1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
47 #define DEBUG_TYPE "regalloc-emitter"
49 //===----------------------------------------------------------------------===//
51 //===----------------------------------------------------------------------===//
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record
*R
, unsigned Enum
)
54 : TheDef(R
), EnumValue(Enum
), AllSuperRegsCovered(true), Artificial(true) {
56 if (R
->getValue("Namespace"))
57 Namespace
= R
->getValueAsString("Namespace");
58 Size
= R
->getValueAsInt("Size");
59 Offset
= R
->getValueAsInt("Offset");
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N
, StringRef Nspace
,
64 : TheDef(nullptr), Name(N
), Namespace(Nspace
), Size(-1), Offset(-1),
65 EnumValue(Enum
), AllSuperRegsCovered(true), Artificial(true) {
68 std::string
CodeGenSubRegIndex::getQualifiedName() const {
69 std::string N
= getNamespace();
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank
&RegBank
) {
80 std::vector
<Record
*> Comps
= TheDef
->getValueAsListOfDefs("ComposedOf");
82 if (Comps
.size() != 2)
83 PrintFatalError(TheDef
->getLoc(),
84 "ComposedOf must have exactly two entries");
85 CodeGenSubRegIndex
*A
= RegBank
.getSubRegIdx(Comps
[0]);
86 CodeGenSubRegIndex
*B
= RegBank
.getSubRegIdx(Comps
[1]);
87 CodeGenSubRegIndex
*X
= A
->addComposite(B
, this);
89 PrintFatalError(TheDef
->getLoc(), "Ambiguous ComposedOf entries");
92 std::vector
<Record
*> Parts
=
93 TheDef
->getValueAsListOfDefs("CoveringSubRegIndices");
96 PrintFatalError(TheDef
->getLoc(),
97 "CoveredBySubRegs must have two or more entries");
98 SmallVector
<CodeGenSubRegIndex
*, 8> IdxParts
;
99 for (Record
*Part
: Parts
)
100 IdxParts
.push_back(RegBank
.getSubRegIdx(Part
));
101 setConcatenationOf(IdxParts
);
105 LaneBitmask
CodeGenSubRegIndex::computeLaneMask() const {
110 // Recursion guard, shouldn't be required.
111 LaneMask
= LaneBitmask::getAll();
113 // The lane mask is simply the union of all sub-indices.
115 for (const auto &C
: Composed
)
116 M
|= C
.second
->computeLaneMask();
117 assert(M
.any() && "Missing lane mask, sub-register cycle?");
122 void CodeGenSubRegIndex::setConcatenationOf(
123 ArrayRef
<CodeGenSubRegIndex
*> Parts
) {
124 if (ConcatenationOf
.empty())
125 ConcatenationOf
.assign(Parts
.begin(), Parts
.end());
127 assert(std::equal(Parts
.begin(), Parts
.end(),
128 ConcatenationOf
.begin()) && "parts consistent");
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132 for (SmallVectorImpl
<CodeGenSubRegIndex
*>::iterator
133 I
= ConcatenationOf
.begin(); I
!= ConcatenationOf
.end(); /*empty*/) {
134 CodeGenSubRegIndex
*SubIdx
= *I
;
135 SubIdx
->computeConcatTransitiveClosure();
137 for (CodeGenSubRegIndex
*SRI
: SubIdx
->ConcatenationOf
)
138 assert(SRI
->ConcatenationOf
.empty() && "No transitive closure?");
141 if (SubIdx
->ConcatenationOf
.empty()) {
144 I
= ConcatenationOf
.erase(I
);
145 I
= ConcatenationOf
.insert(I
, SubIdx
->ConcatenationOf
.begin(),
146 SubIdx
->ConcatenationOf
.end());
147 I
+= SubIdx
->ConcatenationOf
.size();
152 //===----------------------------------------------------------------------===//
154 //===----------------------------------------------------------------------===//
156 CodeGenRegister::CodeGenRegister(Record
*R
, unsigned Enum
)
159 CostPerUse(R
->getValueAsInt("CostPerUse")),
160 CoveredBySubRegs(R
->getValueAsBit("CoveredBySubRegs")),
161 HasDisjunctSubRegs(false),
162 SubRegsComplete(false),
163 SuperRegsComplete(false),
165 Artificial
= R
->getValueAsBit("isArtificial");
168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank
&RegBank
) {
169 std::vector
<Record
*> SRIs
= TheDef
->getValueAsListOfDefs("SubRegIndices");
170 std::vector
<Record
*> SRs
= TheDef
->getValueAsListOfDefs("SubRegs");
172 if (SRIs
.size() != SRs
.size())
173 PrintFatalError(TheDef
->getLoc(),
174 "SubRegs and SubRegIndices must have the same size");
176 for (unsigned i
= 0, e
= SRIs
.size(); i
!= e
; ++i
) {
177 ExplicitSubRegIndices
.push_back(RegBank
.getSubRegIdx(SRIs
[i
]));
178 ExplicitSubRegs
.push_back(RegBank
.getReg(SRs
[i
]));
181 // Also compute leading super-registers. Each register has a list of
182 // covered-by-subregs super-registers where it appears as the first explicit
185 // This is used by computeSecondarySubRegs() to find candidates.
186 if (CoveredBySubRegs
&& !ExplicitSubRegs
.empty())
187 ExplicitSubRegs
.front()->LeadingSuperRegs
.push_back(this);
189 // Add ad hoc alias links. This is a symmetric relationship between two
190 // registers, so build a symmetric graph by adding links in both ends.
191 std::vector
<Record
*> Aliases
= TheDef
->getValueAsListOfDefs("Aliases");
192 for (Record
*Alias
: Aliases
) {
193 CodeGenRegister
*Reg
= RegBank
.getReg(Alias
);
194 ExplicitAliases
.push_back(Reg
);
195 Reg
->ExplicitAliases
.push_back(this);
199 const StringRef
CodeGenRegister::getName() const {
200 assert(TheDef
&& "no def");
201 return TheDef
->getName();
206 // Iterate over all register units in a set of registers.
207 class RegUnitIterator
{
208 CodeGenRegister::Vec::const_iterator RegI
, RegE
;
209 CodeGenRegister::RegUnitList::iterator UnitI
, UnitE
;
212 RegUnitIterator(const CodeGenRegister::Vec
&Regs
):
213 RegI(Regs
.begin()), RegE(Regs
.end()) {
216 UnitI
= (*RegI
)->getRegUnits().begin();
217 UnitE
= (*RegI
)->getRegUnits().end();
222 bool isValid() const { return UnitI
!= UnitE
; }
224 unsigned operator* () const { assert(isValid()); return *UnitI
; }
226 const CodeGenRegister
*getReg() const { assert(isValid()); return *RegI
; }
228 /// Preincrement. Move to the next unit.
230 assert(isValid() && "Cannot advance beyond the last operand");
237 while (UnitI
== UnitE
) {
240 UnitI
= (*RegI
)->getRegUnits().begin();
241 UnitE
= (*RegI
)->getRegUnits().end();
246 } // end anonymous namespace
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList
&RegUnits
, unsigned Unit
) {
250 return RegUnits
.test(Unit
);
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank
&RegBank
) {
256 bool changed
= false;
257 for (const auto &SubReg
: SubRegs
) {
258 CodeGenRegister
*SR
= SubReg
.second
;
259 // Merge the subregister's units into this register's RegUnits.
260 changed
|= (RegUnits
|= SR
->RegUnits
);
266 const CodeGenRegister::SubRegMap
&
267 CodeGenRegister::computeSubRegs(CodeGenRegBank
&RegBank
) {
268 // Only compute this map once.
271 SubRegsComplete
= true;
273 HasDisjunctSubRegs
= ExplicitSubRegs
.size() > 1;
275 // First insert the explicit subregs and make sure they are fully indexed.
276 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
277 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
278 CodeGenSubRegIndex
*Idx
= ExplicitSubRegIndices
[i
];
280 Idx
->Artificial
= false;
281 if (!SubRegs
.insert(std::make_pair(Idx
, SR
)).second
)
282 PrintFatalError(TheDef
->getLoc(), "SubRegIndex " + Idx
->getName() +
283 " appears twice in Register " + getName());
284 // Map explicit sub-registers first, so the names take precedence.
285 // The inherited sub-registers are mapped below.
286 SubReg2Idx
.insert(std::make_pair(SR
, Idx
));
289 // Keep track of inherited subregs and how they can be reached.
290 SmallPtrSet
<CodeGenRegister
*, 8> Orphans
;
292 // Clone inherited subregs and place duplicate entries in Orphans.
293 // Here the order is important - earlier subregs take precedence.
294 for (CodeGenRegister
*ESR
: ExplicitSubRegs
) {
295 const SubRegMap
&Map
= ESR
->computeSubRegs(RegBank
);
296 HasDisjunctSubRegs
|= ESR
->HasDisjunctSubRegs
;
298 for (const auto &SR
: Map
) {
299 if (!SubRegs
.insert(SR
).second
)
300 Orphans
.insert(SR
.second
);
304 // Expand any composed subreg indices.
305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
307 // expanded subreg indices recursively.
308 SmallVector
<CodeGenSubRegIndex
*, 8> Indices
= ExplicitSubRegIndices
;
309 for (unsigned i
= 0; i
!= Indices
.size(); ++i
) {
310 CodeGenSubRegIndex
*Idx
= Indices
[i
];
311 const CodeGenSubRegIndex::CompMap
&Comps
= Idx
->getComposites();
312 CodeGenRegister
*SR
= SubRegs
[Idx
];
313 const SubRegMap
&Map
= SR
->computeSubRegs(RegBank
);
315 // Look at the possible compositions of Idx.
316 // They may not all be supported by SR.
317 for (CodeGenSubRegIndex::CompMap::const_iterator I
= Comps
.begin(),
318 E
= Comps
.end(); I
!= E
; ++I
) {
319 SubRegMap::const_iterator SRI
= Map
.find(I
->first
);
320 if (SRI
== Map
.end())
321 continue; // Idx + I->first doesn't exist in SR.
322 // Add I->second as a name for the subreg SRI->second, assuming it is
323 // orphaned, and the name isn't already used for something else.
324 if (SubRegs
.count(I
->second
) || !Orphans
.erase(SRI
->second
))
326 // We found a new name for the orphaned sub-register.
327 SubRegs
.insert(std::make_pair(I
->second
, SRI
->second
));
328 Indices
.push_back(I
->second
);
332 // Now Orphans contains the inherited subregisters without a direct index.
333 // Create inferred indexes for all missing entries.
334 // Work backwards in the Indices vector in order to compose subregs bottom-up.
335 // Consider this subreg sequence:
337 // qsub_1 -> dsub_0 -> ssub_0
339 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340 // can be reached in two different ways:
345 // We pick the latter composition because another register may have [dsub_0,
346 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
347 // dsub_2 -> ssub_0 composition can be shared.
348 while (!Indices
.empty() && !Orphans
.empty()) {
349 CodeGenSubRegIndex
*Idx
= Indices
.pop_back_val();
350 CodeGenRegister
*SR
= SubRegs
[Idx
];
351 const SubRegMap
&Map
= SR
->computeSubRegs(RegBank
);
352 for (const auto &SubReg
: Map
)
353 if (Orphans
.erase(SubReg
.second
))
354 SubRegs
[RegBank
.getCompositeSubRegIndex(Idx
, SubReg
.first
)] = SubReg
.second
;
357 // Compute the inverse SubReg -> Idx map.
358 for (const auto &SubReg
: SubRegs
) {
359 if (SubReg
.second
== this) {
362 Loc
= TheDef
->getLoc();
363 PrintFatalError(Loc
, "Register " + getName() +
364 " has itself as a sub-register");
367 // Compute AllSuperRegsCovered.
368 if (!CoveredBySubRegs
)
369 SubReg
.first
->AllSuperRegsCovered
= false;
371 // Ensure that every sub-register has a unique name.
372 DenseMap
<const CodeGenRegister
*, CodeGenSubRegIndex
*>::iterator Ins
=
373 SubReg2Idx
.insert(std::make_pair(SubReg
.second
, SubReg
.first
)).first
;
374 if (Ins
->second
== SubReg
.first
)
376 // Trouble: Two different names for SubReg.second.
379 Loc
= TheDef
->getLoc();
380 PrintFatalError(Loc
, "Sub-register can't have two names: " +
381 SubReg
.second
->getName() + " available as " +
382 SubReg
.first
->getName() + " and " + Ins
->second
->getName());
385 // Derive possible names for sub-register concatenations from any explicit
386 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387 // that getConcatSubRegIndex() won't invent any concatenated indices that the
388 // user already specified.
389 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
390 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
391 if (!SR
->CoveredBySubRegs
|| SR
->ExplicitSubRegs
.size() <= 1 ||
395 // SR is composed of multiple sub-regs. Find their names in this register.
396 SmallVector
<CodeGenSubRegIndex
*, 8> Parts
;
397 for (unsigned j
= 0, e
= SR
->ExplicitSubRegs
.size(); j
!= e
; ++j
) {
398 CodeGenSubRegIndex
&I
= *SR
->ExplicitSubRegIndices
[j
];
400 Parts
.push_back(getSubRegIndex(SR
->ExplicitSubRegs
[j
]));
403 // Offer this as an existing spelling for the concatenation of Parts.
404 CodeGenSubRegIndex
&Idx
= *ExplicitSubRegIndices
[i
];
405 Idx
.setConcatenationOf(Parts
);
408 // Initialize RegUnitList. Because getSubRegs is called recursively, this
409 // processes the register hierarchy in postorder.
411 // Inherit all sub-register units. It is good enough to look at the explicit
412 // sub-registers, the other registers won't contribute any more units.
413 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
414 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
415 RegUnits
|= SR
->RegUnits
;
418 // Absent any ad hoc aliasing, we create one register unit per leaf register.
419 // These units correspond to the maximal cliques in the register overlap
420 // graph which is optimal.
422 // When there is ad hoc aliasing, we simply create one unit per edge in the
423 // undirected ad hoc aliasing graph. Technically, we could do better by
424 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
425 // are extremely rare anyway (I've never seen one), so we don't bother with
426 // the added complexity.
427 for (unsigned i
= 0, e
= ExplicitAliases
.size(); i
!= e
; ++i
) {
428 CodeGenRegister
*AR
= ExplicitAliases
[i
];
429 // Only visit each edge once.
430 if (AR
->SubRegsComplete
)
432 // Create a RegUnit representing this alias edge, and add it to both
434 unsigned Unit
= RegBank
.newRegUnit(this, AR
);
436 AR
->RegUnits
.set(Unit
);
439 // Finally, create units for leaf registers without ad hoc aliases. Note that
440 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
441 // necessary. This means the aliasing leaf registers can share a single unit.
442 if (RegUnits
.empty())
443 RegUnits
.set(RegBank
.newRegUnit(this));
445 // We have now computed the native register units. More may be adopted later
446 // for balancing purposes.
447 NativeRegUnits
= RegUnits
;
452 // In a register that is covered by its sub-registers, try to find redundant
453 // sub-registers. For example:
459 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
460 // the register definition.
462 // The explicitly specified registers form a tree. This function discovers
463 // sub-register relationships that would force a DAG.
465 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank
&RegBank
) {
466 SmallVector
<SubRegMap::value_type
, 8> NewSubRegs
;
468 std::queue
<std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*>> SubRegQueue
;
469 for (std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*> P
: SubRegs
)
472 // Look at the leading super-registers of each sub-register. Those are the
473 // candidates for new sub-registers, assuming they are fully contained in
475 while (!SubRegQueue
.empty()) {
476 CodeGenSubRegIndex
*SubRegIdx
;
477 const CodeGenRegister
*SubReg
;
478 std::tie(SubRegIdx
, SubReg
) = SubRegQueue
.front();
481 const CodeGenRegister::SuperRegList
&Leads
= SubReg
->LeadingSuperRegs
;
482 for (unsigned i
= 0, e
= Leads
.size(); i
!= e
; ++i
) {
483 CodeGenRegister
*Cand
= const_cast<CodeGenRegister
*>(Leads
[i
]);
484 // Already got this sub-register?
485 if (Cand
== this || getSubRegIndex(Cand
))
487 // Check if each component of Cand is already a sub-register.
488 assert(!Cand
->ExplicitSubRegs
.empty() &&
489 "Super-register has no sub-registers");
490 if (Cand
->ExplicitSubRegs
.size() == 1)
492 SmallVector
<CodeGenSubRegIndex
*, 8> Parts
;
493 // We know that the first component is (SubRegIdx,SubReg). However we
494 // may still need to split it into smaller subregister parts.
495 assert(Cand
->ExplicitSubRegs
[0] == SubReg
&& "LeadingSuperRegs correct");
496 assert(getSubRegIndex(SubReg
) == SubRegIdx
&& "LeadingSuperRegs correct");
497 for (CodeGenRegister
*SubReg
: Cand
->ExplicitSubRegs
) {
498 if (CodeGenSubRegIndex
*SubRegIdx
= getSubRegIndex(SubReg
)) {
499 if (SubRegIdx
->ConcatenationOf
.empty()) {
500 Parts
.push_back(SubRegIdx
);
502 for (CodeGenSubRegIndex
*SubIdx
: SubRegIdx
->ConcatenationOf
)
503 Parts
.push_back(SubIdx
);
505 // Sub-register doesn't exist.
510 // There is nothing to do if some Cand sub-register is not part of this
515 // Each part of Cand is a sub-register of this. Make the full Cand also
516 // a sub-register with a concatenated sub-register index.
517 CodeGenSubRegIndex
*Concat
= RegBank
.getConcatSubRegIndex(Parts
);
518 std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*> NewSubReg
=
519 std::make_pair(Concat
, Cand
);
521 if (!SubRegs
.insert(NewSubReg
).second
)
524 // We inserted a new subregister.
525 NewSubRegs
.push_back(NewSubReg
);
526 SubRegQueue
.push(NewSubReg
);
527 SubReg2Idx
.insert(std::make_pair(Cand
, Concat
));
531 // Create sub-register index composition maps for the synthesized indices.
532 for (unsigned i
= 0, e
= NewSubRegs
.size(); i
!= e
; ++i
) {
533 CodeGenSubRegIndex
*NewIdx
= NewSubRegs
[i
].first
;
534 CodeGenRegister
*NewSubReg
= NewSubRegs
[i
].second
;
535 for (SubRegMap::const_iterator SI
= NewSubReg
->SubRegs
.begin(),
536 SE
= NewSubReg
->SubRegs
.end(); SI
!= SE
; ++SI
) {
537 CodeGenSubRegIndex
*SubIdx
= getSubRegIndex(SI
->second
);
539 PrintFatalError(TheDef
->getLoc(), "No SubRegIndex for " +
540 SI
->second
->getName() + " in " + getName());
541 NewIdx
->addComposite(SI
->first
, SubIdx
);
546 void CodeGenRegister::computeSuperRegs(CodeGenRegBank
&RegBank
) {
547 // Only visit each register once.
548 if (SuperRegsComplete
)
550 SuperRegsComplete
= true;
552 // Make sure all sub-registers have been visited first, so the super-reg
553 // lists will be topologically ordered.
554 for (SubRegMap::const_iterator I
= SubRegs
.begin(), E
= SubRegs
.end();
556 I
->second
->computeSuperRegs(RegBank
);
558 // Now add this as a super-register on all sub-registers.
559 // Also compute the TopoSigId in post-order.
561 for (SubRegMap::const_iterator I
= SubRegs
.begin(), E
= SubRegs
.end();
563 // Topological signature computed from SubIdx, TopoId(SubReg).
564 // Loops and idempotent indices have TopoSig = ~0u.
565 Id
.push_back(I
->first
->EnumValue
);
566 Id
.push_back(I
->second
->TopoSig
);
568 // Don't add duplicate entries.
569 if (!I
->second
->SuperRegs
.empty() && I
->second
->SuperRegs
.back() == this)
571 I
->second
->SuperRegs
.push_back(this);
573 TopoSig
= RegBank
.getTopoSig(Id
);
577 CodeGenRegister::addSubRegsPreOrder(SetVector
<const CodeGenRegister
*> &OSet
,
578 CodeGenRegBank
&RegBank
) const {
579 assert(SubRegsComplete
&& "Must precompute sub-registers");
580 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
581 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
583 SR
->addSubRegsPreOrder(OSet
, RegBank
);
585 // Add any secondary sub-registers that weren't part of the explicit tree.
586 for (SubRegMap::const_iterator I
= SubRegs
.begin(), E
= SubRegs
.end();
588 OSet
.insert(I
->second
);
591 // Get the sum of this register's unit weights.
592 unsigned CodeGenRegister::getWeight(const CodeGenRegBank
&RegBank
) const {
594 for (RegUnitList::iterator I
= RegUnits
.begin(), E
= RegUnits
.end();
596 Weight
+= RegBank
.getRegUnit(*I
).Weight
;
601 //===----------------------------------------------------------------------===//
603 //===----------------------------------------------------------------------===//
605 // A RegisterTuples def is used to generate pseudo-registers from lists of
606 // sub-registers. We provide a SetTheory expander class that returns the new
610 struct TupleExpander
: SetTheory::Expander
{
611 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
612 // the synthesized definitions for their lifetime.
613 std::vector
<std::unique_ptr
<Record
>> &SynthDefs
;
615 TupleExpander(std::vector
<std::unique_ptr
<Record
>> &SynthDefs
)
616 : SynthDefs(SynthDefs
) {}
618 void expand(SetTheory
&ST
, Record
*Def
, SetTheory::RecSet
&Elts
) override
{
619 std::vector
<Record
*> Indices
= Def
->getValueAsListOfDefs("SubRegIndices");
620 unsigned Dim
= Indices
.size();
621 ListInit
*SubRegs
= Def
->getValueAsListInit("SubRegs");
622 if (Dim
!= SubRegs
->size())
623 PrintFatalError(Def
->getLoc(), "SubRegIndices and SubRegs size mismatch");
625 PrintFatalError(Def
->getLoc(),
626 "Tuples must have at least 2 sub-registers");
628 // Evaluate the sub-register lists to be zipped.
629 unsigned Length
= ~0u;
630 SmallVector
<SetTheory::RecSet
, 4> Lists(Dim
);
631 for (unsigned i
= 0; i
!= Dim
; ++i
) {
632 ST
.evaluate(SubRegs
->getElement(i
), Lists
[i
], Def
->getLoc());
633 Length
= std::min(Length
, unsigned(Lists
[i
].size()));
639 // Precompute some types.
640 Record
*RegisterCl
= Def
->getRecords().getClass("Register");
641 RecTy
*RegisterRecTy
= RecordRecTy::get(RegisterCl
);
642 std::vector
<StringRef
> RegNames
=
643 Def
->getValueAsListOfStrings("RegAsmNames");
646 for (unsigned n
= 0; n
!= Length
; ++n
) {
648 Record
*Proto
= Lists
[0][n
];
649 std::vector
<Init
*> Tuple
;
650 unsigned CostPerUse
= 0;
651 for (unsigned i
= 0; i
!= Dim
; ++i
) {
652 Record
*Reg
= Lists
[i
][n
];
654 Name
+= Reg
->getName();
655 Tuple
.push_back(DefInit::get(Reg
));
656 CostPerUse
= std::max(CostPerUse
,
657 unsigned(Reg
->getValueAsInt("CostPerUse")));
660 StringInit
*AsmName
= StringInit::get("");
661 if (!RegNames
.empty()) {
662 if (RegNames
.size() <= n
)
663 PrintFatalError(Def
->getLoc(),
664 "Register tuple definition missing name for '" +
666 AsmName
= StringInit::get(RegNames
[n
]);
669 // Create a new Record representing the synthesized register. This record
670 // is only for consumption by CodeGenRegister, it is not added to the
672 SynthDefs
.emplace_back(
673 llvm::make_unique
<Record
>(Name
, Def
->getLoc(), Def
->getRecords()));
674 Record
*NewReg
= SynthDefs
.back().get();
677 // Copy Proto super-classes.
678 ArrayRef
<std::pair
<Record
*, SMRange
>> Supers
= Proto
->getSuperClasses();
679 for (const auto &SuperPair
: Supers
)
680 NewReg
->addSuperClass(SuperPair
.first
, SuperPair
.second
);
682 // Copy Proto fields.
683 for (unsigned i
= 0, e
= Proto
->getValues().size(); i
!= e
; ++i
) {
684 RecordVal RV
= Proto
->getValues()[i
];
686 // Skip existing fields, like NAME.
687 if (NewReg
->getValue(RV
.getNameInit()))
690 StringRef Field
= RV
.getName();
692 // Replace the sub-register list with Tuple.
693 if (Field
== "SubRegs")
694 RV
.setValue(ListInit::get(Tuple
, RegisterRecTy
));
696 if (Field
== "AsmName")
697 RV
.setValue(AsmName
);
699 // CostPerUse is aggregated from all Tuple members.
700 if (Field
== "CostPerUse")
701 RV
.setValue(IntInit::get(CostPerUse
));
703 // Composite registers are always covered by sub-registers.
704 if (Field
== "CoveredBySubRegs")
705 RV
.setValue(BitInit::get(true));
707 // Copy fields from the RegisterTuples def.
708 if (Field
== "SubRegIndices" ||
709 Field
== "CompositeIndices") {
710 NewReg
->addValue(*Def
->getValue(Field
));
714 // Some fields get their default uninitialized value.
715 if (Field
== "DwarfNumbers" ||
716 Field
== "DwarfAlias" ||
717 Field
== "Aliases") {
718 if (const RecordVal
*DefRV
= RegisterCl
->getValue(Field
))
719 NewReg
->addValue(*DefRV
);
723 // Everything else is copied from Proto.
724 NewReg
->addValue(RV
);
730 } // end anonymous namespace
732 //===----------------------------------------------------------------------===//
733 // CodeGenRegisterClass
734 //===----------------------------------------------------------------------===//
736 static void sortAndUniqueRegisters(CodeGenRegister::Vec
&M
) {
737 llvm::sort(M
, deref
<llvm::less
>());
738 M
.erase(std::unique(M
.begin(), M
.end(), deref
<llvm::equal
>()), M
.end());
741 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank
&RegBank
, Record
*R
)
744 TopoSigs(RegBank
.getNumTopoSigs()),
747 std::vector
<Record
*> TypeList
= R
->getValueAsListOfDefs("RegTypes");
748 for (unsigned i
= 0, e
= TypeList
.size(); i
!= e
; ++i
) {
749 Record
*Type
= TypeList
[i
];
750 if (!Type
->isSubClassOf("ValueType"))
751 PrintFatalError(R
->getLoc(),
752 "RegTypes list member '" + Type
->getName() +
753 "' does not derive from the ValueType class!");
754 VTs
.push_back(getValueTypeByHwMode(Type
, RegBank
.getHwModes()));
756 assert(!VTs
.empty() && "RegisterClass must contain at least one ValueType!");
758 // Allocation order 0 is the full set. AltOrders provides others.
759 const SetTheory::RecVec
*Elements
= RegBank
.getSets().expand(R
);
760 ListInit
*AltOrders
= R
->getValueAsListInit("AltOrders");
761 Orders
.resize(1 + AltOrders
->size());
763 // Default allocation order always contains all registers.
765 for (unsigned i
= 0, e
= Elements
->size(); i
!= e
; ++i
) {
766 Orders
[0].push_back((*Elements
)[i
]);
767 const CodeGenRegister
*Reg
= RegBank
.getReg((*Elements
)[i
]);
768 Members
.push_back(Reg
);
769 Artificial
&= Reg
->Artificial
;
770 TopoSigs
.set(Reg
->getTopoSig());
772 sortAndUniqueRegisters(Members
);
774 // Alternative allocation orders may be subsets.
775 SetTheory::RecSet Order
;
776 for (unsigned i
= 0, e
= AltOrders
->size(); i
!= e
; ++i
) {
777 RegBank
.getSets().evaluate(AltOrders
->getElement(i
), Order
, R
->getLoc());
778 Orders
[1 + i
].append(Order
.begin(), Order
.end());
779 // Verify that all altorder members are regclass members.
780 while (!Order
.empty()) {
781 CodeGenRegister
*Reg
= RegBank
.getReg(Order
.back());
784 PrintFatalError(R
->getLoc(), " AltOrder register " + Reg
->getName() +
785 " is not a class member");
789 Namespace
= R
->getValueAsString("Namespace");
791 if (const RecordVal
*RV
= R
->getValue("RegInfos"))
792 if (DefInit
*DI
= dyn_cast_or_null
<DefInit
>(RV
->getValue()))
793 RSI
= RegSizeInfoByHwMode(DI
->getDef(), RegBank
.getHwModes());
794 unsigned Size
= R
->getValueAsInt("Size");
795 assert((RSI
.hasDefault() || Size
!= 0 || VTs
[0].isSimple()) &&
796 "Impossible to determine register size");
797 if (!RSI
.hasDefault()) {
799 RI
.RegSize
= RI
.SpillSize
= Size
? Size
800 : VTs
[0].getSimple().getSizeInBits();
801 RI
.SpillAlignment
= R
->getValueAsInt("Alignment");
802 RSI
.Map
.insert({DefaultMode
, RI
});
805 CopyCost
= R
->getValueAsInt("CopyCost");
806 Allocatable
= R
->getValueAsBit("isAllocatable");
807 AltOrderSelect
= R
->getValueAsString("AltOrderSelect");
808 int AllocationPriority
= R
->getValueAsInt("AllocationPriority");
809 if (AllocationPriority
< 0 || AllocationPriority
> 63)
810 PrintFatalError(R
->getLoc(), "AllocationPriority out of range [0,63]");
811 this->AllocationPriority
= AllocationPriority
;
814 // Create an inferred register class that was missing from the .td files.
815 // Most properties will be inherited from the closest super-class after the
816 // class structure has been computed.
817 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank
&RegBank
,
818 StringRef Name
, Key Props
)
819 : Members(*Props
.Members
),
822 TopoSigs(RegBank
.getNumTopoSigs()),
827 AllocationPriority(0) {
829 for (const auto R
: Members
) {
830 TopoSigs
.set(R
->getTopoSig());
831 Artificial
&= R
->Artificial
;
835 // Compute inherited propertied for a synthesized register class.
836 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank
&RegBank
) {
837 assert(!getDef() && "Only synthesized classes can inherit properties");
838 assert(!SuperClasses
.empty() && "Synthesized class without super class");
840 // The last super-class is the smallest one.
841 CodeGenRegisterClass
&Super
= *SuperClasses
.back();
843 // Most properties are copied directly.
844 // Exceptions are members, size, and alignment
845 Namespace
= Super
.Namespace
;
847 CopyCost
= Super
.CopyCost
;
848 Allocatable
= Super
.Allocatable
;
849 AltOrderSelect
= Super
.AltOrderSelect
;
850 AllocationPriority
= Super
.AllocationPriority
;
852 // Copy all allocation orders, filter out foreign registers from the larger
854 Orders
.resize(Super
.Orders
.size());
855 for (unsigned i
= 0, ie
= Super
.Orders
.size(); i
!= ie
; ++i
)
856 for (unsigned j
= 0, je
= Super
.Orders
[i
].size(); j
!= je
; ++j
)
857 if (contains(RegBank
.getReg(Super
.Orders
[i
][j
])))
858 Orders
[i
].push_back(Super
.Orders
[i
][j
]);
861 bool CodeGenRegisterClass::contains(const CodeGenRegister
*Reg
) const {
862 return std::binary_search(Members
.begin(), Members
.end(), Reg
,
863 deref
<llvm::less
>());
868 raw_ostream
&operator<<(raw_ostream
&OS
, const CodeGenRegisterClass::Key
&K
) {
870 for (const auto R
: *K
.Members
)
871 OS
<< ", " << R
->getName();
875 } // end namespace llvm
877 // This is a simple lexicographical order that can be used to search for sets.
878 // It is not the same as the topological order provided by TopoOrderRC.
879 bool CodeGenRegisterClass::Key::
880 operator<(const CodeGenRegisterClass::Key
&B
) const {
881 assert(Members
&& B
.Members
);
882 return std::tie(*Members
, RSI
) < std::tie(*B
.Members
, B
.RSI
);
885 // Returns true if RC is a strict subclass.
886 // RC is a sub-class of this class if it is a valid replacement for any
887 // instruction operand where a register of this classis required. It must
888 // satisfy these conditions:
890 // 1. All RC registers are also in this.
891 // 2. The RC spill size must not be smaller than our spill size.
892 // 3. RC spill alignment must be compatible with ours.
894 static bool testSubClass(const CodeGenRegisterClass
*A
,
895 const CodeGenRegisterClass
*B
) {
896 return A
->RSI
.isSubClassOf(B
->RSI
) &&
897 std::includes(A
->getMembers().begin(), A
->getMembers().end(),
898 B
->getMembers().begin(), B
->getMembers().end(),
899 deref
<llvm::less
>());
902 /// Sorting predicate for register classes. This provides a topological
903 /// ordering that arranges all register classes before their sub-classes.
905 /// Register classes with the same registers, spill size, and alignment form a
906 /// clique. They will be ordered alphabetically.
908 static bool TopoOrderRC(const CodeGenRegisterClass
&PA
,
909 const CodeGenRegisterClass
&PB
) {
917 if (A
->RSI
!= B
->RSI
)
920 // Order by descending set size. Note that the classes' allocation order may
921 // not have been computed yet. The Members set is always vaild.
922 if (A
->getMembers().size() > B
->getMembers().size())
924 if (A
->getMembers().size() < B
->getMembers().size())
927 // Finally order by name as a tie breaker.
928 return StringRef(A
->getName()) < B
->getName();
931 std::string
CodeGenRegisterClass::getQualifiedName() const {
932 if (Namespace
.empty())
935 return (Namespace
+ "::" + getName()).str();
938 // Compute sub-classes of all register classes.
939 // Assume the classes are ordered topologically.
940 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank
&RegBank
) {
941 auto &RegClasses
= RegBank
.getRegClasses();
943 // Visit backwards so sub-classes are seen first.
944 for (auto I
= RegClasses
.rbegin(), E
= RegClasses
.rend(); I
!= E
; ++I
) {
945 CodeGenRegisterClass
&RC
= *I
;
946 RC
.SubClasses
.resize(RegClasses
.size());
947 RC
.SubClasses
.set(RC
.EnumValue
);
951 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
952 for (auto I2
= I
.base(), E2
= RegClasses
.end(); I2
!= E2
; ++I2
) {
953 CodeGenRegisterClass
&SubRC
= *I2
;
954 if (RC
.SubClasses
.test(SubRC
.EnumValue
))
956 if (!testSubClass(&RC
, &SubRC
))
958 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
960 RC
.SubClasses
|= SubRC
.SubClasses
;
963 // Sweep up missed clique members. They will be immediately preceding RC.
964 for (auto I2
= std::next(I
); I2
!= E
&& testSubClass(&RC
, &*I2
); ++I2
)
965 RC
.SubClasses
.set(I2
->EnumValue
);
968 // Compute the SuperClasses lists from the SubClasses vectors.
969 for (auto &RC
: RegClasses
) {
970 const BitVector
&SC
= RC
.getSubClasses();
971 auto I
= RegClasses
.begin();
972 for (int s
= 0, next_s
= SC
.find_first(); next_s
!= -1;
973 next_s
= SC
.find_next(s
)) {
974 std::advance(I
, next_s
- s
);
978 I
->SuperClasses
.push_back(&RC
);
982 // With the class hierarchy in place, let synthesized register classes inherit
983 // properties from their closest super-class. The iteration order here can
984 // propagate properties down multiple levels.
985 for (auto &RC
: RegClasses
)
987 RC
.inheritProperties(RegBank
);
990 Optional
<std::pair
<CodeGenRegisterClass
*, CodeGenRegisterClass
*>>
991 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
992 CodeGenRegBank
&RegBank
, const CodeGenSubRegIndex
*SubIdx
) const {
993 auto SizeOrder
= [](const CodeGenRegisterClass
*A
,
994 const CodeGenRegisterClass
*B
) {
995 return A
->getMembers().size() > B
->getMembers().size();
998 auto &RegClasses
= RegBank
.getRegClasses();
1000 // Find all the subclasses of this one that fully support the sub-register
1001 // index and order them by size. BiggestSuperRC should always be first.
1002 CodeGenRegisterClass
*BiggestSuperRegRC
= getSubClassWithSubReg(SubIdx
);
1003 if (!BiggestSuperRegRC
)
1005 BitVector SuperRegRCsBV
= BiggestSuperRegRC
->getSubClasses();
1006 std::vector
<CodeGenRegisterClass
*> SuperRegRCs
;
1007 for (auto &RC
: RegClasses
)
1008 if (SuperRegRCsBV
[RC
.EnumValue
])
1009 SuperRegRCs
.emplace_back(&RC
);
1010 llvm::sort(SuperRegRCs
, SizeOrder
);
1011 assert(SuperRegRCs
.front() == BiggestSuperRegRC
&& "Biggest class wasn't first");
1013 // Find all the subreg classes and order them by size too.
1014 std::vector
<std::pair
<CodeGenRegisterClass
*, BitVector
>> SuperRegClasses
;
1015 for (auto &RC
: RegClasses
) {
1016 BitVector
SuperRegClassesBV(RegClasses
.size());
1017 RC
.getSuperRegClasses(SubIdx
, SuperRegClassesBV
);
1018 if (SuperRegClassesBV
.any())
1019 SuperRegClasses
.push_back(std::make_pair(&RC
, SuperRegClassesBV
));
1021 llvm::sort(SuperRegClasses
,
1022 [&](const std::pair
<CodeGenRegisterClass
*, BitVector
> &A
,
1023 const std::pair
<CodeGenRegisterClass
*, BitVector
> &B
) {
1024 return SizeOrder(A
.first
, B
.first
);
1027 // Find the biggest subclass and subreg class such that R:subidx is in the
1028 // subreg class for all R in subclass.
1031 // All registers in X86's GR64 have a sub_32bit subregister but no class
1032 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1033 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1034 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1035 // having excluded RIP, we are able to find a SubRegRC (GR32).
1036 CodeGenRegisterClass
*ChosenSuperRegClass
= nullptr;
1037 CodeGenRegisterClass
*SubRegRC
= nullptr;
1038 for (auto *SuperRegRC
: SuperRegRCs
) {
1039 for (const auto &SuperRegClassPair
: SuperRegClasses
) {
1040 const BitVector
&SuperRegClassBV
= SuperRegClassPair
.second
;
1041 if (SuperRegClassBV
[SuperRegRC
->EnumValue
]) {
1042 SubRegRC
= SuperRegClassPair
.first
;
1043 ChosenSuperRegClass
= SuperRegRC
;
1045 // If SubRegRC is bigger than SuperRegRC then there are members of
1046 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1047 // find a better fit and fall back on this one if there isn't one.
1049 // This is intended to prevent X86 from making odd choices such as
1050 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1051 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1052 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1054 if (SuperRegRC
->getMembers().size() >= SubRegRC
->getMembers().size())
1055 return std::make_pair(ChosenSuperRegClass
, SubRegRC
);
1059 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1060 // registers, then we're done.
1061 if (ChosenSuperRegClass
)
1062 return std::make_pair(ChosenSuperRegClass
, SubRegRC
);
1068 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex
*SubIdx
,
1069 BitVector
&Out
) const {
1070 auto FindI
= SuperRegClasses
.find(SubIdx
);
1071 if (FindI
== SuperRegClasses
.end())
1073 for (CodeGenRegisterClass
*RC
: FindI
->second
)
1074 Out
.set(RC
->EnumValue
);
1077 // Populate a unique sorted list of units from a register set.
1078 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank
&RegBank
,
1079 std::vector
<unsigned> &RegUnits
) const {
1080 std::vector
<unsigned> TmpUnits
;
1081 for (RegUnitIterator
UnitI(Members
); UnitI
.isValid(); ++UnitI
) {
1082 const RegUnit
&RU
= RegBank
.getRegUnit(*UnitI
);
1084 TmpUnits
.push_back(*UnitI
);
1086 llvm::sort(TmpUnits
);
1087 std::unique_copy(TmpUnits
.begin(), TmpUnits
.end(),
1088 std::back_inserter(RegUnits
));
1091 //===----------------------------------------------------------------------===//
1093 //===----------------------------------------------------------------------===//
1095 CodeGenRegBank::CodeGenRegBank(RecordKeeper
&Records
,
1096 const CodeGenHwModes
&Modes
) : CGH(Modes
) {
1097 // Configure register Sets to understand register classes and tuples.
1098 Sets
.addFieldExpander("RegisterClass", "MemberList");
1099 Sets
.addFieldExpander("CalleeSavedRegs", "SaveList");
1100 Sets
.addExpander("RegisterTuples",
1101 llvm::make_unique
<TupleExpander
>(SynthDefs
));
1103 // Read in the user-defined (named) sub-register indices.
1104 // More indices will be synthesized later.
1105 std::vector
<Record
*> SRIs
= Records
.getAllDerivedDefinitions("SubRegIndex");
1106 llvm::sort(SRIs
, LessRecord());
1107 for (unsigned i
= 0, e
= SRIs
.size(); i
!= e
; ++i
)
1108 getSubRegIdx(SRIs
[i
]);
1109 // Build composite maps from ComposedOf fields.
1110 for (auto &Idx
: SubRegIndices
)
1111 Idx
.updateComponents(*this);
1113 // Read in the register definitions.
1114 std::vector
<Record
*> Regs
= Records
.getAllDerivedDefinitions("Register");
1115 llvm::sort(Regs
, LessRecordRegister());
1116 // Assign the enumeration values.
1117 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
)
1120 // Expand tuples and number the new registers.
1121 std::vector
<Record
*> Tups
=
1122 Records
.getAllDerivedDefinitions("RegisterTuples");
1124 for (Record
*R
: Tups
) {
1125 std::vector
<Record
*> TupRegs
= *Sets
.expand(R
);
1126 llvm::sort(TupRegs
, LessRecordRegister());
1127 for (Record
*RC
: TupRegs
)
1131 // Now all the registers are known. Build the object graph of explicit
1132 // register-register references.
1133 for (auto &Reg
: Registers
)
1134 Reg
.buildObjectGraph(*this);
1136 // Compute register name map.
1137 for (auto &Reg
: Registers
)
1138 // FIXME: This could just be RegistersByName[name] = register, except that
1139 // causes some failures in MIPS - perhaps they have duplicate register name
1140 // entries? (or maybe there's a reason for it - I don't know much about this
1141 // code, just drive-by refactoring)
1142 RegistersByName
.insert(
1143 std::make_pair(Reg
.TheDef
->getValueAsString("AsmName"), &Reg
));
1145 // Precompute all sub-register maps.
1146 // This will create Composite entries for all inferred sub-register indices.
1147 for (auto &Reg
: Registers
)
1148 Reg
.computeSubRegs(*this);
1150 // Compute transitive closure of subregister index ConcatenationOf vectors
1151 // and initialize ConcatIdx map.
1152 for (CodeGenSubRegIndex
&SRI
: SubRegIndices
) {
1153 SRI
.computeConcatTransitiveClosure();
1154 if (!SRI
.ConcatenationOf
.empty())
1155 ConcatIdx
.insert(std::make_pair(
1156 SmallVector
<CodeGenSubRegIndex
*,8>(SRI
.ConcatenationOf
.begin(),
1157 SRI
.ConcatenationOf
.end()), &SRI
));
1160 // Infer even more sub-registers by combining leading super-registers.
1161 for (auto &Reg
: Registers
)
1162 if (Reg
.CoveredBySubRegs
)
1163 Reg
.computeSecondarySubRegs(*this);
1165 // After the sub-register graph is complete, compute the topologically
1166 // ordered SuperRegs list.
1167 for (auto &Reg
: Registers
)
1168 Reg
.computeSuperRegs(*this);
1170 // For each pair of Reg:SR, if both are non-artificial, mark the
1171 // corresponding sub-register index as non-artificial.
1172 for (auto &Reg
: Registers
) {
1175 for (auto P
: Reg
.getSubRegs()) {
1176 const CodeGenRegister
*SR
= P
.second
;
1177 if (!SR
->Artificial
)
1178 P
.first
->Artificial
= false;
1182 // Native register units are associated with a leaf register. They've all been
1184 NumNativeRegUnits
= RegUnits
.size();
1186 // Read in register class definitions.
1187 std::vector
<Record
*> RCs
= Records
.getAllDerivedDefinitions("RegisterClass");
1189 PrintFatalError("No 'RegisterClass' subclasses defined!");
1191 // Allocate user-defined register classes.
1192 for (auto *R
: RCs
) {
1193 RegClasses
.emplace_back(*this, R
);
1194 CodeGenRegisterClass
&RC
= RegClasses
.back();
1199 // Infer missing classes to create a full algebra.
1200 computeInferredRegisterClasses();
1202 // Order register classes topologically and assign enum values.
1203 RegClasses
.sort(TopoOrderRC
);
1205 for (auto &RC
: RegClasses
)
1207 CodeGenRegisterClass::computeSubClasses(*this);
1210 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1212 CodeGenRegBank::createSubRegIndex(StringRef Name
, StringRef Namespace
) {
1213 SubRegIndices
.emplace_back(Name
, Namespace
, SubRegIndices
.size() + 1);
1214 return &SubRegIndices
.back();
1217 CodeGenSubRegIndex
*CodeGenRegBank::getSubRegIdx(Record
*Def
) {
1218 CodeGenSubRegIndex
*&Idx
= Def2SubRegIdx
[Def
];
1221 SubRegIndices
.emplace_back(Def
, SubRegIndices
.size() + 1);
1222 Idx
= &SubRegIndices
.back();
1226 CodeGenRegister
*CodeGenRegBank::getReg(Record
*Def
) {
1227 CodeGenRegister
*&Reg
= Def2Reg
[Def
];
1230 Registers
.emplace_back(Def
, Registers
.size() + 1);
1231 Reg
= &Registers
.back();
1235 void CodeGenRegBank::addToMaps(CodeGenRegisterClass
*RC
) {
1236 if (Record
*Def
= RC
->getDef())
1237 Def2RC
.insert(std::make_pair(Def
, RC
));
1239 // Duplicate classes are rejected by insert().
1240 // That's OK, we only care about the properties handled by CGRC::Key.
1241 CodeGenRegisterClass::Key
K(*RC
);
1242 Key2RC
.insert(std::make_pair(K
, RC
));
1245 // Create a synthetic sub-class if it is missing.
1246 CodeGenRegisterClass
*
1247 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass
*RC
,
1248 const CodeGenRegister::Vec
*Members
,
1250 // Synthetic sub-class has the same size and alignment as RC.
1251 CodeGenRegisterClass::Key
K(Members
, RC
->RSI
);
1252 RCKeyMap::const_iterator FoundI
= Key2RC
.find(K
);
1253 if (FoundI
!= Key2RC
.end())
1254 return FoundI
->second
;
1256 // Sub-class doesn't exist, create a new one.
1257 RegClasses
.emplace_back(*this, Name
, K
);
1258 addToMaps(&RegClasses
.back());
1259 return &RegClasses
.back();
1262 CodeGenRegisterClass
*CodeGenRegBank::getRegClass(Record
*Def
) {
1263 if (CodeGenRegisterClass
*RC
= Def2RC
[Def
])
1266 PrintFatalError(Def
->getLoc(), "Not a known RegisterClass!");
1270 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex
*A
,
1271 CodeGenSubRegIndex
*B
) {
1272 // Look for an existing entry.
1273 CodeGenSubRegIndex
*Comp
= A
->compose(B
);
1277 // None exists, synthesize one.
1278 std::string Name
= A
->getName() + "_then_" + B
->getName();
1279 Comp
= createSubRegIndex(Name
, A
->getNamespace());
1280 A
->addComposite(B
, Comp
);
1284 CodeGenSubRegIndex
*CodeGenRegBank::
1285 getConcatSubRegIndex(const SmallVector
<CodeGenSubRegIndex
*, 8> &Parts
) {
1286 assert(Parts
.size() > 1 && "Need two parts to concatenate");
1288 for (CodeGenSubRegIndex
*Idx
: Parts
) {
1289 assert(Idx
->ConcatenationOf
.empty() && "No transitive closure?");
1293 // Look for an existing entry.
1294 CodeGenSubRegIndex
*&Idx
= ConcatIdx
[Parts
];
1298 // None exists, synthesize one.
1299 std::string Name
= Parts
.front()->getName();
1300 // Determine whether all parts are contiguous.
1301 bool isContinuous
= true;
1302 unsigned Size
= Parts
.front()->Size
;
1303 unsigned LastOffset
= Parts
.front()->Offset
;
1304 unsigned LastSize
= Parts
.front()->Size
;
1305 for (unsigned i
= 1, e
= Parts
.size(); i
!= e
; ++i
) {
1307 Name
+= Parts
[i
]->getName();
1308 Size
+= Parts
[i
]->Size
;
1309 if (Parts
[i
]->Offset
!= (LastOffset
+ LastSize
))
1310 isContinuous
= false;
1311 LastOffset
= Parts
[i
]->Offset
;
1312 LastSize
= Parts
[i
]->Size
;
1314 Idx
= createSubRegIndex(Name
, Parts
.front()->getNamespace());
1316 Idx
->Offset
= isContinuous
? Parts
.front()->Offset
: -1;
1317 Idx
->ConcatenationOf
.assign(Parts
.begin(), Parts
.end());
1321 void CodeGenRegBank::computeComposites() {
1322 using RegMap
= std::map
<const CodeGenRegister
*, const CodeGenRegister
*>;
1324 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1325 // register to (sub)register associated with the action of the left-hand
1326 // side subregister.
1327 std::map
<const CodeGenSubRegIndex
*, RegMap
> SubRegAction
;
1328 for (const CodeGenRegister
&R
: Registers
) {
1329 const CodeGenRegister::SubRegMap
&SM
= R
.getSubRegs();
1330 for (std::pair
<const CodeGenSubRegIndex
*, const CodeGenRegister
*> P
: SM
)
1331 SubRegAction
[P
.first
].insert({&R
, P
.second
});
1334 // Calculate the composition of two subregisters as compositions of their
1335 // associated actions.
1336 auto compose
= [&SubRegAction
] (const CodeGenSubRegIndex
*Sub1
,
1337 const CodeGenSubRegIndex
*Sub2
) {
1339 const RegMap
&Img1
= SubRegAction
.at(Sub1
);
1340 const RegMap
&Img2
= SubRegAction
.at(Sub2
);
1341 for (std::pair
<const CodeGenRegister
*, const CodeGenRegister
*> P
: Img1
) {
1342 auto F
= Img2
.find(P
.second
);
1343 if (F
!= Img2
.end())
1344 C
.insert({P
.first
, F
->second
});
1349 // Check if the two maps agree on the intersection of their domains.
1350 auto agree
= [] (const RegMap
&Map1
, const RegMap
&Map2
) {
1351 // Technically speaking, an empty map agrees with any other map, but
1352 // this could flag false positives. We're interested in non-vacuous
1354 if (Map1
.empty() || Map2
.empty())
1356 for (std::pair
<const CodeGenRegister
*, const CodeGenRegister
*> P
: Map1
) {
1357 auto F
= Map2
.find(P
.first
);
1358 if (F
== Map2
.end() || P
.second
!= F
->second
)
1364 using CompositePair
= std::pair
<const CodeGenSubRegIndex
*,
1365 const CodeGenSubRegIndex
*>;
1366 SmallSet
<CompositePair
,4> UserDefined
;
1367 for (const CodeGenSubRegIndex
&Idx
: SubRegIndices
)
1368 for (auto P
: Idx
.getComposites())
1369 UserDefined
.insert(std::make_pair(&Idx
, P
.first
));
1371 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1372 // and many registers will share TopoSigs on regular architectures.
1373 BitVector
TopoSigs(getNumTopoSigs());
1375 for (const auto &Reg1
: Registers
) {
1376 // Skip identical subreg structures already processed.
1377 if (TopoSigs
.test(Reg1
.getTopoSig()))
1379 TopoSigs
.set(Reg1
.getTopoSig());
1381 const CodeGenRegister::SubRegMap
&SRM1
= Reg1
.getSubRegs();
1382 for (CodeGenRegister::SubRegMap::const_iterator i1
= SRM1
.begin(),
1383 e1
= SRM1
.end(); i1
!= e1
; ++i1
) {
1384 CodeGenSubRegIndex
*Idx1
= i1
->first
;
1385 CodeGenRegister
*Reg2
= i1
->second
;
1386 // Ignore identity compositions.
1389 const CodeGenRegister::SubRegMap
&SRM2
= Reg2
->getSubRegs();
1390 // Try composing Idx1 with another SubRegIndex.
1391 for (CodeGenRegister::SubRegMap::const_iterator i2
= SRM2
.begin(),
1392 e2
= SRM2
.end(); i2
!= e2
; ++i2
) {
1393 CodeGenSubRegIndex
*Idx2
= i2
->first
;
1394 CodeGenRegister
*Reg3
= i2
->second
;
1395 // Ignore identity compositions.
1398 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1399 CodeGenSubRegIndex
*Idx3
= Reg1
.getSubRegIndex(Reg3
);
1400 assert(Idx3
&& "Sub-register doesn't have an index");
1402 // Conflicting composition? Emit a warning but allow it.
1403 if (CodeGenSubRegIndex
*Prev
= Idx1
->addComposite(Idx2
, Idx3
)) {
1404 // If the composition was not user-defined, always emit a warning.
1405 if (!UserDefined
.count({Idx1
, Idx2
}) ||
1406 agree(compose(Idx1
, Idx2
), SubRegAction
.at(Idx3
)))
1407 PrintWarning(Twine("SubRegIndex ") + Idx1
->getQualifiedName() +
1408 " and " + Idx2
->getQualifiedName() +
1409 " compose ambiguously as " + Prev
->getQualifiedName() +
1410 " or " + Idx3
->getQualifiedName());
1417 // Compute lane masks. This is similar to register units, but at the
1418 // sub-register index level. Each bit in the lane mask is like a register unit
1419 // class, and two lane masks will have a bit in common if two sub-register
1420 // indices overlap in some register.
1422 // Conservatively share a lane mask bit if two sub-register indices overlap in
1423 // some registers, but not in others. That shouldn't happen a lot.
1424 void CodeGenRegBank::computeSubRegLaneMasks() {
1425 // First assign individual bits to all the leaf indices.
1427 // Determine mask of lanes that cover their registers.
1428 CoveringLanes
= LaneBitmask::getAll();
1429 for (auto &Idx
: SubRegIndices
) {
1430 if (Idx
.getComposites().empty()) {
1431 if (Bit
> LaneBitmask::BitWidth
) {
1433 Twine("Ran out of lanemask bits to represent subregister ")
1436 Idx
.LaneMask
= LaneBitmask::getLane(Bit
);
1439 Idx
.LaneMask
= LaneBitmask::getNone();
1443 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1444 // here is that for each possible target subregister we look at the leafs
1445 // in the subregister graph that compose for this target and create
1446 // transformation sequences for the lanemasks. Each step in the sequence
1447 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1448 // are usually the same for many subregisters we can easily combine the steps
1449 // by combining the masks.
1450 for (const auto &Idx
: SubRegIndices
) {
1451 const auto &Composites
= Idx
.getComposites();
1452 auto &LaneTransforms
= Idx
.CompositionLaneMaskTransform
;
1454 if (Composites
.empty()) {
1455 // Moving from a class with no subregisters we just had a single lane:
1456 // The subregister must be a leaf subregister and only occupies 1 bit.
1457 // Move the bit from the class without subregisters into that position.
1458 unsigned DstBit
= Idx
.LaneMask
.getHighestLane();
1459 assert(Idx
.LaneMask
== LaneBitmask::getLane(DstBit
) &&
1460 "Must be a leaf subregister");
1461 MaskRolPair MaskRol
= { LaneBitmask::getLane(0), (uint8_t)DstBit
};
1462 LaneTransforms
.push_back(MaskRol
);
1464 // Go through all leaf subregisters and find the ones that compose with
1465 // Idx. These make out all possible valid bits in the lane mask we want to
1466 // transform. Looking only at the leafs ensure that only a single bit in
1468 unsigned NextBit
= 0;
1469 for (auto &Idx2
: SubRegIndices
) {
1470 // Skip non-leaf subregisters.
1471 if (!Idx2
.getComposites().empty())
1473 // Replicate the behaviour from the lane mask generation loop above.
1474 unsigned SrcBit
= NextBit
;
1475 LaneBitmask SrcMask
= LaneBitmask::getLane(SrcBit
);
1476 if (NextBit
< LaneBitmask::BitWidth
-1)
1478 assert(Idx2
.LaneMask
== SrcMask
);
1480 // Get the composed subregister if there is any.
1481 auto C
= Composites
.find(&Idx2
);
1482 if (C
== Composites
.end())
1484 const CodeGenSubRegIndex
*Composite
= C
->second
;
1485 // The Composed subreg should be a leaf subreg too
1486 assert(Composite
->getComposites().empty());
1488 // Create Mask+Rotate operation and merge with existing ops if possible.
1489 unsigned DstBit
= Composite
->LaneMask
.getHighestLane();
1490 int Shift
= DstBit
- SrcBit
;
1491 uint8_t RotateLeft
= Shift
>= 0 ? (uint8_t)Shift
1492 : LaneBitmask::BitWidth
+ Shift
;
1493 for (auto &I
: LaneTransforms
) {
1494 if (I
.RotateLeft
== RotateLeft
) {
1496 SrcMask
= LaneBitmask::getNone();
1499 if (SrcMask
.any()) {
1500 MaskRolPair MaskRol
= { SrcMask
, RotateLeft
};
1501 LaneTransforms
.push_back(MaskRol
);
1506 // Optimize if the transformation consists of one step only: Set mask to
1507 // 0xffffffff (including some irrelevant invalid bits) so that it should
1508 // merge with more entries later while compressing the table.
1509 if (LaneTransforms
.size() == 1)
1510 LaneTransforms
[0].Mask
= LaneBitmask::getAll();
1512 // Further compression optimization: For invalid compositions resulting
1513 // in a sequence with 0 entries we can just pick any other. Choose
1514 // Mask 0xffffffff with Rotation 0.
1515 if (LaneTransforms
.size() == 0) {
1516 MaskRolPair P
= { LaneBitmask::getAll(), 0 };
1517 LaneTransforms
.push_back(P
);
1521 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1522 // by the sub-register graph? This doesn't occur in any known targets.
1524 // Inherit lanes from composites.
1525 for (const auto &Idx
: SubRegIndices
) {
1526 LaneBitmask Mask
= Idx
.computeLaneMask();
1527 // If some super-registers without CoveredBySubRegs use this index, we can
1528 // no longer assume that the lanes are covering their registers.
1529 if (!Idx
.AllSuperRegsCovered
)
1530 CoveringLanes
&= ~Mask
;
1533 // Compute lane mask combinations for register classes.
1534 for (auto &RegClass
: RegClasses
) {
1535 LaneBitmask LaneMask
;
1536 for (const auto &SubRegIndex
: SubRegIndices
) {
1537 if (RegClass
.getSubClassWithSubReg(&SubRegIndex
) == nullptr)
1539 LaneMask
|= SubRegIndex
.LaneMask
;
1542 // For classes without any subregisters set LaneMask to 1 instead of 0.
1543 // This makes it easier for client code to handle classes uniformly.
1544 if (LaneMask
.none())
1545 LaneMask
= LaneBitmask::getLane(0);
1547 RegClass
.LaneMask
= LaneMask
;
1553 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1554 // the transitive closure of the union of overlapping register
1555 // classes. Together, the UberRegSets form a partition of the registers. If we
1556 // consider overlapping register classes to be connected, then each UberRegSet
1557 // is a set of connected components.
1559 // An UberRegSet will likely be a horizontal slice of register names of
1560 // the same width. Nontrivial subregisters should then be in a separate
1561 // UberRegSet. But this property isn't required for valid computation of
1562 // register unit weights.
1564 // A Weight field caches the max per-register unit weight in each UberRegSet.
1566 // A set of SingularDeterminants flags single units of some register in this set
1567 // for which the unit weight equals the set weight. These units should not have
1568 // their weight increased.
1570 CodeGenRegister::Vec Regs
;
1571 unsigned Weight
= 0;
1572 CodeGenRegister::RegUnitList SingularDeterminants
;
1574 UberRegSet() = default;
1577 } // end anonymous namespace
1579 // Partition registers into UberRegSets, where each set is the transitive
1580 // closure of the union of overlapping register classes.
1582 // UberRegSets[0] is a special non-allocatable set.
1583 static void computeUberSets(std::vector
<UberRegSet
> &UberSets
,
1584 std::vector
<UberRegSet
*> &RegSets
,
1585 CodeGenRegBank
&RegBank
) {
1586 const auto &Registers
= RegBank
.getRegisters();
1588 // The Register EnumValue is one greater than its index into Registers.
1589 assert(Registers
.size() == Registers
.back().EnumValue
&&
1590 "register enum value mismatch");
1592 // For simplicitly make the SetID the same as EnumValue.
1593 IntEqClasses
UberSetIDs(Registers
.size()+1);
1594 std::set
<unsigned> AllocatableRegs
;
1595 for (auto &RegClass
: RegBank
.getRegClasses()) {
1596 if (!RegClass
.Allocatable
)
1599 const CodeGenRegister::Vec
&Regs
= RegClass
.getMembers();
1603 unsigned USetID
= UberSetIDs
.findLeader((*Regs
.begin())->EnumValue
);
1604 assert(USetID
&& "register number 0 is invalid");
1606 AllocatableRegs
.insert((*Regs
.begin())->EnumValue
);
1607 for (auto I
= std::next(Regs
.begin()), E
= Regs
.end(); I
!= E
; ++I
) {
1608 AllocatableRegs
.insert((*I
)->EnumValue
);
1609 UberSetIDs
.join(USetID
, (*I
)->EnumValue
);
1612 // Combine non-allocatable regs.
1613 for (const auto &Reg
: Registers
) {
1614 unsigned RegNum
= Reg
.EnumValue
;
1615 if (AllocatableRegs
.count(RegNum
))
1618 UberSetIDs
.join(0, RegNum
);
1620 UberSetIDs
.compress();
1622 // Make the first UberSet a special unallocatable set.
1623 unsigned ZeroID
= UberSetIDs
[0];
1625 // Insert Registers into the UberSets formed by union-find.
1626 // Do not resize after this.
1627 UberSets
.resize(UberSetIDs
.getNumClasses());
1629 for (const CodeGenRegister
&Reg
: Registers
) {
1630 unsigned USetID
= UberSetIDs
[Reg
.EnumValue
];
1633 else if (USetID
== ZeroID
)
1636 UberRegSet
*USet
= &UberSets
[USetID
];
1637 USet
->Regs
.push_back(&Reg
);
1638 sortAndUniqueRegisters(USet
->Regs
);
1639 RegSets
[i
++] = USet
;
1643 // Recompute each UberSet weight after changing unit weights.
1644 static void computeUberWeights(std::vector
<UberRegSet
> &UberSets
,
1645 CodeGenRegBank
&RegBank
) {
1646 // Skip the first unallocatable set.
1647 for (std::vector
<UberRegSet
>::iterator I
= std::next(UberSets
.begin()),
1648 E
= UberSets
.end(); I
!= E
; ++I
) {
1650 // Initialize all unit weights in this set, and remember the max units/reg.
1651 const CodeGenRegister
*Reg
= nullptr;
1652 unsigned MaxWeight
= 0, Weight
= 0;
1653 for (RegUnitIterator
UnitI(I
->Regs
); UnitI
.isValid(); ++UnitI
) {
1654 if (Reg
!= UnitI
.getReg()) {
1655 if (Weight
> MaxWeight
)
1657 Reg
= UnitI
.getReg();
1660 if (!RegBank
.getRegUnit(*UnitI
).Artificial
) {
1661 unsigned UWeight
= RegBank
.getRegUnit(*UnitI
).Weight
;
1664 RegBank
.increaseRegUnitWeight(*UnitI
, UWeight
);
1669 if (Weight
> MaxWeight
)
1671 if (I
->Weight
!= MaxWeight
) {
1672 LLVM_DEBUG(dbgs() << "UberSet " << I
- UberSets
.begin() << " Weight "
1676 << " " << Unit
->getName();
1678 // Update the set weight.
1679 I
->Weight
= MaxWeight
;
1682 // Find singular determinants.
1683 for (const auto R
: I
->Regs
) {
1684 if (R
->getRegUnits().count() == 1 && R
->getWeight(RegBank
) == I
->Weight
) {
1685 I
->SingularDeterminants
|= R
->getRegUnits();
1691 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1692 // a register and its subregisters so that they have the same weight as their
1693 // UberSet. Self-recursion processes the subregister tree in postorder so
1694 // subregisters are normalized first.
1697 // - creates new adopted register units
1698 // - causes superregisters to inherit adopted units
1699 // - increases the weight of "singular" units
1700 // - induces recomputation of UberWeights.
1701 static bool normalizeWeight(CodeGenRegister
*Reg
,
1702 std::vector
<UberRegSet
> &UberSets
,
1703 std::vector
<UberRegSet
*> &RegSets
,
1704 BitVector
&NormalRegs
,
1705 CodeGenRegister::RegUnitList
&NormalUnits
,
1706 CodeGenRegBank
&RegBank
) {
1707 NormalRegs
.resize(std::max(Reg
->EnumValue
+ 1, NormalRegs
.size()));
1708 if (NormalRegs
.test(Reg
->EnumValue
))
1710 NormalRegs
.set(Reg
->EnumValue
);
1712 bool Changed
= false;
1713 const CodeGenRegister::SubRegMap
&SRM
= Reg
->getSubRegs();
1714 for (CodeGenRegister::SubRegMap::const_iterator SRI
= SRM
.begin(),
1715 SRE
= SRM
.end(); SRI
!= SRE
; ++SRI
) {
1716 if (SRI
->second
== Reg
)
1717 continue; // self-cycles happen
1719 Changed
|= normalizeWeight(SRI
->second
, UberSets
, RegSets
,
1720 NormalRegs
, NormalUnits
, RegBank
);
1722 // Postorder register normalization.
1724 // Inherit register units newly adopted by subregisters.
1725 if (Reg
->inheritRegUnits(RegBank
))
1726 computeUberWeights(UberSets
, RegBank
);
1728 // Check if this register is too skinny for its UberRegSet.
1729 UberRegSet
*UberSet
= RegSets
[RegBank
.getRegIndex(Reg
)];
1731 unsigned RegWeight
= Reg
->getWeight(RegBank
);
1732 if (UberSet
->Weight
> RegWeight
) {
1733 // A register unit's weight can be adjusted only if it is the singular unit
1734 // for this register, has not been used to normalize a subregister's set,
1735 // and has not already been used to singularly determine this UberRegSet.
1736 unsigned AdjustUnit
= *Reg
->getRegUnits().begin();
1737 if (Reg
->getRegUnits().count() != 1
1738 || hasRegUnit(NormalUnits
, AdjustUnit
)
1739 || hasRegUnit(UberSet
->SingularDeterminants
, AdjustUnit
)) {
1740 // We don't have an adjustable unit, so adopt a new one.
1741 AdjustUnit
= RegBank
.newRegUnit(UberSet
->Weight
- RegWeight
);
1742 Reg
->adoptRegUnit(AdjustUnit
);
1743 // Adopting a unit does not immediately require recomputing set weights.
1746 // Adjust the existing single unit.
1747 if (!RegBank
.getRegUnit(AdjustUnit
).Artificial
)
1748 RegBank
.increaseRegUnitWeight(AdjustUnit
, UberSet
->Weight
- RegWeight
);
1749 // The unit may be shared among sets and registers within this set.
1750 computeUberWeights(UberSets
, RegBank
);
1755 // Mark these units normalized so superregisters can't change their weights.
1756 NormalUnits
|= Reg
->getRegUnits();
1761 // Compute a weight for each register unit created during getSubRegs.
1763 // The goal is that two registers in the same class will have the same weight,
1764 // where each register's weight is defined as sum of its units' weights.
1765 void CodeGenRegBank::computeRegUnitWeights() {
1766 std::vector
<UberRegSet
> UberSets
;
1767 std::vector
<UberRegSet
*> RegSets(Registers
.size());
1768 computeUberSets(UberSets
, RegSets
, *this);
1769 // UberSets and RegSets are now immutable.
1771 computeUberWeights(UberSets
, *this);
1773 // Iterate over each Register, normalizing the unit weights until reaching
1775 unsigned NumIters
= 0;
1776 for (bool Changed
= true; Changed
; ++NumIters
) {
1777 assert(NumIters
<= NumNativeRegUnits
&& "Runaway register unit weights");
1779 for (auto &Reg
: Registers
) {
1780 CodeGenRegister::RegUnitList NormalUnits
;
1781 BitVector NormalRegs
;
1782 Changed
|= normalizeWeight(&Reg
, UberSets
, RegSets
, NormalRegs
,
1783 NormalUnits
, *this);
1788 // Find a set in UniqueSets with the same elements as Set.
1789 // Return an iterator into UniqueSets.
1790 static std::vector
<RegUnitSet
>::const_iterator
1791 findRegUnitSet(const std::vector
<RegUnitSet
> &UniqueSets
,
1792 const RegUnitSet
&Set
) {
1793 std::vector
<RegUnitSet
>::const_iterator
1794 I
= UniqueSets
.begin(), E
= UniqueSets
.end();
1796 if (I
->Units
== Set
.Units
)
1802 // Return true if the RUSubSet is a subset of RUSuperSet.
1803 static bool isRegUnitSubSet(const std::vector
<unsigned> &RUSubSet
,
1804 const std::vector
<unsigned> &RUSuperSet
) {
1805 return std::includes(RUSuperSet
.begin(), RUSuperSet
.end(),
1806 RUSubSet
.begin(), RUSubSet
.end());
1809 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1810 /// but with one or two registers removed. We occasionally have registers like
1811 /// APSR and PC thrown in with the general registers. We also see many
1812 /// special-purpose register subsets, such as tail-call and Thumb
1813 /// encodings. Generating all possible overlapping sets is combinatorial and
1814 /// overkill for modeling pressure. Ideally we could fix this statically in
1815 /// tablegen by (1) having the target define register classes that only include
1816 /// the allocatable registers and marking other classes as non-allocatable and
1817 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1818 /// the purpose of pressure. However, we make an attempt to handle targets that
1819 /// are not nicely defined by merging nearly identical register unit sets
1820 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1821 /// set limit by filtering the reserved registers.
1823 /// Merge sets only if the units have the same weight. For example, on ARM,
1824 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1825 /// should not expand the S set to include D regs.
1826 void CodeGenRegBank::pruneUnitSets() {
1827 assert(RegClassUnitSets
.empty() && "this invalidates RegClassUnitSets");
1829 // Form an equivalence class of UnitSets with no significant difference.
1830 std::vector
<unsigned> SuperSetIDs
;
1831 for (unsigned SubIdx
= 0, EndIdx
= RegUnitSets
.size();
1832 SubIdx
!= EndIdx
; ++SubIdx
) {
1833 const RegUnitSet
&SubSet
= RegUnitSets
[SubIdx
];
1834 unsigned SuperIdx
= 0;
1835 for (; SuperIdx
!= EndIdx
; ++SuperIdx
) {
1836 if (SuperIdx
== SubIdx
)
1839 unsigned UnitWeight
= RegUnits
[SubSet
.Units
[0]].Weight
;
1840 const RegUnitSet
&SuperSet
= RegUnitSets
[SuperIdx
];
1841 if (isRegUnitSubSet(SubSet
.Units
, SuperSet
.Units
)
1842 && (SubSet
.Units
.size() + 3 > SuperSet
.Units
.size())
1843 && UnitWeight
== RegUnits
[SuperSet
.Units
[0]].Weight
1844 && UnitWeight
== RegUnits
[SuperSet
.Units
.back()].Weight
) {
1845 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx
<< " subsumed by " << SuperIdx
1847 // We can pick any of the set names for the merged set. Go for the
1848 // shortest one to avoid picking the name of one of the classes that are
1849 // artificially created by tablegen. So "FPR128_lo" instead of
1850 // "QQQQ_with_qsub3_in_FPR128_lo".
1851 if (RegUnitSets
[SubIdx
].Name
.size() < RegUnitSets
[SuperIdx
].Name
.size())
1852 RegUnitSets
[SuperIdx
].Name
= RegUnitSets
[SubIdx
].Name
;
1856 if (SuperIdx
== EndIdx
)
1857 SuperSetIDs
.push_back(SubIdx
);
1859 // Populate PrunedUnitSets with each equivalence class's superset.
1860 std::vector
<RegUnitSet
> PrunedUnitSets(SuperSetIDs
.size());
1861 for (unsigned i
= 0, e
= SuperSetIDs
.size(); i
!= e
; ++i
) {
1862 unsigned SuperIdx
= SuperSetIDs
[i
];
1863 PrunedUnitSets
[i
].Name
= RegUnitSets
[SuperIdx
].Name
;
1864 PrunedUnitSets
[i
].Units
.swap(RegUnitSets
[SuperIdx
].Units
);
1866 RegUnitSets
.swap(PrunedUnitSets
);
1869 // Create a RegUnitSet for each RegClass that contains all units in the class
1870 // including adopted units that are necessary to model register pressure. Then
1871 // iteratively compute RegUnitSets such that the union of any two overlapping
1872 // RegUnitSets is repreresented.
1874 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1875 // RegUnitSet that is a superset of that RegUnitClass.
1876 void CodeGenRegBank::computeRegUnitSets() {
1877 assert(RegUnitSets
.empty() && "dirty RegUnitSets");
1879 // Compute a unique RegUnitSet for each RegClass.
1880 auto &RegClasses
= getRegClasses();
1881 for (auto &RC
: RegClasses
) {
1882 if (!RC
.Allocatable
|| RC
.Artificial
)
1885 // Speculatively grow the RegUnitSets to hold the new set.
1886 RegUnitSets
.resize(RegUnitSets
.size() + 1);
1887 RegUnitSets
.back().Name
= RC
.getName();
1889 // Compute a sorted list of units in this class.
1890 RC
.buildRegUnitSet(*this, RegUnitSets
.back().Units
);
1892 // Find an existing RegUnitSet.
1893 std::vector
<RegUnitSet
>::const_iterator SetI
=
1894 findRegUnitSet(RegUnitSets
, RegUnitSets
.back());
1895 if (SetI
!= std::prev(RegUnitSets
.end()))
1896 RegUnitSets
.pop_back();
1899 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx
= 0,
1900 USEnd
= RegUnitSets
.size();
1901 USIdx
< USEnd
; ++USIdx
) {
1902 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
1903 for (auto &U
: RegUnitSets
[USIdx
].Units
)
1904 printRegUnitName(U
);
1908 // Iteratively prune unit sets.
1911 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx
= 0,
1912 USEnd
= RegUnitSets
.size();
1913 USIdx
< USEnd
; ++USIdx
) {
1914 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
1915 for (auto &U
: RegUnitSets
[USIdx
].Units
)
1916 printRegUnitName(U
);
1918 } dbgs() << "\nUnion sets:\n");
1920 // Iterate over all unit sets, including new ones added by this loop.
1921 unsigned NumRegUnitSubSets
= RegUnitSets
.size();
1922 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
) {
1923 // In theory, this is combinatorial. In practice, it needs to be bounded
1924 // by a small number of sets for regpressure to be efficient.
1925 // If the assert is hit, we need to implement pruning.
1926 assert(Idx
< (2*NumRegUnitSubSets
) && "runaway unit set inference");
1928 // Compare new sets with all original classes.
1929 for (unsigned SearchIdx
= (Idx
>= NumRegUnitSubSets
) ? 0 : Idx
+1;
1930 SearchIdx
!= EndIdx
; ++SearchIdx
) {
1931 std::set
<unsigned> Intersection
;
1932 std::set_intersection(RegUnitSets
[Idx
].Units
.begin(),
1933 RegUnitSets
[Idx
].Units
.end(),
1934 RegUnitSets
[SearchIdx
].Units
.begin(),
1935 RegUnitSets
[SearchIdx
].Units
.end(),
1936 std::inserter(Intersection
, Intersection
.begin()));
1937 if (Intersection
.empty())
1940 // Speculatively grow the RegUnitSets to hold the new set.
1941 RegUnitSets
.resize(RegUnitSets
.size() + 1);
1942 RegUnitSets
.back().Name
=
1943 RegUnitSets
[Idx
].Name
+ "+" + RegUnitSets
[SearchIdx
].Name
;
1945 std::set_union(RegUnitSets
[Idx
].Units
.begin(),
1946 RegUnitSets
[Idx
].Units
.end(),
1947 RegUnitSets
[SearchIdx
].Units
.begin(),
1948 RegUnitSets
[SearchIdx
].Units
.end(),
1949 std::inserter(RegUnitSets
.back().Units
,
1950 RegUnitSets
.back().Units
.begin()));
1952 // Find an existing RegUnitSet, or add the union to the unique sets.
1953 std::vector
<RegUnitSet
>::const_iterator SetI
=
1954 findRegUnitSet(RegUnitSets
, RegUnitSets
.back());
1955 if (SetI
!= std::prev(RegUnitSets
.end()))
1956 RegUnitSets
.pop_back();
1958 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets
.size() - 1 << " "
1959 << RegUnitSets
.back().Name
<< ":";
1961 : RegUnitSets
.back().Units
) printRegUnitName(U
);
1967 // Iteratively prune unit sets after inferring supersets.
1971 dbgs() << "\n"; for (unsigned USIdx
= 0, USEnd
= RegUnitSets
.size();
1972 USIdx
< USEnd
; ++USIdx
) {
1973 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
1974 for (auto &U
: RegUnitSets
[USIdx
].Units
)
1975 printRegUnitName(U
);
1979 // For each register class, list the UnitSets that are supersets.
1980 RegClassUnitSets
.resize(RegClasses
.size());
1982 for (auto &RC
: RegClasses
) {
1984 if (!RC
.Allocatable
)
1987 // Recompute the sorted list of units in this class.
1988 std::vector
<unsigned> RCRegUnits
;
1989 RC
.buildRegUnitSet(*this, RCRegUnits
);
1991 // Don't increase pressure for unallocatable regclasses.
1992 if (RCRegUnits
.empty())
1995 LLVM_DEBUG(dbgs() << "RC " << RC
.getName() << " Units: \n";
1997 : RCRegUnits
) printRegUnitName(U
);
1998 dbgs() << "\n UnitSetIDs:");
2000 // Find all supersets.
2001 for (unsigned USIdx
= 0, USEnd
= RegUnitSets
.size();
2002 USIdx
!= USEnd
; ++USIdx
) {
2003 if (isRegUnitSubSet(RCRegUnits
, RegUnitSets
[USIdx
].Units
)) {
2004 LLVM_DEBUG(dbgs() << " " << USIdx
);
2005 RegClassUnitSets
[RCIdx
].push_back(USIdx
);
2008 LLVM_DEBUG(dbgs() << "\n");
2009 assert(!RegClassUnitSets
[RCIdx
].empty() && "missing unit set for regclass");
2012 // For each register unit, ensure that we have the list of UnitSets that
2013 // contain the unit. Normally, this matches an existing list of UnitSets for a
2014 // register class. If not, we create a new entry in RegClassUnitSets as a
2015 // "fake" register class.
2016 for (unsigned UnitIdx
= 0, UnitEnd
= NumNativeRegUnits
;
2017 UnitIdx
< UnitEnd
; ++UnitIdx
) {
2018 std::vector
<unsigned> RUSets
;
2019 for (unsigned i
= 0, e
= RegUnitSets
.size(); i
!= e
; ++i
) {
2020 RegUnitSet
&RUSet
= RegUnitSets
[i
];
2021 if (!is_contained(RUSet
.Units
, UnitIdx
))
2023 RUSets
.push_back(i
);
2025 unsigned RCUnitSetsIdx
= 0;
2026 for (unsigned e
= RegClassUnitSets
.size();
2027 RCUnitSetsIdx
!= e
; ++RCUnitSetsIdx
) {
2028 if (RegClassUnitSets
[RCUnitSetsIdx
] == RUSets
) {
2032 RegUnits
[UnitIdx
].RegClassUnitSetsIdx
= RCUnitSetsIdx
;
2033 if (RCUnitSetsIdx
== RegClassUnitSets
.size()) {
2034 // Create a new list of UnitSets as a "fake" register class.
2035 RegClassUnitSets
.resize(RCUnitSetsIdx
+ 1);
2036 RegClassUnitSets
[RCUnitSetsIdx
].swap(RUSets
);
2041 void CodeGenRegBank::computeRegUnitLaneMasks() {
2042 for (auto &Register
: Registers
) {
2043 // Create an initial lane mask for all register units.
2044 const auto &RegUnits
= Register
.getRegUnits();
2045 CodeGenRegister::RegUnitLaneMaskList
2046 RegUnitLaneMasks(RegUnits
.count(), LaneBitmask::getNone());
2047 // Iterate through SubRegisters.
2048 typedef CodeGenRegister::SubRegMap SubRegMap
;
2049 const SubRegMap
&SubRegs
= Register
.getSubRegs();
2050 for (SubRegMap::const_iterator S
= SubRegs
.begin(),
2051 SE
= SubRegs
.end(); S
!= SE
; ++S
) {
2052 CodeGenRegister
*SubReg
= S
->second
;
2053 // Ignore non-leaf subregisters, their lane masks are fully covered by
2054 // the leaf subregisters anyway.
2055 if (!SubReg
->getSubRegs().empty())
2057 CodeGenSubRegIndex
*SubRegIndex
= S
->first
;
2058 const CodeGenRegister
*SubRegister
= S
->second
;
2059 LaneBitmask LaneMask
= SubRegIndex
->LaneMask
;
2060 // Distribute LaneMask to Register Units touched.
2061 for (unsigned SUI
: SubRegister
->getRegUnits()) {
2064 for (unsigned RU
: RegUnits
) {
2066 RegUnitLaneMasks
[u
] |= LaneMask
;
2076 Register
.setRegUnitLaneMasks(RegUnitLaneMasks
);
2080 void CodeGenRegBank::computeDerivedInfo() {
2081 computeComposites();
2082 computeSubRegLaneMasks();
2084 // Compute a weight for each register unit created during getSubRegs.
2085 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2086 computeRegUnitWeights();
2088 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2089 // supersets for the union of overlapping sets.
2090 computeRegUnitSets();
2092 computeRegUnitLaneMasks();
2094 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2095 for (CodeGenRegisterClass
&RC
: RegClasses
) {
2096 RC
.HasDisjunctSubRegs
= false;
2097 RC
.CoveredBySubRegs
= true;
2098 for (const CodeGenRegister
*Reg
: RC
.getMembers()) {
2099 RC
.HasDisjunctSubRegs
|= Reg
->HasDisjunctSubRegs
;
2100 RC
.CoveredBySubRegs
&= Reg
->CoveredBySubRegs
;
2104 // Get the weight of each set.
2105 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
)
2106 RegUnitSets
[Idx
].Weight
= getRegUnitSetWeight(RegUnitSets
[Idx
].Units
);
2108 // Find the order of each set.
2109 RegUnitSetOrder
.reserve(RegUnitSets
.size());
2110 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
)
2111 RegUnitSetOrder
.push_back(Idx
);
2113 llvm::stable_sort(RegUnitSetOrder
, [this](unsigned ID1
, unsigned ID2
) {
2114 return getRegPressureSet(ID1
).Units
.size() <
2115 getRegPressureSet(ID2
).Units
.size();
2117 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
) {
2118 RegUnitSets
[RegUnitSetOrder
[Idx
]].Order
= Idx
;
2123 // Synthesize missing register class intersections.
2125 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2126 // returns a maximal register class for all X.
2128 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass
*RC
) {
2129 assert(!RegClasses
.empty());
2130 // Stash the iterator to the last element so that this loop doesn't visit
2131 // elements added by the getOrCreateSubClass call within it.
2132 for (auto I
= RegClasses
.begin(), E
= std::prev(RegClasses
.end());
2133 I
!= std::next(E
); ++I
) {
2134 CodeGenRegisterClass
*RC1
= RC
;
2135 CodeGenRegisterClass
*RC2
= &*I
;
2139 // Compute the set intersection of RC1 and RC2.
2140 const CodeGenRegister::Vec
&Memb1
= RC1
->getMembers();
2141 const CodeGenRegister::Vec
&Memb2
= RC2
->getMembers();
2142 CodeGenRegister::Vec Intersection
;
2143 std::set_intersection(
2144 Memb1
.begin(), Memb1
.end(), Memb2
.begin(), Memb2
.end(),
2145 std::inserter(Intersection
, Intersection
.begin()), deref
<llvm::less
>());
2147 // Skip disjoint class pairs.
2148 if (Intersection
.empty())
2151 // If RC1 and RC2 have different spill sizes or alignments, use the
2152 // stricter one for sub-classing. If they are equal, prefer RC1.
2153 if (RC2
->RSI
.hasStricterSpillThan(RC1
->RSI
))
2154 std::swap(RC1
, RC2
);
2156 getOrCreateSubClass(RC1
, &Intersection
,
2157 RC1
->getName() + "_and_" + RC2
->getName());
2162 // Synthesize missing sub-classes for getSubClassWithSubReg().
2164 // Make sure that the set of registers in RC with a given SubIdx sub-register
2165 // form a register class. Update RC->SubClassWithSubReg.
2167 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass
*RC
) {
2168 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2169 typedef std::map
<const CodeGenSubRegIndex
*, CodeGenRegister::Vec
,
2170 deref
<llvm::less
>> SubReg2SetMap
;
2172 // Compute the set of registers supporting each SubRegIndex.
2173 SubReg2SetMap SRSets
;
2174 for (const auto R
: RC
->getMembers()) {
2177 const CodeGenRegister::SubRegMap
&SRM
= R
->getSubRegs();
2178 for (CodeGenRegister::SubRegMap::const_iterator I
= SRM
.begin(),
2179 E
= SRM
.end(); I
!= E
; ++I
) {
2180 if (!I
->first
->Artificial
)
2181 SRSets
[I
->first
].push_back(R
);
2185 for (auto I
: SRSets
)
2186 sortAndUniqueRegisters(I
.second
);
2188 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2189 // numerical order to visit synthetic indices last.
2190 for (const auto &SubIdx
: SubRegIndices
) {
2191 if (SubIdx
.Artificial
)
2193 SubReg2SetMap::const_iterator I
= SRSets
.find(&SubIdx
);
2194 // Unsupported SubRegIndex. Skip it.
2195 if (I
== SRSets
.end())
2197 // In most cases, all RC registers support the SubRegIndex.
2198 if (I
->second
.size() == RC
->getMembers().size()) {
2199 RC
->setSubClassWithSubReg(&SubIdx
, RC
);
2202 // This is a real subset. See if we have a matching class.
2203 CodeGenRegisterClass
*SubRC
=
2204 getOrCreateSubClass(RC
, &I
->second
,
2205 RC
->getName() + "_with_" + I
->first
->getName());
2206 RC
->setSubClassWithSubReg(&SubIdx
, SubRC
);
2211 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2213 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2214 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2217 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass
*RC
,
2218 std::list
<CodeGenRegisterClass
>::iterator FirstSubRegRC
) {
2219 SmallVector
<std::pair
<const CodeGenRegister
*,
2220 const CodeGenRegister
*>, 16> SSPairs
;
2221 BitVector
TopoSigs(getNumTopoSigs());
2223 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2224 for (auto &SubIdx
: SubRegIndices
) {
2225 // Skip indexes that aren't fully supported by RC's registers. This was
2226 // computed by inferSubClassWithSubReg() above which should have been
2228 if (RC
->getSubClassWithSubReg(&SubIdx
) != RC
)
2231 // Build list of (Super, Sub) pairs for this SubIdx.
2234 for (const auto Super
: RC
->getMembers()) {
2235 const CodeGenRegister
*Sub
= Super
->getSubRegs().find(&SubIdx
)->second
;
2236 assert(Sub
&& "Missing sub-register");
2237 SSPairs
.push_back(std::make_pair(Super
, Sub
));
2238 TopoSigs
.set(Sub
->getTopoSig());
2241 // Iterate over sub-register class candidates. Ignore classes created by
2242 // this loop. They will never be useful.
2243 // Store an iterator to the last element (not end) so that this loop doesn't
2244 // visit newly inserted elements.
2245 assert(!RegClasses
.empty());
2246 for (auto I
= FirstSubRegRC
, E
= std::prev(RegClasses
.end());
2247 I
!= std::next(E
); ++I
) {
2248 CodeGenRegisterClass
&SubRC
= *I
;
2249 if (SubRC
.Artificial
)
2251 // Topological shortcut: SubRC members have the wrong shape.
2252 if (!TopoSigs
.anyCommon(SubRC
.getTopoSigs()))
2254 // Compute the subset of RC that maps into SubRC.
2255 CodeGenRegister::Vec SubSetVec
;
2256 for (unsigned i
= 0, e
= SSPairs
.size(); i
!= e
; ++i
)
2257 if (SubRC
.contains(SSPairs
[i
].second
))
2258 SubSetVec
.push_back(SSPairs
[i
].first
);
2260 if (SubSetVec
.empty())
2263 // RC injects completely into SubRC.
2264 sortAndUniqueRegisters(SubSetVec
);
2265 if (SubSetVec
.size() == SSPairs
.size()) {
2266 SubRC
.addSuperRegClass(&SubIdx
, RC
);
2270 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2272 getOrCreateSubClass(RC
, &SubSetVec
, RC
->getName() + "_with_" +
2273 SubIdx
.getName() + "_in_" +
2280 // Infer missing register classes.
2282 void CodeGenRegBank::computeInferredRegisterClasses() {
2283 assert(!RegClasses
.empty());
2284 // When this function is called, the register classes have not been sorted
2285 // and assigned EnumValues yet. That means getSubClasses(),
2286 // getSuperClasses(), and hasSubClass() functions are defunct.
2288 // Use one-before-the-end so it doesn't move forward when new elements are
2290 auto FirstNewRC
= std::prev(RegClasses
.end());
2292 // Visit all register classes, including the ones being added by the loop.
2293 // Watch out for iterator invalidation here.
2294 for (auto I
= RegClasses
.begin(), E
= RegClasses
.end(); I
!= E
; ++I
) {
2295 CodeGenRegisterClass
*RC
= &*I
;
2299 // Synthesize answers for getSubClassWithSubReg().
2300 inferSubClassWithSubReg(RC
);
2302 // Synthesize answers for getCommonSubClass().
2303 inferCommonSubClass(RC
);
2305 // Synthesize answers for getMatchingSuperRegClass().
2306 inferMatchingSuperRegClass(RC
);
2308 // New register classes are created while this loop is running, and we need
2309 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2310 // to match old super-register classes with sub-register classes created
2311 // after inferMatchingSuperRegClass was called. At this point,
2312 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2313 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2314 if (I
== FirstNewRC
) {
2315 auto NextNewRC
= std::prev(RegClasses
.end());
2316 for (auto I2
= RegClasses
.begin(), E2
= std::next(FirstNewRC
); I2
!= E2
;
2318 inferMatchingSuperRegClass(&*I2
, E2
);
2319 FirstNewRC
= NextNewRC
;
2324 /// getRegisterClassForRegister - Find the register class that contains the
2325 /// specified physical register. If the register is not in a register class,
2326 /// return null. If the register is in multiple classes, and the classes have a
2327 /// superset-subset relationship and the same set of types, return the
2328 /// superclass. Otherwise return null.
2329 const CodeGenRegisterClass
*
2330 CodeGenRegBank::getRegClassForRegister(Record
*R
) {
2331 const CodeGenRegister
*Reg
= getReg(R
);
2332 const CodeGenRegisterClass
*FoundRC
= nullptr;
2333 for (const auto &RC
: getRegClasses()) {
2334 if (!RC
.contains(Reg
))
2337 // If this is the first class that contains the register,
2338 // make a note of it and go on to the next class.
2344 // If a register's classes have different types, return null.
2345 if (RC
.getValueTypes() != FoundRC
->getValueTypes())
2348 // Check to see if the previously found class that contains
2349 // the register is a subclass of the current class. If so,
2350 // prefer the superclass.
2351 if (RC
.hasSubClass(FoundRC
)) {
2356 // Check to see if the previously found class that contains
2357 // the register is a superclass of the current class. If so,
2358 // prefer the superclass.
2359 if (FoundRC
->hasSubClass(&RC
))
2362 // Multiple classes, and neither is a superclass of the other.
2369 BitVector
CodeGenRegBank::computeCoveredRegisters(ArrayRef
<Record
*> Regs
) {
2370 SetVector
<const CodeGenRegister
*> Set
;
2372 // First add Regs with all sub-registers.
2373 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
) {
2374 CodeGenRegister
*Reg
= getReg(Regs
[i
]);
2375 if (Set
.insert(Reg
))
2376 // Reg is new, add all sub-registers.
2377 // The pre-ordering is not important here.
2378 Reg
->addSubRegsPreOrder(Set
, *this);
2381 // Second, find all super-registers that are completely covered by the set.
2382 for (unsigned i
= 0; i
!= Set
.size(); ++i
) {
2383 const CodeGenRegister::SuperRegList
&SR
= Set
[i
]->getSuperRegs();
2384 for (unsigned j
= 0, e
= SR
.size(); j
!= e
; ++j
) {
2385 const CodeGenRegister
*Super
= SR
[j
];
2386 if (!Super
->CoveredBySubRegs
|| Set
.count(Super
))
2388 // This new super-register is covered by its sub-registers.
2389 bool AllSubsInSet
= true;
2390 const CodeGenRegister::SubRegMap
&SRM
= Super
->getSubRegs();
2391 for (CodeGenRegister::SubRegMap::const_iterator I
= SRM
.begin(),
2392 E
= SRM
.end(); I
!= E
; ++I
)
2393 if (!Set
.count(I
->second
)) {
2394 AllSubsInSet
= false;
2397 // All sub-registers in Set, add Super as well.
2398 // We will visit Super later to recheck its super-registers.
2404 // Convert to BitVector.
2405 BitVector
BV(Registers
.size() + 1);
2406 for (unsigned i
= 0, e
= Set
.size(); i
!= e
; ++i
)
2407 BV
.set(Set
[i
]->EnumValue
);
2411 void CodeGenRegBank::printRegUnitName(unsigned Unit
) const {
2412 if (Unit
< NumNativeRegUnits
)
2413 dbgs() << ' ' << RegUnits
[Unit
].Roots
[0]->getName();
2415 dbgs() << " #" << Unit
;