1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends. This makes it easier to access the data and
11 // provides a single place that needs to check it for validity. All of these
12 // classes abort on error conditions.
14 //===----------------------------------------------------------------------===//
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
30 cl::OptionCategory
AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory
AsmWriterCat("Options for -gen-asm-writer");
33 static cl::opt
<unsigned>
34 AsmParserNum("asmparsernum", cl::init(0),
35 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36 cl::cat(AsmParserCat
));
38 static cl::opt
<unsigned>
39 AsmWriterNum("asmwriternum", cl::init(0),
40 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41 cl::cat(AsmWriterCat
));
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType
llvm::getValueType(Record
*Rec
) {
46 return (MVT::SimpleValueType
)Rec
->getValueAsInt("Value");
49 StringRef
llvm::getName(MVT::SimpleValueType T
) {
51 case MVT::Other
: return "UNKNOWN";
52 case MVT::iPTR
: return "TLI.getPointerTy()";
53 case MVT::iPTRAny
: return "TLI.getPointerTy()";
54 default: return getEnumName(T
);
58 StringRef
llvm::getEnumName(MVT::SimpleValueType T
) {
60 case MVT::Other
: return "MVT::Other";
61 case MVT::i1
: return "MVT::i1";
62 case MVT::i8
: return "MVT::i8";
63 case MVT::i16
: return "MVT::i16";
64 case MVT::i32
: return "MVT::i32";
65 case MVT::i64
: return "MVT::i64";
66 case MVT::i128
: return "MVT::i128";
67 case MVT::Any
: return "MVT::Any";
68 case MVT::iAny
: return "MVT::iAny";
69 case MVT::fAny
: return "MVT::fAny";
70 case MVT::vAny
: return "MVT::vAny";
71 case MVT::f16
: return "MVT::f16";
72 case MVT::f32
: return "MVT::f32";
73 case MVT::f64
: return "MVT::f64";
74 case MVT::f80
: return "MVT::f80";
75 case MVT::f128
: return "MVT::f128";
76 case MVT::ppcf128
: return "MVT::ppcf128";
77 case MVT::x86mmx
: return "MVT::x86mmx";
78 case MVT::Glue
: return "MVT::Glue";
79 case MVT::isVoid
: return "MVT::isVoid";
80 case MVT::v1i1
: return "MVT::v1i1";
81 case MVT::v2i1
: return "MVT::v2i1";
82 case MVT::v4i1
: return "MVT::v4i1";
83 case MVT::v8i1
: return "MVT::v8i1";
84 case MVT::v16i1
: return "MVT::v16i1";
85 case MVT::v32i1
: return "MVT::v32i1";
86 case MVT::v64i1
: return "MVT::v64i1";
87 case MVT::v128i1
: return "MVT::v128i1";
88 case MVT::v512i1
: return "MVT::v512i1";
89 case MVT::v1024i1
: return "MVT::v1024i1";
90 case MVT::v1i8
: return "MVT::v1i8";
91 case MVT::v2i8
: return "MVT::v2i8";
92 case MVT::v4i8
: return "MVT::v4i8";
93 case MVT::v8i8
: return "MVT::v8i8";
94 case MVT::v16i8
: return "MVT::v16i8";
95 case MVT::v32i8
: return "MVT::v32i8";
96 case MVT::v64i8
: return "MVT::v64i8";
97 case MVT::v128i8
: return "MVT::v128i8";
98 case MVT::v256i8
: return "MVT::v256i8";
99 case MVT::v1i16
: return "MVT::v1i16";
100 case MVT::v2i16
: return "MVT::v2i16";
101 case MVT::v3i16
: return "MVT::v3i16";
102 case MVT::v4i16
: return "MVT::v4i16";
103 case MVT::v8i16
: return "MVT::v8i16";
104 case MVT::v16i16
: return "MVT::v16i16";
105 case MVT::v32i16
: return "MVT::v32i16";
106 case MVT::v64i16
: return "MVT::v64i16";
107 case MVT::v128i16
: return "MVT::v128i16";
108 case MVT::v1i32
: return "MVT::v1i32";
109 case MVT::v2i32
: return "MVT::v2i32";
110 case MVT::v3i32
: return "MVT::v3i32";
111 case MVT::v4i32
: return "MVT::v4i32";
112 case MVT::v5i32
: return "MVT::v5i32";
113 case MVT::v8i32
: return "MVT::v8i32";
114 case MVT::v16i32
: return "MVT::v16i32";
115 case MVT::v32i32
: return "MVT::v32i32";
116 case MVT::v64i32
: return "MVT::v64i32";
117 case MVT::v128i32
: return "MVT::v128i32";
118 case MVT::v256i32
: return "MVT::v256i32";
119 case MVT::v512i32
: return "MVT::v512i32";
120 case MVT::v1024i32
: return "MVT::v1024i32";
121 case MVT::v2048i32
: return "MVT::v2048i32";
122 case MVT::v1i64
: return "MVT::v1i64";
123 case MVT::v2i64
: return "MVT::v2i64";
124 case MVT::v4i64
: return "MVT::v4i64";
125 case MVT::v8i64
: return "MVT::v8i64";
126 case MVT::v16i64
: return "MVT::v16i64";
127 case MVT::v32i64
: return "MVT::v32i64";
128 case MVT::v1i128
: return "MVT::v1i128";
129 case MVT::v2f16
: return "MVT::v2f16";
130 case MVT::v3f16
: return "MVT::v3f16";
131 case MVT::v4f16
: return "MVT::v4f16";
132 case MVT::v8f16
: return "MVT::v8f16";
133 case MVT::v1f32
: return "MVT::v1f32";
134 case MVT::v2f32
: return "MVT::v2f32";
135 case MVT::v3f32
: return "MVT::v3f32";
136 case MVT::v4f32
: return "MVT::v4f32";
137 case MVT::v5f32
: return "MVT::v5f32";
138 case MVT::v8f32
: return "MVT::v8f32";
139 case MVT::v16f32
: return "MVT::v16f32";
140 case MVT::v32f32
: return "MVT::v32f32";
141 case MVT::v64f32
: return "MVT::v64f32";
142 case MVT::v128f32
: return "MVT::v128f32";
143 case MVT::v256f32
: return "MVT::v256f32";
144 case MVT::v512f32
: return "MVT::v512f32";
145 case MVT::v1024f32
: return "MVT::v1024f32";
146 case MVT::v2048f32
: return "MVT::v2048f32";
147 case MVT::v1f64
: return "MVT::v1f64";
148 case MVT::v2f64
: return "MVT::v2f64";
149 case MVT::v4f64
: return "MVT::v4f64";
150 case MVT::v8f64
: return "MVT::v8f64";
151 case MVT::nxv1i1
: return "MVT::nxv1i1";
152 case MVT::nxv2i1
: return "MVT::nxv2i1";
153 case MVT::nxv4i1
: return "MVT::nxv4i1";
154 case MVT::nxv8i1
: return "MVT::nxv8i1";
155 case MVT::nxv16i1
: return "MVT::nxv16i1";
156 case MVT::nxv32i1
: return "MVT::nxv32i1";
157 case MVT::nxv1i8
: return "MVT::nxv1i8";
158 case MVT::nxv2i8
: return "MVT::nxv2i8";
159 case MVT::nxv4i8
: return "MVT::nxv4i8";
160 case MVT::nxv8i8
: return "MVT::nxv8i8";
161 case MVT::nxv16i8
: return "MVT::nxv16i8";
162 case MVT::nxv32i8
: return "MVT::nxv32i8";
163 case MVT::nxv1i16
: return "MVT::nxv1i16";
164 case MVT::nxv2i16
: return "MVT::nxv2i16";
165 case MVT::nxv4i16
: return "MVT::nxv4i16";
166 case MVT::nxv8i16
: return "MVT::nxv8i16";
167 case MVT::nxv16i16
: return "MVT::nxv16i16";
168 case MVT::nxv32i16
: return "MVT::nxv32i16";
169 case MVT::nxv1i32
: return "MVT::nxv1i32";
170 case MVT::nxv2i32
: return "MVT::nxv2i32";
171 case MVT::nxv4i32
: return "MVT::nxv4i32";
172 case MVT::nxv8i32
: return "MVT::nxv8i32";
173 case MVT::nxv16i32
: return "MVT::nxv16i32";
174 case MVT::nxv1i64
: return "MVT::nxv1i64";
175 case MVT::nxv2i64
: return "MVT::nxv2i64";
176 case MVT::nxv4i64
: return "MVT::nxv4i64";
177 case MVT::nxv8i64
: return "MVT::nxv8i64";
178 case MVT::nxv16i64
: return "MVT::nxv16i64";
179 case MVT::nxv2f16
: return "MVT::nxv2f16";
180 case MVT::nxv4f16
: return "MVT::nxv4f16";
181 case MVT::nxv8f16
: return "MVT::nxv8f16";
182 case MVT::nxv1f32
: return "MVT::nxv1f32";
183 case MVT::nxv2f32
: return "MVT::nxv2f32";
184 case MVT::nxv4f32
: return "MVT::nxv4f32";
185 case MVT::nxv8f32
: return "MVT::nxv8f32";
186 case MVT::nxv16f32
: return "MVT::nxv16f32";
187 case MVT::nxv1f64
: return "MVT::nxv1f64";
188 case MVT::nxv2f64
: return "MVT::nxv2f64";
189 case MVT::nxv4f64
: return "MVT::nxv4f64";
190 case MVT::nxv8f64
: return "MVT::nxv8f64";
191 case MVT::token
: return "MVT::token";
192 case MVT::Metadata
: return "MVT::Metadata";
193 case MVT::iPTR
: return "MVT::iPTR";
194 case MVT::iPTRAny
: return "MVT::iPTRAny";
195 case MVT::Untyped
: return "MVT::Untyped";
196 case MVT::exnref
: return "MVT::exnref";
197 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
201 /// getQualifiedName - Return the name of the specified record, with a
202 /// namespace qualifier if the record contains one.
204 std::string
llvm::getQualifiedName(const Record
*R
) {
205 std::string Namespace
;
206 if (R
->getValue("Namespace"))
207 Namespace
= R
->getValueAsString("Namespace");
208 if (Namespace
.empty()) return R
->getName();
209 return Namespace
+ "::" + R
->getName().str();
213 /// getTarget - Return the current instance of the Target class.
215 CodeGenTarget::CodeGenTarget(RecordKeeper
&records
)
216 : Records(records
), CGH(records
) {
217 std::vector
<Record
*> Targets
= Records
.getAllDerivedDefinitions("Target");
218 if (Targets
.size() == 0)
219 PrintFatalError("ERROR: No 'Target' subclasses defined!");
220 if (Targets
.size() != 1)
221 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
222 TargetRec
= Targets
[0];
225 CodeGenTarget::~CodeGenTarget() {
228 const StringRef
CodeGenTarget::getName() const {
229 return TargetRec
->getName();
232 StringRef
CodeGenTarget::getInstNamespace() const {
233 for (const CodeGenInstruction
*Inst
: getInstructionsByEnumValue()) {
234 // Make sure not to pick up "TargetOpcode" by accidentally getting
235 // the namespace off the PHI instruction or something.
236 if (Inst
->Namespace
!= "TargetOpcode")
237 return Inst
->Namespace
;
243 Record
*CodeGenTarget::getInstructionSet() const {
244 return TargetRec
->getValueAsDef("InstructionSet");
247 bool CodeGenTarget::getAllowRegisterRenaming() const {
248 return TargetRec
->getValueAsInt("AllowRegisterRenaming");
251 /// getAsmParser - Return the AssemblyParser definition for this target.
253 Record
*CodeGenTarget::getAsmParser() const {
254 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyParsers");
255 if (AsmParserNum
>= LI
.size())
256 PrintFatalError("Target does not have an AsmParser #" +
257 Twine(AsmParserNum
) + "!");
258 return LI
[AsmParserNum
];
261 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
264 Record
*CodeGenTarget::getAsmParserVariant(unsigned i
) const {
265 std::vector
<Record
*> LI
=
266 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
268 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i
) +
273 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
274 /// available for this target.
276 unsigned CodeGenTarget::getAsmParserVariantCount() const {
277 std::vector
<Record
*> LI
=
278 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
282 /// getAsmWriter - Return the AssemblyWriter definition for this target.
284 Record
*CodeGenTarget::getAsmWriter() const {
285 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyWriters");
286 if (AsmWriterNum
>= LI
.size())
287 PrintFatalError("Target does not have an AsmWriter #" +
288 Twine(AsmWriterNum
) + "!");
289 return LI
[AsmWriterNum
];
292 CodeGenRegBank
&CodeGenTarget::getRegBank() const {
294 RegBank
= std::make_unique
<CodeGenRegBank
>(Records
, getHwModes());
298 Optional
<CodeGenRegisterClass
*>
299 CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode
&ValueTy
,
300 CodeGenRegBank
&RegBank
,
301 const CodeGenSubRegIndex
*SubIdx
) const {
302 std::vector
<CodeGenRegisterClass
*> Candidates
;
303 auto &RegClasses
= RegBank
.getRegClasses();
305 // Try to find a register class which supports ValueTy, and also contains
307 for (CodeGenRegisterClass
&RC
: RegClasses
) {
308 // Is there a subclass of this class which contains this subregister index?
309 CodeGenRegisterClass
*SubClassWithSubReg
= RC
.getSubClassWithSubReg(SubIdx
);
310 if (!SubClassWithSubReg
)
313 // We have a class. Check if it supports this value type.
314 if (llvm::none_of(SubClassWithSubReg
->VTs
,
315 [&ValueTy
](const ValueTypeByHwMode
&ClassVT
) {
316 return ClassVT
== ValueTy
;
320 // We have a register class which supports both the value type and
321 // subregister index. Remember it.
322 Candidates
.push_back(SubClassWithSubReg
);
325 // If we didn't find anything, we're done.
326 if (Candidates
.empty())
329 // Find and return the largest of our candidate classes.
330 llvm::sort(Candidates
,
331 [&](const CodeGenRegisterClass
*A
, const CodeGenRegisterClass
*B
) {
332 return A
->getMembers().size() > B
->getMembers().size();
335 return Candidates
[0];
338 void CodeGenTarget::ReadRegAltNameIndices() const {
339 RegAltNameIndices
= Records
.getAllDerivedDefinitions("RegAltNameIndex");
340 llvm::sort(RegAltNameIndices
, LessRecord());
343 /// getRegisterByName - If there is a register with the specific AsmName,
345 const CodeGenRegister
*CodeGenTarget::getRegisterByName(StringRef Name
) const {
346 const StringMap
<CodeGenRegister
*> &Regs
= getRegBank().getRegistersByName();
347 StringMap
<CodeGenRegister
*>::const_iterator I
= Regs
.find(Name
);
353 std::vector
<ValueTypeByHwMode
> CodeGenTarget::getRegisterVTs(Record
*R
)
355 const CodeGenRegister
*Reg
= getRegBank().getReg(R
);
356 std::vector
<ValueTypeByHwMode
> Result
;
357 for (const auto &RC
: getRegBank().getRegClasses()) {
358 if (RC
.contains(Reg
)) {
359 ArrayRef
<ValueTypeByHwMode
> InVTs
= RC
.getValueTypes();
360 Result
.insert(Result
.end(), InVTs
.begin(), InVTs
.end());
364 // Remove duplicates.
366 Result
.erase(std::unique(Result
.begin(), Result
.end()), Result
.end());
371 void CodeGenTarget::ReadLegalValueTypes() const {
372 for (const auto &RC
: getRegBank().getRegClasses())
373 LegalValueTypes
.insert(LegalValueTypes
.end(), RC
.VTs
.begin(), RC
.VTs
.end());
375 // Remove duplicates.
376 llvm::sort(LegalValueTypes
);
377 LegalValueTypes
.erase(std::unique(LegalValueTypes
.begin(),
378 LegalValueTypes
.end()),
379 LegalValueTypes
.end());
382 CodeGenSchedModels
&CodeGenTarget::getSchedModels() const {
384 SchedModels
= std::make_unique
<CodeGenSchedModels
>(Records
, *this);
388 void CodeGenTarget::ReadInstructions() const {
389 NamedRegionTimer
T("Read Instructions", "Time spent reading instructions",
390 "CodeGenTarget", "CodeGenTarget", TimeRegions
);
391 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
392 if (Insts
.size() <= 2)
393 PrintFatalError("No 'Instruction' subclasses defined!");
395 // Parse the instructions defined in the .td file.
396 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
)
397 Instructions
[Insts
[i
]] = std::make_unique
<CodeGenInstruction
>(Insts
[i
]);
400 static const CodeGenInstruction
*
401 GetInstByName(const char *Name
,
402 const DenseMap
<const Record
*,
403 std::unique_ptr
<CodeGenInstruction
>> &Insts
,
404 RecordKeeper
&Records
) {
405 const Record
*Rec
= Records
.getDef(Name
);
407 const auto I
= Insts
.find(Rec
);
408 if (!Rec
|| I
== Insts
.end())
409 PrintFatalError(Twine("Could not find '") + Name
+ "' instruction!");
410 return I
->second
.get();
413 static const char *const FixedInstrs
[] = {
414 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
415 #include "llvm/Support/TargetOpcodes.def"
418 unsigned CodeGenTarget::getNumFixedInstructions() {
419 return array_lengthof(FixedInstrs
) - 1;
422 /// Return all of the instructions defined by the target, ordered by
423 /// their enum value.
424 void CodeGenTarget::ComputeInstrsByEnum() const {
425 const auto &Insts
= getInstructions();
426 for (const char *const *p
= FixedInstrs
; *p
; ++p
) {
427 const CodeGenInstruction
*Instr
= GetInstByName(*p
, Insts
, Records
);
428 assert(Instr
&& "Missing target independent instruction");
429 assert(Instr
->Namespace
== "TargetOpcode" && "Bad namespace");
430 InstrsByEnum
.push_back(Instr
);
432 unsigned EndOfPredefines
= InstrsByEnum
.size();
433 assert(EndOfPredefines
== getNumFixedInstructions() &&
434 "Missing generic opcode");
436 for (const auto &I
: Insts
) {
437 const CodeGenInstruction
*CGI
= I
.second
.get();
438 if (CGI
->Namespace
!= "TargetOpcode") {
439 InstrsByEnum
.push_back(CGI
);
440 if (CGI
->TheDef
->getValueAsBit("isPseudo"))
441 ++NumPseudoInstructions
;
445 assert(InstrsByEnum
.size() == Insts
.size() && "Missing predefined instr");
447 // All of the instructions are now in random order based on the map iteration.
449 InstrsByEnum
.begin() + EndOfPredefines
, InstrsByEnum
.end(),
450 [](const CodeGenInstruction
*Rec1
, const CodeGenInstruction
*Rec2
) {
451 const auto &D1
= *Rec1
->TheDef
;
452 const auto &D2
= *Rec2
->TheDef
;
453 return std::make_tuple(!D1
.getValueAsBit("isPseudo"), D1
.getName()) <
454 std::make_tuple(!D2
.getValueAsBit("isPseudo"), D2
.getName());
459 /// isLittleEndianEncoding - Return whether this target encodes its instruction
460 /// in little-endian format, i.e. bits laid out in the order [0..n]
462 bool CodeGenTarget::isLittleEndianEncoding() const {
463 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
466 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
467 /// encodings, reverse the bit order of all instructions.
468 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
469 if (!isLittleEndianEncoding())
472 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
473 for (Record
*R
: Insts
) {
474 if (R
->getValueAsString("Namespace") == "TargetOpcode" ||
475 R
->getValueAsBit("isPseudo"))
478 BitsInit
*BI
= R
->getValueAsBitsInit("Inst");
480 unsigned numBits
= BI
->getNumBits();
482 SmallVector
<Init
*, 16> NewBits(numBits
);
484 for (unsigned bit
= 0, end
= numBits
/ 2; bit
!= end
; ++bit
) {
485 unsigned bitSwapIdx
= numBits
- bit
- 1;
486 Init
*OrigBit
= BI
->getBit(bit
);
487 Init
*BitSwap
= BI
->getBit(bitSwapIdx
);
488 NewBits
[bit
] = BitSwap
;
489 NewBits
[bitSwapIdx
] = OrigBit
;
492 unsigned middle
= (numBits
+ 1) / 2;
493 NewBits
[middle
] = BI
->getBit(middle
);
496 BitsInit
*NewBI
= BitsInit::get(NewBits
);
498 // Update the bits in reversed order so that emitInstrOpBits will get the
499 // correct endianness.
500 R
->getValue("Inst")->setValue(NewBI
);
504 /// guessInstructionProperties - Return true if it's OK to guess instruction
505 /// properties instead of raising an error.
507 /// This is configurable as a temporary migration aid. It will eventually be
508 /// permanently false.
509 bool CodeGenTarget::guessInstructionProperties() const {
510 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
513 //===----------------------------------------------------------------------===//
514 // ComplexPattern implementation
516 ComplexPattern::ComplexPattern(Record
*R
) {
517 Ty
= ::getValueType(R
->getValueAsDef("Ty"));
518 NumOperands
= R
->getValueAsInt("NumOperands");
519 SelectFunc
= R
->getValueAsString("SelectFunc");
520 RootNodes
= R
->getValueAsListOfDefs("RootNodes");
522 // FIXME: This is a hack to statically increase the priority of patterns which
523 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
524 // possible pattern match we'll need to dynamically calculate the complexity
525 // of all patterns a dag can potentially map to.
526 int64_t RawComplexity
= R
->getValueAsInt("Complexity");
527 if (RawComplexity
== -1)
528 Complexity
= NumOperands
* 3;
530 Complexity
= RawComplexity
;
532 // FIXME: Why is this different from parseSDPatternOperatorProperties?
533 // Parse the properties.
535 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
536 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
)
537 if (PropList
[i
]->getName() == "SDNPHasChain") {
538 Properties
|= 1 << SDNPHasChain
;
539 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
540 Properties
|= 1 << SDNPOptInGlue
;
541 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
542 Properties
|= 1 << SDNPMayStore
;
543 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
544 Properties
|= 1 << SDNPMayLoad
;
545 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
546 Properties
|= 1 << SDNPSideEffect
;
547 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
548 Properties
|= 1 << SDNPMemOperand
;
549 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
550 Properties
|= 1 << SDNPVariadic
;
551 } else if (PropList
[i
]->getName() == "SDNPWantRoot") {
552 Properties
|= 1 << SDNPWantRoot
;
553 } else if (PropList
[i
]->getName() == "SDNPWantParent") {
554 Properties
|= 1 << SDNPWantParent
;
556 PrintFatalError(R
->getLoc(), "Unsupported SD Node property '" +
557 PropList
[i
]->getName() +
558 "' on ComplexPattern '" + R
->getName() +
563 //===----------------------------------------------------------------------===//
564 // CodeGenIntrinsic Implementation
565 //===----------------------------------------------------------------------===//
567 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper
&RC
,
569 std::vector
<Record
*> Defs
= RC
.getAllDerivedDefinitions("Intrinsic");
571 Intrinsics
.reserve(Defs
.size());
573 for (unsigned I
= 0, e
= Defs
.size(); I
!= e
; ++I
) {
574 bool isTarget
= Defs
[I
]->getValueAsBit("isTarget");
575 if (isTarget
== TargetOnly
)
576 Intrinsics
.push_back(CodeGenIntrinsic(Defs
[I
]));
578 llvm::sort(Intrinsics
,
579 [](const CodeGenIntrinsic
&LHS
, const CodeGenIntrinsic
&RHS
) {
580 return std::tie(LHS
.TargetPrefix
, LHS
.Name
) <
581 std::tie(RHS
.TargetPrefix
, RHS
.Name
);
583 Targets
.push_back({"", 0, 0});
584 for (size_t I
= 0, E
= Intrinsics
.size(); I
< E
; ++I
)
585 if (Intrinsics
[I
].TargetPrefix
!= Targets
.back().Name
) {
586 Targets
.back().Count
= I
- Targets
.back().Offset
;
587 Targets
.push_back({Intrinsics
[I
].TargetPrefix
, I
, 0});
589 Targets
.back().Count
= Intrinsics
.size() - Targets
.back().Offset
;
592 CodeGenIntrinsic::CodeGenIntrinsic(Record
*R
) {
594 std::string DefName
= R
->getName();
595 ArrayRef
<SMLoc
> DefLoc
= R
->getLoc();
596 ModRef
= ReadWriteMem
;
598 isOverloaded
= false;
599 isCommutative
= false;
602 isWillReturn
= false;
604 isNoDuplicate
= false;
605 isConvergent
= false;
606 isSpeculatable
= false;
607 hasSideEffects
= false;
609 if (DefName
.size() <= 4 ||
610 std::string(DefName
.begin(), DefName
.begin() + 4) != "int_")
611 PrintFatalError(DefLoc
,
612 "Intrinsic '" + DefName
+ "' does not start with 'int_'!");
614 EnumName
= std::string(DefName
.begin()+4, DefName
.end());
616 if (R
->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
617 GCCBuiltinName
= R
->getValueAsString("GCCBuiltinName");
618 if (R
->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
619 MSBuiltinName
= R
->getValueAsString("MSBuiltinName");
621 TargetPrefix
= R
->getValueAsString("TargetPrefix");
622 Name
= R
->getValueAsString("LLVMName");
625 // If an explicit name isn't specified, derive one from the DefName.
628 for (unsigned i
= 0, e
= EnumName
.size(); i
!= e
; ++i
)
629 Name
+= (EnumName
[i
] == '_') ? '.' : EnumName
[i
];
631 // Verify it starts with "llvm.".
632 if (Name
.size() <= 5 ||
633 std::string(Name
.begin(), Name
.begin() + 5) != "llvm.")
634 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
635 "'s name does not start with 'llvm.'!");
638 // If TargetPrefix is specified, make sure that Name starts with
639 // "llvm.<targetprefix>.".
640 if (!TargetPrefix
.empty()) {
641 if (Name
.size() < 6+TargetPrefix
.size() ||
642 std::string(Name
.begin() + 5, Name
.begin() + 6 + TargetPrefix
.size())
643 != (TargetPrefix
+ "."))
644 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
645 "' does not start with 'llvm." +
646 TargetPrefix
+ ".'!");
649 ListInit
*RetTypes
= R
->getValueAsListInit("RetTypes");
650 ListInit
*ParamTypes
= R
->getValueAsListInit("ParamTypes");
652 // First collate a list of overloaded types.
653 std::vector
<MVT::SimpleValueType
> OverloadedVTs
;
654 for (ListInit
*TypeList
: {RetTypes
, ParamTypes
}) {
655 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
656 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
657 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
659 if (TyEl
->isSubClassOf("LLVMMatchType"))
662 MVT::SimpleValueType VT
= getValueType(TyEl
->getValueAsDef("VT"));
663 if (MVT(VT
).isOverloaded()) {
664 OverloadedVTs
.push_back(VT
);
670 // Parse the list of return types.
671 ListInit
*TypeList
= RetTypes
;
672 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
673 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
674 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
675 MVT::SimpleValueType VT
;
676 if (TyEl
->isSubClassOf("LLVMMatchType")) {
677 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
678 assert(MatchTy
< OverloadedVTs
.size() &&
679 "Invalid matching number!");
680 VT
= OverloadedVTs
[MatchTy
];
681 // It only makes sense to use the extended and truncated vector element
682 // variants with iAny types; otherwise, if the intrinsic is not
683 // overloaded, all the types can be specified directly.
684 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
685 !TyEl
->isSubClassOf("LLVMTruncatedType")) ||
686 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
687 "Expected iAny or vAny type");
689 VT
= getValueType(TyEl
->getValueAsDef("VT"));
692 // Reject invalid types.
693 if (VT
== MVT::isVoid
)
694 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
695 " has void in result type list!");
697 IS
.RetVTs
.push_back(VT
);
698 IS
.RetTypeDefs
.push_back(TyEl
);
701 // Parse the list of parameter types.
702 TypeList
= ParamTypes
;
703 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
704 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
705 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
706 MVT::SimpleValueType VT
;
707 if (TyEl
->isSubClassOf("LLVMMatchType")) {
708 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
709 if (MatchTy
>= OverloadedVTs
.size()) {
710 PrintError(R
->getLoc(),
711 "Parameter #" + Twine(i
) + " has out of bounds matching "
712 "number " + Twine(MatchTy
));
713 PrintFatalError(DefLoc
,
714 Twine("ParamTypes is ") + TypeList
->getAsString());
716 VT
= OverloadedVTs
[MatchTy
];
717 // It only makes sense to use the extended and truncated vector element
718 // variants with iAny types; otherwise, if the intrinsic is not
719 // overloaded, all the types can be specified directly.
720 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
721 !TyEl
->isSubClassOf("LLVMTruncatedType") &&
722 !TyEl
->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
723 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
724 "Expected iAny or vAny type");
726 VT
= getValueType(TyEl
->getValueAsDef("VT"));
728 // Reject invalid types.
729 if (VT
== MVT::isVoid
&& i
!= e
-1 /*void at end means varargs*/)
730 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
731 " has void in result type list!");
733 IS
.ParamVTs
.push_back(VT
);
734 IS
.ParamTypeDefs
.push_back(TyEl
);
737 // Parse the intrinsic properties.
738 ListInit
*PropList
= R
->getValueAsListInit("IntrProperties");
739 for (unsigned i
= 0, e
= PropList
->size(); i
!= e
; ++i
) {
740 Record
*Property
= PropList
->getElementAsRecord(i
);
741 assert(Property
->isSubClassOf("IntrinsicProperty") &&
742 "Expected a property!");
744 if (Property
->getName() == "IntrNoMem")
746 else if (Property
->getName() == "IntrReadMem")
747 ModRef
= ModRefBehavior(ModRef
& ~MR_Mod
);
748 else if (Property
->getName() == "IntrWriteMem")
749 ModRef
= ModRefBehavior(ModRef
& ~MR_Ref
);
750 else if (Property
->getName() == "IntrArgMemOnly")
751 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
);
752 else if (Property
->getName() == "IntrInaccessibleMemOnly")
753 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_InaccessibleMem
);
754 else if (Property
->getName() == "IntrInaccessibleMemOrArgMemOnly")
755 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
|
757 else if (Property
->getName() == "Commutative")
758 isCommutative
= true;
759 else if (Property
->getName() == "Throws")
761 else if (Property
->getName() == "IntrNoDuplicate")
762 isNoDuplicate
= true;
763 else if (Property
->getName() == "IntrConvergent")
765 else if (Property
->getName() == "IntrNoReturn")
767 else if (Property
->getName() == "IntrWillReturn")
769 else if (Property
->getName() == "IntrCold")
771 else if (Property
->getName() == "IntrSpeculatable")
772 isSpeculatable
= true;
773 else if (Property
->getName() == "IntrHasSideEffects")
774 hasSideEffects
= true;
775 else if (Property
->isSubClassOf("NoCapture")) {
776 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
777 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoCapture
));
778 } else if (Property
->isSubClassOf("NoAlias")) {
779 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
780 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoAlias
));
781 } else if (Property
->isSubClassOf("Returned")) {
782 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
783 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, Returned
));
784 } else if (Property
->isSubClassOf("ReadOnly")) {
785 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
786 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadOnly
));
787 } else if (Property
->isSubClassOf("WriteOnly")) {
788 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
789 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, WriteOnly
));
790 } else if (Property
->isSubClassOf("ReadNone")) {
791 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
792 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadNone
));
793 } else if (Property
->isSubClassOf("ImmArg")) {
794 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
795 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ImmArg
));
797 llvm_unreachable("Unknown property!");
800 // Also record the SDPatternOperator Properties.
801 Properties
= parseSDPatternOperatorProperties(R
);
803 // Sort the argument attributes for later benefit.
804 llvm::sort(ArgumentAttributes
);
807 bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx
) const {
808 if (ParamIdx
>= IS
.ParamVTs
.size())
810 MVT ParamType
= MVT(IS
.ParamVTs
[ParamIdx
]);
811 return ParamType
== MVT::iPTR
|| ParamType
== MVT::iPTRAny
;