1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
30 //===----------------------------------------------------------------------===//
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
50 #define DEBUG_TYPE "gisel-emitter"
52 STATISTIC(NumPatternTotal
, "Total number of patterns");
53 STATISTIC(NumPatternImported
, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped
, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested
, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted
, "Number of patterns emitted");
58 cl::OptionCategory
GlobalISelEmitterCat("Options for -gen-global-isel");
60 static cl::opt
<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat
));
66 static cl::opt
<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat
));
71 static cl::opt
<std::string
> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat
));
76 static cl::opt
<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat
));
82 //===- Helper functions ---------------------------------------------------===//
84 /// Get the name of the enum value used to number the predicate function.
85 std::string
getEnumNameForPredicate(const TreePredicateFn
&Predicate
) {
86 if (Predicate
.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate
.getFnName();
88 return "GIPFP_" + Predicate
.getImmTypeIdentifier().str() + "_" +
89 Predicate
.getFnName();
92 /// Get the opcode used to check this predicate.
93 std::string
getMatchOpcodeForPredicate(const TreePredicateFn
&Predicate
) {
94 return "GIM_Check" + Predicate
.getImmTypeIdentifier().str() + "ImmPredicate";
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT
&Ty
) : Ty(Ty
) {}
107 std::string
getCxxEnumValue() const {
109 raw_string_ostream
OS(Str
);
111 emitCxxEnumValue(OS
);
115 void emitCxxEnumValue(raw_ostream
&OS
) const {
117 OS
<< "GILLT_s" << Ty
.getSizeInBits();
121 OS
<< "GILLT_v" << Ty
.getNumElements() << "s" << Ty
.getScalarSizeInBits();
124 if (Ty
.isPointer()) {
125 OS
<< "GILLT_p" << Ty
.getAddressSpace();
126 if (Ty
.getSizeInBits() > 0)
127 OS
<< "s" << Ty
.getSizeInBits();
130 llvm_unreachable("Unhandled LLT");
133 void emitCxxConstructorCall(raw_ostream
&OS
) const {
135 OS
<< "LLT::scalar(" << Ty
.getSizeInBits() << ")";
139 OS
<< "LLT::vector(" << Ty
.getNumElements() << ", "
140 << Ty
.getScalarSizeInBits() << ")";
143 if (Ty
.isPointer() && Ty
.getSizeInBits() > 0) {
144 OS
<< "LLT::pointer(" << Ty
.getAddressSpace() << ", "
145 << Ty
.getSizeInBits() << ")";
148 llvm_unreachable("Unhandled LLT");
151 const LLT
&get() const { return Ty
; }
153 /// This ordering is used for std::unique() and llvm::sort(). There's no
154 /// particular logic behind the order but either A < B or B < A must be
156 bool operator<(const LLTCodeGen
&Other
) const {
157 if (Ty
.isValid() != Other
.Ty
.isValid())
158 return Ty
.isValid() < Other
.Ty
.isValid();
162 if (Ty
.isVector() != Other
.Ty
.isVector())
163 return Ty
.isVector() < Other
.Ty
.isVector();
164 if (Ty
.isScalar() != Other
.Ty
.isScalar())
165 return Ty
.isScalar() < Other
.Ty
.isScalar();
166 if (Ty
.isPointer() != Other
.Ty
.isPointer())
167 return Ty
.isPointer() < Other
.Ty
.isPointer();
169 if (Ty
.isPointer() && Ty
.getAddressSpace() != Other
.Ty
.getAddressSpace())
170 return Ty
.getAddressSpace() < Other
.Ty
.getAddressSpace();
172 if (Ty
.isVector() && Ty
.getNumElements() != Other
.Ty
.getNumElements())
173 return Ty
.getNumElements() < Other
.Ty
.getNumElements();
175 return Ty
.getSizeInBits() < Other
.Ty
.getSizeInBits();
178 bool operator==(const LLTCodeGen
&B
) const { return Ty
== B
.Ty
; }
181 // Track all types that are used so we can emit the corresponding enum.
182 std::set
<LLTCodeGen
> KnownTypes
;
184 class InstructionMatcher
;
185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187 static Optional
<LLTCodeGen
> MVTToLLT(MVT::SimpleValueType SVT
) {
190 if (VT
.isVector() && VT
.getVectorNumElements() != 1)
192 LLT::vector(VT
.getVectorNumElements(), VT
.getScalarSizeInBits()));
194 if (VT
.isInteger() || VT
.isFloatingPoint())
195 return LLTCodeGen(LLT::scalar(VT
.getSizeInBits()));
199 static std::string
explainPredicates(const TreePatternNode
*N
) {
200 std::string Explanation
= "";
201 StringRef Separator
= "";
202 for (const TreePredicateCall
&Call
: N
->getPredicateCalls()) {
203 const TreePredicateFn
&P
= Call
.Fn
;
205 (Separator
+ P
.getOrigPatFragRecord()->getRecord()->getName()).str();
208 if (P
.isAlwaysTrue())
209 Explanation
+= " always-true";
210 if (P
.isImmediatePattern())
211 Explanation
+= " immediate";
214 Explanation
+= " unindexed";
216 if (P
.isNonExtLoad())
217 Explanation
+= " non-extload";
218 if (P
.isAnyExtLoad())
219 Explanation
+= " extload";
220 if (P
.isSignExtLoad())
221 Explanation
+= " sextload";
222 if (P
.isZeroExtLoad())
223 Explanation
+= " zextload";
225 if (P
.isNonTruncStore())
226 Explanation
+= " non-truncstore";
227 if (P
.isTruncStore())
228 Explanation
+= " truncstore";
230 if (Record
*VT
= P
.getMemoryVT())
231 Explanation
+= (" MemVT=" + VT
->getName()).str();
232 if (Record
*VT
= P
.getScalarMemoryVT())
233 Explanation
+= (" ScalarVT(MemVT)=" + VT
->getName()).str();
235 if (ListInit
*AddrSpaces
= P
.getAddressSpaces()) {
236 raw_string_ostream
OS(Explanation
);
237 OS
<< " AddressSpaces=[";
239 StringRef AddrSpaceSeparator
;
240 for (Init
*Val
: AddrSpaces
->getValues()) {
241 IntInit
*IntVal
= dyn_cast
<IntInit
>(Val
);
245 OS
<< AddrSpaceSeparator
<< IntVal
->getValue();
246 AddrSpaceSeparator
= ", ";
252 int64_t MinAlign
= P
.getMinAlignment();
254 Explanation
+= " MinAlign=" + utostr(MinAlign
);
256 if (P
.isAtomicOrderingMonotonic())
257 Explanation
+= " monotonic";
258 if (P
.isAtomicOrderingAcquire())
259 Explanation
+= " acquire";
260 if (P
.isAtomicOrderingRelease())
261 Explanation
+= " release";
262 if (P
.isAtomicOrderingAcquireRelease())
263 Explanation
+= " acq_rel";
264 if (P
.isAtomicOrderingSequentiallyConsistent())
265 Explanation
+= " seq_cst";
266 if (P
.isAtomicOrderingAcquireOrStronger())
267 Explanation
+= " >=acquire";
268 if (P
.isAtomicOrderingWeakerThanAcquire())
269 Explanation
+= " <acquire";
270 if (P
.isAtomicOrderingReleaseOrStronger())
271 Explanation
+= " >=release";
272 if (P
.isAtomicOrderingWeakerThanRelease())
273 Explanation
+= " <release";
278 std::string
explainOperator(Record
*Operator
) {
279 if (Operator
->isSubClassOf("SDNode"))
280 return (" (" + Operator
->getValueAsString("Opcode") + ")").str();
282 if (Operator
->isSubClassOf("Intrinsic"))
283 return (" (Operator is an Intrinsic, " + Operator
->getName() + ")").str();
285 if (Operator
->isSubClassOf("ComplexPattern"))
286 return (" (Operator is an unmapped ComplexPattern, " + Operator
->getName() +
290 if (Operator
->isSubClassOf("SDNodeXForm"))
291 return (" (Operator is an unmapped SDNodeXForm, " + Operator
->getName() +
295 return (" (Operator " + Operator
->getName() + " not understood)").str();
298 /// Helper function to let the emitter report skip reason error messages.
299 static Error
failedImport(const Twine
&Reason
) {
300 return make_error
<StringError
>(Reason
, inconvertibleErrorCode());
303 static Error
isTrivialOperatorNode(const TreePatternNode
*N
) {
304 std::string Explanation
= "";
305 std::string Separator
= "";
307 bool HasUnsupportedPredicate
= false;
308 for (const TreePredicateCall
&Call
: N
->getPredicateCalls()) {
309 const TreePredicateFn
&Predicate
= Call
.Fn
;
311 if (Predicate
.isAlwaysTrue())
314 if (Predicate
.isImmediatePattern())
317 if (Predicate
.isNonExtLoad() || Predicate
.isAnyExtLoad() ||
318 Predicate
.isSignExtLoad() || Predicate
.isZeroExtLoad())
321 if (Predicate
.isNonTruncStore() || Predicate
.isTruncStore())
324 if (Predicate
.isLoad() && Predicate
.getMemoryVT())
327 if (Predicate
.isLoad() || Predicate
.isStore()) {
328 if (Predicate
.isUnindexed())
332 if (Predicate
.isLoad() || Predicate
.isStore() || Predicate
.isAtomic()) {
333 const ListInit
*AddrSpaces
= Predicate
.getAddressSpaces();
334 if (AddrSpaces
&& !AddrSpaces
->empty())
337 if (Predicate
.getMinAlignment() > 0)
341 if (Predicate
.isAtomic() && Predicate
.getMemoryVT())
344 if (Predicate
.isAtomic() &&
345 (Predicate
.isAtomicOrderingMonotonic() ||
346 Predicate
.isAtomicOrderingAcquire() ||
347 Predicate
.isAtomicOrderingRelease() ||
348 Predicate
.isAtomicOrderingAcquireRelease() ||
349 Predicate
.isAtomicOrderingSequentiallyConsistent() ||
350 Predicate
.isAtomicOrderingAcquireOrStronger() ||
351 Predicate
.isAtomicOrderingWeakerThanAcquire() ||
352 Predicate
.isAtomicOrderingReleaseOrStronger() ||
353 Predicate
.isAtomicOrderingWeakerThanRelease()))
356 if (Predicate
.hasGISelPredicateCode())
359 HasUnsupportedPredicate
= true;
360 Explanation
= Separator
+ "Has a predicate (" + explainPredicates(N
) + ")";
362 Explanation
+= (Separator
+ "first-failing:" +
363 Predicate
.getOrigPatFragRecord()->getRecord()->getName())
368 if (!HasUnsupportedPredicate
)
369 return Error::success();
371 return failedImport(Explanation
);
374 static Record
*getInitValueAsRegClass(Init
*V
) {
375 if (DefInit
*VDefInit
= dyn_cast
<DefInit
>(V
)) {
376 if (VDefInit
->getDef()->isSubClassOf("RegisterOperand"))
377 return VDefInit
->getDef()->getValueAsDef("RegClass");
378 if (VDefInit
->getDef()->isSubClassOf("RegisterClass"))
379 return VDefInit
->getDef();
385 getNameForFeatureBitset(const std::vector
<Record
*> &FeatureBitset
) {
386 std::string Name
= "GIFBS";
387 for (const auto &Feature
: FeatureBitset
)
388 Name
+= ("_" + Feature
->getName()).str();
392 //===- MatchTable Helpers -------------------------------------------------===//
396 /// A record to be stored in a MatchTable.
398 /// This class represents any and all output that may be required to emit the
399 /// MatchTable. Instances are most often configured to represent an opcode or
400 /// value that will be emitted to the table with some formatting but it can also
401 /// represent commas, comments, and other formatting instructions.
402 struct MatchTableRecord
{
403 enum RecordFlagsBits
{
405 /// Causes EmitStr to be formatted as comment when emitted.
407 /// Causes the record value to be followed by a comma when emitted.
408 MTRF_CommaFollows
= 0x2,
409 /// Causes the record value to be followed by a line break when emitted.
410 MTRF_LineBreakFollows
= 0x4,
411 /// Indicates that the record defines a label and causes an additional
412 /// comment to be emitted containing the index of the label.
414 /// Causes the record to be emitted as the index of the label specified by
415 /// LabelID along with a comment indicating where that label is.
416 MTRF_JumpTarget
= 0x10,
417 /// Causes the formatter to add a level of indentation before emitting the
420 /// Causes the formatter to remove a level of indentation after emitting the
425 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
426 /// reference or define.
428 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
429 /// value, a label name.
433 /// The number of MatchTable elements described by this record. Comments are 0
434 /// while values are typically 1. Values >1 may occur when we need to emit
435 /// values that exceed the size of a MatchTable element.
436 unsigned NumElements
;
439 /// A bitfield of RecordFlagsBits flags.
442 /// The actual run-time value, if known
445 MatchTableRecord(Optional
<unsigned> LabelID_
, StringRef EmitStr
,
446 unsigned NumElements
, unsigned Flags
,
447 int64_t RawValue
= std::numeric_limits
<int64_t>::min())
448 : LabelID(LabelID_
.hasValue() ? LabelID_
.getValue() : ~0u),
449 EmitStr(EmitStr
), NumElements(NumElements
), Flags(Flags
),
452 assert((!LabelID_
.hasValue() || LabelID
!= ~0u) &&
453 "This value is reserved for non-labels");
455 MatchTableRecord(const MatchTableRecord
&Other
) = default;
456 MatchTableRecord(MatchTableRecord
&&Other
) = default;
458 /// Useful if a Match Table Record gets optimized out
459 void turnIntoComment() {
460 Flags
|= MTRF_Comment
;
461 Flags
&= ~MTRF_CommaFollows
;
465 /// For Jump Table generation purposes
466 bool operator<(const MatchTableRecord
&Other
) const {
467 return RawValue
< Other
.RawValue
;
469 int64_t getRawValue() const { return RawValue
; }
471 void emit(raw_ostream
&OS
, bool LineBreakNextAfterThis
,
472 const MatchTable
&Table
) const;
473 unsigned size() const { return NumElements
; }
478 /// Holds the contents of a generated MatchTable to enable formatting and the
479 /// necessary index tracking needed to support GIM_Try.
481 /// An unique identifier for the table. The generated table will be named
484 /// The records that make up the table. Also includes comments describing the
485 /// values being emitted and line breaks to format it.
486 std::vector
<MatchTableRecord
> Contents
;
487 /// The currently defined labels.
488 DenseMap
<unsigned, unsigned> LabelMap
;
489 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
490 unsigned CurrentSize
= 0;
491 /// A unique identifier for a MatchTable label.
492 unsigned CurrentLabelID
= 0;
493 /// Determines if the table should be instrumented for rule coverage tracking.
497 static MatchTableRecord LineBreak
;
498 static MatchTableRecord
Comment(StringRef Comment
) {
499 return MatchTableRecord(None
, Comment
, 0, MatchTableRecord::MTRF_Comment
);
501 static MatchTableRecord
Opcode(StringRef Opcode
, int IndentAdjust
= 0) {
502 unsigned ExtraFlags
= 0;
503 if (IndentAdjust
> 0)
504 ExtraFlags
|= MatchTableRecord::MTRF_Indent
;
505 if (IndentAdjust
< 0)
506 ExtraFlags
|= MatchTableRecord::MTRF_Outdent
;
508 return MatchTableRecord(None
, Opcode
, 1,
509 MatchTableRecord::MTRF_CommaFollows
| ExtraFlags
);
511 static MatchTableRecord
NamedValue(StringRef NamedValue
) {
512 return MatchTableRecord(None
, NamedValue
, 1,
513 MatchTableRecord::MTRF_CommaFollows
);
515 static MatchTableRecord
NamedValue(StringRef NamedValue
, int64_t RawValue
) {
516 return MatchTableRecord(None
, NamedValue
, 1,
517 MatchTableRecord::MTRF_CommaFollows
, RawValue
);
519 static MatchTableRecord
NamedValue(StringRef Namespace
,
520 StringRef NamedValue
) {
521 return MatchTableRecord(None
, (Namespace
+ "::" + NamedValue
).str(), 1,
522 MatchTableRecord::MTRF_CommaFollows
);
524 static MatchTableRecord
NamedValue(StringRef Namespace
, StringRef NamedValue
,
526 return MatchTableRecord(None
, (Namespace
+ "::" + NamedValue
).str(), 1,
527 MatchTableRecord::MTRF_CommaFollows
, RawValue
);
529 static MatchTableRecord
IntValue(int64_t IntValue
) {
530 return MatchTableRecord(None
, llvm::to_string(IntValue
), 1,
531 MatchTableRecord::MTRF_CommaFollows
);
533 static MatchTableRecord
Label(unsigned LabelID
) {
534 return MatchTableRecord(LabelID
, "Label " + llvm::to_string(LabelID
), 0,
535 MatchTableRecord::MTRF_Label
|
536 MatchTableRecord::MTRF_Comment
|
537 MatchTableRecord::MTRF_LineBreakFollows
);
539 static MatchTableRecord
JumpTarget(unsigned LabelID
) {
540 return MatchTableRecord(LabelID
, "Label " + llvm::to_string(LabelID
), 1,
541 MatchTableRecord::MTRF_JumpTarget
|
542 MatchTableRecord::MTRF_Comment
|
543 MatchTableRecord::MTRF_CommaFollows
);
546 static MatchTable
buildTable(ArrayRef
<Matcher
*> Rules
, bool WithCoverage
);
548 MatchTable(bool WithCoverage
, unsigned ID
= 0)
549 : ID(ID
), IsWithCoverage(WithCoverage
) {}
551 bool isWithCoverage() const { return IsWithCoverage
; }
553 void push_back(const MatchTableRecord
&Value
) {
554 if (Value
.Flags
& MatchTableRecord::MTRF_Label
)
555 defineLabel(Value
.LabelID
);
556 Contents
.push_back(Value
);
557 CurrentSize
+= Value
.size();
560 unsigned allocateLabelID() { return CurrentLabelID
++; }
562 void defineLabel(unsigned LabelID
) {
563 LabelMap
.insert(std::make_pair(LabelID
, CurrentSize
));
566 unsigned getLabelIndex(unsigned LabelID
) const {
567 const auto I
= LabelMap
.find(LabelID
);
568 assert(I
!= LabelMap
.end() && "Use of undeclared label");
572 void emitUse(raw_ostream
&OS
) const { OS
<< "MatchTable" << ID
; }
574 void emitDeclaration(raw_ostream
&OS
) const {
575 unsigned Indentation
= 4;
576 OS
<< " constexpr static int64_t MatchTable" << ID
<< "[] = {";
577 LineBreak
.emit(OS
, true, *this);
578 OS
<< std::string(Indentation
, ' ');
580 for (auto I
= Contents
.begin(), E
= Contents
.end(); I
!= E
;
582 bool LineBreakIsNext
= false;
583 const auto &NextI
= std::next(I
);
586 if (NextI
->EmitStr
== "" &&
587 NextI
->Flags
== MatchTableRecord::MTRF_LineBreakFollows
)
588 LineBreakIsNext
= true;
591 if (I
->Flags
& MatchTableRecord::MTRF_Indent
)
594 I
->emit(OS
, LineBreakIsNext
, *this);
595 if (I
->Flags
& MatchTableRecord::MTRF_LineBreakFollows
)
596 OS
<< std::string(Indentation
, ' ');
598 if (I
->Flags
& MatchTableRecord::MTRF_Outdent
)
605 MatchTableRecord
MatchTable::LineBreak
= {
606 None
, "" /* Emit String */, 0 /* Elements */,
607 MatchTableRecord::MTRF_LineBreakFollows
};
609 void MatchTableRecord::emit(raw_ostream
&OS
, bool LineBreakIsNextAfterThis
,
610 const MatchTable
&Table
) const {
611 bool UseLineComment
=
612 LineBreakIsNextAfterThis
| (Flags
& MTRF_LineBreakFollows
);
613 if (Flags
& (MTRF_JumpTarget
| MTRF_CommaFollows
))
614 UseLineComment
= false;
616 if (Flags
& MTRF_Comment
)
617 OS
<< (UseLineComment
? "// " : "/*");
620 if (Flags
& MTRF_Label
)
621 OS
<< ": @" << Table
.getLabelIndex(LabelID
);
623 if (Flags
& MTRF_Comment
&& !UseLineComment
)
626 if (Flags
& MTRF_JumpTarget
) {
627 if (Flags
& MTRF_Comment
)
629 OS
<< Table
.getLabelIndex(LabelID
);
632 if (Flags
& MTRF_CommaFollows
) {
634 if (!LineBreakIsNextAfterThis
&& !(Flags
& MTRF_LineBreakFollows
))
638 if (Flags
& MTRF_LineBreakFollows
)
642 MatchTable
&operator<<(MatchTable
&Table
, const MatchTableRecord
&Value
) {
643 Table
.push_back(Value
);
647 //===- Matchers -----------------------------------------------------------===//
649 class OperandMatcher
;
651 class PredicateMatcher
;
656 virtual ~Matcher() = default;
657 virtual void optimize() {}
658 virtual void emit(MatchTable
&Table
) = 0;
660 virtual bool hasFirstCondition() const = 0;
661 virtual const PredicateMatcher
&getFirstCondition() const = 0;
662 virtual std::unique_ptr
<PredicateMatcher
> popFirstCondition() = 0;
665 MatchTable
MatchTable::buildTable(ArrayRef
<Matcher
*> Rules
,
667 MatchTable
Table(WithCoverage
);
668 for (Matcher
*Rule
: Rules
)
671 return Table
<< MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak
;
674 class GroupMatcher final
: public Matcher
{
675 /// Conditions that form a common prefix of all the matchers contained.
676 SmallVector
<std::unique_ptr
<PredicateMatcher
>, 1> Conditions
;
678 /// All the nested matchers, sharing a common prefix.
679 std::vector
<Matcher
*> Matchers
;
681 /// An owning collection for any auxiliary matchers created while optimizing
682 /// nested matchers contained.
683 std::vector
<std::unique_ptr
<Matcher
>> MatcherStorage
;
686 /// Add a matcher to the collection of nested matchers if it meets the
687 /// requirements, and return true. If it doesn't, do nothing and return false.
689 /// Expected to preserve its argument, so it could be moved out later on.
690 bool addMatcher(Matcher
&Candidate
);
692 /// Mark the matcher as fully-built and ensure any invariants expected by both
693 /// optimize() and emit(...) methods. Generally, both sequences of calls
694 /// are expected to lead to a sensible result:
696 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
697 /// addMatcher(...)*; finalize(); emit(...);
701 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
703 /// Multiple calls to optimize() are expected to be handled gracefully, though
704 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
705 /// aren't generally supported. emit(...) is expected to be non-mutating and
706 /// producing the exact same results upon repeated calls.
708 /// addMatcher() calls after the finalize() call are not supported.
710 /// finalize() and optimize() are both allowed to mutate the contained
711 /// matchers, so moving them out after finalize() is not supported.
713 void optimize() override
;
714 void emit(MatchTable
&Table
) override
;
716 /// Could be used to move out the matchers added previously, unless finalize()
717 /// has been already called. If any of the matchers are moved out, the group
718 /// becomes safe to destroy, but not safe to re-use for anything else.
719 iterator_range
<std::vector
<Matcher
*>::iterator
> matchers() {
720 return make_range(Matchers
.begin(), Matchers
.end());
722 size_t size() const { return Matchers
.size(); }
723 bool empty() const { return Matchers
.empty(); }
725 std::unique_ptr
<PredicateMatcher
> popFirstCondition() override
{
726 assert(!Conditions
.empty() &&
727 "Trying to pop a condition from a condition-less group");
728 std::unique_ptr
<PredicateMatcher
> P
= std::move(Conditions
.front());
729 Conditions
.erase(Conditions
.begin());
732 const PredicateMatcher
&getFirstCondition() const override
{
733 assert(!Conditions
.empty() &&
734 "Trying to get a condition from a condition-less group");
735 return *Conditions
.front();
737 bool hasFirstCondition() const override
{ return !Conditions
.empty(); }
740 /// See if a candidate matcher could be added to this group solely by
741 /// analyzing its first condition.
742 bool candidateConditionMatches(const PredicateMatcher
&Predicate
) const;
745 class SwitchMatcher
: public Matcher
{
746 /// All the nested matchers, representing distinct switch-cases. The first
747 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
748 /// matchers must share the same type and path to a value they check, in other
749 /// words, be isIdenticalDownToValue, but have different values they check
751 std::vector
<Matcher
*> Matchers
;
753 /// The representative condition, with a type and a path (InsnVarID and OpIdx
754 /// in most cases) shared by all the matchers contained.
755 std::unique_ptr
<PredicateMatcher
> Condition
= nullptr;
757 /// Temporary set used to check that the case values don't repeat within the
759 std::set
<MatchTableRecord
> Values
;
761 /// An owning collection for any auxiliary matchers created while optimizing
762 /// nested matchers contained.
763 std::vector
<std::unique_ptr
<Matcher
>> MatcherStorage
;
766 bool addMatcher(Matcher
&Candidate
);
769 void emit(MatchTable
&Table
) override
;
771 iterator_range
<std::vector
<Matcher
*>::iterator
> matchers() {
772 return make_range(Matchers
.begin(), Matchers
.end());
774 size_t size() const { return Matchers
.size(); }
775 bool empty() const { return Matchers
.empty(); }
777 std::unique_ptr
<PredicateMatcher
> popFirstCondition() override
{
778 // SwitchMatcher doesn't have a common first condition for its cases, as all
779 // the cases only share a kind of a value (a type and a path to it) they
780 // match, but deliberately differ in the actual value they match.
781 llvm_unreachable("Trying to pop a condition from a condition-less group");
783 const PredicateMatcher
&getFirstCondition() const override
{
784 llvm_unreachable("Trying to pop a condition from a condition-less group");
786 bool hasFirstCondition() const override
{ return false; }
789 /// See if the predicate type has a Switch-implementation for it.
790 static bool isSupportedPredicateType(const PredicateMatcher
&Predicate
);
792 bool candidateConditionMatches(const PredicateMatcher
&Predicate
) const;
795 static void emitPredicateSpecificOpcodes(const PredicateMatcher
&P
,
799 /// Generates code to check that a match rule matches.
800 class RuleMatcher
: public Matcher
{
802 using ActionList
= std::list
<std::unique_ptr
<MatchAction
>>;
803 using action_iterator
= ActionList::iterator
;
806 /// A list of matchers that all need to succeed for the current rule to match.
807 /// FIXME: This currently supports a single match position but could be
808 /// extended to support multiple positions to support div/rem fusion or
809 /// load-multiple instructions.
810 using MatchersTy
= std::vector
<std::unique_ptr
<InstructionMatcher
>> ;
813 /// A list of actions that need to be taken when all predicates in this rule
817 using DefinedInsnVariablesMap
= std::map
<InstructionMatcher
*, unsigned>;
819 /// A map of instruction matchers to the local variables
820 DefinedInsnVariablesMap InsnVariableIDs
;
822 using MutatableInsnSet
= SmallPtrSet
<InstructionMatcher
*, 4>;
824 // The set of instruction matchers that have not yet been claimed for mutation
826 MutatableInsnSet MutatableInsns
;
828 /// A map of named operands defined by the matchers that may be referenced by
830 StringMap
<OperandMatcher
*> DefinedOperands
;
832 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
833 unsigned NextInsnVarID
;
835 /// ID for the next output instruction allocated with allocateOutputInsnID()
836 unsigned NextOutputInsnID
;
838 /// ID for the next temporary register ID allocated with allocateTempRegID()
839 unsigned NextTempRegID
;
841 std::vector
<Record
*> RequiredFeatures
;
842 std::vector
<std::unique_ptr
<PredicateMatcher
>> EpilogueMatchers
;
844 ArrayRef
<SMLoc
> SrcLoc
;
846 typedef std::tuple
<Record
*, unsigned, unsigned>
847 DefinedComplexPatternSubOperand
;
848 typedef StringMap
<DefinedComplexPatternSubOperand
>
849 DefinedComplexPatternSubOperandMap
;
850 /// A map of Symbolic Names to ComplexPattern sub-operands.
851 DefinedComplexPatternSubOperandMap ComplexSubOperands
;
854 static uint64_t NextRuleID
;
857 RuleMatcher(ArrayRef
<SMLoc
> SrcLoc
)
858 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
859 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
860 NextTempRegID(0), SrcLoc(SrcLoc
), ComplexSubOperands(),
861 RuleID(NextRuleID
++) {}
862 RuleMatcher(RuleMatcher
&&Other
) = default;
863 RuleMatcher
&operator=(RuleMatcher
&&Other
) = default;
865 uint64_t getRuleID() const { return RuleID
; }
867 InstructionMatcher
&addInstructionMatcher(StringRef SymbolicName
);
868 void addRequiredFeature(Record
*Feature
);
869 const std::vector
<Record
*> &getRequiredFeatures() const;
871 template <class Kind
, class... Args
> Kind
&addAction(Args
&&... args
);
872 template <class Kind
, class... Args
>
873 action_iterator
insertAction(action_iterator InsertPt
, Args
&&... args
);
875 /// Define an instruction without emitting any code to do so.
876 unsigned implicitlyDefineInsnVar(InstructionMatcher
&Matcher
);
878 unsigned getInsnVarID(InstructionMatcher
&InsnMatcher
) const;
879 DefinedInsnVariablesMap::const_iterator
defined_insn_vars_begin() const {
880 return InsnVariableIDs
.begin();
882 DefinedInsnVariablesMap::const_iterator
defined_insn_vars_end() const {
883 return InsnVariableIDs
.end();
885 iterator_range
<typename
DefinedInsnVariablesMap::const_iterator
>
886 defined_insn_vars() const {
887 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
890 MutatableInsnSet::const_iterator
mutatable_insns_begin() const {
891 return MutatableInsns
.begin();
893 MutatableInsnSet::const_iterator
mutatable_insns_end() const {
894 return MutatableInsns
.end();
896 iterator_range
<typename
MutatableInsnSet::const_iterator
>
897 mutatable_insns() const {
898 return make_range(mutatable_insns_begin(), mutatable_insns_end());
900 void reserveInsnMatcherForMutation(InstructionMatcher
*InsnMatcher
) {
901 bool R
= MutatableInsns
.erase(InsnMatcher
);
902 assert(R
&& "Reserving a mutatable insn that isn't available");
906 action_iterator
actions_begin() { return Actions
.begin(); }
907 action_iterator
actions_end() { return Actions
.end(); }
908 iterator_range
<action_iterator
> actions() {
909 return make_range(actions_begin(), actions_end());
912 void defineOperand(StringRef SymbolicName
, OperandMatcher
&OM
);
914 Error
defineComplexSubOperand(StringRef SymbolicName
, Record
*ComplexPattern
,
915 unsigned RendererID
, unsigned SubOperandID
) {
916 if (ComplexSubOperands
.count(SymbolicName
))
918 "Complex suboperand referenced more than once (Operand: " +
921 ComplexSubOperands
[SymbolicName
] =
922 std::make_tuple(ComplexPattern
, RendererID
, SubOperandID
);
924 return Error::success();
927 Optional
<DefinedComplexPatternSubOperand
>
928 getComplexSubOperand(StringRef SymbolicName
) const {
929 const auto &I
= ComplexSubOperands
.find(SymbolicName
);
930 if (I
== ComplexSubOperands
.end())
935 InstructionMatcher
&getInstructionMatcher(StringRef SymbolicName
) const;
936 const OperandMatcher
&getOperandMatcher(StringRef Name
) const;
938 void optimize() override
;
939 void emit(MatchTable
&Table
) override
;
941 /// Compare the priority of this object and B.
943 /// Returns true if this object is more important than B.
944 bool isHigherPriorityThan(const RuleMatcher
&B
) const;
946 /// Report the maximum number of temporary operands needed by the rule
948 unsigned countRendererFns() const;
950 std::unique_ptr
<PredicateMatcher
> popFirstCondition() override
;
951 const PredicateMatcher
&getFirstCondition() const override
;
952 LLTCodeGen
getFirstConditionAsRootType();
953 bool hasFirstCondition() const override
;
954 unsigned getNumOperands() const;
955 StringRef
getOpcode() const;
957 // FIXME: Remove this as soon as possible
958 InstructionMatcher
&insnmatchers_front() const { return *Matchers
.front(); }
960 unsigned allocateOutputInsnID() { return NextOutputInsnID
++; }
961 unsigned allocateTempRegID() { return NextTempRegID
++; }
963 iterator_range
<MatchersTy::iterator
> insnmatchers() {
964 return make_range(Matchers
.begin(), Matchers
.end());
966 bool insnmatchers_empty() const { return Matchers
.empty(); }
967 void insnmatchers_pop_front() { Matchers
.erase(Matchers
.begin()); }
970 uint64_t RuleMatcher::NextRuleID
= 0;
972 using action_iterator
= RuleMatcher::action_iterator
;
974 template <class PredicateTy
> class PredicateListMatcher
{
976 /// Template instantiations should specialize this to return a string to use
977 /// for the comment emitted when there are no predicates.
978 std::string
getNoPredicateComment() const;
981 using PredicatesTy
= std::deque
<std::unique_ptr
<PredicateTy
>>;
982 PredicatesTy Predicates
;
984 /// Track if the list of predicates was manipulated by one of the optimization
986 bool Optimized
= false;
989 /// Construct a new predicate and add it to the matcher.
990 template <class Kind
, class... Args
>
991 Optional
<Kind
*> addPredicate(Args
&&... args
);
993 typename
PredicatesTy::iterator
predicates_begin() {
994 return Predicates
.begin();
996 typename
PredicatesTy::iterator
predicates_end() {
997 return Predicates
.end();
999 iterator_range
<typename
PredicatesTy::iterator
> predicates() {
1000 return make_range(predicates_begin(), predicates_end());
1002 typename
PredicatesTy::size_type
predicates_size() const {
1003 return Predicates
.size();
1005 bool predicates_empty() const { return Predicates
.empty(); }
1007 std::unique_ptr
<PredicateTy
> predicates_pop_front() {
1008 std::unique_ptr
<PredicateTy
> Front
= std::move(Predicates
.front());
1009 Predicates
.pop_front();
1014 void prependPredicate(std::unique_ptr
<PredicateTy
> &&Predicate
) {
1015 Predicates
.push_front(std::move(Predicate
));
1018 void eraseNullPredicates() {
1020 std::stable_partition(Predicates
.begin(), Predicates
.end(),
1021 std::logical_not
<std::unique_ptr
<PredicateTy
>>());
1022 if (NewEnd
!= Predicates
.begin()) {
1023 Predicates
.erase(Predicates
.begin(), NewEnd
);
1028 /// Emit MatchTable opcodes that tests whether all the predicates are met.
1029 template <class... Args
>
1030 void emitPredicateListOpcodes(MatchTable
&Table
, Args
&&... args
) {
1031 if (Predicates
.empty() && !Optimized
) {
1032 Table
<< MatchTable::Comment(getNoPredicateComment())
1033 << MatchTable::LineBreak
;
1037 for (const auto &Predicate
: predicates())
1038 Predicate
->emitPredicateOpcodes(Table
, std::forward
<Args
>(args
)...);
1042 class PredicateMatcher
{
1044 /// This enum is used for RTTI and also defines the priority that is given to
1045 /// the predicate when generating the matcher code. Kinds with higher priority
1046 /// must be tested first.
1048 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1049 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1050 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1052 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1053 /// are currently not compared between each other.
1054 enum PredicateKind
{
1058 IPM_AtomicOrderingMMO
,
1060 IPM_MemoryVsLLTSize
,
1061 IPM_MemoryAddressSpace
,
1062 IPM_MemoryAlignment
,
1063 IPM_GenericPredicate
,
1082 PredicateMatcher(PredicateKind Kind
, unsigned InsnVarID
, unsigned OpIdx
= ~0)
1083 : Kind(Kind
), InsnVarID(InsnVarID
), OpIdx(OpIdx
) {}
1085 unsigned getInsnVarID() const { return InsnVarID
; }
1086 unsigned getOpIdx() const { return OpIdx
; }
1088 virtual ~PredicateMatcher() = default;
1089 /// Emit MatchTable opcodes that check the predicate for the given operand.
1090 virtual void emitPredicateOpcodes(MatchTable
&Table
,
1091 RuleMatcher
&Rule
) const = 0;
1093 PredicateKind
getKind() const { return Kind
; }
1095 virtual bool isIdentical(const PredicateMatcher
&B
) const {
1096 return B
.getKind() == getKind() && InsnVarID
== B
.InsnVarID
&&
1100 virtual bool isIdenticalDownToValue(const PredicateMatcher
&B
) const {
1101 return hasValue() && PredicateMatcher::isIdentical(B
);
1104 virtual MatchTableRecord
getValue() const {
1105 assert(hasValue() && "Can not get a value of a value-less predicate!");
1106 llvm_unreachable("Not implemented yet");
1108 virtual bool hasValue() const { return false; }
1110 /// Report the maximum number of temporary operands needed by the predicate
1112 virtual unsigned countRendererFns() const { return 0; }
1115 /// Generates code to check a predicate of an operand.
1117 /// Typical predicates include:
1118 /// * Operand is a particular register.
1119 /// * Operand is assigned a particular register bank.
1120 /// * Operand is an MBB.
1121 class OperandPredicateMatcher
: public PredicateMatcher
{
1123 OperandPredicateMatcher(PredicateKind Kind
, unsigned InsnVarID
,
1125 : PredicateMatcher(Kind
, InsnVarID
, OpIdx
) {}
1126 virtual ~OperandPredicateMatcher() {}
1128 /// Compare the priority of this object and B.
1130 /// Returns true if this object is more important than B.
1131 virtual bool isHigherPriorityThan(const OperandPredicateMatcher
&B
) const;
1136 PredicateListMatcher
<OperandPredicateMatcher
>::getNoPredicateComment() const {
1137 return "No operand predicates";
1140 /// Generates code to check that a register operand is defined by the same exact
1142 class SameOperandMatcher
: public OperandPredicateMatcher
{
1143 std::string MatchingName
;
1146 SameOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, StringRef MatchingName
)
1147 : OperandPredicateMatcher(OPM_SameOperand
, InsnVarID
, OpIdx
),
1148 MatchingName(MatchingName
) {}
1150 static bool classof(const PredicateMatcher
*P
) {
1151 return P
->getKind() == OPM_SameOperand
;
1154 void emitPredicateOpcodes(MatchTable
&Table
,
1155 RuleMatcher
&Rule
) const override
;
1157 bool isIdentical(const PredicateMatcher
&B
) const override
{
1158 return OperandPredicateMatcher::isIdentical(B
) &&
1159 MatchingName
== cast
<SameOperandMatcher
>(&B
)->MatchingName
;
1163 /// Generates code to check that an operand is a particular LLT.
1164 class LLTOperandMatcher
: public OperandPredicateMatcher
{
1169 static std::map
<LLTCodeGen
, unsigned> TypeIDValues
;
1171 static void initTypeIDValuesMap() {
1172 TypeIDValues
.clear();
1175 for (const LLTCodeGen LLTy
: KnownTypes
)
1176 TypeIDValues
[LLTy
] = ID
++;
1179 LLTOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, const LLTCodeGen
&Ty
)
1180 : OperandPredicateMatcher(OPM_LLT
, InsnVarID
, OpIdx
), Ty(Ty
) {
1181 KnownTypes
.insert(Ty
);
1184 static bool classof(const PredicateMatcher
*P
) {
1185 return P
->getKind() == OPM_LLT
;
1187 bool isIdentical(const PredicateMatcher
&B
) const override
{
1188 return OperandPredicateMatcher::isIdentical(B
) &&
1189 Ty
== cast
<LLTOperandMatcher
>(&B
)->Ty
;
1191 MatchTableRecord
getValue() const override
{
1192 const auto VI
= TypeIDValues
.find(Ty
);
1193 if (VI
== TypeIDValues
.end())
1194 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1195 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI
->second
);
1197 bool hasValue() const override
{
1198 if (TypeIDValues
.size() != KnownTypes
.size())
1199 initTypeIDValuesMap();
1200 return TypeIDValues
.count(Ty
);
1203 LLTCodeGen
getTy() const { return Ty
; }
1205 void emitPredicateOpcodes(MatchTable
&Table
,
1206 RuleMatcher
&Rule
) const override
{
1207 Table
<< MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1208 << MatchTable::IntValue(InsnVarID
) << MatchTable::Comment("Op")
1209 << MatchTable::IntValue(OpIdx
) << MatchTable::Comment("Type")
1210 << getValue() << MatchTable::LineBreak
;
1214 std::map
<LLTCodeGen
, unsigned> LLTOperandMatcher::TypeIDValues
;
1216 /// Generates code to check that an operand is a pointer to any address space.
1218 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1219 /// result, iN is used to describe a pointer of N bits to any address space and
1220 /// PatFrag predicates are typically used to constrain the address space. There's
1221 /// no reliable means to derive the missing type information from the pattern so
1222 /// imported rules must test the components of a pointer separately.
1224 /// If SizeInBits is zero, then the pointer size will be obtained from the
1226 class PointerToAnyOperandMatcher
: public OperandPredicateMatcher
{
1228 unsigned SizeInBits
;
1231 PointerToAnyOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1232 unsigned SizeInBits
)
1233 : OperandPredicateMatcher(OPM_PointerToAny
, InsnVarID
, OpIdx
),
1234 SizeInBits(SizeInBits
) {}
1236 static bool classof(const OperandPredicateMatcher
*P
) {
1237 return P
->getKind() == OPM_PointerToAny
;
1240 void emitPredicateOpcodes(MatchTable
&Table
,
1241 RuleMatcher
&Rule
) const override
{
1242 Table
<< MatchTable::Opcode("GIM_CheckPointerToAny")
1243 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1244 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1245 << MatchTable::Comment("SizeInBits")
1246 << MatchTable::IntValue(SizeInBits
) << MatchTable::LineBreak
;
1250 /// Generates code to check that an operand is a particular target constant.
1251 class ComplexPatternOperandMatcher
: public OperandPredicateMatcher
{
1253 const OperandMatcher
&Operand
;
1254 const Record
&TheDef
;
1256 unsigned getAllocatedTemporariesBaseID() const;
1259 bool isIdentical(const PredicateMatcher
&B
) const override
{ return false; }
1261 ComplexPatternOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1262 const OperandMatcher
&Operand
,
1263 const Record
&TheDef
)
1264 : OperandPredicateMatcher(OPM_ComplexPattern
, InsnVarID
, OpIdx
),
1265 Operand(Operand
), TheDef(TheDef
) {}
1267 static bool classof(const PredicateMatcher
*P
) {
1268 return P
->getKind() == OPM_ComplexPattern
;
1271 void emitPredicateOpcodes(MatchTable
&Table
,
1272 RuleMatcher
&Rule
) const override
{
1273 unsigned ID
= getAllocatedTemporariesBaseID();
1274 Table
<< MatchTable::Opcode("GIM_CheckComplexPattern")
1275 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1276 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1277 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID
)
1278 << MatchTable::NamedValue(("GICP_" + TheDef
.getName()).str())
1279 << MatchTable::LineBreak
;
1282 unsigned countRendererFns() const override
{
1287 /// Generates code to check that an operand is in a particular register bank.
1288 class RegisterBankOperandMatcher
: public OperandPredicateMatcher
{
1290 const CodeGenRegisterClass
&RC
;
1293 RegisterBankOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1294 const CodeGenRegisterClass
&RC
)
1295 : OperandPredicateMatcher(OPM_RegBank
, InsnVarID
, OpIdx
), RC(RC
) {}
1297 bool isIdentical(const PredicateMatcher
&B
) const override
{
1298 return OperandPredicateMatcher::isIdentical(B
) &&
1299 RC
.getDef() == cast
<RegisterBankOperandMatcher
>(&B
)->RC
.getDef();
1302 static bool classof(const PredicateMatcher
*P
) {
1303 return P
->getKind() == OPM_RegBank
;
1306 void emitPredicateOpcodes(MatchTable
&Table
,
1307 RuleMatcher
&Rule
) const override
{
1308 Table
<< MatchTable::Opcode("GIM_CheckRegBankForClass")
1309 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1310 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1311 << MatchTable::Comment("RC")
1312 << MatchTable::NamedValue(RC
.getQualifiedName() + "RegClassID")
1313 << MatchTable::LineBreak
;
1317 /// Generates code to check that an operand is a basic block.
1318 class MBBOperandMatcher
: public OperandPredicateMatcher
{
1320 MBBOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
)
1321 : OperandPredicateMatcher(OPM_MBB
, InsnVarID
, OpIdx
) {}
1323 static bool classof(const PredicateMatcher
*P
) {
1324 return P
->getKind() == OPM_MBB
;
1327 void emitPredicateOpcodes(MatchTable
&Table
,
1328 RuleMatcher
&Rule
) const override
{
1329 Table
<< MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1330 << MatchTable::IntValue(InsnVarID
) << MatchTable::Comment("Op")
1331 << MatchTable::IntValue(OpIdx
) << MatchTable::LineBreak
;
1335 /// Generates code to check that an operand is a G_CONSTANT with a particular
1337 class ConstantIntOperandMatcher
: public OperandPredicateMatcher
{
1342 ConstantIntOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, int64_t Value
)
1343 : OperandPredicateMatcher(OPM_Int
, InsnVarID
, OpIdx
), Value(Value
) {}
1345 bool isIdentical(const PredicateMatcher
&B
) const override
{
1346 return OperandPredicateMatcher::isIdentical(B
) &&
1347 Value
== cast
<ConstantIntOperandMatcher
>(&B
)->Value
;
1350 static bool classof(const PredicateMatcher
*P
) {
1351 return P
->getKind() == OPM_Int
;
1354 void emitPredicateOpcodes(MatchTable
&Table
,
1355 RuleMatcher
&Rule
) const override
{
1356 Table
<< MatchTable::Opcode("GIM_CheckConstantInt")
1357 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1358 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1359 << MatchTable::IntValue(Value
) << MatchTable::LineBreak
;
1363 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1364 /// MO.isCImm() is true).
1365 class LiteralIntOperandMatcher
: public OperandPredicateMatcher
{
1370 LiteralIntOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, int64_t Value
)
1371 : OperandPredicateMatcher(OPM_LiteralInt
, InsnVarID
, OpIdx
),
1374 bool isIdentical(const PredicateMatcher
&B
) const override
{
1375 return OperandPredicateMatcher::isIdentical(B
) &&
1376 Value
== cast
<LiteralIntOperandMatcher
>(&B
)->Value
;
1379 static bool classof(const PredicateMatcher
*P
) {
1380 return P
->getKind() == OPM_LiteralInt
;
1383 void emitPredicateOpcodes(MatchTable
&Table
,
1384 RuleMatcher
&Rule
) const override
{
1385 Table
<< MatchTable::Opcode("GIM_CheckLiteralInt")
1386 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1387 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1388 << MatchTable::IntValue(Value
) << MatchTable::LineBreak
;
1392 /// Generates code to check that an operand is an intrinsic ID.
1393 class IntrinsicIDOperandMatcher
: public OperandPredicateMatcher
{
1395 const CodeGenIntrinsic
*II
;
1398 IntrinsicIDOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1399 const CodeGenIntrinsic
*II
)
1400 : OperandPredicateMatcher(OPM_IntrinsicID
, InsnVarID
, OpIdx
), II(II
) {}
1402 bool isIdentical(const PredicateMatcher
&B
) const override
{
1403 return OperandPredicateMatcher::isIdentical(B
) &&
1404 II
== cast
<IntrinsicIDOperandMatcher
>(&B
)->II
;
1407 static bool classof(const PredicateMatcher
*P
) {
1408 return P
->getKind() == OPM_IntrinsicID
;
1411 void emitPredicateOpcodes(MatchTable
&Table
,
1412 RuleMatcher
&Rule
) const override
{
1413 Table
<< MatchTable::Opcode("GIM_CheckIntrinsicID")
1414 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1415 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1416 << MatchTable::NamedValue("Intrinsic::" + II
->EnumName
)
1417 << MatchTable::LineBreak
;
1421 /// Generates code to check that a set of predicates match for a particular
1423 class OperandMatcher
: public PredicateListMatcher
<OperandPredicateMatcher
> {
1425 InstructionMatcher
&Insn
;
1427 std::string SymbolicName
;
1429 /// The index of the first temporary variable allocated to this operand. The
1430 /// number of allocated temporaries can be found with
1431 /// countRendererFns().
1432 unsigned AllocatedTemporariesBaseID
;
1435 OperandMatcher(InstructionMatcher
&Insn
, unsigned OpIdx
,
1436 const std::string
&SymbolicName
,
1437 unsigned AllocatedTemporariesBaseID
)
1438 : Insn(Insn
), OpIdx(OpIdx
), SymbolicName(SymbolicName
),
1439 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID
) {}
1441 bool hasSymbolicName() const { return !SymbolicName
.empty(); }
1442 const StringRef
getSymbolicName() const { return SymbolicName
; }
1443 void setSymbolicName(StringRef Name
) {
1444 assert(SymbolicName
.empty() && "Operand already has a symbolic name");
1445 SymbolicName
= Name
;
1448 /// Construct a new operand predicate and add it to the matcher.
1449 template <class Kind
, class... Args
>
1450 Optional
<Kind
*> addPredicate(Args
&&... args
) {
1451 if (isSameAsAnotherOperand())
1453 Predicates
.emplace_back(std::make_unique
<Kind
>(
1454 getInsnVarID(), getOpIdx(), std::forward
<Args
>(args
)...));
1455 return static_cast<Kind
*>(Predicates
.back().get());
1458 unsigned getOpIdx() const { return OpIdx
; }
1459 unsigned getInsnVarID() const;
1461 std::string
getOperandExpr(unsigned InsnVarID
) const {
1462 return "State.MIs[" + llvm::to_string(InsnVarID
) + "]->getOperand(" +
1463 llvm::to_string(OpIdx
) + ")";
1466 InstructionMatcher
&getInstructionMatcher() const { return Insn
; }
1468 Error
addTypeCheckPredicate(const TypeSetByHwMode
&VTy
,
1469 bool OperandIsAPointer
);
1471 /// Emit MatchTable opcodes that test whether the instruction named in
1472 /// InsnVarID matches all the predicates and all the operands.
1473 void emitPredicateOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) {
1475 std::string Comment
;
1476 raw_string_ostream
CommentOS(Comment
);
1477 CommentOS
<< "MIs[" << getInsnVarID() << "] ";
1478 if (SymbolicName
.empty())
1479 CommentOS
<< "Operand " << OpIdx
;
1481 CommentOS
<< SymbolicName
;
1482 Table
<< MatchTable::Comment(CommentOS
.str()) << MatchTable::LineBreak
;
1485 emitPredicateListOpcodes(Table
, Rule
);
1488 /// Compare the priority of this object and B.
1490 /// Returns true if this object is more important than B.
1491 bool isHigherPriorityThan(OperandMatcher
&B
) {
1492 // Operand matchers involving more predicates have higher priority.
1493 if (predicates_size() > B
.predicates_size())
1495 if (predicates_size() < B
.predicates_size())
1498 // This assumes that predicates are added in a consistent order.
1499 for (auto &&Predicate
: zip(predicates(), B
.predicates())) {
1500 if (std::get
<0>(Predicate
)->isHigherPriorityThan(*std::get
<1>(Predicate
)))
1502 if (std::get
<1>(Predicate
)->isHigherPriorityThan(*std::get
<0>(Predicate
)))
1509 /// Report the maximum number of temporary operands needed by the operand
1511 unsigned countRendererFns() {
1512 return std::accumulate(
1513 predicates().begin(), predicates().end(), 0,
1515 const std::unique_ptr
<OperandPredicateMatcher
> &Predicate
) {
1516 return A
+ Predicate
->countRendererFns();
1520 unsigned getAllocatedTemporariesBaseID() const {
1521 return AllocatedTemporariesBaseID
;
1524 bool isSameAsAnotherOperand() {
1525 for (const auto &Predicate
: predicates())
1526 if (isa
<SameOperandMatcher
>(Predicate
))
1532 Error
OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode
&VTy
,
1533 bool OperandIsAPointer
) {
1534 if (!VTy
.isMachineValueType())
1535 return failedImport("unsupported typeset");
1537 if (VTy
.getMachineValueType() == MVT::iPTR
&& OperandIsAPointer
) {
1538 addPredicate
<PointerToAnyOperandMatcher
>(0);
1539 return Error::success();
1542 auto OpTyOrNone
= MVTToLLT(VTy
.getMachineValueType().SimpleTy
);
1544 return failedImport("unsupported type");
1546 if (OperandIsAPointer
)
1547 addPredicate
<PointerToAnyOperandMatcher
>(OpTyOrNone
->get().getSizeInBits());
1548 else if (VTy
.isPointer())
1549 addPredicate
<LLTOperandMatcher
>(LLT::pointer(VTy
.getPtrAddrSpace(),
1550 OpTyOrNone
->get().getSizeInBits()));
1552 addPredicate
<LLTOperandMatcher
>(*OpTyOrNone
);
1553 return Error::success();
1556 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1557 return Operand
.getAllocatedTemporariesBaseID();
1560 /// Generates code to check a predicate on an instruction.
1562 /// Typical predicates include:
1563 /// * The opcode of the instruction is a particular value.
1564 /// * The nsw/nuw flag is/isn't set.
1565 class InstructionPredicateMatcher
: public PredicateMatcher
{
1567 InstructionPredicateMatcher(PredicateKind Kind
, unsigned InsnVarID
)
1568 : PredicateMatcher(Kind
, InsnVarID
) {}
1569 virtual ~InstructionPredicateMatcher() {}
1571 /// Compare the priority of this object and B.
1573 /// Returns true if this object is more important than B.
1575 isHigherPriorityThan(const InstructionPredicateMatcher
&B
) const {
1576 return Kind
< B
.Kind
;
1582 PredicateListMatcher
<PredicateMatcher
>::getNoPredicateComment() const {
1583 return "No instruction predicates";
1586 /// Generates code to check the opcode of an instruction.
1587 class InstructionOpcodeMatcher
: public InstructionPredicateMatcher
{
1589 const CodeGenInstruction
*I
;
1591 static DenseMap
<const CodeGenInstruction
*, unsigned> OpcodeValues
;
1594 static void initOpcodeValuesMap(const CodeGenTarget
&Target
) {
1595 OpcodeValues
.clear();
1597 unsigned OpcodeValue
= 0;
1598 for (const CodeGenInstruction
*I
: Target
.getInstructionsByEnumValue())
1599 OpcodeValues
[I
] = OpcodeValue
++;
1602 InstructionOpcodeMatcher(unsigned InsnVarID
, const CodeGenInstruction
*I
)
1603 : InstructionPredicateMatcher(IPM_Opcode
, InsnVarID
), I(I
) {}
1605 static bool classof(const PredicateMatcher
*P
) {
1606 return P
->getKind() == IPM_Opcode
;
1609 bool isIdentical(const PredicateMatcher
&B
) const override
{
1610 return InstructionPredicateMatcher::isIdentical(B
) &&
1611 I
== cast
<InstructionOpcodeMatcher
>(&B
)->I
;
1613 MatchTableRecord
getValue() const override
{
1614 const auto VI
= OpcodeValues
.find(I
);
1615 if (VI
!= OpcodeValues
.end())
1616 return MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName(),
1618 return MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName());
1620 bool hasValue() const override
{ return OpcodeValues
.count(I
); }
1622 void emitPredicateOpcodes(MatchTable
&Table
,
1623 RuleMatcher
&Rule
) const override
{
1624 Table
<< MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1625 << MatchTable::IntValue(InsnVarID
) << getValue()
1626 << MatchTable::LineBreak
;
1629 /// Compare the priority of this object and B.
1631 /// Returns true if this object is more important than B.
1633 isHigherPriorityThan(const InstructionPredicateMatcher
&B
) const override
{
1634 if (InstructionPredicateMatcher::isHigherPriorityThan(B
))
1636 if (B
.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1639 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1640 // this is cosmetic at the moment, we may want to drive a similar ordering
1641 // using instruction frequency information to improve compile time.
1642 if (const InstructionOpcodeMatcher
*BO
=
1643 dyn_cast
<InstructionOpcodeMatcher
>(&B
))
1644 return I
->TheDef
->getName() < BO
->I
->TheDef
->getName();
1649 bool isConstantInstruction() const {
1650 return I
->TheDef
->getName() == "G_CONSTANT";
1653 StringRef
getOpcode() const { return I
->TheDef
->getName(); }
1654 unsigned getNumOperands() const { return I
->Operands
.size(); }
1656 StringRef
getOperandType(unsigned OpIdx
) const {
1657 return I
->Operands
[OpIdx
].OperandType
;
1661 DenseMap
<const CodeGenInstruction
*, unsigned>
1662 InstructionOpcodeMatcher::OpcodeValues
;
1664 class InstructionNumOperandsMatcher final
: public InstructionPredicateMatcher
{
1665 unsigned NumOperands
= 0;
1668 InstructionNumOperandsMatcher(unsigned InsnVarID
, unsigned NumOperands
)
1669 : InstructionPredicateMatcher(IPM_NumOperands
, InsnVarID
),
1670 NumOperands(NumOperands
) {}
1672 static bool classof(const PredicateMatcher
*P
) {
1673 return P
->getKind() == IPM_NumOperands
;
1676 bool isIdentical(const PredicateMatcher
&B
) const override
{
1677 return InstructionPredicateMatcher::isIdentical(B
) &&
1678 NumOperands
== cast
<InstructionNumOperandsMatcher
>(&B
)->NumOperands
;
1681 void emitPredicateOpcodes(MatchTable
&Table
,
1682 RuleMatcher
&Rule
) const override
{
1683 Table
<< MatchTable::Opcode("GIM_CheckNumOperands")
1684 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1685 << MatchTable::Comment("Expected")
1686 << MatchTable::IntValue(NumOperands
) << MatchTable::LineBreak
;
1690 /// Generates code to check that this instruction is a constant whose value
1691 /// meets an immediate predicate.
1693 /// Immediates are slightly odd since they are typically used like an operand
1694 /// but are represented as an operator internally. We typically write simm8:$src
1695 /// in a tablegen pattern, but this is just syntactic sugar for
1696 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1697 /// that will be matched and the predicate (which is attached to the imm
1698 /// operator) that will be tested. In SelectionDAG this describes a
1699 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1701 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1702 /// this representation, the immediate could be tested with an
1703 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1704 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1705 /// there are two implementation issues with producing that matcher
1706 /// configuration from the SelectionDAG pattern:
1707 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1708 /// were we to sink the immediate predicate to the operand we would have to
1709 /// have two partial implementations of PatFrag support, one for immediates
1710 /// and one for non-immediates.
1711 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1712 /// created yet. If we were to sink the predicate to the OperandMatcher we
1713 /// would also have to complicate (or duplicate) the code that descends and
1714 /// creates matchers for the subtree.
1715 /// Overall, it's simpler to handle it in the place it was found.
1716 class InstructionImmPredicateMatcher
: public InstructionPredicateMatcher
{
1718 TreePredicateFn Predicate
;
1721 InstructionImmPredicateMatcher(unsigned InsnVarID
,
1722 const TreePredicateFn
&Predicate
)
1723 : InstructionPredicateMatcher(IPM_ImmPredicate
, InsnVarID
),
1724 Predicate(Predicate
) {}
1726 bool isIdentical(const PredicateMatcher
&B
) const override
{
1727 return InstructionPredicateMatcher::isIdentical(B
) &&
1728 Predicate
.getOrigPatFragRecord() ==
1729 cast
<InstructionImmPredicateMatcher
>(&B
)
1730 ->Predicate
.getOrigPatFragRecord();
1733 static bool classof(const PredicateMatcher
*P
) {
1734 return P
->getKind() == IPM_ImmPredicate
;
1737 void emitPredicateOpcodes(MatchTable
&Table
,
1738 RuleMatcher
&Rule
) const override
{
1739 Table
<< MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate
))
1740 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1741 << MatchTable::Comment("Predicate")
1742 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate
))
1743 << MatchTable::LineBreak
;
1747 /// Generates code to check that a memory instruction has a atomic ordering
1748 /// MachineMemoryOperand.
1749 class AtomicOrderingMMOPredicateMatcher
: public InstructionPredicateMatcher
{
1759 AOComparator Comparator
;
1762 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID
, StringRef Order
,
1763 AOComparator Comparator
= AO_Exactly
)
1764 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO
, InsnVarID
),
1765 Order(Order
), Comparator(Comparator
) {}
1767 static bool classof(const PredicateMatcher
*P
) {
1768 return P
->getKind() == IPM_AtomicOrderingMMO
;
1771 bool isIdentical(const PredicateMatcher
&B
) const override
{
1772 if (!InstructionPredicateMatcher::isIdentical(B
))
1774 const auto &R
= *cast
<AtomicOrderingMMOPredicateMatcher
>(&B
);
1775 return Order
== R
.Order
&& Comparator
== R
.Comparator
;
1778 void emitPredicateOpcodes(MatchTable
&Table
,
1779 RuleMatcher
&Rule
) const override
{
1780 StringRef Opcode
= "GIM_CheckAtomicOrdering";
1782 if (Comparator
== AO_OrStronger
)
1783 Opcode
= "GIM_CheckAtomicOrderingOrStrongerThan";
1784 if (Comparator
== AO_WeakerThan
)
1785 Opcode
= "GIM_CheckAtomicOrderingWeakerThan";
1787 Table
<< MatchTable::Opcode(Opcode
) << MatchTable::Comment("MI")
1788 << MatchTable::IntValue(InsnVarID
) << MatchTable::Comment("Order")
1789 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order
).str())
1790 << MatchTable::LineBreak
;
1794 /// Generates code to check that the size of an MMO is exactly N bytes.
1795 class MemorySizePredicateMatcher
: public InstructionPredicateMatcher
{
1801 MemorySizePredicateMatcher(unsigned InsnVarID
, unsigned MMOIdx
, unsigned Size
)
1802 : InstructionPredicateMatcher(IPM_MemoryLLTSize
, InsnVarID
),
1803 MMOIdx(MMOIdx
), Size(Size
) {}
1805 static bool classof(const PredicateMatcher
*P
) {
1806 return P
->getKind() == IPM_MemoryLLTSize
;
1808 bool isIdentical(const PredicateMatcher
&B
) const override
{
1809 return InstructionPredicateMatcher::isIdentical(B
) &&
1810 MMOIdx
== cast
<MemorySizePredicateMatcher
>(&B
)->MMOIdx
&&
1811 Size
== cast
<MemorySizePredicateMatcher
>(&B
)->Size
;
1814 void emitPredicateOpcodes(MatchTable
&Table
,
1815 RuleMatcher
&Rule
) const override
{
1816 Table
<< MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1817 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1818 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx
)
1819 << MatchTable::Comment("Size") << MatchTable::IntValue(Size
)
1820 << MatchTable::LineBreak
;
1824 class MemoryAddressSpacePredicateMatcher
: public InstructionPredicateMatcher
{
1827 SmallVector
<unsigned, 4> AddrSpaces
;
1830 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID
, unsigned MMOIdx
,
1831 ArrayRef
<unsigned> AddrSpaces
)
1832 : InstructionPredicateMatcher(IPM_MemoryAddressSpace
, InsnVarID
),
1833 MMOIdx(MMOIdx
), AddrSpaces(AddrSpaces
.begin(), AddrSpaces
.end()) {}
1835 static bool classof(const PredicateMatcher
*P
) {
1836 return P
->getKind() == IPM_MemoryAddressSpace
;
1838 bool isIdentical(const PredicateMatcher
&B
) const override
{
1839 if (!InstructionPredicateMatcher::isIdentical(B
))
1841 auto *Other
= cast
<MemoryAddressSpacePredicateMatcher
>(&B
);
1842 return MMOIdx
== Other
->MMOIdx
&& AddrSpaces
== Other
->AddrSpaces
;
1845 void emitPredicateOpcodes(MatchTable
&Table
,
1846 RuleMatcher
&Rule
) const override
{
1847 Table
<< MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
1848 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1849 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx
)
1850 // Encode number of address spaces to expect.
1851 << MatchTable::Comment("NumAddrSpace")
1852 << MatchTable::IntValue(AddrSpaces
.size());
1853 for (unsigned AS
: AddrSpaces
)
1854 Table
<< MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS
);
1856 Table
<< MatchTable::LineBreak
;
1860 class MemoryAlignmentPredicateMatcher
: public InstructionPredicateMatcher
{
1866 MemoryAlignmentPredicateMatcher(unsigned InsnVarID
, unsigned MMOIdx
,
1868 : InstructionPredicateMatcher(IPM_MemoryAlignment
, InsnVarID
),
1869 MMOIdx(MMOIdx
), MinAlign(MinAlign
) {
1870 assert(MinAlign
> 0);
1873 static bool classof(const PredicateMatcher
*P
) {
1874 return P
->getKind() == IPM_MemoryAlignment
;
1877 bool isIdentical(const PredicateMatcher
&B
) const override
{
1878 if (!InstructionPredicateMatcher::isIdentical(B
))
1880 auto *Other
= cast
<MemoryAlignmentPredicateMatcher
>(&B
);
1881 return MMOIdx
== Other
->MMOIdx
&& MinAlign
== Other
->MinAlign
;
1884 void emitPredicateOpcodes(MatchTable
&Table
,
1885 RuleMatcher
&Rule
) const override
{
1886 Table
<< MatchTable::Opcode("GIM_CheckMemoryAlignment")
1887 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1888 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx
)
1889 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign
)
1890 << MatchTable::LineBreak
;
1894 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1895 /// greater than a given LLT.
1896 class MemoryVsLLTSizePredicateMatcher
: public InstructionPredicateMatcher
{
1906 RelationKind Relation
;
1910 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID
, unsigned MMOIdx
,
1911 enum RelationKind Relation
,
1913 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize
, InsnVarID
),
1914 MMOIdx(MMOIdx
), Relation(Relation
), OpIdx(OpIdx
) {}
1916 static bool classof(const PredicateMatcher
*P
) {
1917 return P
->getKind() == IPM_MemoryVsLLTSize
;
1919 bool isIdentical(const PredicateMatcher
&B
) const override
{
1920 return InstructionPredicateMatcher::isIdentical(B
) &&
1921 MMOIdx
== cast
<MemoryVsLLTSizePredicateMatcher
>(&B
)->MMOIdx
&&
1922 Relation
== cast
<MemoryVsLLTSizePredicateMatcher
>(&B
)->Relation
&&
1923 OpIdx
== cast
<MemoryVsLLTSizePredicateMatcher
>(&B
)->OpIdx
;
1926 void emitPredicateOpcodes(MatchTable
&Table
,
1927 RuleMatcher
&Rule
) const override
{
1928 Table
<< MatchTable::Opcode(Relation
== EqualTo
1929 ? "GIM_CheckMemorySizeEqualToLLT"
1930 : Relation
== GreaterThan
1931 ? "GIM_CheckMemorySizeGreaterThanLLT"
1932 : "GIM_CheckMemorySizeLessThanLLT")
1933 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1934 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx
)
1935 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx
)
1936 << MatchTable::LineBreak
;
1940 /// Generates code to check an arbitrary C++ instruction predicate.
1941 class GenericInstructionPredicateMatcher
: public InstructionPredicateMatcher
{
1943 TreePredicateFn Predicate
;
1946 GenericInstructionPredicateMatcher(unsigned InsnVarID
,
1947 TreePredicateFn Predicate
)
1948 : InstructionPredicateMatcher(IPM_GenericPredicate
, InsnVarID
),
1949 Predicate(Predicate
) {}
1951 static bool classof(const InstructionPredicateMatcher
*P
) {
1952 return P
->getKind() == IPM_GenericPredicate
;
1954 bool isIdentical(const PredicateMatcher
&B
) const override
{
1955 return InstructionPredicateMatcher::isIdentical(B
) &&
1957 static_cast<const GenericInstructionPredicateMatcher
&>(B
)
1960 void emitPredicateOpcodes(MatchTable
&Table
,
1961 RuleMatcher
&Rule
) const override
{
1962 Table
<< MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
1963 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1964 << MatchTable::Comment("FnId")
1965 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate
))
1966 << MatchTable::LineBreak
;
1970 /// Generates code to check that a set of predicates and operands match for a
1971 /// particular instruction.
1973 /// Typical predicates include:
1974 /// * Has a specific opcode.
1975 /// * Has an nsw/nuw flag or doesn't.
1976 class InstructionMatcher final
: public PredicateListMatcher
<PredicateMatcher
> {
1978 typedef std::vector
<std::unique_ptr
<OperandMatcher
>> OperandVec
;
1982 /// The operands to match. All rendered operands must be present even if the
1983 /// condition is always true.
1984 OperandVec Operands
;
1985 bool NumOperandsCheck
= true;
1987 std::string SymbolicName
;
1991 InstructionMatcher(RuleMatcher
&Rule
, StringRef SymbolicName
)
1992 : Rule(Rule
), SymbolicName(SymbolicName
) {
1993 // We create a new instruction matcher.
1994 // Get a new ID for that instruction.
1995 InsnVarID
= Rule
.implicitlyDefineInsnVar(*this);
1998 /// Construct a new instruction predicate and add it to the matcher.
1999 template <class Kind
, class... Args
>
2000 Optional
<Kind
*> addPredicate(Args
&&... args
) {
2001 Predicates
.emplace_back(
2002 std::make_unique
<Kind
>(getInsnVarID(), std::forward
<Args
>(args
)...));
2003 return static_cast<Kind
*>(Predicates
.back().get());
2006 RuleMatcher
&getRuleMatcher() const { return Rule
; }
2008 unsigned getInsnVarID() const { return InsnVarID
; }
2010 /// Add an operand to the matcher.
2011 OperandMatcher
&addOperand(unsigned OpIdx
, const std::string
&SymbolicName
,
2012 unsigned AllocatedTemporariesBaseID
) {
2013 Operands
.emplace_back(new OperandMatcher(*this, OpIdx
, SymbolicName
,
2014 AllocatedTemporariesBaseID
));
2015 if (!SymbolicName
.empty())
2016 Rule
.defineOperand(SymbolicName
, *Operands
.back());
2018 return *Operands
.back();
2021 OperandMatcher
&getOperand(unsigned OpIdx
) {
2022 auto I
= std::find_if(Operands
.begin(), Operands
.end(),
2023 [&OpIdx
](const std::unique_ptr
<OperandMatcher
> &X
) {
2024 return X
->getOpIdx() == OpIdx
;
2026 if (I
!= Operands
.end())
2028 llvm_unreachable("Failed to lookup operand");
2031 StringRef
getSymbolicName() const { return SymbolicName
; }
2032 unsigned getNumOperands() const { return Operands
.size(); }
2033 OperandVec::iterator
operands_begin() { return Operands
.begin(); }
2034 OperandVec::iterator
operands_end() { return Operands
.end(); }
2035 iterator_range
<OperandVec::iterator
> operands() {
2036 return make_range(operands_begin(), operands_end());
2038 OperandVec::const_iterator
operands_begin() const { return Operands
.begin(); }
2039 OperandVec::const_iterator
operands_end() const { return Operands
.end(); }
2040 iterator_range
<OperandVec::const_iterator
> operands() const {
2041 return make_range(operands_begin(), operands_end());
2043 bool operands_empty() const { return Operands
.empty(); }
2045 void pop_front() { Operands
.erase(Operands
.begin()); }
2049 /// Emit MatchTable opcodes that test whether the instruction named in
2050 /// InsnVarName matches all the predicates and all the operands.
2051 void emitPredicateOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) {
2052 if (NumOperandsCheck
)
2053 InstructionNumOperandsMatcher(InsnVarID
, getNumOperands())
2054 .emitPredicateOpcodes(Table
, Rule
);
2056 emitPredicateListOpcodes(Table
, Rule
);
2058 for (const auto &Operand
: Operands
)
2059 Operand
->emitPredicateOpcodes(Table
, Rule
);
2062 /// Compare the priority of this object and B.
2064 /// Returns true if this object is more important than B.
2065 bool isHigherPriorityThan(InstructionMatcher
&B
) {
2066 // Instruction matchers involving more operands have higher priority.
2067 if (Operands
.size() > B
.Operands
.size())
2069 if (Operands
.size() < B
.Operands
.size())
2072 for (auto &&P
: zip(predicates(), B
.predicates())) {
2073 auto L
= static_cast<InstructionPredicateMatcher
*>(std::get
<0>(P
).get());
2074 auto R
= static_cast<InstructionPredicateMatcher
*>(std::get
<1>(P
).get());
2075 if (L
->isHigherPriorityThan(*R
))
2077 if (R
->isHigherPriorityThan(*L
))
2081 for (const auto &Operand
: zip(Operands
, B
.Operands
)) {
2082 if (std::get
<0>(Operand
)->isHigherPriorityThan(*std::get
<1>(Operand
)))
2084 if (std::get
<1>(Operand
)->isHigherPriorityThan(*std::get
<0>(Operand
)))
2091 /// Report the maximum number of temporary operands needed by the instruction
2093 unsigned countRendererFns() {
2094 return std::accumulate(
2095 predicates().begin(), predicates().end(), 0,
2097 const std::unique_ptr
<PredicateMatcher
> &Predicate
) {
2098 return A
+ Predicate
->countRendererFns();
2101 Operands
.begin(), Operands
.end(), 0,
2102 [](unsigned A
, const std::unique_ptr
<OperandMatcher
> &Operand
) {
2103 return A
+ Operand
->countRendererFns();
2107 InstructionOpcodeMatcher
&getOpcodeMatcher() {
2108 for (auto &P
: predicates())
2109 if (auto *OpMatcher
= dyn_cast
<InstructionOpcodeMatcher
>(P
.get()))
2111 llvm_unreachable("Didn't find an opcode matcher");
2114 bool isConstantInstruction() {
2115 return getOpcodeMatcher().isConstantInstruction();
2118 StringRef
getOpcode() { return getOpcodeMatcher().getOpcode(); }
2121 StringRef
RuleMatcher::getOpcode() const {
2122 return Matchers
.front()->getOpcode();
2125 unsigned RuleMatcher::getNumOperands() const {
2126 return Matchers
.front()->getNumOperands();
2129 LLTCodeGen
RuleMatcher::getFirstConditionAsRootType() {
2130 InstructionMatcher
&InsnMatcher
= *Matchers
.front();
2131 if (!InsnMatcher
.predicates_empty())
2132 if (const auto *TM
=
2133 dyn_cast
<LLTOperandMatcher
>(&**InsnMatcher
.predicates_begin()))
2134 if (TM
->getInsnVarID() == 0 && TM
->getOpIdx() == 0)
2139 /// Generates code to check that the operand is a register defined by an
2140 /// instruction that matches the given instruction matcher.
2142 /// For example, the pattern:
2143 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2144 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2146 /// (G_ADD $src1, $src2)
2148 class InstructionOperandMatcher
: public OperandPredicateMatcher
{
2150 std::unique_ptr
<InstructionMatcher
> InsnMatcher
;
2153 InstructionOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
2154 RuleMatcher
&Rule
, StringRef SymbolicName
)
2155 : OperandPredicateMatcher(OPM_Instruction
, InsnVarID
, OpIdx
),
2156 InsnMatcher(new InstructionMatcher(Rule
, SymbolicName
)) {}
2158 static bool classof(const PredicateMatcher
*P
) {
2159 return P
->getKind() == OPM_Instruction
;
2162 InstructionMatcher
&getInsnMatcher() const { return *InsnMatcher
; }
2164 void emitCaptureOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const {
2165 const unsigned NewInsnVarID
= InsnMatcher
->getInsnVarID();
2166 Table
<< MatchTable::Opcode("GIM_RecordInsn")
2167 << MatchTable::Comment("DefineMI")
2168 << MatchTable::IntValue(NewInsnVarID
) << MatchTable::Comment("MI")
2169 << MatchTable::IntValue(getInsnVarID())
2170 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2171 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID
) + "]")
2172 << MatchTable::LineBreak
;
2175 void emitPredicateOpcodes(MatchTable
&Table
,
2176 RuleMatcher
&Rule
) const override
{
2177 emitCaptureOpcodes(Table
, Rule
);
2178 InsnMatcher
->emitPredicateOpcodes(Table
, Rule
);
2181 bool isHigherPriorityThan(const OperandPredicateMatcher
&B
) const override
{
2182 if (OperandPredicateMatcher::isHigherPriorityThan(B
))
2184 if (B
.OperandPredicateMatcher::isHigherPriorityThan(*this))
2187 if (const InstructionOperandMatcher
*BP
=
2188 dyn_cast
<InstructionOperandMatcher
>(&B
))
2189 if (InsnMatcher
->isHigherPriorityThan(*BP
->InsnMatcher
))
2195 void InstructionMatcher::optimize() {
2196 SmallVector
<std::unique_ptr
<PredicateMatcher
>, 8> Stash
;
2197 const auto &OpcMatcher
= getOpcodeMatcher();
2199 Stash
.push_back(predicates_pop_front());
2200 if (Stash
.back().get() == &OpcMatcher
) {
2201 if (NumOperandsCheck
&& OpcMatcher
.getNumOperands() < getNumOperands())
2203 new InstructionNumOperandsMatcher(InsnVarID
, getNumOperands()));
2204 NumOperandsCheck
= false;
2206 for (auto &OM
: Operands
)
2207 for (auto &OP
: OM
->predicates())
2208 if (isa
<IntrinsicIDOperandMatcher
>(OP
)) {
2209 Stash
.push_back(std::move(OP
));
2210 OM
->eraseNullPredicates();
2215 if (InsnVarID
> 0) {
2216 assert(!Operands
.empty() && "Nested instruction is expected to def a vreg");
2217 for (auto &OP
: Operands
[0]->predicates())
2219 Operands
[0]->eraseNullPredicates();
2221 for (auto &OM
: Operands
) {
2222 for (auto &OP
: OM
->predicates())
2223 if (isa
<LLTOperandMatcher
>(OP
))
2224 Stash
.push_back(std::move(OP
));
2225 OM
->eraseNullPredicates();
2227 while (!Stash
.empty())
2228 prependPredicate(Stash
.pop_back_val());
2231 //===- Actions ------------------------------------------------------------===//
2232 class OperandRenderer
{
2236 OR_CopyOrAddZeroReg
,
2238 OR_CopyConstantAsImm
,
2239 OR_CopyFConstantAsFPImm
,
2251 OperandRenderer(RendererKind Kind
) : Kind(Kind
) {}
2252 virtual ~OperandRenderer() {}
2254 RendererKind
getKind() const { return Kind
; }
2256 virtual void emitRenderOpcodes(MatchTable
&Table
,
2257 RuleMatcher
&Rule
) const = 0;
2260 /// A CopyRenderer emits code to copy a single operand from an existing
2261 /// instruction to the one being built.
2262 class CopyRenderer
: public OperandRenderer
{
2265 /// The name of the operand.
2266 const StringRef SymbolicName
;
2269 CopyRenderer(unsigned NewInsnID
, StringRef SymbolicName
)
2270 : OperandRenderer(OR_Copy
), NewInsnID(NewInsnID
),
2271 SymbolicName(SymbolicName
) {
2272 assert(!SymbolicName
.empty() && "Cannot copy from an unspecified source");
2275 static bool classof(const OperandRenderer
*R
) {
2276 return R
->getKind() == OR_Copy
;
2279 const StringRef
getSymbolicName() const { return SymbolicName
; }
2281 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2282 const OperandMatcher
&Operand
= Rule
.getOperandMatcher(SymbolicName
);
2283 unsigned OldInsnVarID
= Rule
.getInsnVarID(Operand
.getInstructionMatcher());
2284 Table
<< MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2285 << MatchTable::IntValue(NewInsnID
) << MatchTable::Comment("OldInsnID")
2286 << MatchTable::IntValue(OldInsnVarID
) << MatchTable::Comment("OpIdx")
2287 << MatchTable::IntValue(Operand
.getOpIdx())
2288 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2292 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2293 /// existing instruction to the one being built. If the operand turns out to be
2294 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2295 class CopyOrAddZeroRegRenderer
: public OperandRenderer
{
2298 /// The name of the operand.
2299 const StringRef SymbolicName
;
2300 const Record
*ZeroRegisterDef
;
2303 CopyOrAddZeroRegRenderer(unsigned NewInsnID
,
2304 StringRef SymbolicName
, Record
*ZeroRegisterDef
)
2305 : OperandRenderer(OR_CopyOrAddZeroReg
), NewInsnID(NewInsnID
),
2306 SymbolicName(SymbolicName
), ZeroRegisterDef(ZeroRegisterDef
) {
2307 assert(!SymbolicName
.empty() && "Cannot copy from an unspecified source");
2310 static bool classof(const OperandRenderer
*R
) {
2311 return R
->getKind() == OR_CopyOrAddZeroReg
;
2314 const StringRef
getSymbolicName() const { return SymbolicName
; }
2316 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2317 const OperandMatcher
&Operand
= Rule
.getOperandMatcher(SymbolicName
);
2318 unsigned OldInsnVarID
= Rule
.getInsnVarID(Operand
.getInstructionMatcher());
2319 Table
<< MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2320 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2321 << MatchTable::Comment("OldInsnID")
2322 << MatchTable::IntValue(OldInsnVarID
) << MatchTable::Comment("OpIdx")
2323 << MatchTable::IntValue(Operand
.getOpIdx())
2324 << MatchTable::NamedValue(
2325 (ZeroRegisterDef
->getValue("Namespace")
2326 ? ZeroRegisterDef
->getValueAsString("Namespace")
2328 ZeroRegisterDef
->getName())
2329 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2333 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2334 /// an extended immediate operand.
2335 class CopyConstantAsImmRenderer
: public OperandRenderer
{
2338 /// The name of the operand.
2339 const std::string SymbolicName
;
2343 CopyConstantAsImmRenderer(unsigned NewInsnID
, StringRef SymbolicName
)
2344 : OperandRenderer(OR_CopyConstantAsImm
), NewInsnID(NewInsnID
),
2345 SymbolicName(SymbolicName
), Signed(true) {}
2347 static bool classof(const OperandRenderer
*R
) {
2348 return R
->getKind() == OR_CopyConstantAsImm
;
2351 const StringRef
getSymbolicName() const { return SymbolicName
; }
2353 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2354 InstructionMatcher
&InsnMatcher
= Rule
.getInstructionMatcher(SymbolicName
);
2355 unsigned OldInsnVarID
= Rule
.getInsnVarID(InsnMatcher
);
2356 Table
<< MatchTable::Opcode(Signed
? "GIR_CopyConstantAsSImm"
2357 : "GIR_CopyConstantAsUImm")
2358 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2359 << MatchTable::Comment("OldInsnID")
2360 << MatchTable::IntValue(OldInsnVarID
)
2361 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2365 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2366 /// instruction to an extended immediate operand.
2367 class CopyFConstantAsFPImmRenderer
: public OperandRenderer
{
2370 /// The name of the operand.
2371 const std::string SymbolicName
;
2374 CopyFConstantAsFPImmRenderer(unsigned NewInsnID
, StringRef SymbolicName
)
2375 : OperandRenderer(OR_CopyFConstantAsFPImm
), NewInsnID(NewInsnID
),
2376 SymbolicName(SymbolicName
) {}
2378 static bool classof(const OperandRenderer
*R
) {
2379 return R
->getKind() == OR_CopyFConstantAsFPImm
;
2382 const StringRef
getSymbolicName() const { return SymbolicName
; }
2384 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2385 InstructionMatcher
&InsnMatcher
= Rule
.getInstructionMatcher(SymbolicName
);
2386 unsigned OldInsnVarID
= Rule
.getInsnVarID(InsnMatcher
);
2387 Table
<< MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2388 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2389 << MatchTable::Comment("OldInsnID")
2390 << MatchTable::IntValue(OldInsnVarID
)
2391 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2395 /// A CopySubRegRenderer emits code to copy a single register operand from an
2396 /// existing instruction to the one being built and indicate that only a
2397 /// subregister should be copied.
2398 class CopySubRegRenderer
: public OperandRenderer
{
2401 /// The name of the operand.
2402 const StringRef SymbolicName
;
2403 /// The subregister to extract.
2404 const CodeGenSubRegIndex
*SubReg
;
2407 CopySubRegRenderer(unsigned NewInsnID
, StringRef SymbolicName
,
2408 const CodeGenSubRegIndex
*SubReg
)
2409 : OperandRenderer(OR_CopySubReg
), NewInsnID(NewInsnID
),
2410 SymbolicName(SymbolicName
), SubReg(SubReg
) {}
2412 static bool classof(const OperandRenderer
*R
) {
2413 return R
->getKind() == OR_CopySubReg
;
2416 const StringRef
getSymbolicName() const { return SymbolicName
; }
2418 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2419 const OperandMatcher
&Operand
= Rule
.getOperandMatcher(SymbolicName
);
2420 unsigned OldInsnVarID
= Rule
.getInsnVarID(Operand
.getInstructionMatcher());
2421 Table
<< MatchTable::Opcode("GIR_CopySubReg")
2422 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2423 << MatchTable::Comment("OldInsnID")
2424 << MatchTable::IntValue(OldInsnVarID
) << MatchTable::Comment("OpIdx")
2425 << MatchTable::IntValue(Operand
.getOpIdx())
2426 << MatchTable::Comment("SubRegIdx")
2427 << MatchTable::IntValue(SubReg
->EnumValue
)
2428 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2432 /// Adds a specific physical register to the instruction being built.
2433 /// This is typically useful for WZR/XZR on AArch64.
2434 class AddRegisterRenderer
: public OperandRenderer
{
2437 const Record
*RegisterDef
;
2440 AddRegisterRenderer(unsigned InsnID
, const Record
*RegisterDef
)
2441 : OperandRenderer(OR_Register
), InsnID(InsnID
), RegisterDef(RegisterDef
) {
2444 static bool classof(const OperandRenderer
*R
) {
2445 return R
->getKind() == OR_Register
;
2448 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2449 Table
<< MatchTable::Opcode("GIR_AddRegister")
2450 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2451 << MatchTable::NamedValue(
2452 (RegisterDef
->getValue("Namespace")
2453 ? RegisterDef
->getValueAsString("Namespace")
2455 RegisterDef
->getName())
2456 << MatchTable::LineBreak
;
2460 /// Adds a specific temporary virtual register to the instruction being built.
2461 /// This is used to chain instructions together when emitting multiple
2463 class TempRegRenderer
: public OperandRenderer
{
2470 TempRegRenderer(unsigned InsnID
, unsigned TempRegID
, bool IsDef
= false)
2471 : OperandRenderer(OR_Register
), InsnID(InsnID
), TempRegID(TempRegID
),
2474 static bool classof(const OperandRenderer
*R
) {
2475 return R
->getKind() == OR_TempRegister
;
2478 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2479 Table
<< MatchTable::Opcode("GIR_AddTempRegister")
2480 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2481 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID
)
2482 << MatchTable::Comment("TempRegFlags");
2484 Table
<< MatchTable::NamedValue("RegState::Define");
2486 Table
<< MatchTable::IntValue(0);
2487 Table
<< MatchTable::LineBreak
;
2491 /// Adds a specific immediate to the instruction being built.
2492 class ImmRenderer
: public OperandRenderer
{
2498 ImmRenderer(unsigned InsnID
, int64_t Imm
)
2499 : OperandRenderer(OR_Imm
), InsnID(InsnID
), Imm(Imm
) {}
2501 static bool classof(const OperandRenderer
*R
) {
2502 return R
->getKind() == OR_Imm
;
2505 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2506 Table
<< MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2507 << MatchTable::IntValue(InsnID
) << MatchTable::Comment("Imm")
2508 << MatchTable::IntValue(Imm
) << MatchTable::LineBreak
;
2512 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2513 /// matcher function.
2514 class RenderComplexPatternOperand
: public OperandRenderer
{
2517 const Record
&TheDef
;
2518 /// The name of the operand.
2519 const StringRef SymbolicName
;
2520 /// The renderer number. This must be unique within a rule since it's used to
2521 /// identify a temporary variable to hold the renderer function.
2522 unsigned RendererID
;
2523 /// When provided, this is the suboperand of the ComplexPattern operand to
2524 /// render. Otherwise all the suboperands will be rendered.
2525 Optional
<unsigned> SubOperand
;
2527 unsigned getNumOperands() const {
2528 return TheDef
.getValueAsDag("Operands")->getNumArgs();
2532 RenderComplexPatternOperand(unsigned InsnID
, const Record
&TheDef
,
2533 StringRef SymbolicName
, unsigned RendererID
,
2534 Optional
<unsigned> SubOperand
= None
)
2535 : OperandRenderer(OR_ComplexPattern
), InsnID(InsnID
), TheDef(TheDef
),
2536 SymbolicName(SymbolicName
), RendererID(RendererID
),
2537 SubOperand(SubOperand
) {}
2539 static bool classof(const OperandRenderer
*R
) {
2540 return R
->getKind() == OR_ComplexPattern
;
2543 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2544 Table
<< MatchTable::Opcode(SubOperand
.hasValue() ? "GIR_ComplexSubOperandRenderer"
2545 : "GIR_ComplexRenderer")
2546 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2547 << MatchTable::Comment("RendererID")
2548 << MatchTable::IntValue(RendererID
);
2549 if (SubOperand
.hasValue())
2550 Table
<< MatchTable::Comment("SubOperand")
2551 << MatchTable::IntValue(SubOperand
.getValue());
2552 Table
<< MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2556 class CustomRenderer
: public OperandRenderer
{
2559 const Record
&Renderer
;
2560 /// The name of the operand.
2561 const std::string SymbolicName
;
2564 CustomRenderer(unsigned InsnID
, const Record
&Renderer
,
2565 StringRef SymbolicName
)
2566 : OperandRenderer(OR_Custom
), InsnID(InsnID
), Renderer(Renderer
),
2567 SymbolicName(SymbolicName
) {}
2569 static bool classof(const OperandRenderer
*R
) {
2570 return R
->getKind() == OR_Custom
;
2573 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2574 InstructionMatcher
&InsnMatcher
= Rule
.getInstructionMatcher(SymbolicName
);
2575 unsigned OldInsnVarID
= Rule
.getInsnVarID(InsnMatcher
);
2576 Table
<< MatchTable::Opcode("GIR_CustomRenderer")
2577 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2578 << MatchTable::Comment("OldInsnID")
2579 << MatchTable::IntValue(OldInsnVarID
)
2580 << MatchTable::Comment("Renderer")
2581 << MatchTable::NamedValue(
2582 "GICR_" + Renderer
.getValueAsString("RendererFn").str())
2583 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2587 /// An action taken when all Matcher predicates succeeded for a parent rule.
2589 /// Typical actions include:
2590 /// * Changing the opcode of an instruction.
2591 /// * Adding an operand to an instruction.
2594 virtual ~MatchAction() {}
2596 /// Emit the MatchTable opcodes to implement the action.
2597 virtual void emitActionOpcodes(MatchTable
&Table
,
2598 RuleMatcher
&Rule
) const = 0;
2601 /// Generates a comment describing the matched rule being acted upon.
2602 class DebugCommentAction
: public MatchAction
{
2607 DebugCommentAction(StringRef S
) : S(S
) {}
2609 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2610 Table
<< MatchTable::Comment(S
) << MatchTable::LineBreak
;
2614 /// Generates code to build an instruction or mutate an existing instruction
2615 /// into the desired instruction when this is possible.
2616 class BuildMIAction
: public MatchAction
{
2619 const CodeGenInstruction
*I
;
2620 InstructionMatcher
*Matched
;
2621 std::vector
<std::unique_ptr
<OperandRenderer
>> OperandRenderers
;
2623 /// True if the instruction can be built solely by mutating the opcode.
2624 bool canMutate(RuleMatcher
&Rule
, const InstructionMatcher
*Insn
) const {
2628 if (OperandRenderers
.size() != Insn
->getNumOperands())
2631 for (const auto &Renderer
: enumerate(OperandRenderers
)) {
2632 if (const auto *Copy
= dyn_cast
<CopyRenderer
>(&*Renderer
.value())) {
2633 const OperandMatcher
&OM
= Rule
.getOperandMatcher(Copy
->getSymbolicName());
2634 if (Insn
!= &OM
.getInstructionMatcher() ||
2635 OM
.getOpIdx() != Renderer
.index())
2645 BuildMIAction(unsigned InsnID
, const CodeGenInstruction
*I
)
2646 : InsnID(InsnID
), I(I
), Matched(nullptr) {}
2648 unsigned getInsnID() const { return InsnID
; }
2649 const CodeGenInstruction
*getCGI() const { return I
; }
2651 void chooseInsnToMutate(RuleMatcher
&Rule
) {
2652 for (auto *MutateCandidate
: Rule
.mutatable_insns()) {
2653 if (canMutate(Rule
, MutateCandidate
)) {
2654 // Take the first one we're offered that we're able to mutate.
2655 Rule
.reserveInsnMatcherForMutation(MutateCandidate
);
2656 Matched
= MutateCandidate
;
2662 template <class Kind
, class... Args
>
2663 Kind
&addRenderer(Args
&&... args
) {
2664 OperandRenderers
.emplace_back(
2665 std::make_unique
<Kind
>(InsnID
, std::forward
<Args
>(args
)...));
2666 return *static_cast<Kind
*>(OperandRenderers
.back().get());
2669 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2671 assert(canMutate(Rule
, Matched
) &&
2672 "Arranged to mutate an insn that isn't mutatable");
2674 unsigned RecycleInsnID
= Rule
.getInsnVarID(*Matched
);
2675 Table
<< MatchTable::Opcode("GIR_MutateOpcode")
2676 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2677 << MatchTable::Comment("RecycleInsnID")
2678 << MatchTable::IntValue(RecycleInsnID
)
2679 << MatchTable::Comment("Opcode")
2680 << MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName())
2681 << MatchTable::LineBreak
;
2683 if (!I
->ImplicitDefs
.empty() || !I
->ImplicitUses
.empty()) {
2684 for (auto Def
: I
->ImplicitDefs
) {
2685 auto Namespace
= Def
->getValue("Namespace")
2686 ? Def
->getValueAsString("Namespace")
2688 Table
<< MatchTable::Opcode("GIR_AddImplicitDef")
2689 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2690 << MatchTable::NamedValue(Namespace
, Def
->getName())
2691 << MatchTable::LineBreak
;
2693 for (auto Use
: I
->ImplicitUses
) {
2694 auto Namespace
= Use
->getValue("Namespace")
2695 ? Use
->getValueAsString("Namespace")
2697 Table
<< MatchTable::Opcode("GIR_AddImplicitUse")
2698 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2699 << MatchTable::NamedValue(Namespace
, Use
->getName())
2700 << MatchTable::LineBreak
;
2706 // TODO: Simple permutation looks like it could be almost as common as
2707 // mutation due to commutative operations.
2709 Table
<< MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2710 << MatchTable::IntValue(InsnID
) << MatchTable::Comment("Opcode")
2711 << MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName())
2712 << MatchTable::LineBreak
;
2713 for (const auto &Renderer
: OperandRenderers
)
2714 Renderer
->emitRenderOpcodes(Table
, Rule
);
2716 if (I
->mayLoad
|| I
->mayStore
) {
2717 Table
<< MatchTable::Opcode("GIR_MergeMemOperands")
2718 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2719 << MatchTable::Comment("MergeInsnID's");
2720 // Emit the ID's for all the instructions that are matched by this rule.
2721 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2722 // some other means of having a memoperand. Also limit this to
2723 // emitted instructions that expect to have a memoperand too. For
2724 // example, (G_SEXT (G_LOAD x)) that results in separate load and
2725 // sign-extend instructions shouldn't put the memoperand on the
2726 // sign-extend since it has no effect there.
2727 std::vector
<unsigned> MergeInsnIDs
;
2728 for (const auto &IDMatcherPair
: Rule
.defined_insn_vars())
2729 MergeInsnIDs
.push_back(IDMatcherPair
.second
);
2730 llvm::sort(MergeInsnIDs
);
2731 for (const auto &MergeInsnID
: MergeInsnIDs
)
2732 Table
<< MatchTable::IntValue(MergeInsnID
);
2733 Table
<< MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2734 << MatchTable::LineBreak
;
2737 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2738 // better for combines. Particularly when there are multiple match
2741 Table
<< MatchTable::Opcode("GIR_EraseFromParent")
2742 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2743 << MatchTable::LineBreak
;
2747 /// Generates code to constrain the operands of an output instruction to the
2748 /// register classes specified by the definition of that instruction.
2749 class ConstrainOperandsToDefinitionAction
: public MatchAction
{
2753 ConstrainOperandsToDefinitionAction(unsigned InsnID
) : InsnID(InsnID
) {}
2755 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2756 Table
<< MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2757 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2758 << MatchTable::LineBreak
;
2762 /// Generates code to constrain the specified operand of an output instruction
2763 /// to the specified register class.
2764 class ConstrainOperandToRegClassAction
: public MatchAction
{
2767 const CodeGenRegisterClass
&RC
;
2770 ConstrainOperandToRegClassAction(unsigned InsnID
, unsigned OpIdx
,
2771 const CodeGenRegisterClass
&RC
)
2772 : InsnID(InsnID
), OpIdx(OpIdx
), RC(RC
) {}
2774 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2775 Table
<< MatchTable::Opcode("GIR_ConstrainOperandRC")
2776 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2777 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
2778 << MatchTable::Comment("RC " + RC
.getName())
2779 << MatchTable::IntValue(RC
.EnumValue
) << MatchTable::LineBreak
;
2783 /// Generates code to create a temporary register which can be used to chain
2784 /// instructions together.
2785 class MakeTempRegisterAction
: public MatchAction
{
2791 MakeTempRegisterAction(const LLTCodeGen
&Ty
, unsigned TempRegID
)
2792 : Ty(Ty
), TempRegID(TempRegID
) {}
2794 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2795 Table
<< MatchTable::Opcode("GIR_MakeTempReg")
2796 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID
)
2797 << MatchTable::Comment("TypeID")
2798 << MatchTable::NamedValue(Ty
.getCxxEnumValue())
2799 << MatchTable::LineBreak
;
2803 InstructionMatcher
&RuleMatcher::addInstructionMatcher(StringRef SymbolicName
) {
2804 Matchers
.emplace_back(new InstructionMatcher(*this, SymbolicName
));
2805 MutatableInsns
.insert(Matchers
.back().get());
2806 return *Matchers
.back();
2809 void RuleMatcher::addRequiredFeature(Record
*Feature
) {
2810 RequiredFeatures
.push_back(Feature
);
2813 const std::vector
<Record
*> &RuleMatcher::getRequiredFeatures() const {
2814 return RequiredFeatures
;
2817 // Emplaces an action of the specified Kind at the end of the action list.
2819 // Returns a reference to the newly created action.
2821 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2822 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2824 template <class Kind
, class... Args
>
2825 Kind
&RuleMatcher::addAction(Args
&&... args
) {
2826 Actions
.emplace_back(std::make_unique
<Kind
>(std::forward
<Args
>(args
)...));
2827 return *static_cast<Kind
*>(Actions
.back().get());
2830 // Emplaces an action of the specified Kind before the given insertion point.
2832 // Returns an iterator pointing at the newly created instruction.
2834 // Like std::vector::insert(), may invalidate all iterators if the new size
2835 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2836 // insertion point onwards.
2837 template <class Kind
, class... Args
>
2838 action_iterator
RuleMatcher::insertAction(action_iterator InsertPt
,
2840 return Actions
.emplace(InsertPt
,
2841 std::make_unique
<Kind
>(std::forward
<Args
>(args
)...));
2844 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher
&Matcher
) {
2845 unsigned NewInsnVarID
= NextInsnVarID
++;
2846 InsnVariableIDs
[&Matcher
] = NewInsnVarID
;
2847 return NewInsnVarID
;
2850 unsigned RuleMatcher::getInsnVarID(InstructionMatcher
&InsnMatcher
) const {
2851 const auto &I
= InsnVariableIDs
.find(&InsnMatcher
);
2852 if (I
!= InsnVariableIDs
.end())
2854 llvm_unreachable("Matched Insn was not captured in a local variable");
2857 void RuleMatcher::defineOperand(StringRef SymbolicName
, OperandMatcher
&OM
) {
2858 if (DefinedOperands
.find(SymbolicName
) == DefinedOperands
.end()) {
2859 DefinedOperands
[SymbolicName
] = &OM
;
2863 // If the operand is already defined, then we must ensure both references in
2864 // the matcher have the exact same node.
2865 OM
.addPredicate
<SameOperandMatcher
>(OM
.getSymbolicName());
2868 InstructionMatcher
&
2869 RuleMatcher::getInstructionMatcher(StringRef SymbolicName
) const {
2870 for (const auto &I
: InsnVariableIDs
)
2871 if (I
.first
->getSymbolicName() == SymbolicName
)
2874 ("Failed to lookup instruction " + SymbolicName
).str().c_str());
2877 const OperandMatcher
&
2878 RuleMatcher::getOperandMatcher(StringRef Name
) const {
2879 const auto &I
= DefinedOperands
.find(Name
);
2881 if (I
== DefinedOperands
.end())
2882 PrintFatalError(SrcLoc
, "Operand " + Name
+ " was not declared in matcher");
2887 void RuleMatcher::emit(MatchTable
&Table
) {
2888 if (Matchers
.empty())
2889 llvm_unreachable("Unexpected empty matcher!");
2891 // The representation supports rules that require multiple roots such as:
2893 // %elt0(s32) = G_LOAD %ptr
2894 // %1(p0) = G_ADD %ptr, 4
2895 // %elt1(s32) = G_LOAD p0 %1
2896 // which could be usefully folded into:
2898 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2899 // on some targets but we don't need to make use of that yet.
2900 assert(Matchers
.size() == 1 && "Cannot handle multi-root matchers yet");
2902 unsigned LabelID
= Table
.allocateLabelID();
2903 Table
<< MatchTable::Opcode("GIM_Try", +1)
2904 << MatchTable::Comment("On fail goto")
2905 << MatchTable::JumpTarget(LabelID
)
2906 << MatchTable::Comment(("Rule ID " + Twine(RuleID
) + " //").str())
2907 << MatchTable::LineBreak
;
2909 if (!RequiredFeatures
.empty()) {
2910 Table
<< MatchTable::Opcode("GIM_CheckFeatures")
2911 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures
))
2912 << MatchTable::LineBreak
;
2915 Matchers
.front()->emitPredicateOpcodes(Table
, *this);
2917 // We must also check if it's safe to fold the matched instructions.
2918 if (InsnVariableIDs
.size() >= 2) {
2919 // Invert the map to create stable ordering (by var names)
2920 SmallVector
<unsigned, 2> InsnIDs
;
2921 for (const auto &Pair
: InsnVariableIDs
) {
2922 // Skip the root node since it isn't moving anywhere. Everything else is
2923 // sinking to meet it.
2924 if (Pair
.first
== Matchers
.front().get())
2927 InsnIDs
.push_back(Pair
.second
);
2929 llvm::sort(InsnIDs
);
2931 for (const auto &InsnID
: InsnIDs
) {
2932 // Reject the difficult cases until we have a more accurate check.
2933 Table
<< MatchTable::Opcode("GIM_CheckIsSafeToFold")
2934 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2935 << MatchTable::LineBreak
;
2937 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2938 // account for unsafe cases.
2943 // MI0--> %2 = ... %0
2944 // It's not safe to erase MI1. We currently handle this by not
2945 // erasing %0 (even when it's dead).
2948 // MI1--> %0 = load volatile @a
2949 // %1 = load volatile @a
2950 // MI0--> %2 = ... %0
2951 // It's not safe to sink %0's def past %1. We currently handle
2952 // this by rejecting all loads.
2955 // MI1--> %0 = load @a
2957 // MI0--> %2 = ... %0
2958 // It's not safe to sink %0's def past %1. We currently handle
2959 // this by rejecting all loads.
2962 // G_CONDBR %cond, @BB1
2964 // MI1--> %0 = load @a
2967 // MI0--> %2 = ... %0
2968 // It's not always safe to sink %0 across control flow. In this
2969 // case it may introduce a memory fault. We currentl handle this
2970 // by rejecting all loads.
2974 for (const auto &PM
: EpilogueMatchers
)
2975 PM
->emitPredicateOpcodes(Table
, *this);
2977 for (const auto &MA
: Actions
)
2978 MA
->emitActionOpcodes(Table
, *this);
2980 if (Table
.isWithCoverage())
2981 Table
<< MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID
)
2982 << MatchTable::LineBreak
;
2984 Table
<< MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID
) + ",").str())
2985 << MatchTable::LineBreak
;
2987 Table
<< MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
2988 << MatchTable::Label(LabelID
);
2989 ++NumPatternEmitted
;
2992 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher
&B
) const {
2993 // Rules involving more match roots have higher priority.
2994 if (Matchers
.size() > B
.Matchers
.size())
2996 if (Matchers
.size() < B
.Matchers
.size())
2999 for (const auto &Matcher
: zip(Matchers
, B
.Matchers
)) {
3000 if (std::get
<0>(Matcher
)->isHigherPriorityThan(*std::get
<1>(Matcher
)))
3002 if (std::get
<1>(Matcher
)->isHigherPriorityThan(*std::get
<0>(Matcher
)))
3009 unsigned RuleMatcher::countRendererFns() const {
3010 return std::accumulate(
3011 Matchers
.begin(), Matchers
.end(), 0,
3012 [](unsigned A
, const std::unique_ptr
<InstructionMatcher
> &Matcher
) {
3013 return A
+ Matcher
->countRendererFns();
3017 bool OperandPredicateMatcher::isHigherPriorityThan(
3018 const OperandPredicateMatcher
&B
) const {
3019 // Generally speaking, an instruction is more important than an Int or a
3020 // LiteralInt because it can cover more nodes but theres an exception to
3021 // this. G_CONSTANT's are less important than either of those two because they
3022 // are more permissive.
3024 const InstructionOperandMatcher
*AOM
=
3025 dyn_cast
<InstructionOperandMatcher
>(this);
3026 const InstructionOperandMatcher
*BOM
=
3027 dyn_cast
<InstructionOperandMatcher
>(&B
);
3028 bool AIsConstantInsn
= AOM
&& AOM
->getInsnMatcher().isConstantInstruction();
3029 bool BIsConstantInsn
= BOM
&& BOM
->getInsnMatcher().isConstantInstruction();
3032 // The relative priorities between a G_CONSTANT and any other instruction
3033 // don't actually matter but this code is needed to ensure a strict weak
3034 // ordering. This is particularly important on Windows where the rules will
3035 // be incorrectly sorted without it.
3036 if (AIsConstantInsn
!= BIsConstantInsn
)
3037 return AIsConstantInsn
< BIsConstantInsn
;
3041 if (AOM
&& AIsConstantInsn
&& (B
.Kind
== OPM_Int
|| B
.Kind
== OPM_LiteralInt
))
3043 if (BOM
&& BIsConstantInsn
&& (Kind
== OPM_Int
|| Kind
== OPM_LiteralInt
))
3046 return Kind
< B
.Kind
;
3049 void SameOperandMatcher::emitPredicateOpcodes(MatchTable
&Table
,
3050 RuleMatcher
&Rule
) const {
3051 const OperandMatcher
&OtherOM
= Rule
.getOperandMatcher(MatchingName
);
3052 unsigned OtherInsnVarID
= Rule
.getInsnVarID(OtherOM
.getInstructionMatcher());
3053 assert(OtherInsnVarID
== OtherOM
.getInstructionMatcher().getInsnVarID());
3055 Table
<< MatchTable::Opcode("GIM_CheckIsSameOperand")
3056 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
3057 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx
)
3058 << MatchTable::Comment("OtherMI")
3059 << MatchTable::IntValue(OtherInsnVarID
)
3060 << MatchTable::Comment("OtherOpIdx")
3061 << MatchTable::IntValue(OtherOM
.getOpIdx())
3062 << MatchTable::LineBreak
;
3065 //===- GlobalISelEmitter class --------------------------------------------===//
3067 class GlobalISelEmitter
{
3069 explicit GlobalISelEmitter(RecordKeeper
&RK
);
3070 void run(raw_ostream
&OS
);
3073 const RecordKeeper
&RK
;
3074 const CodeGenDAGPatterns CGP
;
3075 const CodeGenTarget
&Target
;
3076 CodeGenRegBank CGRegs
;
3078 /// Keep track of the equivalence between SDNodes and Instruction by mapping
3079 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3080 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3081 /// This is defined using 'GINodeEquiv' in the target description.
3082 DenseMap
<Record
*, Record
*> NodeEquivs
;
3084 /// Keep track of the equivalence between ComplexPattern's and
3085 /// GIComplexOperandMatcher. Map entries are specified by subclassing
3086 /// GIComplexPatternEquiv.
3087 DenseMap
<const Record
*, const Record
*> ComplexPatternEquivs
;
3089 /// Keep track of the equivalence between SDNodeXForm's and
3090 /// GICustomOperandRenderer. Map entries are specified by subclassing
3091 /// GISDNodeXFormEquiv.
3092 DenseMap
<const Record
*, const Record
*> SDNodeXFormEquivs
;
3094 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3095 /// This adds compatibility for RuleMatchers to use this for ordering rules.
3096 DenseMap
<uint64_t, int> RuleMatcherScores
;
3098 // Map of predicates to their subtarget features.
3099 SubtargetFeatureInfoMap SubtargetFeatures
;
3101 // Rule coverage information.
3102 Optional
<CodeGenCoverage
> RuleCoverage
;
3104 void gatherOpcodeValues();
3105 void gatherTypeIDValues();
3106 void gatherNodeEquivs();
3108 Record
*findNodeEquiv(Record
*N
) const;
3109 const CodeGenInstruction
*getEquivNode(Record
&Equiv
,
3110 const TreePatternNode
*N
) const;
3112 Error
importRulePredicates(RuleMatcher
&M
, ArrayRef
<Predicate
> Predicates
);
3113 Expected
<InstructionMatcher
&>
3114 createAndImportSelDAGMatcher(RuleMatcher
&Rule
,
3115 InstructionMatcher
&InsnMatcher
,
3116 const TreePatternNode
*Src
, unsigned &TempOpIdx
);
3117 Error
importComplexPatternOperandMatcher(OperandMatcher
&OM
, Record
*R
,
3118 unsigned &TempOpIdx
) const;
3119 Error
importChildMatcher(RuleMatcher
&Rule
, InstructionMatcher
&InsnMatcher
,
3120 const TreePatternNode
*SrcChild
,
3121 bool OperandIsAPointer
, unsigned OpIdx
,
3122 unsigned &TempOpIdx
);
3124 Expected
<BuildMIAction
&>
3125 createAndImportInstructionRenderer(RuleMatcher
&M
,
3126 const TreePatternNode
*Dst
);
3127 Expected
<action_iterator
> createAndImportSubInstructionRenderer(
3128 action_iterator InsertPt
, RuleMatcher
&M
, const TreePatternNode
*Dst
,
3130 Expected
<action_iterator
>
3131 createInstructionRenderer(action_iterator InsertPt
, RuleMatcher
&M
,
3132 const TreePatternNode
*Dst
);
3133 void importExplicitDefRenderers(BuildMIAction
&DstMIBuilder
);
3134 Expected
<action_iterator
>
3135 importExplicitUseRenderers(action_iterator InsertPt
, RuleMatcher
&M
,
3136 BuildMIAction
&DstMIBuilder
,
3137 const llvm::TreePatternNode
*Dst
);
3138 Expected
<action_iterator
>
3139 importExplicitUseRenderer(action_iterator InsertPt
, RuleMatcher
&Rule
,
3140 BuildMIAction
&DstMIBuilder
,
3141 TreePatternNode
*DstChild
);
3142 Error
importDefaultOperandRenderers(action_iterator InsertPt
, RuleMatcher
&M
,
3143 BuildMIAction
&DstMIBuilder
,
3144 DagInit
*DefaultOps
) const;
3146 importImplicitDefRenderers(BuildMIAction
&DstMIBuilder
,
3147 const std::vector
<Record
*> &ImplicitDefs
) const;
3149 void emitCxxPredicateFns(raw_ostream
&OS
, StringRef CodeFieldName
,
3150 StringRef TypeIdentifier
, StringRef ArgType
,
3151 StringRef ArgName
, StringRef AdditionalDeclarations
,
3152 std::function
<bool(const Record
*R
)> Filter
);
3153 void emitImmPredicateFns(raw_ostream
&OS
, StringRef TypeIdentifier
,
3155 std::function
<bool(const Record
*R
)> Filter
);
3156 void emitMIPredicateFns(raw_ostream
&OS
);
3158 /// Analyze pattern \p P, returning a matcher for it if possible.
3159 /// Otherwise, return an Error explaining why we don't support it.
3160 Expected
<RuleMatcher
> runOnPattern(const PatternToMatch
&P
);
3162 void declareSubtargetFeature(Record
*Predicate
);
3164 MatchTable
buildMatchTable(MutableArrayRef
<RuleMatcher
> Rules
, bool Optimize
,
3167 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
3168 /// CodeGenRegisterClass will support the CodeGenRegisterClass of
3169 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
3170 /// If no register class is found, return None.
3171 Optional
<const CodeGenRegisterClass
*>
3172 inferSuperRegisterClass(const TypeSetByHwMode
&Ty
,
3173 TreePatternNode
*SuperRegNode
,
3174 TreePatternNode
*SubRegIdxNode
);
3176 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
3177 Optional
<const CodeGenRegisterClass
*>
3178 getRegClassFromLeaf(TreePatternNode
*Leaf
);
3180 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
3182 Optional
<const CodeGenRegisterClass
*>
3183 inferRegClassFromPattern(TreePatternNode
*N
);
3186 /// Takes a sequence of \p Rules and group them based on the predicates
3187 /// they share. \p MatcherStorage is used as a memory container
3188 /// for the group that are created as part of this process.
3190 /// What this optimization does looks like if GroupT = GroupMatcher:
3191 /// Output without optimization:
3198 /// # predicate A // <-- effectively this is going to be checked twice.
3199 /// // Once in R1 and once in R2.
3202 /// Output with optimization:
3205 /// # predicate A // <-- Check is now shared.
3211 template <class GroupT
>
3212 static std::vector
<Matcher
*> optimizeRules(
3213 ArrayRef
<Matcher
*> Rules
,
3214 std::vector
<std::unique_ptr
<Matcher
>> &MatcherStorage
);
3217 void GlobalISelEmitter::gatherOpcodeValues() {
3218 InstructionOpcodeMatcher::initOpcodeValuesMap(Target
);
3221 void GlobalISelEmitter::gatherTypeIDValues() {
3222 LLTOperandMatcher::initTypeIDValuesMap();
3225 void GlobalISelEmitter::gatherNodeEquivs() {
3226 assert(NodeEquivs
.empty());
3227 for (Record
*Equiv
: RK
.getAllDerivedDefinitions("GINodeEquiv"))
3228 NodeEquivs
[Equiv
->getValueAsDef("Node")] = Equiv
;
3230 assert(ComplexPatternEquivs
.empty());
3231 for (Record
*Equiv
: RK
.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3232 Record
*SelDAGEquiv
= Equiv
->getValueAsDef("SelDAGEquivalent");
3235 ComplexPatternEquivs
[SelDAGEquiv
] = Equiv
;
3238 assert(SDNodeXFormEquivs
.empty());
3239 for (Record
*Equiv
: RK
.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3240 Record
*SelDAGEquiv
= Equiv
->getValueAsDef("SelDAGEquivalent");
3243 SDNodeXFormEquivs
[SelDAGEquiv
] = Equiv
;
3247 Record
*GlobalISelEmitter::findNodeEquiv(Record
*N
) const {
3248 return NodeEquivs
.lookup(N
);
3251 const CodeGenInstruction
*
3252 GlobalISelEmitter::getEquivNode(Record
&Equiv
, const TreePatternNode
*N
) const {
3253 for (const TreePredicateCall
&Call
: N
->getPredicateCalls()) {
3254 const TreePredicateFn
&Predicate
= Call
.Fn
;
3255 if (!Equiv
.isValueUnset("IfSignExtend") && Predicate
.isLoad() &&
3256 Predicate
.isSignExtLoad())
3257 return &Target
.getInstruction(Equiv
.getValueAsDef("IfSignExtend"));
3258 if (!Equiv
.isValueUnset("IfZeroExtend") && Predicate
.isLoad() &&
3259 Predicate
.isZeroExtLoad())
3260 return &Target
.getInstruction(Equiv
.getValueAsDef("IfZeroExtend"));
3262 return &Target
.getInstruction(Equiv
.getValueAsDef("I"));
3265 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper
&RK
)
3266 : RK(RK
), CGP(RK
), Target(CGP
.getTargetInfo()),
3267 CGRegs(RK
, Target
.getHwModes()) {}
3269 //===- Emitter ------------------------------------------------------------===//
3272 GlobalISelEmitter::importRulePredicates(RuleMatcher
&M
,
3273 ArrayRef
<Predicate
> Predicates
) {
3274 for (const Predicate
&P
: Predicates
) {
3275 if (!P
.Def
|| P
.getCondString().empty())
3277 declareSubtargetFeature(P
.Def
);
3278 M
.addRequiredFeature(P
.Def
);
3281 return Error::success();
3284 Expected
<InstructionMatcher
&> GlobalISelEmitter::createAndImportSelDAGMatcher(
3285 RuleMatcher
&Rule
, InstructionMatcher
&InsnMatcher
,
3286 const TreePatternNode
*Src
, unsigned &TempOpIdx
) {
3287 Record
*SrcGIEquivOrNull
= nullptr;
3288 const CodeGenInstruction
*SrcGIOrNull
= nullptr;
3290 // Start with the defined operands (i.e., the results of the root operator).
3291 if (Src
->getExtTypes().size() > 1)
3292 return failedImport("Src pattern has multiple results");
3294 if (Src
->isLeaf()) {
3295 Init
*SrcInit
= Src
->getLeafValue();
3296 if (isa
<IntInit
>(SrcInit
)) {
3297 InsnMatcher
.addPredicate
<InstructionOpcodeMatcher
>(
3298 &Target
.getInstruction(RK
.getDef("G_CONSTANT")));
3300 return failedImport(
3301 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3303 SrcGIEquivOrNull
= findNodeEquiv(Src
->getOperator());
3304 if (!SrcGIEquivOrNull
)
3305 return failedImport("Pattern operator lacks an equivalent Instruction" +
3306 explainOperator(Src
->getOperator()));
3307 SrcGIOrNull
= getEquivNode(*SrcGIEquivOrNull
, Src
);
3309 // The operators look good: match the opcode
3310 InsnMatcher
.addPredicate
<InstructionOpcodeMatcher
>(SrcGIOrNull
);
3314 for (const TypeSetByHwMode
&VTy
: Src
->getExtTypes()) {
3315 // Results don't have a name unless they are the root node. The caller will
3316 // set the name if appropriate.
3317 OperandMatcher
&OM
= InsnMatcher
.addOperand(OpIdx
++, "", TempOpIdx
);
3318 if (auto Error
= OM
.addTypeCheckPredicate(VTy
, false /* OperandIsAPointer */))
3319 return failedImport(toString(std::move(Error
)) +
3320 " for result of Src pattern operator");
3323 for (const TreePredicateCall
&Call
: Src
->getPredicateCalls()) {
3324 const TreePredicateFn
&Predicate
= Call
.Fn
;
3325 if (Predicate
.isAlwaysTrue())
3328 if (Predicate
.isImmediatePattern()) {
3329 InsnMatcher
.addPredicate
<InstructionImmPredicateMatcher
>(Predicate
);
3333 // An address space check is needed in all contexts if there is one.
3334 if (Predicate
.isLoad() || Predicate
.isStore() || Predicate
.isAtomic()) {
3335 if (const ListInit
*AddrSpaces
= Predicate
.getAddressSpaces()) {
3336 SmallVector
<unsigned, 4> ParsedAddrSpaces
;
3338 for (Init
*Val
: AddrSpaces
->getValues()) {
3339 IntInit
*IntVal
= dyn_cast
<IntInit
>(Val
);
3341 return failedImport("Address space is not an integer");
3342 ParsedAddrSpaces
.push_back(IntVal
->getValue());
3345 if (!ParsedAddrSpaces
.empty()) {
3346 InsnMatcher
.addPredicate
<MemoryAddressSpacePredicateMatcher
>(
3347 0, ParsedAddrSpaces
);
3351 int64_t MinAlign
= Predicate
.getMinAlignment();
3353 InsnMatcher
.addPredicate
<MemoryAlignmentPredicateMatcher
>(0, MinAlign
);
3356 // G_LOAD is used for both non-extending and any-extending loads.
3357 if (Predicate
.isLoad() && Predicate
.isNonExtLoad()) {
3358 InsnMatcher
.addPredicate
<MemoryVsLLTSizePredicateMatcher
>(
3359 0, MemoryVsLLTSizePredicateMatcher::EqualTo
, 0);
3362 if (Predicate
.isLoad() && Predicate
.isAnyExtLoad()) {
3363 InsnMatcher
.addPredicate
<MemoryVsLLTSizePredicateMatcher
>(
3364 0, MemoryVsLLTSizePredicateMatcher::LessThan
, 0);
3368 if (Predicate
.isStore()) {
3369 if (Predicate
.isTruncStore()) {
3370 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3371 InsnMatcher
.addPredicate
<MemoryVsLLTSizePredicateMatcher
>(
3372 0, MemoryVsLLTSizePredicateMatcher::LessThan
, 0);
3375 if (Predicate
.isNonTruncStore()) {
3376 // We need to check the sizes match here otherwise we could incorrectly
3377 // match truncating stores with non-truncating ones.
3378 InsnMatcher
.addPredicate
<MemoryVsLLTSizePredicateMatcher
>(
3379 0, MemoryVsLLTSizePredicateMatcher::EqualTo
, 0);
3383 // No check required. We already did it by swapping the opcode.
3384 if (!SrcGIEquivOrNull
->isValueUnset("IfSignExtend") &&
3385 Predicate
.isSignExtLoad())
3388 // No check required. We already did it by swapping the opcode.
3389 if (!SrcGIEquivOrNull
->isValueUnset("IfZeroExtend") &&
3390 Predicate
.isZeroExtLoad())
3393 // No check required. G_STORE by itself is a non-extending store.
3394 if (Predicate
.isNonTruncStore())
3397 if (Predicate
.isLoad() || Predicate
.isStore() || Predicate
.isAtomic()) {
3398 if (Predicate
.getMemoryVT() != nullptr) {
3399 Optional
<LLTCodeGen
> MemTyOrNone
=
3400 MVTToLLT(getValueType(Predicate
.getMemoryVT()));
3403 return failedImport("MemVT could not be converted to LLT");
3405 // MMO's work in bytes so we must take care of unusual types like i1
3406 // don't round down.
3407 unsigned MemSizeInBits
=
3408 llvm::alignTo(MemTyOrNone
->get().getSizeInBits(), 8);
3410 InsnMatcher
.addPredicate
<MemorySizePredicateMatcher
>(
3411 0, MemSizeInBits
/ 8);
3416 if (Predicate
.isLoad() || Predicate
.isStore()) {
3417 // No check required. A G_LOAD/G_STORE is an unindexed load.
3418 if (Predicate
.isUnindexed())
3422 if (Predicate
.isAtomic()) {
3423 if (Predicate
.isAtomicOrderingMonotonic()) {
3424 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3428 if (Predicate
.isAtomicOrderingAcquire()) {
3429 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>("Acquire");
3432 if (Predicate
.isAtomicOrderingRelease()) {
3433 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>("Release");
3436 if (Predicate
.isAtomicOrderingAcquireRelease()) {
3437 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3441 if (Predicate
.isAtomicOrderingSequentiallyConsistent()) {
3442 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3443 "SequentiallyConsistent");
3447 if (Predicate
.isAtomicOrderingAcquireOrStronger()) {
3448 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3449 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger
);
3452 if (Predicate
.isAtomicOrderingWeakerThanAcquire()) {
3453 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3454 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan
);
3458 if (Predicate
.isAtomicOrderingReleaseOrStronger()) {
3459 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3460 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger
);
3463 if (Predicate
.isAtomicOrderingWeakerThanRelease()) {
3464 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3465 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan
);
3470 if (Predicate
.hasGISelPredicateCode()) {
3471 InsnMatcher
.addPredicate
<GenericInstructionPredicateMatcher
>(Predicate
);
3475 return failedImport("Src pattern child has predicate (" +
3476 explainPredicates(Src
) + ")");
3478 if (SrcGIEquivOrNull
&& SrcGIEquivOrNull
->getValueAsBit("CheckMMOIsNonAtomic"))
3479 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>("NotAtomic");
3481 if (Src
->isLeaf()) {
3482 Init
*SrcInit
= Src
->getLeafValue();
3483 if (IntInit
*SrcIntInit
= dyn_cast
<IntInit
>(SrcInit
)) {
3484 OperandMatcher
&OM
=
3485 InsnMatcher
.addOperand(OpIdx
++, Src
->getName(), TempOpIdx
);
3486 OM
.addPredicate
<LiteralIntOperandMatcher
>(SrcIntInit
->getValue());
3488 return failedImport(
3489 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3491 assert(SrcGIOrNull
&&
3492 "Expected to have already found an equivalent Instruction");
3493 if (SrcGIOrNull
->TheDef
->getName() == "G_CONSTANT" ||
3494 SrcGIOrNull
->TheDef
->getName() == "G_FCONSTANT") {
3495 // imm/fpimm still have operands but we don't need to do anything with it
3496 // here since we don't support ImmLeaf predicates yet. However, we still
3497 // need to note the hidden operand to get GIM_CheckNumOperands correct.
3498 InsnMatcher
.addOperand(OpIdx
++, "", TempOpIdx
);
3502 // Match the used operands (i.e. the children of the operator).
3504 SrcGIOrNull
->TheDef
->getName() == "G_INTRINSIC" ||
3505 SrcGIOrNull
->TheDef
->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
3506 const CodeGenIntrinsic
*II
= Src
->getIntrinsicInfo(CGP
);
3507 if (IsIntrinsic
&& !II
)
3508 return failedImport("Expected IntInit containing intrinsic ID)");
3510 for (unsigned i
= 0, e
= Src
->getNumChildren(); i
!= e
; ++i
) {
3511 TreePatternNode
*SrcChild
= Src
->getChild(i
);
3513 // SelectionDAG allows pointers to be represented with iN since it doesn't
3514 // distinguish between pointers and integers but they are different types in GlobalISel.
3515 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3516 bool OperandIsAPointer
= SrcGIOrNull
->isOperandAPointer(i
);
3519 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3520 // following the defs is an intrinsic ID.
3522 OperandMatcher
&OM
=
3523 InsnMatcher
.addOperand(OpIdx
++, SrcChild
->getName(), TempOpIdx
);
3524 OM
.addPredicate
<IntrinsicIDOperandMatcher
>(II
);
3528 // We have to check intrinsics for llvm_anyptr_ty parameters.
3530 // Note that we have to look at the i-1th parameter, because we don't
3531 // have the intrinsic ID in the intrinsic's parameter list.
3532 OperandIsAPointer
|= II
->isParamAPointer(i
- 1);
3536 importChildMatcher(Rule
, InsnMatcher
, SrcChild
, OperandIsAPointer
,
3537 OpIdx
++, TempOpIdx
))
3538 return std::move(Error
);
3545 Error
GlobalISelEmitter::importComplexPatternOperandMatcher(
3546 OperandMatcher
&OM
, Record
*R
, unsigned &TempOpIdx
) const {
3547 const auto &ComplexPattern
= ComplexPatternEquivs
.find(R
);
3548 if (ComplexPattern
== ComplexPatternEquivs
.end())
3549 return failedImport("SelectionDAG ComplexPattern (" + R
->getName() +
3550 ") not mapped to GlobalISel");
3552 OM
.addPredicate
<ComplexPatternOperandMatcher
>(OM
, *ComplexPattern
->second
);
3554 return Error::success();
3557 Error
GlobalISelEmitter::importChildMatcher(RuleMatcher
&Rule
,
3558 InstructionMatcher
&InsnMatcher
,
3559 const TreePatternNode
*SrcChild
,
3560 bool OperandIsAPointer
,
3562 unsigned &TempOpIdx
) {
3563 OperandMatcher
&OM
=
3564 InsnMatcher
.addOperand(OpIdx
, SrcChild
->getName(), TempOpIdx
);
3565 if (OM
.isSameAsAnotherOperand())
3566 return Error::success();
3568 ArrayRef
<TypeSetByHwMode
> ChildTypes
= SrcChild
->getExtTypes();
3569 if (ChildTypes
.size() != 1)
3570 return failedImport("Src pattern child has multiple results");
3572 // Check MBB's before the type check since they are not a known type.
3573 if (!SrcChild
->isLeaf()) {
3574 if (SrcChild
->getOperator()->isSubClassOf("SDNode")) {
3575 auto &ChildSDNI
= CGP
.getSDNodeInfo(SrcChild
->getOperator());
3576 if (ChildSDNI
.getSDClassName() == "BasicBlockSDNode") {
3577 OM
.addPredicate
<MBBOperandMatcher
>();
3578 return Error::success();
3584 OM
.addTypeCheckPredicate(ChildTypes
.front(), OperandIsAPointer
))
3585 return failedImport(toString(std::move(Error
)) + " for Src operand (" +
3586 to_string(*SrcChild
) + ")");
3588 // Check for nested instructions.
3589 if (!SrcChild
->isLeaf()) {
3590 if (SrcChild
->getOperator()->isSubClassOf("ComplexPattern")) {
3591 // When a ComplexPattern is used as an operator, it should do the same
3592 // thing as when used as a leaf. However, the children of the operator
3593 // name the sub-operands that make up the complex operand and we must
3594 // prepare to reference them in the renderer too.
3595 unsigned RendererID
= TempOpIdx
;
3596 if (auto Error
= importComplexPatternOperandMatcher(
3597 OM
, SrcChild
->getOperator(), TempOpIdx
))
3600 for (unsigned i
= 0, e
= SrcChild
->getNumChildren(); i
!= e
; ++i
) {
3601 auto *SubOperand
= SrcChild
->getChild(i
);
3602 if (!SubOperand
->getName().empty()) {
3603 if (auto Error
= Rule
.defineComplexSubOperand(SubOperand
->getName(),
3604 SrcChild
->getOperator(),
3610 return Error::success();
3613 auto MaybeInsnOperand
= OM
.addPredicate
<InstructionOperandMatcher
>(
3614 InsnMatcher
.getRuleMatcher(), SrcChild
->getName());
3615 if (!MaybeInsnOperand
.hasValue()) {
3616 // This isn't strictly true. If the user were to provide exactly the same
3617 // matchers as the original operand then we could allow it. However, it's
3618 // simpler to not permit the redundant specification.
3619 return failedImport("Nested instruction cannot be the same as another operand");
3622 // Map the node to a gMIR instruction.
3623 InstructionOperandMatcher
&InsnOperand
= **MaybeInsnOperand
;
3624 auto InsnMatcherOrError
= createAndImportSelDAGMatcher(
3625 Rule
, InsnOperand
.getInsnMatcher(), SrcChild
, TempOpIdx
);
3626 if (auto Error
= InsnMatcherOrError
.takeError())
3629 return Error::success();
3632 if (SrcChild
->hasAnyPredicate())
3633 return failedImport("Src pattern child has unsupported predicate");
3635 // Check for constant immediates.
3636 if (auto *ChildInt
= dyn_cast
<IntInit
>(SrcChild
->getLeafValue())) {
3637 OM
.addPredicate
<ConstantIntOperandMatcher
>(ChildInt
->getValue());
3638 return Error::success();
3641 // Check for def's like register classes or ComplexPattern's.
3642 if (auto *ChildDefInit
= dyn_cast
<DefInit
>(SrcChild
->getLeafValue())) {
3643 auto *ChildRec
= ChildDefInit
->getDef();
3645 // Check for register classes.
3646 if (ChildRec
->isSubClassOf("RegisterClass") ||
3647 ChildRec
->isSubClassOf("RegisterOperand")) {
3648 OM
.addPredicate
<RegisterBankOperandMatcher
>(
3649 Target
.getRegisterClass(getInitValueAsRegClass(ChildDefInit
)));
3650 return Error::success();
3653 // Check for ValueType.
3654 if (ChildRec
->isSubClassOf("ValueType")) {
3655 // We already added a type check as standard practice so this doesn't need
3657 return Error::success();
3660 // Check for ComplexPattern's.
3661 if (ChildRec
->isSubClassOf("ComplexPattern"))
3662 return importComplexPatternOperandMatcher(OM
, ChildRec
, TempOpIdx
);
3664 if (ChildRec
->isSubClassOf("ImmLeaf")) {
3665 return failedImport(
3666 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3669 return failedImport(
3670 "Src pattern child def is an unsupported tablegen class");
3673 return failedImport("Src pattern child is an unsupported kind");
3676 Expected
<action_iterator
> GlobalISelEmitter::importExplicitUseRenderer(
3677 action_iterator InsertPt
, RuleMatcher
&Rule
, BuildMIAction
&DstMIBuilder
,
3678 TreePatternNode
*DstChild
) {
3680 const auto &SubOperand
= Rule
.getComplexSubOperand(DstChild
->getName());
3681 if (SubOperand
.hasValue()) {
3682 DstMIBuilder
.addRenderer
<RenderComplexPatternOperand
>(
3683 *std::get
<0>(*SubOperand
), DstChild
->getName(),
3684 std::get
<1>(*SubOperand
), std::get
<2>(*SubOperand
));
3688 if (!DstChild
->isLeaf()) {
3690 if (DstChild
->getOperator()->isSubClassOf("SDNodeXForm")) {
3691 auto Child
= DstChild
->getChild(0);
3692 auto I
= SDNodeXFormEquivs
.find(DstChild
->getOperator());
3693 if (I
!= SDNodeXFormEquivs
.end()) {
3694 DstMIBuilder
.addRenderer
<CustomRenderer
>(*I
->second
, Child
->getName());
3697 return failedImport("SDNodeXForm " + Child
->getName() +
3698 " has no custom renderer");
3701 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3702 // inline, but in MI it's just another operand.
3703 if (DstChild
->getOperator()->isSubClassOf("SDNode")) {
3704 auto &ChildSDNI
= CGP
.getSDNodeInfo(DstChild
->getOperator());
3705 if (ChildSDNI
.getSDClassName() == "BasicBlockSDNode") {
3706 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstChild
->getName());
3711 // Similarly, imm is an operator in TreePatternNode's view but must be
3712 // rendered as operands.
3713 // FIXME: The target should be able to choose sign-extended when appropriate
3715 if (DstChild
->getOperator()->getName() == "imm") {
3716 DstMIBuilder
.addRenderer
<CopyConstantAsImmRenderer
>(DstChild
->getName());
3718 } else if (DstChild
->getOperator()->getName() == "fpimm") {
3719 DstMIBuilder
.addRenderer
<CopyFConstantAsFPImmRenderer
>(
3720 DstChild
->getName());
3724 if (DstChild
->getOperator()->isSubClassOf("Instruction")) {
3725 ArrayRef
<TypeSetByHwMode
> ChildTypes
= DstChild
->getExtTypes();
3726 if (ChildTypes
.size() != 1)
3727 return failedImport("Dst pattern child has multiple results");
3729 Optional
<LLTCodeGen
> OpTyOrNone
= None
;
3730 if (ChildTypes
.front().isMachineValueType())
3732 MVTToLLT(ChildTypes
.front().getMachineValueType().SimpleTy
);
3734 return failedImport("Dst operand has an unsupported type");
3736 unsigned TempRegID
= Rule
.allocateTempRegID();
3737 InsertPt
= Rule
.insertAction
<MakeTempRegisterAction
>(
3738 InsertPt
, OpTyOrNone
.getValue(), TempRegID
);
3739 DstMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
);
3741 auto InsertPtOrError
= createAndImportSubInstructionRenderer(
3742 ++InsertPt
, Rule
, DstChild
, TempRegID
);
3743 if (auto Error
= InsertPtOrError
.takeError())
3744 return std::move(Error
);
3745 return InsertPtOrError
.get();
3748 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild
));
3751 // It could be a specific immediate in which case we should just check for
3753 if (const IntInit
*ChildIntInit
=
3754 dyn_cast
<IntInit
>(DstChild
->getLeafValue())) {
3755 DstMIBuilder
.addRenderer
<ImmRenderer
>(ChildIntInit
->getValue());
3759 // Otherwise, we're looking for a bog-standard RegisterClass operand.
3760 if (auto *ChildDefInit
= dyn_cast
<DefInit
>(DstChild
->getLeafValue())) {
3761 auto *ChildRec
= ChildDefInit
->getDef();
3763 ArrayRef
<TypeSetByHwMode
> ChildTypes
= DstChild
->getExtTypes();
3764 if (ChildTypes
.size() != 1)
3765 return failedImport("Dst pattern child has multiple results");
3767 Optional
<LLTCodeGen
> OpTyOrNone
= None
;
3768 if (ChildTypes
.front().isMachineValueType())
3769 OpTyOrNone
= MVTToLLT(ChildTypes
.front().getMachineValueType().SimpleTy
);
3771 return failedImport("Dst operand has an unsupported type");
3773 if (ChildRec
->isSubClassOf("Register")) {
3774 DstMIBuilder
.addRenderer
<AddRegisterRenderer
>(ChildRec
);
3778 if (ChildRec
->isSubClassOf("RegisterClass") ||
3779 ChildRec
->isSubClassOf("RegisterOperand") ||
3780 ChildRec
->isSubClassOf("ValueType")) {
3781 if (ChildRec
->isSubClassOf("RegisterOperand") &&
3782 !ChildRec
->isValueUnset("GIZeroRegister")) {
3783 DstMIBuilder
.addRenderer
<CopyOrAddZeroRegRenderer
>(
3784 DstChild
->getName(), ChildRec
->getValueAsDef("GIZeroRegister"));
3788 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstChild
->getName());
3792 if (ChildRec
->isSubClassOf("SubRegIndex")) {
3793 CodeGenSubRegIndex
*SubIdx
= CGRegs
.getSubRegIdx(ChildRec
);
3794 DstMIBuilder
.addRenderer
<ImmRenderer
>(SubIdx
->EnumValue
);
3798 if (ChildRec
->isSubClassOf("ComplexPattern")) {
3799 const auto &ComplexPattern
= ComplexPatternEquivs
.find(ChildRec
);
3800 if (ComplexPattern
== ComplexPatternEquivs
.end())
3801 return failedImport(
3802 "SelectionDAG ComplexPattern not mapped to GlobalISel");
3804 const OperandMatcher
&OM
= Rule
.getOperandMatcher(DstChild
->getName());
3805 DstMIBuilder
.addRenderer
<RenderComplexPatternOperand
>(
3806 *ComplexPattern
->second
, DstChild
->getName(),
3807 OM
.getAllocatedTemporariesBaseID());
3811 return failedImport(
3812 "Dst pattern child def is an unsupported tablegen class");
3815 return failedImport("Dst pattern child is an unsupported kind");
3818 Expected
<BuildMIAction
&> GlobalISelEmitter::createAndImportInstructionRenderer(
3819 RuleMatcher
&M
, const TreePatternNode
*Dst
) {
3820 auto InsertPtOrError
= createInstructionRenderer(M
.actions_end(), M
, Dst
);
3821 if (auto Error
= InsertPtOrError
.takeError())
3822 return std::move(Error
);
3824 action_iterator InsertPt
= InsertPtOrError
.get();
3825 BuildMIAction
&DstMIBuilder
= *static_cast<BuildMIAction
*>(InsertPt
->get());
3827 importExplicitDefRenderers(DstMIBuilder
);
3829 if (auto Error
= importExplicitUseRenderers(InsertPt
, M
, DstMIBuilder
, Dst
)
3831 return std::move(Error
);
3833 return DstMIBuilder
;
3836 Expected
<action_iterator
>
3837 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3838 const action_iterator InsertPt
, RuleMatcher
&M
, const TreePatternNode
*Dst
,
3839 unsigned TempRegID
) {
3840 auto InsertPtOrError
= createInstructionRenderer(InsertPt
, M
, Dst
);
3842 // TODO: Assert there's exactly one result.
3844 if (auto Error
= InsertPtOrError
.takeError())
3845 return std::move(Error
);
3847 BuildMIAction
&DstMIBuilder
=
3848 *static_cast<BuildMIAction
*>(InsertPtOrError
.get()->get());
3850 // Assign the result to TempReg.
3851 DstMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
, true);
3854 importExplicitUseRenderers(InsertPtOrError
.get(), M
, DstMIBuilder
, Dst
);
3855 if (auto Error
= InsertPtOrError
.takeError())
3856 return std::move(Error
);
3858 // We need to make sure that when we import an INSERT_SUBREG as a
3859 // subinstruction that it ends up being constrained to the correct super
3860 // register and subregister classes.
3861 if (Target
.getInstruction(Dst
->getOperator()).TheDef
->getName() ==
3863 auto SubClass
= inferRegClassFromPattern(Dst
->getChild(1));
3865 return failedImport(
3866 "Cannot infer register class from INSERT_SUBREG operand #1");
3867 Optional
<const CodeGenRegisterClass
*> SuperClass
= inferSuperRegisterClass(
3868 Dst
->getExtType(0), Dst
->getChild(0), Dst
->getChild(2));
3870 return failedImport(
3871 "Cannot infer register class for INSERT_SUBREG operand #0");
3872 // The destination and the super register source of an INSERT_SUBREG must
3873 // be the same register class.
3874 M
.insertAction
<ConstrainOperandToRegClassAction
>(
3875 InsertPt
, DstMIBuilder
.getInsnID(), 0, **SuperClass
);
3876 M
.insertAction
<ConstrainOperandToRegClassAction
>(
3877 InsertPt
, DstMIBuilder
.getInsnID(), 1, **SuperClass
);
3878 M
.insertAction
<ConstrainOperandToRegClassAction
>(
3879 InsertPt
, DstMIBuilder
.getInsnID(), 2, **SubClass
);
3880 return InsertPtOrError
.get();
3883 M
.insertAction
<ConstrainOperandsToDefinitionAction
>(InsertPt
,
3884 DstMIBuilder
.getInsnID());
3885 return InsertPtOrError
.get();
3888 Expected
<action_iterator
> GlobalISelEmitter::createInstructionRenderer(
3889 action_iterator InsertPt
, RuleMatcher
&M
, const TreePatternNode
*Dst
) {
3890 Record
*DstOp
= Dst
->getOperator();
3891 if (!DstOp
->isSubClassOf("Instruction")) {
3892 if (DstOp
->isSubClassOf("ValueType"))
3893 return failedImport(
3894 "Pattern operator isn't an instruction (it's a ValueType)");
3895 return failedImport("Pattern operator isn't an instruction");
3897 CodeGenInstruction
*DstI
= &Target
.getInstruction(DstOp
);
3899 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3900 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3901 if (DstI
->TheDef
->getName() == "COPY_TO_REGCLASS")
3902 DstI
= &Target
.getInstruction(RK
.getDef("COPY"));
3903 else if (DstI
->TheDef
->getName() == "EXTRACT_SUBREG")
3904 DstI
= &Target
.getInstruction(RK
.getDef("COPY"));
3905 else if (DstI
->TheDef
->getName() == "REG_SEQUENCE")
3906 return failedImport("Unable to emit REG_SEQUENCE");
3908 return M
.insertAction
<BuildMIAction
>(InsertPt
, M
.allocateOutputInsnID(),
3912 void GlobalISelEmitter::importExplicitDefRenderers(
3913 BuildMIAction
&DstMIBuilder
) {
3914 const CodeGenInstruction
*DstI
= DstMIBuilder
.getCGI();
3915 for (unsigned I
= 0; I
< DstI
->Operands
.NumDefs
; ++I
) {
3916 const CGIOperandList::OperandInfo
&DstIOperand
= DstI
->Operands
[I
];
3917 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstIOperand
.Name
);
3921 Expected
<action_iterator
> GlobalISelEmitter::importExplicitUseRenderers(
3922 action_iterator InsertPt
, RuleMatcher
&M
, BuildMIAction
&DstMIBuilder
,
3923 const llvm::TreePatternNode
*Dst
) {
3924 const CodeGenInstruction
*DstI
= DstMIBuilder
.getCGI();
3925 CodeGenInstruction
*OrigDstI
= &Target
.getInstruction(Dst
->getOperator());
3927 // EXTRACT_SUBREG needs to use a subregister COPY.
3928 if (OrigDstI
->TheDef
->getName() == "EXTRACT_SUBREG") {
3929 if (!Dst
->getChild(0)->isLeaf())
3930 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3932 if (DefInit
*SubRegInit
=
3933 dyn_cast
<DefInit
>(Dst
->getChild(1)->getLeafValue())) {
3934 Record
*RCDef
= getInitValueAsRegClass(Dst
->getChild(0)->getLeafValue());
3936 return failedImport("EXTRACT_SUBREG child #0 could not "
3937 "be coerced to a register class");
3939 CodeGenRegisterClass
*RC
= CGRegs
.getRegClass(RCDef
);
3940 CodeGenSubRegIndex
*SubIdx
= CGRegs
.getSubRegIdx(SubRegInit
->getDef());
3942 const auto &SrcRCDstRCPair
=
3943 RC
->getMatchingSubClassWithSubRegs(CGRegs
, SubIdx
);
3944 if (SrcRCDstRCPair
.hasValue()) {
3945 assert(SrcRCDstRCPair
->second
&& "Couldn't find a matching subclass");
3946 if (SrcRCDstRCPair
->first
!= RC
)
3947 return failedImport("EXTRACT_SUBREG requires an additional COPY");
3950 DstMIBuilder
.addRenderer
<CopySubRegRenderer
>(Dst
->getChild(0)->getName(),
3955 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3958 // Render the explicit uses.
3959 unsigned DstINumUses
= OrigDstI
->Operands
.size() - OrigDstI
->Operands
.NumDefs
;
3960 unsigned ExpectedDstINumUses
= Dst
->getNumChildren();
3961 if (OrigDstI
->TheDef
->getName() == "COPY_TO_REGCLASS") {
3962 DstINumUses
--; // Ignore the class constraint.
3963 ExpectedDstINumUses
--;
3967 unsigned NumDefaultOps
= 0;
3968 for (unsigned I
= 0; I
!= DstINumUses
; ++I
) {
3969 const CGIOperandList::OperandInfo
&DstIOperand
=
3970 DstI
->Operands
[DstI
->Operands
.NumDefs
+ I
];
3972 // If the operand has default values, introduce them now.
3973 // FIXME: Until we have a decent test case that dictates we should do
3974 // otherwise, we're going to assume that operands with default values cannot
3975 // be specified in the patterns. Therefore, adding them will not cause us to
3976 // end up with too many rendered operands.
3977 if (DstIOperand
.Rec
->isSubClassOf("OperandWithDefaultOps")) {
3978 DagInit
*DefaultOps
= DstIOperand
.Rec
->getValueAsDag("DefaultOps");
3979 if (auto Error
= importDefaultOperandRenderers(
3980 InsertPt
, M
, DstMIBuilder
, DefaultOps
))
3981 return std::move(Error
);
3986 auto InsertPtOrError
= importExplicitUseRenderer(InsertPt
, M
, DstMIBuilder
,
3987 Dst
->getChild(Child
));
3988 if (auto Error
= InsertPtOrError
.takeError())
3989 return std::move(Error
);
3990 InsertPt
= InsertPtOrError
.get();
3994 if (NumDefaultOps
+ ExpectedDstINumUses
!= DstINumUses
)
3995 return failedImport("Expected " + llvm::to_string(DstINumUses
) +
3996 " used operands but found " +
3997 llvm::to_string(ExpectedDstINumUses
) +
3998 " explicit ones and " + llvm::to_string(NumDefaultOps
) +
4004 Error
GlobalISelEmitter::importDefaultOperandRenderers(
4005 action_iterator InsertPt
, RuleMatcher
&M
, BuildMIAction
&DstMIBuilder
,
4006 DagInit
*DefaultOps
) const {
4007 for (const auto *DefaultOp
: DefaultOps
->getArgs()) {
4008 Optional
<LLTCodeGen
> OpTyOrNone
= None
;
4010 // Look through ValueType operators.
4011 if (const DagInit
*DefaultDagOp
= dyn_cast
<DagInit
>(DefaultOp
)) {
4012 if (const DefInit
*DefaultDagOperator
=
4013 dyn_cast
<DefInit
>(DefaultDagOp
->getOperator())) {
4014 if (DefaultDagOperator
->getDef()->isSubClassOf("ValueType")) {
4015 OpTyOrNone
= MVTToLLT(getValueType(
4016 DefaultDagOperator
->getDef()));
4017 DefaultOp
= DefaultDagOp
->getArg(0);
4022 if (const DefInit
*DefaultDefOp
= dyn_cast
<DefInit
>(DefaultOp
)) {
4023 auto Def
= DefaultDefOp
->getDef();
4024 if (Def
->getName() == "undef_tied_input") {
4025 unsigned TempRegID
= M
.allocateTempRegID();
4026 M
.insertAction
<MakeTempRegisterAction
>(
4027 InsertPt
, OpTyOrNone
.getValue(), TempRegID
);
4028 InsertPt
= M
.insertAction
<BuildMIAction
>(
4029 InsertPt
, M
.allocateOutputInsnID(),
4030 &Target
.getInstruction(RK
.getDef("IMPLICIT_DEF")));
4031 BuildMIAction
&IDMIBuilder
= *static_cast<BuildMIAction
*>(
4033 IDMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
);
4034 DstMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
);
4036 DstMIBuilder
.addRenderer
<AddRegisterRenderer
>(Def
);
4041 if (const IntInit
*DefaultIntOp
= dyn_cast
<IntInit
>(DefaultOp
)) {
4042 DstMIBuilder
.addRenderer
<ImmRenderer
>(DefaultIntOp
->getValue());
4046 return failedImport("Could not add default op");
4049 return Error::success();
4052 Error
GlobalISelEmitter::importImplicitDefRenderers(
4053 BuildMIAction
&DstMIBuilder
,
4054 const std::vector
<Record
*> &ImplicitDefs
) const {
4055 if (!ImplicitDefs
.empty())
4056 return failedImport("Pattern defines a physical register");
4057 return Error::success();
4060 Optional
<const CodeGenRegisterClass
*>
4061 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode
*Leaf
) {
4062 assert(Leaf
&& "Expected node?");
4063 assert(Leaf
->isLeaf() && "Expected leaf?");
4064 Record
*RCRec
= getInitValueAsRegClass(Leaf
->getLeafValue());
4067 CodeGenRegisterClass
*RC
= CGRegs
.getRegClass(RCRec
);
4073 Optional
<const CodeGenRegisterClass
*>
4074 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode
*N
) {
4079 return getRegClassFromLeaf(N
);
4081 // We don't have a leaf node, so we have to try and infer something. Check
4082 // that we have an instruction that we an infer something from.
4084 // Only handle things that produce a single type.
4085 if (N
->getNumTypes() != 1)
4087 Record
*OpRec
= N
->getOperator();
4089 // We only want instructions.
4090 if (!OpRec
->isSubClassOf("Instruction"))
4093 // Don't want to try and infer things when there could potentially be more
4094 // than one candidate register class.
4095 auto &Inst
= Target
.getInstruction(OpRec
);
4096 if (Inst
.Operands
.NumDefs
> 1)
4099 // Handle any special-case instructions which we can safely infer register
4101 StringRef InstName
= Inst
.TheDef
->getName();
4102 if (InstName
== "COPY_TO_REGCLASS") {
4103 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
4104 // has the desired register class as the first child.
4105 TreePatternNode
*RCChild
= N
->getChild(1);
4106 if (!RCChild
->isLeaf())
4108 return getRegClassFromLeaf(RCChild
);
4111 // Handle destination record types that we can safely infer a register class
4113 const auto &DstIOperand
= Inst
.Operands
[0];
4114 Record
*DstIOpRec
= DstIOperand
.Rec
;
4115 if (DstIOpRec
->isSubClassOf("RegisterOperand")) {
4116 DstIOpRec
= DstIOpRec
->getValueAsDef("RegClass");
4117 const CodeGenRegisterClass
&RC
= Target
.getRegisterClass(DstIOpRec
);
4121 if (DstIOpRec
->isSubClassOf("RegisterClass")) {
4122 const CodeGenRegisterClass
&RC
= Target
.getRegisterClass(DstIOpRec
);
4129 Optional
<const CodeGenRegisterClass
*>
4130 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode
&Ty
,
4131 TreePatternNode
*SuperRegNode
,
4132 TreePatternNode
*SubRegIdxNode
) {
4133 // Check if we already have a defined register class for the super register
4134 // node. If we do, then we should preserve that rather than inferring anything
4135 // from the subregister index node. We can assume that whoever wrote the
4136 // pattern in the first place made sure that the super register and
4137 // subregister are compatible.
4138 if (Optional
<const CodeGenRegisterClass
*> SuperRegisterClass
=
4139 inferRegClassFromPattern(SuperRegNode
))
4140 return SuperRegisterClass
;
4142 // We need a ValueTypeByHwMode for getSuperRegForSubReg.
4143 if (!Ty
.isValueTypeByHwMode(false))
4146 // We don't know anything about the super register. Try to use the subregister
4147 // index to infer an appropriate register class.
4148 if (!SubRegIdxNode
->isLeaf())
4150 DefInit
*SubRegInit
= dyn_cast
<DefInit
>(SubRegIdxNode
->getLeafValue());
4153 CodeGenSubRegIndex
*SubIdx
= CGRegs
.getSubRegIdx(SubRegInit
->getDef());
4155 // Use the information we found above to find a minimal register class which
4156 // supports the subregister and type we want.
4158 Target
.getSuperRegForSubReg(Ty
.getValueTypeByHwMode(), CGRegs
, SubIdx
);
4164 Expected
<RuleMatcher
> GlobalISelEmitter::runOnPattern(const PatternToMatch
&P
) {
4165 // Keep track of the matchers and actions to emit.
4166 int Score
= P
.getPatternComplexity(CGP
);
4167 RuleMatcher
M(P
.getSrcRecord()->getLoc());
4168 RuleMatcherScores
[M
.getRuleID()] = Score
;
4169 M
.addAction
<DebugCommentAction
>(llvm::to_string(*P
.getSrcPattern()) +
4171 llvm::to_string(*P
.getDstPattern()));
4173 if (auto Error
= importRulePredicates(M
, P
.getPredicates()))
4174 return std::move(Error
);
4176 // Next, analyze the pattern operators.
4177 TreePatternNode
*Src
= P
.getSrcPattern();
4178 TreePatternNode
*Dst
= P
.getDstPattern();
4180 // If the root of either pattern isn't a simple operator, ignore it.
4181 if (auto Err
= isTrivialOperatorNode(Dst
))
4182 return failedImport("Dst pattern root isn't a trivial operator (" +
4183 toString(std::move(Err
)) + ")");
4184 if (auto Err
= isTrivialOperatorNode(Src
))
4185 return failedImport("Src pattern root isn't a trivial operator (" +
4186 toString(std::move(Err
)) + ")");
4188 // The different predicates and matchers created during
4189 // addInstructionMatcher use the RuleMatcher M to set up their
4190 // instruction ID (InsnVarID) that are going to be used when
4191 // M is going to be emitted.
4192 // However, the code doing the emission still relies on the IDs
4193 // returned during that process by the RuleMatcher when issuing
4194 // the recordInsn opcodes.
4196 // 1. The order in which we created the predicates
4197 // and such must be the same as the order in which we emit them,
4199 // 2. We need to reset the generation of the IDs in M somewhere between
4200 // addInstructionMatcher and emit
4202 // FIXME: Long term, we don't want to have to rely on this implicit
4203 // naming being the same. One possible solution would be to have
4204 // explicit operator for operation capture and reference those.
4205 // The plus side is that it would expose opportunities to share
4206 // the capture accross rules. The downside is that it would
4207 // introduce a dependency between predicates (captures must happen
4208 // before their first use.)
4209 InstructionMatcher
&InsnMatcherTemp
= M
.addInstructionMatcher(Src
->getName());
4210 unsigned TempOpIdx
= 0;
4211 auto InsnMatcherOrError
=
4212 createAndImportSelDAGMatcher(M
, InsnMatcherTemp
, Src
, TempOpIdx
);
4213 if (auto Error
= InsnMatcherOrError
.takeError())
4214 return std::move(Error
);
4215 InstructionMatcher
&InsnMatcher
= InsnMatcherOrError
.get();
4217 if (Dst
->isLeaf()) {
4218 Record
*RCDef
= getInitValueAsRegClass(Dst
->getLeafValue());
4220 const CodeGenRegisterClass
&RC
= Target
.getRegisterClass(RCDef
);
4222 // We need to replace the def and all its uses with the specified
4223 // operand. However, we must also insert COPY's wherever needed.
4224 // For now, emit a copy and let the register allocator clean up.
4225 auto &DstI
= Target
.getInstruction(RK
.getDef("COPY"));
4226 const auto &DstIOperand
= DstI
.Operands
[0];
4228 OperandMatcher
&OM0
= InsnMatcher
.getOperand(0);
4229 OM0
.setSymbolicName(DstIOperand
.Name
);
4230 M
.defineOperand(OM0
.getSymbolicName(), OM0
);
4231 OM0
.addPredicate
<RegisterBankOperandMatcher
>(RC
);
4233 auto &DstMIBuilder
=
4234 M
.addAction
<BuildMIAction
>(M
.allocateOutputInsnID(), &DstI
);
4235 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstIOperand
.Name
);
4236 DstMIBuilder
.addRenderer
<CopyRenderer
>(Dst
->getName());
4237 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 0, RC
);
4239 // We're done with this pattern! It's eligible for GISel emission; return
4241 ++NumPatternImported
;
4242 return std::move(M
);
4245 return failedImport("Dst pattern root isn't a known leaf");
4248 // Start with the defined operands (i.e., the results of the root operator).
4249 Record
*DstOp
= Dst
->getOperator();
4250 if (!DstOp
->isSubClassOf("Instruction"))
4251 return failedImport("Pattern operator isn't an instruction");
4253 auto &DstI
= Target
.getInstruction(DstOp
);
4254 if (DstI
.Operands
.NumDefs
!= Src
->getExtTypes().size())
4255 return failedImport("Src pattern results and dst MI defs are different (" +
4256 to_string(Src
->getExtTypes().size()) + " def(s) vs " +
4257 to_string(DstI
.Operands
.NumDefs
) + " def(s))");
4259 // The root of the match also has constraints on the register bank so that it
4260 // matches the result instruction.
4262 for (const TypeSetByHwMode
&VTy
: Src
->getExtTypes()) {
4265 const auto &DstIOperand
= DstI
.Operands
[OpIdx
];
4266 Record
*DstIOpRec
= DstIOperand
.Rec
;
4267 if (DstI
.TheDef
->getName() == "COPY_TO_REGCLASS") {
4268 DstIOpRec
= getInitValueAsRegClass(Dst
->getChild(1)->getLeafValue());
4270 if (DstIOpRec
== nullptr)
4271 return failedImport(
4272 "COPY_TO_REGCLASS operand #1 isn't a register class");
4273 } else if (DstI
.TheDef
->getName() == "EXTRACT_SUBREG") {
4274 if (!Dst
->getChild(0)->isLeaf())
4275 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
4277 // We can assume that a subregister is in the same bank as it's super
4279 DstIOpRec
= getInitValueAsRegClass(Dst
->getChild(0)->getLeafValue());
4281 if (DstIOpRec
== nullptr)
4282 return failedImport("EXTRACT_SUBREG operand #0 isn't a register class");
4283 } else if (DstI
.TheDef
->getName() == "INSERT_SUBREG") {
4284 auto MaybeSuperClass
=
4285 inferSuperRegisterClass(VTy
, Dst
->getChild(0), Dst
->getChild(2));
4286 if (!MaybeSuperClass
)
4287 return failedImport(
4288 "Cannot infer register class for INSERT_SUBREG operand #0");
4289 // Move to the next pattern here, because the register class we found
4290 // doesn't necessarily have a record associated with it. So, we can't
4291 // set DstIOpRec using this.
4292 OperandMatcher
&OM
= InsnMatcher
.getOperand(OpIdx
);
4293 OM
.setSymbolicName(DstIOperand
.Name
);
4294 M
.defineOperand(OM
.getSymbolicName(), OM
);
4295 OM
.addPredicate
<RegisterBankOperandMatcher
>(**MaybeSuperClass
);
4298 } else if (DstIOpRec
->isSubClassOf("RegisterOperand"))
4299 DstIOpRec
= DstIOpRec
->getValueAsDef("RegClass");
4300 else if (!DstIOpRec
->isSubClassOf("RegisterClass"))
4301 return failedImport("Dst MI def isn't a register class" +
4304 OperandMatcher
&OM
= InsnMatcher
.getOperand(OpIdx
);
4305 OM
.setSymbolicName(DstIOperand
.Name
);
4306 M
.defineOperand(OM
.getSymbolicName(), OM
);
4307 OM
.addPredicate
<RegisterBankOperandMatcher
>(
4308 Target
.getRegisterClass(DstIOpRec
));
4312 auto DstMIBuilderOrError
= createAndImportInstructionRenderer(M
, Dst
);
4313 if (auto Error
= DstMIBuilderOrError
.takeError())
4314 return std::move(Error
);
4315 BuildMIAction
&DstMIBuilder
= DstMIBuilderOrError
.get();
4317 // Render the implicit defs.
4318 // These are only added to the root of the result.
4319 if (auto Error
= importImplicitDefRenderers(DstMIBuilder
, P
.getDstRegs()))
4320 return std::move(Error
);
4322 DstMIBuilder
.chooseInsnToMutate(M
);
4324 // Constrain the registers to classes. This is normally derived from the
4325 // emitted instruction but a few instructions require special handling.
4326 if (DstI
.TheDef
->getName() == "COPY_TO_REGCLASS") {
4327 // COPY_TO_REGCLASS does not provide operand constraints itself but the
4328 // result is constrained to the class given by the second child.
4330 getInitValueAsRegClass(Dst
->getChild(1)->getLeafValue());
4332 if (DstIOpRec
== nullptr)
4333 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
4335 M
.addAction
<ConstrainOperandToRegClassAction
>(
4336 0, 0, Target
.getRegisterClass(DstIOpRec
));
4338 // We're done with this pattern! It's eligible for GISel emission; return
4340 ++NumPatternImported
;
4341 return std::move(M
);
4344 if (DstI
.TheDef
->getName() == "EXTRACT_SUBREG") {
4345 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4346 // instructions, the result register class is controlled by the
4347 // subregisters of the operand. As a result, we must constrain the result
4348 // class rather than check that it's already the right one.
4349 if (!Dst
->getChild(0)->isLeaf())
4350 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4352 DefInit
*SubRegInit
= dyn_cast
<DefInit
>(Dst
->getChild(1)->getLeafValue());
4354 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4356 // Constrain the result to the same register bank as the operand.
4358 getInitValueAsRegClass(Dst
->getChild(0)->getLeafValue());
4360 if (DstIOpRec
== nullptr)
4361 return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
4363 CodeGenSubRegIndex
*SubIdx
= CGRegs
.getSubRegIdx(SubRegInit
->getDef());
4364 CodeGenRegisterClass
*SrcRC
= CGRegs
.getRegClass(DstIOpRec
);
4366 // It would be nice to leave this constraint implicit but we're required
4367 // to pick a register class so constrain the result to a register class
4368 // that can hold the correct MVT.
4370 // FIXME: This may introduce an extra copy if the chosen class doesn't
4371 // actually contain the subregisters.
4372 assert(Src
->getExtTypes().size() == 1 &&
4373 "Expected Src of EXTRACT_SUBREG to have one result type");
4375 const auto &SrcRCDstRCPair
=
4376 SrcRC
->getMatchingSubClassWithSubRegs(CGRegs
, SubIdx
);
4377 assert(SrcRCDstRCPair
->second
&& "Couldn't find a matching subclass");
4378 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 0, *SrcRCDstRCPair
->second
);
4379 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 1, *SrcRCDstRCPair
->first
);
4381 // We're done with this pattern! It's eligible for GISel emission; return
4383 ++NumPatternImported
;
4384 return std::move(M
);
4387 if (DstI
.TheDef
->getName() == "INSERT_SUBREG") {
4388 assert(Src
->getExtTypes().size() == 1 &&
4389 "Expected Src of INSERT_SUBREG to have one result type");
4390 // We need to constrain the destination, a super regsister source, and a
4391 // subregister source.
4392 auto SubClass
= inferRegClassFromPattern(Dst
->getChild(1));
4394 return failedImport(
4395 "Cannot infer register class from INSERT_SUBREG operand #1");
4396 auto SuperClass
= inferSuperRegisterClass(
4397 Src
->getExtType(0), Dst
->getChild(0), Dst
->getChild(2));
4399 return failedImport(
4400 "Cannot infer register class for INSERT_SUBREG operand #0");
4401 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 0, **SuperClass
);
4402 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 1, **SuperClass
);
4403 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 2, **SubClass
);
4404 ++NumPatternImported
;
4405 return std::move(M
);
4408 M
.addAction
<ConstrainOperandsToDefinitionAction
>(0);
4410 // We're done with this pattern! It's eligible for GISel emission; return it.
4411 ++NumPatternImported
;
4412 return std::move(M
);
4415 // Emit imm predicate table and an enum to reference them with.
4416 // The 'Predicate_' part of the name is redundant but eliminating it is more
4417 // trouble than it's worth.
4418 void GlobalISelEmitter::emitCxxPredicateFns(
4419 raw_ostream
&OS
, StringRef CodeFieldName
, StringRef TypeIdentifier
,
4420 StringRef ArgType
, StringRef ArgName
, StringRef AdditionalDeclarations
,
4421 std::function
<bool(const Record
*R
)> Filter
) {
4422 std::vector
<const Record
*> MatchedRecords
;
4423 const auto &Defs
= RK
.getAllDerivedDefinitions("PatFrag");
4424 std::copy_if(Defs
.begin(), Defs
.end(), std::back_inserter(MatchedRecords
),
4425 [&](Record
*Record
) {
4426 return !Record
->getValueAsString(CodeFieldName
).empty() &&
4430 if (!MatchedRecords
.empty()) {
4431 OS
<< "// PatFrag predicates.\n"
4433 std::string EnumeratorSeparator
=
4434 (" = GIPFP_" + TypeIdentifier
+ "_Invalid + 1,\n").str();
4435 for (const auto *Record
: MatchedRecords
) {
4436 OS
<< " GIPFP_" << TypeIdentifier
<< "_Predicate_" << Record
->getName()
4437 << EnumeratorSeparator
;
4438 EnumeratorSeparator
= ",\n";
4443 OS
<< "bool " << Target
.getName() << "InstructionSelector::test" << ArgName
4444 << "Predicate_" << TypeIdentifier
<< "(unsigned PredicateID, " << ArgType
<< " "
4445 << ArgName
<< ") const {\n"
4446 << AdditionalDeclarations
;
4447 if (!AdditionalDeclarations
.empty())
4449 if (!MatchedRecords
.empty())
4450 OS
<< " switch (PredicateID) {\n";
4451 for (const auto *Record
: MatchedRecords
) {
4452 OS
<< " case GIPFP_" << TypeIdentifier
<< "_Predicate_"
4453 << Record
->getName() << ": {\n"
4454 << " " << Record
->getValueAsString(CodeFieldName
) << "\n"
4455 << " llvm_unreachable(\"" << CodeFieldName
4456 << " should have returned\");\n"
4457 << " return false;\n"
4460 if (!MatchedRecords
.empty())
4462 OS
<< " llvm_unreachable(\"Unknown predicate\");\n"
4463 << " return false;\n"
4467 void GlobalISelEmitter::emitImmPredicateFns(
4468 raw_ostream
&OS
, StringRef TypeIdentifier
, StringRef ArgType
,
4469 std::function
<bool(const Record
*R
)> Filter
) {
4470 return emitCxxPredicateFns(OS
, "ImmediateCode", TypeIdentifier
, ArgType
,
4474 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream
&OS
) {
4475 return emitCxxPredicateFns(
4476 OS
, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4477 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
4478 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4480 [](const Record
*R
) { return true; });
4483 template <class GroupT
>
4484 std::vector
<Matcher
*> GlobalISelEmitter::optimizeRules(
4485 ArrayRef
<Matcher
*> Rules
,
4486 std::vector
<std::unique_ptr
<Matcher
>> &MatcherStorage
) {
4488 std::vector
<Matcher
*> OptRules
;
4489 std::unique_ptr
<GroupT
> CurrentGroup
= std::make_unique
<GroupT
>();
4490 assert(CurrentGroup
->empty() && "Newly created group isn't empty!");
4491 unsigned NumGroups
= 0;
4493 auto ProcessCurrentGroup
= [&]() {
4494 if (CurrentGroup
->empty())
4495 // An empty group is good to be reused:
4498 // If the group isn't large enough to provide any benefit, move all the
4499 // added rules out of it and make sure to re-create the group to properly
4500 // re-initialize it:
4501 if (CurrentGroup
->size() < 2)
4502 for (Matcher
*M
: CurrentGroup
->matchers())
4503 OptRules
.push_back(M
);
4505 CurrentGroup
->finalize();
4506 OptRules
.push_back(CurrentGroup
.get());
4507 MatcherStorage
.emplace_back(std::move(CurrentGroup
));
4510 CurrentGroup
= std::make_unique
<GroupT
>();
4512 for (Matcher
*Rule
: Rules
) {
4513 // Greedily add as many matchers as possible to the current group:
4514 if (CurrentGroup
->addMatcher(*Rule
))
4517 ProcessCurrentGroup();
4518 assert(CurrentGroup
->empty() && "A group wasn't properly re-initialized");
4520 // Try to add the pending matcher to a newly created empty group:
4521 if (!CurrentGroup
->addMatcher(*Rule
))
4522 // If we couldn't add the matcher to an empty group, that group type
4523 // doesn't support that kind of matchers at all, so just skip it:
4524 OptRules
.push_back(Rule
);
4526 ProcessCurrentGroup();
4528 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups
<< "\n");
4529 assert(CurrentGroup
->empty() && "The last group wasn't properly processed");
4534 GlobalISelEmitter::buildMatchTable(MutableArrayRef
<RuleMatcher
> Rules
,
4535 bool Optimize
, bool WithCoverage
) {
4536 std::vector
<Matcher
*> InputRules
;
4537 for (Matcher
&Rule
: Rules
)
4538 InputRules
.push_back(&Rule
);
4541 return MatchTable::buildTable(InputRules
, WithCoverage
);
4543 unsigned CurrentOrdering
= 0;
4544 StringMap
<unsigned> OpcodeOrder
;
4545 for (RuleMatcher
&Rule
: Rules
) {
4546 const StringRef Opcode
= Rule
.getOpcode();
4547 assert(!Opcode
.empty() && "Didn't expect an undefined opcode");
4548 if (OpcodeOrder
.count(Opcode
) == 0)
4549 OpcodeOrder
[Opcode
] = CurrentOrdering
++;
4552 std::stable_sort(InputRules
.begin(), InputRules
.end(),
4553 [&OpcodeOrder
](const Matcher
*A
, const Matcher
*B
) {
4554 auto *L
= static_cast<const RuleMatcher
*>(A
);
4555 auto *R
= static_cast<const RuleMatcher
*>(B
);
4556 return std::make_tuple(OpcodeOrder
[L
->getOpcode()],
4557 L
->getNumOperands()) <
4558 std::make_tuple(OpcodeOrder
[R
->getOpcode()],
4559 R
->getNumOperands());
4562 for (Matcher
*Rule
: InputRules
)
4565 std::vector
<std::unique_ptr
<Matcher
>> MatcherStorage
;
4566 std::vector
<Matcher
*> OptRules
=
4567 optimizeRules
<GroupMatcher
>(InputRules
, MatcherStorage
);
4569 for (Matcher
*Rule
: OptRules
)
4572 OptRules
= optimizeRules
<SwitchMatcher
>(OptRules
, MatcherStorage
);
4574 return MatchTable::buildTable(OptRules
, WithCoverage
);
4577 void GroupMatcher::optimize() {
4578 // Make sure we only sort by a specific predicate within a range of rules that
4579 // all have that predicate checked against a specific value (not a wildcard):
4580 auto F
= Matchers
.begin();
4582 auto E
= Matchers
.end();
4585 auto *R
= static_cast<RuleMatcher
*>(*T
);
4586 if (!R
->getFirstConditionAsRootType().get().isValid())
4590 std::stable_sort(F
, T
, [](Matcher
*A
, Matcher
*B
) {
4591 auto *L
= static_cast<RuleMatcher
*>(A
);
4592 auto *R
= static_cast<RuleMatcher
*>(B
);
4593 return L
->getFirstConditionAsRootType() <
4594 R
->getFirstConditionAsRootType();
4599 GlobalISelEmitter::optimizeRules
<GroupMatcher
>(Matchers
, MatcherStorage
)
4601 GlobalISelEmitter::optimizeRules
<SwitchMatcher
>(Matchers
, MatcherStorage
)
4605 void GlobalISelEmitter::run(raw_ostream
&OS
) {
4606 if (!UseCoverageFile
.empty()) {
4607 RuleCoverage
= CodeGenCoverage();
4608 auto RuleCoverageBufOrErr
= MemoryBuffer::getFile(UseCoverageFile
);
4609 if (!RuleCoverageBufOrErr
) {
4610 PrintWarning(SMLoc(), "Missing rule coverage data");
4611 RuleCoverage
= None
;
4613 if (!RuleCoverage
->parse(*RuleCoverageBufOrErr
.get(), Target
.getName())) {
4614 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
4615 RuleCoverage
= None
;
4620 // Track the run-time opcode values
4621 gatherOpcodeValues();
4622 // Track the run-time LLT ID values
4623 gatherTypeIDValues();
4625 // Track the GINodeEquiv definitions.
4628 emitSourceFileHeader(("Global Instruction Selector for the " +
4629 Target
.getName() + " target").str(), OS
);
4630 std::vector
<RuleMatcher
> Rules
;
4631 // Look through the SelectionDAG patterns we found, possibly emitting some.
4632 for (const PatternToMatch
&Pat
: CGP
.ptms()) {
4635 auto MatcherOrErr
= runOnPattern(Pat
);
4637 // The pattern analysis can fail, indicating an unsupported pattern.
4638 // Report that if we've been asked to do so.
4639 if (auto Err
= MatcherOrErr
.takeError()) {
4640 if (WarnOnSkippedPatterns
) {
4641 PrintWarning(Pat
.getSrcRecord()->getLoc(),
4642 "Skipped pattern: " + toString(std::move(Err
)));
4644 consumeError(std::move(Err
));
4646 ++NumPatternImportsSkipped
;
4651 if (RuleCoverage
->isCovered(MatcherOrErr
->getRuleID()))
4652 ++NumPatternsTested
;
4654 PrintWarning(Pat
.getSrcRecord()->getLoc(),
4655 "Pattern is not covered by a test");
4657 Rules
.push_back(std::move(MatcherOrErr
.get()));
4660 // Comparison function to order records by name.
4661 auto orderByName
= [](const Record
*A
, const Record
*B
) {
4662 return A
->getName() < B
->getName();
4665 std::vector
<Record
*> ComplexPredicates
=
4666 RK
.getAllDerivedDefinitions("GIComplexOperandMatcher");
4667 llvm::sort(ComplexPredicates
, orderByName
);
4669 std::vector
<Record
*> CustomRendererFns
=
4670 RK
.getAllDerivedDefinitions("GICustomOperandRenderer");
4671 llvm::sort(CustomRendererFns
, orderByName
);
4673 unsigned MaxTemporaries
= 0;
4674 for (const auto &Rule
: Rules
)
4675 MaxTemporaries
= std::max(MaxTemporaries
, Rule
.countRendererFns());
4677 OS
<< "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
4678 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures
.size()
4680 << "using PredicateBitset = "
4681 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
4682 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
4684 OS
<< "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
4685 << " mutable MatcherState State;\n"
4687 "ComplexRendererFns("
4689 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
4691 << " typedef void(" << Target
.getName()
4692 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
4695 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
4696 "CustomRendererFn> "
4698 OS
<< " static " << Target
.getName()
4699 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
4700 << " static " << Target
.getName()
4701 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
4702 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
4704 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
4706 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
4707 "&Imm) const override;\n"
4708 << " const int64_t *getMatchTable() const override;\n"
4709 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
4711 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
4713 OS
<< "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
4714 << ", State(" << MaxTemporaries
<< "),\n"
4715 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
4716 << ", ComplexPredicateFns, CustomRenderers)\n"
4717 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
4719 OS
<< "#ifdef GET_GLOBALISEL_IMPL\n";
4720 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures
,
4723 // Separate subtarget features by how often they must be recomputed.
4724 SubtargetFeatureInfoMap ModuleFeatures
;
4725 std::copy_if(SubtargetFeatures
.begin(), SubtargetFeatures
.end(),
4726 std::inserter(ModuleFeatures
, ModuleFeatures
.end()),
4727 [](const SubtargetFeatureInfoMap::value_type
&X
) {
4728 return !X
.second
.mustRecomputePerFunction();
4730 SubtargetFeatureInfoMap FunctionFeatures
;
4731 std::copy_if(SubtargetFeatures
.begin(), SubtargetFeatures
.end(),
4732 std::inserter(FunctionFeatures
, FunctionFeatures
.end()),
4733 [](const SubtargetFeatureInfoMap::value_type
&X
) {
4734 return X
.second
.mustRecomputePerFunction();
4737 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4738 Target
.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
4739 ModuleFeatures
, OS
);
4740 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4741 Target
.getName(), "InstructionSelector",
4742 "computeAvailableFunctionFeatures", FunctionFeatures
, OS
,
4743 "const MachineFunction *MF");
4745 // Emit a table containing the LLT objects needed by the matcher and an enum
4746 // for the matcher to reference them with.
4747 std::vector
<LLTCodeGen
> TypeObjects
;
4748 for (const auto &Ty
: KnownTypes
)
4749 TypeObjects
.push_back(Ty
);
4750 llvm::sort(TypeObjects
);
4751 OS
<< "// LLT Objects.\n"
4753 for (const auto &TypeObject
: TypeObjects
) {
4755 TypeObject
.emitCxxEnumValue(OS
);
4759 OS
<< "const static size_t NumTypeObjects = " << TypeObjects
.size() << ";\n"
4760 << "const static LLT TypeObjects[] = {\n";
4761 for (const auto &TypeObject
: TypeObjects
) {
4763 TypeObject
.emitCxxConstructorCall(OS
);
4768 // Emit a table containing the PredicateBitsets objects needed by the matcher
4769 // and an enum for the matcher to reference them with.
4770 std::vector
<std::vector
<Record
*>> FeatureBitsets
;
4771 for (auto &Rule
: Rules
)
4772 FeatureBitsets
.push_back(Rule
.getRequiredFeatures());
4773 llvm::sort(FeatureBitsets
, [&](const std::vector
<Record
*> &A
,
4774 const std::vector
<Record
*> &B
) {
4775 if (A
.size() < B
.size())
4777 if (A
.size() > B
.size())
4779 for (const auto &Pair
: zip(A
, B
)) {
4780 if (std::get
<0>(Pair
)->getName() < std::get
<1>(Pair
)->getName())
4782 if (std::get
<0>(Pair
)->getName() > std::get
<1>(Pair
)->getName())
4787 FeatureBitsets
.erase(
4788 std::unique(FeatureBitsets
.begin(), FeatureBitsets
.end()),
4789 FeatureBitsets
.end());
4790 OS
<< "// Feature bitsets.\n"
4792 << " GIFBS_Invalid,\n";
4793 for (const auto &FeatureBitset
: FeatureBitsets
) {
4794 if (FeatureBitset
.empty())
4796 OS
<< " " << getNameForFeatureBitset(FeatureBitset
) << ",\n";
4799 << "const static PredicateBitset FeatureBitsets[] {\n"
4800 << " {}, // GIFBS_Invalid\n";
4801 for (const auto &FeatureBitset
: FeatureBitsets
) {
4802 if (FeatureBitset
.empty())
4805 for (const auto &Feature
: FeatureBitset
) {
4806 const auto &I
= SubtargetFeatures
.find(Feature
);
4807 assert(I
!= SubtargetFeatures
.end() && "Didn't import predicate?");
4808 OS
<< I
->second
.getEnumBitName() << ", ";
4814 // Emit complex predicate table and an enum to reference them with.
4815 OS
<< "// ComplexPattern predicates.\n"
4817 << " GICP_Invalid,\n";
4818 for (const auto &Record
: ComplexPredicates
)
4819 OS
<< " GICP_" << Record
->getName() << ",\n";
4821 << "// See constructor for table contents\n\n";
4823 emitImmPredicateFns(OS
, "I64", "int64_t", [](const Record
*R
) {
4825 return !R
->getValueAsBitOrUnset("IsAPFloat", Unset
) &&
4826 !R
->getValueAsBit("IsAPInt");
4828 emitImmPredicateFns(OS
, "APFloat", "const APFloat &", [](const Record
*R
) {
4830 return R
->getValueAsBitOrUnset("IsAPFloat", Unset
);
4832 emitImmPredicateFns(OS
, "APInt", "const APInt &", [](const Record
*R
) {
4833 return R
->getValueAsBit("IsAPInt");
4835 emitMIPredicateFns(OS
);
4838 OS
<< Target
.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
4839 << Target
.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
4840 << " nullptr, // GICP_Invalid\n";
4841 for (const auto &Record
: ComplexPredicates
)
4842 OS
<< " &" << Target
.getName()
4843 << "InstructionSelector::" << Record
->getValueAsString("MatcherFn")
4844 << ", // " << Record
->getName() << "\n";
4847 OS
<< "// Custom renderers.\n"
4849 << " GICR_Invalid,\n";
4850 for (const auto &Record
: CustomRendererFns
)
4851 OS
<< " GICR_" << Record
->getValueAsString("RendererFn") << ", \n";
4854 OS
<< Target
.getName() << "InstructionSelector::CustomRendererFn\n"
4855 << Target
.getName() << "InstructionSelector::CustomRenderers[] = {\n"
4856 << " nullptr, // GICP_Invalid\n";
4857 for (const auto &Record
: CustomRendererFns
)
4858 OS
<< " &" << Target
.getName()
4859 << "InstructionSelector::" << Record
->getValueAsString("RendererFn")
4860 << ", // " << Record
->getName() << "\n";
4863 llvm::stable_sort(Rules
, [&](const RuleMatcher
&A
, const RuleMatcher
&B
) {
4864 int ScoreA
= RuleMatcherScores
[A
.getRuleID()];
4865 int ScoreB
= RuleMatcherScores
[B
.getRuleID()];
4866 if (ScoreA
> ScoreB
)
4868 if (ScoreB
> ScoreA
)
4870 if (A
.isHigherPriorityThan(B
)) {
4871 assert(!B
.isHigherPriorityThan(A
) && "Cannot be more important "
4872 "and less important at "
4879 OS
<< "bool " << Target
.getName()
4880 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
4881 "&CoverageInfo) const {\n"
4882 << " MachineFunction &MF = *I.getParent()->getParent();\n"
4883 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4884 << " // FIXME: This should be computed on a per-function basis rather "
4886 << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
4888 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
4889 << " NewMIVector OutMIs;\n"
4890 << " State.MIs.clear();\n"
4891 << " State.MIs.push_back(&I);\n\n"
4892 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
4893 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
4894 << ", CoverageInfo)) {\n"
4895 << " return true;\n"
4897 << " return false;\n"
4900 const MatchTable Table
=
4901 buildMatchTable(Rules
, OptimizeMatchTable
, GenerateCoverage
);
4902 OS
<< "const int64_t *" << Target
.getName()
4903 << "InstructionSelector::getMatchTable() const {\n";
4904 Table
.emitDeclaration(OS
);
4908 OS
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
4910 OS
<< "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
4911 << "PredicateBitset AvailableModuleFeatures;\n"
4912 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
4913 << "PredicateBitset getAvailableFeatures() const {\n"
4914 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
4916 << "PredicateBitset\n"
4917 << "computeAvailableModuleFeatures(const " << Target
.getName()
4918 << "Subtarget *Subtarget) const;\n"
4919 << "PredicateBitset\n"
4920 << "computeAvailableFunctionFeatures(const " << Target
.getName()
4921 << "Subtarget *Subtarget,\n"
4922 << " const MachineFunction *MF) const;\n"
4923 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
4925 OS
<< "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
4926 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
4927 << "AvailableFunctionFeatures()\n"
4928 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
4931 void GlobalISelEmitter::declareSubtargetFeature(Record
*Predicate
) {
4932 if (SubtargetFeatures
.count(Predicate
) == 0)
4933 SubtargetFeatures
.emplace(
4934 Predicate
, SubtargetFeatureInfo(Predicate
, SubtargetFeatures
.size()));
4937 void RuleMatcher::optimize() {
4938 for (auto &Item
: InsnVariableIDs
) {
4939 InstructionMatcher
&InsnMatcher
= *Item
.first
;
4940 for (auto &OM
: InsnMatcher
.operands()) {
4941 // Complex Patterns are usually expensive and they relatively rarely fail
4942 // on their own: more often we end up throwing away all the work done by a
4943 // matching part of a complex pattern because some other part of the
4944 // enclosing pattern didn't match. All of this makes it beneficial to
4945 // delay complex patterns until the very end of the rule matching,
4946 // especially for targets having lots of complex patterns.
4947 for (auto &OP
: OM
->predicates())
4948 if (isa
<ComplexPatternOperandMatcher
>(OP
))
4949 EpilogueMatchers
.emplace_back(std::move(OP
));
4950 OM
->eraseNullPredicates();
4952 InsnMatcher
.optimize();
4954 llvm::sort(EpilogueMatchers
, [](const std::unique_ptr
<PredicateMatcher
> &L
,
4955 const std::unique_ptr
<PredicateMatcher
> &R
) {
4956 return std::make_tuple(L
->getKind(), L
->getInsnVarID(), L
->getOpIdx()) <
4957 std::make_tuple(R
->getKind(), R
->getInsnVarID(), R
->getOpIdx());
4961 bool RuleMatcher::hasFirstCondition() const {
4962 if (insnmatchers_empty())
4964 InstructionMatcher
&Matcher
= insnmatchers_front();
4965 if (!Matcher
.predicates_empty())
4967 for (auto &OM
: Matcher
.operands())
4968 for (auto &OP
: OM
->predicates())
4969 if (!isa
<InstructionOperandMatcher
>(OP
))
4974 const PredicateMatcher
&RuleMatcher::getFirstCondition() const {
4975 assert(!insnmatchers_empty() &&
4976 "Trying to get a condition from an empty RuleMatcher");
4978 InstructionMatcher
&Matcher
= insnmatchers_front();
4979 if (!Matcher
.predicates_empty())
4980 return **Matcher
.predicates_begin();
4981 // If there is no more predicate on the instruction itself, look at its
4983 for (auto &OM
: Matcher
.operands())
4984 for (auto &OP
: OM
->predicates())
4985 if (!isa
<InstructionOperandMatcher
>(OP
))
4988 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
4992 std::unique_ptr
<PredicateMatcher
> RuleMatcher::popFirstCondition() {
4993 assert(!insnmatchers_empty() &&
4994 "Trying to pop a condition from an empty RuleMatcher");
4996 InstructionMatcher
&Matcher
= insnmatchers_front();
4997 if (!Matcher
.predicates_empty())
4998 return Matcher
.predicates_pop_front();
4999 // If there is no more predicate on the instruction itself, look at its
5001 for (auto &OM
: Matcher
.operands())
5002 for (auto &OP
: OM
->predicates())
5003 if (!isa
<InstructionOperandMatcher
>(OP
)) {
5004 std::unique_ptr
<PredicateMatcher
> Result
= std::move(OP
);
5005 OM
->eraseNullPredicates();
5009 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
5013 bool GroupMatcher::candidateConditionMatches(
5014 const PredicateMatcher
&Predicate
) const {
5017 // Sharing predicates for nested instructions is not supported yet as we
5018 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
5019 // only work on the original root instruction (InsnVarID == 0):
5020 if (Predicate
.getInsnVarID() != 0)
5022 // ... otherwise an empty group can handle any predicate with no specific
5027 const Matcher
&Representative
= **Matchers
.begin();
5028 const auto &RepresentativeCondition
= Representative
.getFirstCondition();
5029 // ... if not empty, the group can only accomodate matchers with the exact
5030 // same first condition:
5031 return Predicate
.isIdentical(RepresentativeCondition
);
5034 bool GroupMatcher::addMatcher(Matcher
&Candidate
) {
5035 if (!Candidate
.hasFirstCondition())
5038 const PredicateMatcher
&Predicate
= Candidate
.getFirstCondition();
5039 if (!candidateConditionMatches(Predicate
))
5042 Matchers
.push_back(&Candidate
);
5046 void GroupMatcher::finalize() {
5047 assert(Conditions
.empty() && "Already finalized?");
5051 Matcher
&FirstRule
= **Matchers
.begin();
5053 // All the checks are expected to succeed during the first iteration:
5054 for (const auto &Rule
: Matchers
)
5055 if (!Rule
->hasFirstCondition())
5057 const auto &FirstCondition
= FirstRule
.getFirstCondition();
5058 for (unsigned I
= 1, E
= Matchers
.size(); I
< E
; ++I
)
5059 if (!Matchers
[I
]->getFirstCondition().isIdentical(FirstCondition
))
5062 Conditions
.push_back(FirstRule
.popFirstCondition());
5063 for (unsigned I
= 1, E
= Matchers
.size(); I
< E
; ++I
)
5064 Matchers
[I
]->popFirstCondition();
5068 void GroupMatcher::emit(MatchTable
&Table
) {
5069 unsigned LabelID
= ~0U;
5070 if (!Conditions
.empty()) {
5071 LabelID
= Table
.allocateLabelID();
5072 Table
<< MatchTable::Opcode("GIM_Try", +1)
5073 << MatchTable::Comment("On fail goto")
5074 << MatchTable::JumpTarget(LabelID
) << MatchTable::LineBreak
;
5076 for (auto &Condition
: Conditions
)
5077 Condition
->emitPredicateOpcodes(
5078 Table
, *static_cast<RuleMatcher
*>(*Matchers
.begin()));
5080 for (const auto &M
: Matchers
)
5084 if (!Conditions
.empty())
5085 Table
<< MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
5086 << MatchTable::Label(LabelID
);
5089 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher
&P
) {
5090 return isa
<InstructionOpcodeMatcher
>(P
) || isa
<LLTOperandMatcher
>(P
);
5093 bool SwitchMatcher::candidateConditionMatches(
5094 const PredicateMatcher
&Predicate
) const {
5097 // Sharing predicates for nested instructions is not supported yet as we
5098 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
5099 // only work on the original root instruction (InsnVarID == 0):
5100 if (Predicate
.getInsnVarID() != 0)
5102 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
5103 // could fail as not all the types of conditions are supported:
5104 if (!isSupportedPredicateType(Predicate
))
5106 // ... or the condition might not have a proper implementation of
5107 // getValue() / isIdenticalDownToValue() yet:
5108 if (!Predicate
.hasValue())
5110 // ... otherwise an empty Switch can accomodate the condition with no
5111 // further requirements:
5115 const Matcher
&CaseRepresentative
= **Matchers
.begin();
5116 const auto &RepresentativeCondition
= CaseRepresentative
.getFirstCondition();
5117 // Switch-cases must share the same kind of condition and path to the value it
5119 if (!Predicate
.isIdenticalDownToValue(RepresentativeCondition
))
5122 const auto Value
= Predicate
.getValue();
5123 // ... but be unique with respect to the actual value they check:
5124 return Values
.count(Value
) == 0;
5127 bool SwitchMatcher::addMatcher(Matcher
&Candidate
) {
5128 if (!Candidate
.hasFirstCondition())
5131 const PredicateMatcher
&Predicate
= Candidate
.getFirstCondition();
5132 if (!candidateConditionMatches(Predicate
))
5134 const auto Value
= Predicate
.getValue();
5135 Values
.insert(Value
);
5137 Matchers
.push_back(&Candidate
);
5141 void SwitchMatcher::finalize() {
5142 assert(Condition
== nullptr && "Already finalized");
5143 assert(Values
.size() == Matchers
.size() && "Broken SwitchMatcher");
5147 std::stable_sort(Matchers
.begin(), Matchers
.end(),
5148 [](const Matcher
*L
, const Matcher
*R
) {
5149 return L
->getFirstCondition().getValue() <
5150 R
->getFirstCondition().getValue();
5152 Condition
= Matchers
[0]->popFirstCondition();
5153 for (unsigned I
= 1, E
= Values
.size(); I
< E
; ++I
)
5154 Matchers
[I
]->popFirstCondition();
5157 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher
&P
,
5158 MatchTable
&Table
) {
5159 assert(isSupportedPredicateType(P
) && "Predicate type is not supported");
5161 if (const auto *Condition
= dyn_cast
<InstructionOpcodeMatcher
>(&P
)) {
5162 Table
<< MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
5163 << MatchTable::IntValue(Condition
->getInsnVarID());
5166 if (const auto *Condition
= dyn_cast
<LLTOperandMatcher
>(&P
)) {
5167 Table
<< MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
5168 << MatchTable::IntValue(Condition
->getInsnVarID())
5169 << MatchTable::Comment("Op")
5170 << MatchTable::IntValue(Condition
->getOpIdx());
5174 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
5175 "predicate type that is claimed to be supported");
5178 void SwitchMatcher::emit(MatchTable
&Table
) {
5179 assert(Values
.size() == Matchers
.size() && "Broken SwitchMatcher");
5182 assert(Condition
!= nullptr &&
5183 "Broken SwitchMatcher, hasn't been finalized?");
5185 std::vector
<unsigned> LabelIDs(Values
.size());
5186 std::generate(LabelIDs
.begin(), LabelIDs
.end(),
5187 [&Table
]() { return Table
.allocateLabelID(); });
5188 const unsigned Default
= Table
.allocateLabelID();
5190 const int64_t LowerBound
= Values
.begin()->getRawValue();
5191 const int64_t UpperBound
= Values
.rbegin()->getRawValue() + 1;
5193 emitPredicateSpecificOpcodes(*Condition
, Table
);
5195 Table
<< MatchTable::Comment("[") << MatchTable::IntValue(LowerBound
)
5196 << MatchTable::IntValue(UpperBound
) << MatchTable::Comment(")")
5197 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default
);
5199 int64_t J
= LowerBound
;
5200 auto VI
= Values
.begin();
5201 for (unsigned I
= 0, E
= Values
.size(); I
< E
; ++I
) {
5203 while (J
++ < V
.getRawValue())
5204 Table
<< MatchTable::IntValue(0);
5205 V
.turnIntoComment();
5206 Table
<< MatchTable::LineBreak
<< V
<< MatchTable::JumpTarget(LabelIDs
[I
]);
5208 Table
<< MatchTable::LineBreak
;
5210 for (unsigned I
= 0, E
= Values
.size(); I
< E
; ++I
) {
5211 Table
<< MatchTable::Label(LabelIDs
[I
]);
5212 Matchers
[I
]->emit(Table
);
5213 Table
<< MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak
;
5215 Table
<< MatchTable::Label(Default
);
5218 unsigned OperandMatcher::getInsnVarID() const { return Insn
.getInsnVarID(); }
5220 } // end anonymous namespace
5222 //===----------------------------------------------------------------------===//
5225 void EmitGlobalISel(RecordKeeper
&RK
, raw_ostream
&OS
) {
5226 GlobalISelEmitter(RK
).run(OS
);
5228 } // End llvm namespace