:
3148 handleVectorPackIntrinsic(I, 32);
3149 break;
3151 case Intrinsic::x86_mmx_psad_bw:
3152 case Intrinsic::x86_sse2_psad_bw:
3153 case Intrinsic::x86_avx2_psad_bw:
3154 handleVectorSadIntrinsic(I);
3155 break;
3157 case Intrinsic::x86_sse2_pmadd_wd:
3158 case Intrinsic::x86_avx2_pmadd_wd:
3159 case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3160 case Intrinsic::x86_avx2_pmadd_ub_sw:
3161 handleVectorPmaddIntrinsic(I);
3162 break;
3164 case Intrinsic::x86_ssse3_pmadd_ub_sw:
3165 handleVectorPmaddIntrinsic(I, 8);
3166 break;
3168 case Intrinsic::x86_mmx_pmadd_wd:
3169 handleVectorPmaddIntrinsic(I, 16);
3170 break;
3172 case Intrinsic::x86_sse_cmp_ss:
3173 case Intrinsic::x86_sse2_cmp_sd:
3174 case Intrinsic::x86_sse_comieq_ss:
3175 case Intrinsic::x86_sse_comilt_ss:
3176 case Intrinsic::x86_sse_comile_ss:
3177 case Intrinsic::x86_sse_comigt_ss:
3178 case Intrinsic::x86_sse_comige_ss:
3179 case Intrinsic::x86_sse_comineq_ss:
3180 case Intrinsic::x86_sse_ucomieq_ss:
3181 case Intrinsic::x86_sse_ucomilt_ss:
3182 case Intrinsic::x86_sse_ucomile_ss:
3183 case Intrinsic::x86_sse_ucomigt_ss:
3184 case Intrinsic::x86_sse_ucomige_ss:
3185 case Intrinsic::x86_sse_ucomineq_ss:
3186 case Intrinsic::x86_sse2_comieq_sd:
3187 case Intrinsic::x86_sse2_comilt_sd:
3188 case Intrinsic::x86_sse2_comile_sd:
3189 case Intrinsic::x86_sse2_comigt_sd:
3190 case Intrinsic::x86_sse2_comige_sd:
3191 case Intrinsic::x86_sse2_comineq_sd:
3192 case Intrinsic::x86_sse2_ucomieq_sd:
3193 case Intrinsic::x86_sse2_ucomilt_sd:
3194 case Intrinsic::x86_sse2_ucomile_sd:
3195 case Intrinsic::x86_sse2_ucomigt_sd:
3196 case Intrinsic::x86_sse2_ucomige_sd:
3197 case Intrinsic::x86_sse2_ucomineq_sd:
3198 handleVectorCompareScalarIntrinsic(I);
3199 break;
3201 case Intrinsic::x86_sse_cmp_ps:
3202 case Intrinsic::x86_sse2_cmp_pd:
3203 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
3204 // generates reasonably looking IR that fails in the backend with "Do not
3205 // know how to split the result of this operator!".
3206 handleVectorComparePackedIntrinsic(I);
3207 break;
3209 case Intrinsic::x86_bmi_bextr_32:
3210 case Intrinsic::x86_bmi_bextr_64:
3211 case Intrinsic::x86_bmi_bzhi_32:
3212 case Intrinsic::x86_bmi_bzhi_64:
3213 case Intrinsic::x86_bmi_pdep_32:
3214 case Intrinsic::x86_bmi_pdep_64:
3215 case Intrinsic::x86_bmi_pext_32:
3216 case Intrinsic::x86_bmi_pext_64:
3217 handleBmiIntrinsic(I);
3218 break;
3220 case Intrinsic::is_constant:
3221 // The result of llvm.is.constant() is always defined.
3222 setShadow(&I, getCleanShadow(&I));
3223 setOrigin(&I, getCleanOrigin());
3224 break;
3226 default:
3227 if (!handleUnknownIntrinsic(I))
3228 visitInstruction(I);
3229 break;
3233 void visitCallSite(CallSite CS) {
3234 Instruction &I = *CS.getInstruction();
3235 assert(!I.getMetadata("nosanitize"));
3236 assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
3237 "Unknown type of CallSite");
3238 if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
3239 // For inline asm (either a call to asm function, or callbr instruction),
3240 // do the usual thing: check argument shadow and mark all outputs as
3241 // clean. Note that any side effects of the inline asm that are not
3242 // immediately visible in its constraints are not handled.
3243 if (ClHandleAsmConservative && MS.CompileKernel)
3244 visitAsmInstruction(I);
3245 else
3246 visitInstruction(I);
3247 return;
3249 if (CS.isCall()) {
3250 CallInst *Call = cast<CallInst>(&I);
3251 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
3253 // We are going to insert code that relies on the fact that the callee
3254 // will become a non-readonly function after it is instrumented by us. To
3255 // prevent this code from being optimized out, mark that function
3256 // non-readonly in advance.
3257 if (Function *Func = Call->getCalledFunction()) {
3258 // Clear out readonly/readnone attributes.
3259 AttrBuilder B;
3260 B.addAttribute(Attribute::ReadOnly)
3261 .addAttribute(Attribute::ReadNone);
3262 Func->removeAttributes(AttributeList::FunctionIndex, B);
3265 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
3267 IRBuilder<> IRB(&I);
3269 unsigned ArgOffset = 0;
3270 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n");
3271 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3272 ArgIt != End; ++ArgIt) {
3273 Value *A = *ArgIt;
3274 unsigned i = ArgIt - CS.arg_begin();
3275 if (!A->getType()->isSized()) {
3276 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
3277 continue;
3279 unsigned Size = 0;
3280 Value *Store = nullptr;
3281 // Compute the Shadow for arg even if it is ByVal, because
3282 // in that case getShadow() will copy the actual arg shadow to
3283 // __msan_param_tls.
3284 Value *ArgShadow = getShadow(A);
3285 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
3286 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A
3287 << " Shadow: " << *ArgShadow << "\n");
3288 bool ArgIsInitialized = false;
3289 const DataLayout &DL = F.getParent()->getDataLayout();
3290 if (CS.paramHasAttr(i, Attribute::ByVal)) {
3291 assert(A->getType()->isPointerTy() &&
3292 "ByVal argument is not a pointer!");
3293 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
3294 if (ArgOffset + Size > kParamTLSSize) break;
3295 unsigned ParamAlignment = CS.getParamAlignment(i);
3296 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
3297 Value *AShadowPtr =
3298 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
3299 /*isStore*/ false)
3300 .first;
3302 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
3303 Alignment, Size);
3304 // TODO(glider): need to copy origins.
3305 } else {
3306 Size = DL.getTypeAllocSize(A->getType());
3307 if (ArgOffset + Size > kParamTLSSize) break;
3308 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
3309 kShadowTLSAlignment);
3310 Constant *Cst = dyn_cast<Constant>(ArgShadow);
3311 if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
3313 if (MS.TrackOrigins && !ArgIsInitialized)
3314 IRB.CreateStore(getOrigin(A),
3315 getOriginPtrForArgument(A, IRB, ArgOffset));
3316 (void)Store;
3317 assert(Size != 0 && Store != nullptr);
3318 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n");
3319 ArgOffset += alignTo(Size, 8);
3321 LLVM_DEBUG(dbgs() << " done with call args\n");
3323 FunctionType *FT = CS.getFunctionType();
3324 if (FT->isVarArg()) {
3325 VAHelper->visitCallSite(CS, IRB);
3328 // Now, get the shadow for the RetVal.
3329 if (!I.getType()->isSized()) return;
3330 // Don't emit the epilogue for musttail call returns.
3331 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
3332 IRBuilder<> IRBBefore(&I);
3333 // Until we have full dynamic coverage, make sure the retval shadow is 0.
3334 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
3335 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
3336 BasicBlock::iterator NextInsn;
3337 if (CS.isCall()) {
3338 NextInsn = ++I.getIterator();
3339 assert(NextInsn != I.getParent()->end());
3340 } else {
3341 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
3342 if (!NormalDest->getSinglePredecessor()) {
3343 // FIXME: this case is tricky, so we are just conservative here.
3344 // Perhaps we need to split the edge between this BB and NormalDest,
3345 // but a naive attempt to use SplitEdge leads to a crash.
3346 setShadow(&I, getCleanShadow(&I));
3347 setOrigin(&I, getCleanOrigin());
3348 return;
3350 // FIXME: NextInsn is likely in a basic block that has not been visited yet.
3351 // Anything inserted there will be instrumented by MSan later!
3352 NextInsn = NormalDest->getFirstInsertionPt();
3353 assert(NextInsn != NormalDest->end() &&
3354 "Could not find insertion point for retval shadow load");
3356 IRBuilder<> IRBAfter(&*NextInsn);
3357 Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
3358 getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
3359 kShadowTLSAlignment, "_msret");
3360 setShadow(&I, RetvalShadow);
3361 if (MS.TrackOrigins)
3362 setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
3363 getOriginPtrForRetval(IRBAfter)));
3366 bool isAMustTailRetVal(Value *RetVal) {
3367 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
3368 RetVal = I->getOperand(0);
3370 if (auto *I = dyn_cast<CallInst>(RetVal)) {
3371 return I->isMustTailCall();
3373 return false;
3376 void visitReturnInst(ReturnInst &I) {
3377 IRBuilder<> IRB(&I);
3378 Value *RetVal = I.getReturnValue();
3379 if (!RetVal) return;
3380 // Don't emit the epilogue for musttail call returns.
3381 if (isAMustTailRetVal(RetVal)) return;
3382 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
3383 if (CheckReturnValue) {
3384 insertShadowCheck(RetVal, &I);
3385 Value *Shadow = getCleanShadow(RetVal);
3386 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3387 } else {
3388 Value *Shadow = getShadow(RetVal);
3389 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
3390 if (MS.TrackOrigins)
3391 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
3395 void visitPHINode(PHINode &I) {
3396 IRBuilder<> IRB(&I);
3397 if (!PropagateShadow) {
3398 setShadow(&I, getCleanShadow(&I));
3399 setOrigin(&I, getCleanOrigin());
3400 return;
3403 ShadowPHINodes.push_back(&I);
3404 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
3405 "_msphi_s"));
3406 if (MS.TrackOrigins)
3407 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
3408 "_msphi_o"));
3411 Value *getLocalVarDescription(AllocaInst &I) {
3412 SmallString<2048> StackDescriptionStorage;
3413 raw_svector_ostream StackDescription(StackDescriptionStorage);
3414 // We create a string with a description of the stack allocation and
3415 // pass it into __msan_set_alloca_origin.
3416 // It will be printed by the run-time if stack-originated UMR is found.
3417 // The first 4 bytes of the string are set to '----' and will be replaced
3418 // by __msan_va_arg_overflow_size_tls at the first call.
3419 StackDescription << "----" << I.getName() << "@" << F.getName();
3420 return createPrivateNonConstGlobalForString(*F.getParent(),
3421 StackDescription.str());
3424 void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3425 if (PoisonStack && ClPoisonStackWithCall) {
3426 IRB.CreateCall(MS.MsanPoisonStackFn,
3427 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3428 } else {
3429 Value *ShadowBase, *OriginBase;
3430 std::tie(ShadowBase, OriginBase) =
3431 getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true);
3433 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
3434 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
3437 if (PoisonStack && MS.TrackOrigins) {
3438 Value *Descr = getLocalVarDescription(I);
3439 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
3440 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3441 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
3442 IRB.CreatePointerCast(&F, MS.IntptrTy)});
3446 void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
3447 Value *Descr = getLocalVarDescription(I);
3448 if (PoisonStack) {
3449 IRB.CreateCall(MS.MsanPoisonAllocaFn,
3450 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
3451 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
3452 } else {
3453 IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
3454 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
3458 void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
3459 if (!InsPoint)
3460 InsPoint = &I;
3461 IRBuilder<> IRB(InsPoint->getNextNode());
3462 const DataLayout &DL = F.getParent()->getDataLayout();
3463 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
3464 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
3465 if (I.isArrayAllocation())
3466 Len = IRB.CreateMul(Len, I.getArraySize());
3468 if (MS.CompileKernel)
3469 poisonAllocaKmsan(I, IRB, Len);
3470 else
3471 poisonAllocaUserspace(I, IRB, Len);
3474 void visitAllocaInst(AllocaInst &I) {
3475 setShadow(&I, getCleanShadow(&I));
3476 setOrigin(&I, getCleanOrigin());
3477 // We'll get to this alloca later unless it's poisoned at the corresponding
3478 // llvm.lifetime.start.
3479 AllocaSet.insert(&I);
3482 void visitSelectInst(SelectInst& I) {
3483 IRBuilder<> IRB(&I);
3484 // a = select b, c, d
3485 Value *B = I.getCondition();
3486 Value *C = I.getTrueValue();
3487 Value *D = I.getFalseValue();
3488 Value *Sb = getShadow(B);
3489 Value *Sc = getShadow(C);
3490 Value *Sd = getShadow(D);
3492 // Result shadow if condition shadow is 0.
3493 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
3494 Value *Sa1;
3495 if (I.getType()->isAggregateType()) {
3496 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
3497 // an extra "select". This results in much more compact IR.
3498 // Sa = select Sb, poisoned, (select b, Sc, Sd)
3499 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
3500 } else {
3501 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
3502 // If Sb (condition is poisoned), look for bits in c and d that are equal
3503 // and both unpoisoned.
3504 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
3506 // Cast arguments to shadow-compatible type.
3507 C = CreateAppToShadowCast(IRB, C);
3508 D = CreateAppToShadowCast(IRB, D);
3510 // Result shadow if condition shadow is 1.
3511 Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
3513 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
3514 setShadow(&I, Sa);
3515 if (MS.TrackOrigins) {
3516 // Origins are always i32, so any vector conditions must be flattened.
3517 // FIXME: consider tracking vector origins for app vectors?
3518 if (B->getType()->isVectorTy()) {
3519 Type *FlatTy = getShadowTyNoVec(B->getType());
3520 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
3521 ConstantInt::getNullValue(FlatTy));
3522 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
3523 ConstantInt::getNullValue(FlatTy));
3525 // a = select b, c, d
3526 // Oa = Sb ? Ob : (b ? Oc : Od)
3527 setOrigin(
3528 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
3529 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
3530 getOrigin(I.getFalseValue()))));
3534 void visitLandingPadInst(LandingPadInst &I) {
3535 // Do nothing.
3536 // See https://github.com/google/sanitizers/issues/504
3537 setShadow(&I, getCleanShadow(&I));
3538 setOrigin(&I, getCleanOrigin());
3541 void visitCatchSwitchInst(CatchSwitchInst &I) {
3542 setShadow(&I, getCleanShadow(&I));
3543 setOrigin(&I, getCleanOrigin());
3546 void visitFuncletPadInst(FuncletPadInst &I) {
3547 setShadow(&I, getCleanShadow(&I));
3548 setOrigin(&I, getCleanOrigin());
3551 void visitGetElementPtrInst(GetElementPtrInst &I) {
3552 handleShadowOr(I);
3555 void visitExtractValueInst(ExtractValueInst &I) {
3556 IRBuilder<> IRB(&I);
3557 Value *Agg = I.getAggregateOperand();
3558 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n");
3559 Value *AggShadow = getShadow(Agg);
3560 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
3561 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
3562 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
3563 setShadow(&I, ResShadow);
3564 setOriginForNaryOp(I);
3567 void visitInsertValueInst(InsertValueInst &I) {
3568 IRBuilder<> IRB(&I);
3569 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n");
3570 Value *AggShadow = getShadow(I.getAggregateOperand());
3571 Value *InsShadow = getShadow(I.getInsertedValueOperand());
3572 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
3573 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
3574 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
3575 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n");
3576 setShadow(&I, Res);
3577 setOriginForNaryOp(I);
3580 void dumpInst(Instruction &I) {
3581 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3582 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
3583 } else {
3584 errs() << "ZZZ " << I.getOpcodeName() << "\n";
3586 errs() << "QQQ " << I << "\n";
3589 void visitResumeInst(ResumeInst &I) {
3590 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
3591 // Nothing to do here.
3594 void visitCleanupReturnInst(CleanupReturnInst &CRI) {
3595 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
3596 // Nothing to do here.
3599 void visitCatchReturnInst(CatchReturnInst &CRI) {
3600 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
3601 // Nothing to do here.
3604 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
3605 const DataLayout &DL, bool isOutput) {
3606 // For each assembly argument, we check its value for being initialized.
3607 // If the argument is a pointer, we assume it points to a single element
3608 // of the corresponding type (or to a 8-byte word, if the type is unsized).
3609 // Each such pointer is instrumented with a call to the runtime library.
3610 Type *OpType = Operand->getType();
3611 // Check the operand value itself.
3612 insertShadowCheck(Operand, &I);
3613 if (!OpType->isPointerTy() || !isOutput) {
3614 assert(!isOutput);
3615 return;
3617 Type *ElType = OpType->getPointerElementType();
3618 if (!ElType->isSized())
3619 return;
3620 int Size = DL.getTypeStoreSize(ElType);
3621 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
3622 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
3623 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
3626 /// Get the number of output arguments returned by pointers.
3627 int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
3628 int NumRetOutputs = 0;
3629 int NumOutputs = 0;
3630 Type *RetTy = dyn_cast<Value>(CB)->getType();
3631 if (!RetTy->isVoidTy()) {
3632 // Register outputs are returned via the CallInst return value.
3633 StructType *ST = dyn_cast_or_null<StructType>(RetTy);
3634 if (ST)
3635 NumRetOutputs = ST->getNumElements();
3636 else
3637 NumRetOutputs = 1;
3639 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
3640 for (size_t i = 0, n = Constraints.size(); i < n; i++) {
3641 InlineAsm::ConstraintInfo Info = Constraints[i];
3642 switch (Info.Type) {
3643 case InlineAsm::isOutput:
3644 NumOutputs++;
3645 break;
3646 default:
3647 break;
3650 return NumOutputs - NumRetOutputs;
3653 void visitAsmInstruction(Instruction &I) {
3654 // Conservative inline assembly handling: check for poisoned shadow of
3655 // asm() arguments, then unpoison the result and all the memory locations
3656 // pointed to by those arguments.
3657 // An inline asm() statement in C++ contains lists of input and output
3658 // arguments used by the assembly code. These are mapped to operands of the
3659 // CallInst as follows:
3660 // - nR register outputs ("=r) are returned by value in a single structure
3661 // (SSA value of the CallInst);
3662 // - nO other outputs ("=m" and others) are returned by pointer as first
3663 // nO operands of the CallInst;
3664 // - nI inputs ("r", "m" and others) are passed to CallInst as the
3665 // remaining nI operands.
3666 // The total number of asm() arguments in the source is nR+nO+nI, and the
3667 // corresponding CallInst has nO+nI+1 operands (the last operand is the
3668 // function to be called).
3669 const DataLayout &DL = F.getParent()->getDataLayout();
3670 CallBase *CB = dyn_cast<CallBase>(&I);
3671 IRBuilder<> IRB(&I);
3672 InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
3673 int OutputArgs = getNumOutputArgs(IA, CB);
3674 // The last operand of a CallInst is the function itself.
3675 int NumOperands = CB->getNumOperands() - 1;
3677 // Check input arguments. Doing so before unpoisoning output arguments, so
3678 // that we won't overwrite uninit values before checking them.
3679 for (int i = OutputArgs; i < NumOperands; i++) {
3680 Value *Operand = CB->getOperand(i);
3681 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
3683 // Unpoison output arguments. This must happen before the actual InlineAsm
3684 // call, so that the shadow for memory published in the asm() statement
3685 // remains valid.
3686 for (int i = 0; i < OutputArgs; i++) {
3687 Value *Operand = CB->getOperand(i);
3688 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
3691 setShadow(&I, getCleanShadow(&I));
3692 setOrigin(&I, getCleanOrigin());
3695 void visitInstruction(Instruction &I) {
3696 // Everything else: stop propagating and check for poisoned shadow.
3697 if (ClDumpStrictInstructions)
3698 dumpInst(I);
3699 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
3700 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
3701 Value *Operand = I.getOperand(i);
3702 if (Operand->getType()->isSized())
3703 insertShadowCheck(Operand, &I);
3705 setShadow(&I, getCleanShadow(&I));
3706 setOrigin(&I, getCleanOrigin());
3710 /// AMD64-specific implementation of VarArgHelper.
3711 struct VarArgAMD64Helper : public VarArgHelper {
3712 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
3713 // See a comment in visitCallSite for more details.
3714 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
3715 static const unsigned AMD64FpEndOffsetSSE = 176;
3716 // If SSE is disabled, fp_offset in va_list is zero.
3717 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
3719 unsigned AMD64FpEndOffset;
3720 Function &F;
3721 MemorySanitizer &MS;
3722 MemorySanitizerVisitor &MSV;
3723 Value *VAArgTLSCopy = nullptr;
3724 Value *VAArgTLSOriginCopy = nullptr;
3725 Value *VAArgOverflowSize = nullptr;
3727 SmallVector<CallInst*, 16> VAStartInstrumentationList;
3729 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3731 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
3732 MemorySanitizerVisitor &MSV)
3733 : F(F), MS(MS), MSV(MSV) {
3734 AMD64FpEndOffset = AMD64FpEndOffsetSSE;
3735 for (const auto &Attr : F.getAttributes().getFnAttributes()) {
3736 if (Attr.isStringAttribute() &&
3737 (Attr.getKindAsString() == "target-features")) {
3738 if (Attr.getValueAsString().contains("-sse"))
3739 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
3740 break;
3745 ArgKind classifyArgument(Value* arg) {
3746 // A very rough approximation of X86_64 argument classification rules.
3747 Type *T = arg->getType();
3748 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
3749 return AK_FloatingPoint;
3750 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3751 return AK_GeneralPurpose;
3752 if (T->isPointerTy())
3753 return AK_GeneralPurpose;
3754 return AK_Memory;
3757 // For VarArg functions, store the argument shadow in an ABI-specific format
3758 // that corresponds to va_list layout.
3759 // We do this because Clang lowers va_arg in the frontend, and this pass
3760 // only sees the low level code that deals with va_list internals.
3761 // A much easier alternative (provided that Clang emits va_arg instructions)
3762 // would have been to associate each live instance of va_list with a copy of
3763 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
3764 // order.
3765 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3766 unsigned GpOffset = 0;
3767 unsigned FpOffset = AMD64GpEndOffset;
3768 unsigned OverflowOffset = AMD64FpEndOffset;
3769 const DataLayout &DL = F.getParent()->getDataLayout();
3770 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3771 ArgIt != End; ++ArgIt) {
3772 Value *A = *ArgIt;
3773 unsigned ArgNo = CS.getArgumentNo(ArgIt);
3774 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3775 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
3776 if (IsByVal) {
3777 // ByVal arguments always go to the overflow area.
3778 // Fixed arguments passed through the overflow area will be stepped
3779 // over by va_start, so don't count them towards the offset.
3780 if (IsFixed)
3781 continue;
3782 assert(A->getType()->isPointerTy());
3783 Type *RealTy = A->getType()->getPointerElementType();
3784 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3785 Value *ShadowBase = getShadowPtrForVAArgument(
3786 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
3787 Value *OriginBase = nullptr;
3788 if (MS.TrackOrigins)
3789 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
3790 OverflowOffset += alignTo(ArgSize, 8);
3791 if (!ShadowBase)
3792 continue;
3793 Value *ShadowPtr, *OriginPtr;
3794 std::tie(ShadowPtr, OriginPtr) =
3795 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
3796 /*isStore*/ false);
3798 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
3799 kShadowTLSAlignment, ArgSize);
3800 if (MS.TrackOrigins)
3801 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
3802 kShadowTLSAlignment, ArgSize);
3803 } else {
3804 ArgKind AK = classifyArgument(A);
3805 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
3806 AK = AK_Memory;
3807 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
3808 AK = AK_Memory;
3809 Value *ShadowBase, *OriginBase = nullptr;
3810 switch (AK) {
3811 case AK_GeneralPurpose:
3812 ShadowBase =
3813 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
3814 if (MS.TrackOrigins)
3815 OriginBase =
3816 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
3817 GpOffset += 8;
3818 break;
3819 case AK_FloatingPoint:
3820 ShadowBase =
3821 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
3822 if (MS.TrackOrigins)
3823 OriginBase =
3824 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
3825 FpOffset += 16;
3826 break;
3827 case AK_Memory:
3828 if (IsFixed)
3829 continue;
3830 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3831 ShadowBase =
3832 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
3833 if (MS.TrackOrigins)
3834 OriginBase =
3835 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3836 OverflowOffset += alignTo(ArgSize, 8);
3838 // Take fixed arguments into account for GpOffset and FpOffset,
3839 // but don't actually store shadows for them.
3840 // TODO(glider): don't call get*PtrForVAArgument() for them.
3841 if (IsFixed)
3842 continue;
3843 if (!ShadowBase)
3844 continue;
3845 Value *Shadow = MSV.getShadow(A);
3846 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
3847 if (MS.TrackOrigins) {
3848 Value *Origin = MSV.getOrigin(A);
3849 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
3850 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
3851 std::max(kShadowTLSAlignment, kMinOriginAlignment));
3855 Constant *OverflowSize =
3856 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
3857 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3860 /// Compute the shadow address for a given va_arg.
3861 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3862 unsigned ArgOffset, unsigned ArgSize) {
3863 // Make sure we don't overflow __msan_va_arg_tls.
3864 if (ArgOffset + ArgSize > kParamTLSSize)
3865 return nullptr;
3866 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3867 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3868 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3869 "_msarg_va_s");
3872 /// Compute the origin address for a given va_arg.
3873 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
3874 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
3875 // getOriginPtrForVAArgument() is always called after
3876 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
3877 // overflow.
3878 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3879 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
3880 "_msarg_va_o");
3883 void unpoisonVAListTagForInst(IntrinsicInst &I) {
3884 IRBuilder<> IRB(&I);
3885 Value *VAListTag = I.getArgOperand(0);
3886 Value *ShadowPtr, *OriginPtr;
3887 unsigned Alignment = 8;
3888 std::tie(ShadowPtr, OriginPtr) =
3889 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
3890 /*isStore*/ true);
3892 // Unpoison the whole __va_list_tag.
3893 // FIXME: magic ABI constants.
3894 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3895 /* size */ 24, Alignment, false);
3896 // We shouldn't need to zero out the origins, as they're only checked for
3897 // nonzero shadow.
3900 void visitVAStartInst(VAStartInst &I) override {
3901 if (F.getCallingConv() == CallingConv::Win64)
3902 return;
3903 VAStartInstrumentationList.push_back(&I);
3904 unpoisonVAListTagForInst(I);
3907 void visitVACopyInst(VACopyInst &I) override {
3908 if (F.getCallingConv() == CallingConv::Win64) return;
3909 unpoisonVAListTagForInst(I);
3912 void finalizeInstrumentation() override {
3913 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3914 "finalizeInstrumentation called twice");
3915 if (!VAStartInstrumentationList.empty()) {
3916 // If there is a va_start in this function, make a backup copy of
3917 // va_arg_tls somewhere in the function entry block.
3918 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
3919 VAArgOverflowSize =
3920 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
3921 Value *CopySize =
3922 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3923 VAArgOverflowSize);
3924 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3925 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
3926 if (MS.TrackOrigins) {
3927 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3928 IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize);
3932 // Instrument va_start.
3933 // Copy va_list shadow from the backup copy of the TLS contents.
3934 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3935 CallInst *OrigInst = VAStartInstrumentationList[i];
3936 IRBuilder<> IRB(OrigInst->getNextNode());
3937 Value *VAListTag = OrigInst->getArgOperand(0);
3939 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
3940 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
3941 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3942 ConstantInt::get(MS.IntptrTy, 16)),
3943 PointerType::get(RegSaveAreaPtrTy, 0));
3944 Value *RegSaveAreaPtr =
3945 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
3946 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
3947 unsigned Alignment = 16;
3948 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
3949 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
3950 Alignment, /*isStore*/ true);
3951 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
3952 AMD64FpEndOffset);
3953 if (MS.TrackOrigins)
3954 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
3955 Alignment, AMD64FpEndOffset);
3956 Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
3957 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
3958 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3959 ConstantInt::get(MS.IntptrTy, 8)),
3960 PointerType::get(OverflowArgAreaPtrTy, 0));
3961 Value *OverflowArgAreaPtr =
3962 IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
3963 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
3964 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
3965 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
3966 Alignment, /*isStore*/ true);
3967 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
3968 AMD64FpEndOffset);
3969 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
3970 VAArgOverflowSize);
3971 if (MS.TrackOrigins) {
3972 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
3973 AMD64FpEndOffset);
3974 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
3975 VAArgOverflowSize);
3981 /// MIPS64-specific implementation of VarArgHelper.
3982 struct VarArgMIPS64Helper : public VarArgHelper {
3983 Function &F;
3984 MemorySanitizer &MS;
3985 MemorySanitizerVisitor &MSV;
3986 Value *VAArgTLSCopy = nullptr;
3987 Value *VAArgSize = nullptr;
3989 SmallVector<CallInst*, 16> VAStartInstrumentationList;
3991 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
3992 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
3994 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3995 unsigned VAArgOffset = 0;
3996 const DataLayout &DL = F.getParent()->getDataLayout();
3997 for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
3998 CS.getFunctionType()->getNumParams(), End = CS.arg_end();
3999 ArgIt != End; ++ArgIt) {
4000 Triple TargetTriple(F.getParent()->getTargetTriple());
4001 Value *A = *ArgIt;
4002 Value *Base;
4003 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4004 if (TargetTriple.getArch() == Triple::mips64) {
4005 // Adjusting the shadow for argument with size < 8 to match the placement
4006 // of bits in big endian system
4007 if (ArgSize < 8)
4008 VAArgOffset += (8 - ArgSize);
4010 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
4011 VAArgOffset += ArgSize;
4012 VAArgOffset = alignTo(VAArgOffset, 8);
4013 if (!Base)
4014 continue;
4015 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4018 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
4019 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4020 // a new class member i.e. it is the total size of all VarArgs.
4021 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4024 /// Compute the shadow address for a given va_arg.
4025 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4026 unsigned ArgOffset, unsigned ArgSize) {
4027 // Make sure we don't overflow __msan_va_arg_tls.
4028 if (ArgOffset + ArgSize > kParamTLSSize)
4029 return nullptr;
4030 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4031 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4032 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4033 "_msarg");
4036 void visitVAStartInst(VAStartInst &I) override {
4037 IRBuilder<> IRB(&I);
4038 VAStartInstrumentationList.push_back(&I);
4039 Value *VAListTag = I.getArgOperand(0);
4040 Value *ShadowPtr, *OriginPtr;
4041 unsigned Alignment = 8;
4042 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4043 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4044 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4045 /* size */ 8, Alignment, false);
4048 void visitVACopyInst(VACopyInst &I) override {
4049 IRBuilder<> IRB(&I);
4050 VAStartInstrumentationList.push_back(&I);
4051 Value *VAListTag = I.getArgOperand(0);
4052 Value *ShadowPtr, *OriginPtr;
4053 unsigned Alignment = 8;
4054 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4055 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4056 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4057 /* size */ 8, Alignment, false);
4060 void finalizeInstrumentation() override {
4061 assert(!VAArgSize && !VAArgTLSCopy &&
4062 "finalizeInstrumentation called twice");
4063 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4064 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4065 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4066 VAArgSize);
4068 if (!VAStartInstrumentationList.empty()) {
4069 // If there is a va_start in this function, make a backup copy of
4070 // va_arg_tls somewhere in the function entry block.
4071 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4072 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4075 // Instrument va_start.
4076 // Copy va_list shadow from the backup copy of the TLS contents.
4077 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4078 CallInst *OrigInst = VAStartInstrumentationList[i];
4079 IRBuilder<> IRB(OrigInst->getNextNode());
4080 Value *VAListTag = OrigInst->getArgOperand(0);
4081 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4082 Value *RegSaveAreaPtrPtr =
4083 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4084 PointerType::get(RegSaveAreaPtrTy, 0));
4085 Value *RegSaveAreaPtr =
4086 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4087 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4088 unsigned Alignment = 8;
4089 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4090 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4091 Alignment, /*isStore*/ true);
4092 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4093 CopySize);
4098 /// AArch64-specific implementation of VarArgHelper.
4099 struct VarArgAArch64Helper : public VarArgHelper {
4100 static const unsigned kAArch64GrArgSize = 64;
4101 static const unsigned kAArch64VrArgSize = 128;
4103 static const unsigned AArch64GrBegOffset = 0;
4104 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
4105 // Make VR space aligned to 16 bytes.
4106 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
4107 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
4108 + kAArch64VrArgSize;
4109 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
4111 Function &F;
4112 MemorySanitizer &MS;
4113 MemorySanitizerVisitor &MSV;
4114 Value *VAArgTLSCopy = nullptr;
4115 Value *VAArgOverflowSize = nullptr;
4117 SmallVector<CallInst*, 16> VAStartInstrumentationList;
4119 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
4121 VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
4122 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4124 ArgKind classifyArgument(Value* arg) {
4125 Type *T = arg->getType();
4126 if (T->isFPOrFPVectorTy())
4127 return AK_FloatingPoint;
4128 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
4129 || (T->isPointerTy()))
4130 return AK_GeneralPurpose;
4131 return AK_Memory;
4134 // The instrumentation stores the argument shadow in a non ABI-specific
4135 // format because it does not know which argument is named (since Clang,
4136 // like x86_64 case, lowers the va_args in the frontend and this pass only
4137 // sees the low level code that deals with va_list internals).
4138 // The first seven GR registers are saved in the first 56 bytes of the
4139 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
4140 // the remaining arguments.
4141 // Using constant offset within the va_arg TLS array allows fast copy
4142 // in the finalize instrumentation.
4143 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4144 unsigned GrOffset = AArch64GrBegOffset;
4145 unsigned VrOffset = AArch64VrBegOffset;
4146 unsigned OverflowOffset = AArch64VAEndOffset;
4148 const DataLayout &DL = F.getParent()->getDataLayout();
4149 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4150 ArgIt != End; ++ArgIt) {
4151 Value *A = *ArgIt;
4152 unsigned ArgNo = CS.getArgumentNo(ArgIt);
4153 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4154 ArgKind AK = classifyArgument(A);
4155 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
4156 AK = AK_Memory;
4157 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
4158 AK = AK_Memory;
4159 Value *Base;
4160 switch (AK) {
4161 case AK_GeneralPurpose:
4162 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
4163 GrOffset += 8;
4164 break;
4165 case AK_FloatingPoint:
4166 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
4167 VrOffset += 16;
4168 break;
4169 case AK_Memory:
4170 // Don't count fixed arguments in the overflow area - va_start will
4171 // skip right over them.
4172 if (IsFixed)
4173 continue;
4174 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4175 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
4176 alignTo(ArgSize, 8));
4177 OverflowOffset += alignTo(ArgSize, 8);
4178 break;
4180 // Count Gp/Vr fixed arguments to their respective offsets, but don't
4181 // bother to actually store a shadow.
4182 if (IsFixed)
4183 continue;
4184 if (!Base)
4185 continue;
4186 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4188 Constant *OverflowSize =
4189 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
4190 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
4193 /// Compute the shadow address for a given va_arg.
4194 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4195 unsigned ArgOffset, unsigned ArgSize) {
4196 // Make sure we don't overflow __msan_va_arg_tls.
4197 if (ArgOffset + ArgSize > kParamTLSSize)
4198 return nullptr;
4199 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4200 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4201 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4202 "_msarg");
4205 void visitVAStartInst(VAStartInst &I) override {
4206 IRBuilder<> IRB(&I);
4207 VAStartInstrumentationList.push_back(&I);
4208 Value *VAListTag = I.getArgOperand(0);
4209 Value *ShadowPtr, *OriginPtr;
4210 unsigned Alignment = 8;
4211 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4212 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4213 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4214 /* size */ 32, Alignment, false);
4217 void visitVACopyInst(VACopyInst &I) override {
4218 IRBuilder<> IRB(&I);
4219 VAStartInstrumentationList.push_back(&I);
4220 Value *VAListTag = I.getArgOperand(0);
4221 Value *ShadowPtr, *OriginPtr;
4222 unsigned Alignment = 8;
4223 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4224 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4225 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4226 /* size */ 32, Alignment, false);
4229 // Retrieve a va_list field of 'void*' size.
4230 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4231 Value *SaveAreaPtrPtr =
4232 IRB.CreateIntToPtr(
4233 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4234 ConstantInt::get(MS.IntptrTy, offset)),
4235 Type::getInt64PtrTy(*MS.C));
4236 return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
4239 // Retrieve a va_list field of 'int' size.
4240 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
4241 Value *SaveAreaPtr =
4242 IRB.CreateIntToPtr(
4243 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4244 ConstantInt::get(MS.IntptrTy, offset)),
4245 Type::getInt32PtrTy(*MS.C));
4246 Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
4247 return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
4250 void finalizeInstrumentation() override {
4251 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
4252 "finalizeInstrumentation called twice");
4253 if (!VAStartInstrumentationList.empty()) {
4254 // If there is a va_start in this function, make a backup copy of
4255 // va_arg_tls somewhere in the function entry block.
4256 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4257 VAArgOverflowSize =
4258 IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4259 Value *CopySize =
4260 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
4261 VAArgOverflowSize);
4262 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4263 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4266 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
4267 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
4269 // Instrument va_start, copy va_list shadow from the backup copy of
4270 // the TLS contents.
4271 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4272 CallInst *OrigInst = VAStartInstrumentationList[i];
4273 IRBuilder<> IRB(OrigInst->getNextNode());
4275 Value *VAListTag = OrigInst->getArgOperand(0);
4277 // The variadic ABI for AArch64 creates two areas to save the incoming
4278 // argument registers (one for 64-bit general register xn-x7 and another
4279 // for 128-bit FP/SIMD vn-v7).
4280 // We need then to propagate the shadow arguments on both regions
4281 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
4282 // The remaning arguments are saved on shadow for 'va::stack'.
4283 // One caveat is it requires only to propagate the non-named arguments,
4284 // however on the call site instrumentation 'all' the arguments are
4285 // saved. So to copy the shadow values from the va_arg TLS array
4286 // we need to adjust the offset for both GR and VR fields based on
4287 // the __{gr,vr}_offs value (since they are stores based on incoming
4288 // named arguments).
4290 // Read the stack pointer from the va_list.
4291 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
4293 // Read both the __gr_top and __gr_off and add them up.
4294 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
4295 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
4297 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
4299 // Read both the __vr_top and __vr_off and add them up.
4300 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
4301 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
4303 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
4305 // It does not know how many named arguments is being used and, on the
4306 // callsite all the arguments were saved. Since __gr_off is defined as
4307 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
4308 // argument by ignoring the bytes of shadow from named arguments.
4309 Value *GrRegSaveAreaShadowPtrOff =
4310 IRB.CreateAdd(GrArgSize, GrOffSaveArea);
4312 Value *GrRegSaveAreaShadowPtr =
4313 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4314 /*Alignment*/ 8, /*isStore*/ true)
4315 .first;
4317 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4318 GrRegSaveAreaShadowPtrOff);
4319 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
4321 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
4323 // Again, but for FP/SIMD values.
4324 Value *VrRegSaveAreaShadowPtrOff =
4325 IRB.CreateAdd(VrArgSize, VrOffSaveArea);
4327 Value *VrRegSaveAreaShadowPtr =
4328 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4329 /*Alignment*/ 8, /*isStore*/ true)
4330 .first;
4332 Value *VrSrcPtr = IRB.CreateInBoundsGEP(
4333 IRB.getInt8Ty(),
4334 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4335 IRB.getInt32(AArch64VrBegOffset)),
4336 VrRegSaveAreaShadowPtrOff);
4337 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
4339 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
4341 // And finally for remaining arguments.
4342 Value *StackSaveAreaShadowPtr =
4343 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
4344 /*Alignment*/ 16, /*isStore*/ true)
4345 .first;
4347 Value *StackSrcPtr =
4348 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
4349 IRB.getInt32(AArch64VAEndOffset));
4351 IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
4352 VAArgOverflowSize);
4357 /// PowerPC64-specific implementation of VarArgHelper.
4358 struct VarArgPowerPC64Helper : public VarArgHelper {
4359 Function &F;
4360 MemorySanitizer &MS;
4361 MemorySanitizerVisitor &MSV;
4362 Value *VAArgTLSCopy = nullptr;
4363 Value *VAArgSize = nullptr;
4365 SmallVector<CallInst*, 16> VAStartInstrumentationList;
4367 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
4368 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
4370 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
4371 // For PowerPC, we need to deal with alignment of stack arguments -
4372 // they are mostly aligned to 8 bytes, but vectors and i128 arrays
4373 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
4374 // and QPX vectors are aligned to 32 bytes. For that reason, we
4375 // compute current offset from stack pointer (which is always properly
4376 // aligned), and offset for the first vararg, then subtract them.
4377 unsigned VAArgBase;
4378 Triple TargetTriple(F.getParent()->getTargetTriple());
4379 // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
4380 // and 32 bytes for ABIv2. This is usually determined by target
4381 // endianness, but in theory could be overriden by function attribute.
4382 // For simplicity, we ignore it here (it'd only matter for QPX vectors).
4383 if (TargetTriple.getArch() == Triple::ppc64)
4384 VAArgBase = 48;
4385 else
4386 VAArgBase = 32;
4387 unsigned VAArgOffset = VAArgBase;
4388 const DataLayout &DL = F.getParent()->getDataLayout();
4389 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
4390 ArgIt != End; ++ArgIt) {
4391 Value *A = *ArgIt;
4392 unsigned ArgNo = CS.getArgumentNo(ArgIt);
4393 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
4394 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
4395 if (IsByVal) {
4396 assert(A->getType()->isPointerTy());
4397 Type *RealTy = A->getType()->getPointerElementType();
4398 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
4399 uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
4400 if (ArgAlign < 8)
4401 ArgAlign = 8;
4402 VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4403 if (!IsFixed) {
4404 Value *Base = getShadowPtrForVAArgument(
4405 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
4406 if (Base) {
4407 Value *AShadowPtr, *AOriginPtr;
4408 std::tie(AShadowPtr, AOriginPtr) =
4409 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
4410 kShadowTLSAlignment, /*isStore*/ false);
4412 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
4413 kShadowTLSAlignment, ArgSize);
4416 VAArgOffset += alignTo(ArgSize, 8);
4417 } else {
4418 Value *Base;
4419 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
4420 uint64_t ArgAlign = 8;
4421 if (A->getType()->isArrayTy()) {
4422 // Arrays are aligned to element size, except for long double
4423 // arrays, which are aligned to 8 bytes.
4424 Type *ElementTy = A->getType()->getArrayElementType();
4425 if (!ElementTy->isPPC_FP128Ty())
4426 ArgAlign = DL.getTypeAllocSize(ElementTy);
4427 } else if (A->getType()->isVectorTy()) {
4428 // Vectors are naturally aligned.
4429 ArgAlign = DL.getTypeAllocSize(A->getType());
4431 if (ArgAlign < 8)
4432 ArgAlign = 8;
4433 VAArgOffset = alignTo(VAArgOffset, ArgAlign);
4434 if (DL.isBigEndian()) {
4435 // Adjusting the shadow for argument with size < 8 to match the placement
4436 // of bits in big endian system
4437 if (ArgSize < 8)
4438 VAArgOffset += (8 - ArgSize);
4440 if (!IsFixed) {
4441 Base = getShadowPtrForVAArgument(A->getType(), IRB,
4442 VAArgOffset - VAArgBase, ArgSize);
4443 if (Base)
4444 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
4446 VAArgOffset += ArgSize;
4447 VAArgOffset = alignTo(VAArgOffset, 8);
4449 if (IsFixed)
4450 VAArgBase = VAArgOffset;
4453 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
4454 VAArgOffset - VAArgBase);
4455 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
4456 // a new class member i.e. it is the total size of all VarArgs.
4457 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
4460 /// Compute the shadow address for a given va_arg.
4461 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
4462 unsigned ArgOffset, unsigned ArgSize) {
4463 // Make sure we don't overflow __msan_va_arg_tls.
4464 if (ArgOffset + ArgSize > kParamTLSSize)
4465 return nullptr;
4466 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
4467 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
4468 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
4469 "_msarg");
4472 void visitVAStartInst(VAStartInst &I) override {
4473 IRBuilder<> IRB(&I);
4474 VAStartInstrumentationList.push_back(&I);
4475 Value *VAListTag = I.getArgOperand(0);
4476 Value *ShadowPtr, *OriginPtr;
4477 unsigned Alignment = 8;
4478 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4479 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4480 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4481 /* size */ 8, Alignment, false);
4484 void visitVACopyInst(VACopyInst &I) override {
4485 IRBuilder<> IRB(&I);
4486 Value *VAListTag = I.getArgOperand(0);
4487 Value *ShadowPtr, *OriginPtr;
4488 unsigned Alignment = 8;
4489 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
4490 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
4491 // Unpoison the whole __va_list_tag.
4492 // FIXME: magic ABI constants.
4493 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
4494 /* size */ 8, Alignment, false);
4497 void finalizeInstrumentation() override {
4498 assert(!VAArgSize && !VAArgTLSCopy &&
4499 "finalizeInstrumentation called twice");
4500 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
4501 VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
4502 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
4503 VAArgSize);
4505 if (!VAStartInstrumentationList.empty()) {
4506 // If there is a va_start in this function, make a backup copy of
4507 // va_arg_tls somewhere in the function entry block.
4508 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
4509 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
4512 // Instrument va_start.
4513 // Copy va_list shadow from the backup copy of the TLS contents.
4514 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
4515 CallInst *OrigInst = VAStartInstrumentationList[i];
4516 IRBuilder<> IRB(OrigInst->getNextNode());
4517 Value *VAListTag = OrigInst->getArgOperand(0);
4518 Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
4519 Value *RegSaveAreaPtrPtr =
4520 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
4521 PointerType::get(RegSaveAreaPtrTy, 0));
4522 Value *RegSaveAreaPtr =
4523 IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
4524 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
4525 unsigned Alignment = 8;
4526 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
4527 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
4528 Alignment, /*isStore*/ true);
4529 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
4530 CopySize);
4535 /// A no-op implementation of VarArgHelper.
4536 struct VarArgNoOpHelper : public VarArgHelper {
4537 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
4538 MemorySanitizerVisitor &MSV) {}
4540 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
4542 void visitVAStartInst(VAStartInst &I) override {}
4544 void visitVACopyInst(VACopyInst &I) override {}
4546 void finalizeInstrumentation() override {}
4549 } // end anonymous namespace
4551 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
4552 MemorySanitizerVisitor &Visitor) {
4553 // VarArg handling is only implemented on AMD64. False positives are possible
4554 // on other platforms.
4555 Triple TargetTriple(Func.getParent()->getTargetTriple());
4556 if (TargetTriple.getArch() == Triple::x86_64)
4557 return new VarArgAMD64Helper(Func, Msan, Visitor);
4558 else if (TargetTriple.isMIPS64())
4559 return new VarArgMIPS64Helper(Func, Msan, Visitor);
4560 else if (TargetTriple.getArch() == Triple::aarch64)
4561 return new VarArgAArch64Helper(Func, Msan, Visitor);
4562 else if (TargetTriple.getArch() == Triple::ppc64 ||
4563 TargetTriple.getArch() == Triple::ppc64le)
4564 return new VarArgPowerPC64Helper(Func, Msan, Visitor);
4565 else
4566 return new VarArgNoOpHelper(Func, Msan, Visitor);
4569 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
4570 if (!CompileKernel && (&F == MsanCtorFunction))
4571 return false;
4572 MemorySanitizerVisitor Visitor(F, *this, TLI);
4574 // Clear out readonly/readnone attributes.
4575 AttrBuilder B;
4576 B.addAttribute(Attribute::ReadOnly)
4577 .addAttribute(Attribute::ReadNone);
4578 F.removeAttributes(AttributeList::FunctionIndex, B);
4580 return Visitor.runOnFunction();