1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends. This makes it easier to access the data and
11 // provides a single place that needs to check it for validity. All of these
12 // classes abort on error conditions.
14 //===----------------------------------------------------------------------===//
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
30 cl::OptionCategory
AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory
AsmWriterCat("Options for -gen-asm-writer");
33 static cl::opt
<unsigned>
34 AsmParserNum("asmparsernum", cl::init(0),
35 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36 cl::cat(AsmParserCat
));
38 static cl::opt
<unsigned>
39 AsmWriterNum("asmwriternum", cl::init(0),
40 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41 cl::cat(AsmWriterCat
));
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType
llvm::getValueType(Record
*Rec
) {
46 return (MVT::SimpleValueType
)Rec
->getValueAsInt("Value");
49 StringRef
llvm::getName(MVT::SimpleValueType T
) {
51 case MVT::Other
: return "UNKNOWN";
52 case MVT::iPTR
: return "TLI.getPointerTy()";
53 case MVT::iPTRAny
: return "TLI.getPointerTy()";
54 default: return getEnumName(T
);
58 StringRef
llvm::getEnumName(MVT::SimpleValueType T
) {
60 case MVT::Other
: return "MVT::Other";
61 case MVT::i1
: return "MVT::i1";
62 case MVT::i8
: return "MVT::i8";
63 case MVT::i16
: return "MVT::i16";
64 case MVT::i32
: return "MVT::i32";
65 case MVT::i64
: return "MVT::i64";
66 case MVT::i128
: return "MVT::i128";
67 case MVT::Any
: return "MVT::Any";
68 case MVT::iAny
: return "MVT::iAny";
69 case MVT::fAny
: return "MVT::fAny";
70 case MVT::vAny
: return "MVT::vAny";
71 case MVT::f16
: return "MVT::f16";
72 case MVT::f32
: return "MVT::f32";
73 case MVT::f64
: return "MVT::f64";
74 case MVT::f80
: return "MVT::f80";
75 case MVT::f128
: return "MVT::f128";
76 case MVT::ppcf128
: return "MVT::ppcf128";
77 case MVT::x86mmx
: return "MVT::x86mmx";
78 case MVT::Glue
: return "MVT::Glue";
79 case MVT::isVoid
: return "MVT::isVoid";
80 case MVT::v1i1
: return "MVT::v1i1";
81 case MVT::v2i1
: return "MVT::v2i1";
82 case MVT::v4i1
: return "MVT::v4i1";
83 case MVT::v8i1
: return "MVT::v8i1";
84 case MVT::v16i1
: return "MVT::v16i1";
85 case MVT::v32i1
: return "MVT::v32i1";
86 case MVT::v64i1
: return "MVT::v64i1";
87 case MVT::v128i1
: return "MVT::v128i1";
88 case MVT::v512i1
: return "MVT::v512i1";
89 case MVT::v1024i1
: return "MVT::v1024i1";
90 case MVT::v1i8
: return "MVT::v1i8";
91 case MVT::v2i8
: return "MVT::v2i8";
92 case MVT::v4i8
: return "MVT::v4i8";
93 case MVT::v8i8
: return "MVT::v8i8";
94 case MVT::v16i8
: return "MVT::v16i8";
95 case MVT::v32i8
: return "MVT::v32i8";
96 case MVT::v64i8
: return "MVT::v64i8";
97 case MVT::v128i8
: return "MVT::v128i8";
98 case MVT::v256i8
: return "MVT::v256i8";
99 case MVT::v1i16
: return "MVT::v1i16";
100 case MVT::v2i16
: return "MVT::v2i16";
101 case MVT::v4i16
: return "MVT::v4i16";
102 case MVT::v8i16
: return "MVT::v8i16";
103 case MVT::v16i16
: return "MVT::v16i16";
104 case MVT::v32i16
: return "MVT::v32i16";
105 case MVT::v64i16
: return "MVT::v64i16";
106 case MVT::v128i16
: return "MVT::v128i16";
107 case MVT::v1i32
: return "MVT::v1i32";
108 case MVT::v2i32
: return "MVT::v2i32";
109 case MVT::v3i32
: return "MVT::v3i32";
110 case MVT::v4i32
: return "MVT::v4i32";
111 case MVT::v5i32
: return "MVT::v5i32";
112 case MVT::v8i32
: return "MVT::v8i32";
113 case MVT::v16i32
: return "MVT::v16i32";
114 case MVT::v32i32
: return "MVT::v32i32";
115 case MVT::v64i32
: return "MVT::v64i32";
116 case MVT::v128i32
: return "MVT::v128i32";
117 case MVT::v256i32
: return "MVT::v256i32";
118 case MVT::v512i32
: return "MVT::v512i32";
119 case MVT::v1024i32
: return "MVT::v1024i32";
120 case MVT::v2048i32
: return "MVT::v2048i32";
121 case MVT::v1i64
: return "MVT::v1i64";
122 case MVT::v2i64
: return "MVT::v2i64";
123 case MVT::v4i64
: return "MVT::v4i64";
124 case MVT::v8i64
: return "MVT::v8i64";
125 case MVT::v16i64
: return "MVT::v16i64";
126 case MVT::v32i64
: return "MVT::v32i64";
127 case MVT::v1i128
: return "MVT::v1i128";
128 case MVT::v2f16
: return "MVT::v2f16";
129 case MVT::v4f16
: return "MVT::v4f16";
130 case MVT::v8f16
: return "MVT::v8f16";
131 case MVT::v1f32
: return "MVT::v1f32";
132 case MVT::v2f32
: return "MVT::v2f32";
133 case MVT::v3f32
: return "MVT::v3f32";
134 case MVT::v4f32
: return "MVT::v4f32";
135 case MVT::v5f32
: return "MVT::v5f32";
136 case MVT::v8f32
: return "MVT::v8f32";
137 case MVT::v16f32
: return "MVT::v16f32";
138 case MVT::v32f32
: return "MVT::v32f32";
139 case MVT::v64f32
: return "MVT::v64f32";
140 case MVT::v128f32
: return "MVT::v128f32";
141 case MVT::v256f32
: return "MVT::v256f32";
142 case MVT::v512f32
: return "MVT::v512f32";
143 case MVT::v1024f32
: return "MVT::v1024f32";
144 case MVT::v2048f32
: return "MVT::v2048f32";
145 case MVT::v1f64
: return "MVT::v1f64";
146 case MVT::v2f64
: return "MVT::v2f64";
147 case MVT::v4f64
: return "MVT::v4f64";
148 case MVT::v8f64
: return "MVT::v8f64";
149 case MVT::nxv1i1
: return "MVT::nxv1i1";
150 case MVT::nxv2i1
: return "MVT::nxv2i1";
151 case MVT::nxv4i1
: return "MVT::nxv4i1";
152 case MVT::nxv8i1
: return "MVT::nxv8i1";
153 case MVT::nxv16i1
: return "MVT::nxv16i1";
154 case MVT::nxv32i1
: return "MVT::nxv32i1";
155 case MVT::nxv1i8
: return "MVT::nxv1i8";
156 case MVT::nxv2i8
: return "MVT::nxv2i8";
157 case MVT::nxv4i8
: return "MVT::nxv4i8";
158 case MVT::nxv8i8
: return "MVT::nxv8i8";
159 case MVT::nxv16i8
: return "MVT::nxv16i8";
160 case MVT::nxv32i8
: return "MVT::nxv32i8";
161 case MVT::nxv1i16
: return "MVT::nxv1i16";
162 case MVT::nxv2i16
: return "MVT::nxv2i16";
163 case MVT::nxv4i16
: return "MVT::nxv4i16";
164 case MVT::nxv8i16
: return "MVT::nxv8i16";
165 case MVT::nxv16i16
: return "MVT::nxv16i16";
166 case MVT::nxv32i16
: return "MVT::nxv32i16";
167 case MVT::nxv1i32
: return "MVT::nxv1i32";
168 case MVT::nxv2i32
: return "MVT::nxv2i32";
169 case MVT::nxv4i32
: return "MVT::nxv4i32";
170 case MVT::nxv8i32
: return "MVT::nxv8i32";
171 case MVT::nxv16i32
: return "MVT::nxv16i32";
172 case MVT::nxv1i64
: return "MVT::nxv1i64";
173 case MVT::nxv2i64
: return "MVT::nxv2i64";
174 case MVT::nxv4i64
: return "MVT::nxv4i64";
175 case MVT::nxv8i64
: return "MVT::nxv8i64";
176 case MVT::nxv16i64
: return "MVT::nxv16i64";
177 case MVT::nxv2f16
: return "MVT::nxv2f16";
178 case MVT::nxv4f16
: return "MVT::nxv4f16";
179 case MVT::nxv8f16
: return "MVT::nxv8f16";
180 case MVT::nxv1f32
: return "MVT::nxv1f32";
181 case MVT::nxv2f32
: return "MVT::nxv2f32";
182 case MVT::nxv4f32
: return "MVT::nxv4f32";
183 case MVT::nxv8f32
: return "MVT::nxv8f32";
184 case MVT::nxv16f32
: return "MVT::nxv16f32";
185 case MVT::nxv1f64
: return "MVT::nxv1f64";
186 case MVT::nxv2f64
: return "MVT::nxv2f64";
187 case MVT::nxv4f64
: return "MVT::nxv4f64";
188 case MVT::nxv8f64
: return "MVT::nxv8f64";
189 case MVT::token
: return "MVT::token";
190 case MVT::Metadata
: return "MVT::Metadata";
191 case MVT::iPTR
: return "MVT::iPTR";
192 case MVT::iPTRAny
: return "MVT::iPTRAny";
193 case MVT::Untyped
: return "MVT::Untyped";
194 case MVT::exnref
: return "MVT::exnref";
195 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
199 /// getQualifiedName - Return the name of the specified record, with a
200 /// namespace qualifier if the record contains one.
202 std::string
llvm::getQualifiedName(const Record
*R
) {
203 std::string Namespace
;
204 if (R
->getValue("Namespace"))
205 Namespace
= R
->getValueAsString("Namespace");
206 if (Namespace
.empty()) return R
->getName();
207 return Namespace
+ "::" + R
->getName().str();
211 /// getTarget - Return the current instance of the Target class.
213 CodeGenTarget::CodeGenTarget(RecordKeeper
&records
)
214 : Records(records
), CGH(records
) {
215 std::vector
<Record
*> Targets
= Records
.getAllDerivedDefinitions("Target");
216 if (Targets
.size() == 0)
217 PrintFatalError("ERROR: No 'Target' subclasses defined!");
218 if (Targets
.size() != 1)
219 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
220 TargetRec
= Targets
[0];
223 CodeGenTarget::~CodeGenTarget() {
226 const StringRef
CodeGenTarget::getName() const {
227 return TargetRec
->getName();
230 StringRef
CodeGenTarget::getInstNamespace() const {
231 for (const CodeGenInstruction
*Inst
: getInstructionsByEnumValue()) {
232 // Make sure not to pick up "TargetOpcode" by accidentally getting
233 // the namespace off the PHI instruction or something.
234 if (Inst
->Namespace
!= "TargetOpcode")
235 return Inst
->Namespace
;
241 Record
*CodeGenTarget::getInstructionSet() const {
242 return TargetRec
->getValueAsDef("InstructionSet");
245 bool CodeGenTarget::getAllowRegisterRenaming() const {
246 return TargetRec
->getValueAsInt("AllowRegisterRenaming");
249 /// getAsmParser - Return the AssemblyParser definition for this target.
251 Record
*CodeGenTarget::getAsmParser() const {
252 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyParsers");
253 if (AsmParserNum
>= LI
.size())
254 PrintFatalError("Target does not have an AsmParser #" +
255 Twine(AsmParserNum
) + "!");
256 return LI
[AsmParserNum
];
259 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
262 Record
*CodeGenTarget::getAsmParserVariant(unsigned i
) const {
263 std::vector
<Record
*> LI
=
264 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
266 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i
) +
271 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
272 /// available for this target.
274 unsigned CodeGenTarget::getAsmParserVariantCount() const {
275 std::vector
<Record
*> LI
=
276 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
280 /// getAsmWriter - Return the AssemblyWriter definition for this target.
282 Record
*CodeGenTarget::getAsmWriter() const {
283 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyWriters");
284 if (AsmWriterNum
>= LI
.size())
285 PrintFatalError("Target does not have an AsmWriter #" +
286 Twine(AsmWriterNum
) + "!");
287 return LI
[AsmWriterNum
];
290 CodeGenRegBank
&CodeGenTarget::getRegBank() const {
292 RegBank
= llvm::make_unique
<CodeGenRegBank
>(Records
, getHwModes());
296 void CodeGenTarget::ReadRegAltNameIndices() const {
297 RegAltNameIndices
= Records
.getAllDerivedDefinitions("RegAltNameIndex");
298 llvm::sort(RegAltNameIndices
, LessRecord());
301 /// getRegisterByName - If there is a register with the specific AsmName,
303 const CodeGenRegister
*CodeGenTarget::getRegisterByName(StringRef Name
) const {
304 const StringMap
<CodeGenRegister
*> &Regs
= getRegBank().getRegistersByName();
305 StringMap
<CodeGenRegister
*>::const_iterator I
= Regs
.find(Name
);
311 std::vector
<ValueTypeByHwMode
> CodeGenTarget::getRegisterVTs(Record
*R
)
313 const CodeGenRegister
*Reg
= getRegBank().getReg(R
);
314 std::vector
<ValueTypeByHwMode
> Result
;
315 for (const auto &RC
: getRegBank().getRegClasses()) {
316 if (RC
.contains(Reg
)) {
317 ArrayRef
<ValueTypeByHwMode
> InVTs
= RC
.getValueTypes();
318 Result
.insert(Result
.end(), InVTs
.begin(), InVTs
.end());
322 // Remove duplicates.
324 Result
.erase(std::unique(Result
.begin(), Result
.end()), Result
.end());
329 void CodeGenTarget::ReadLegalValueTypes() const {
330 for (const auto &RC
: getRegBank().getRegClasses())
331 LegalValueTypes
.insert(LegalValueTypes
.end(), RC
.VTs
.begin(), RC
.VTs
.end());
333 // Remove duplicates.
334 llvm::sort(LegalValueTypes
);
335 LegalValueTypes
.erase(std::unique(LegalValueTypes
.begin(),
336 LegalValueTypes
.end()),
337 LegalValueTypes
.end());
340 CodeGenSchedModels
&CodeGenTarget::getSchedModels() const {
342 SchedModels
= llvm::make_unique
<CodeGenSchedModels
>(Records
, *this);
346 void CodeGenTarget::ReadInstructions() const {
347 NamedRegionTimer
T("Read Instructions", "Time spent reading instructions",
348 "CodeGenTarget", "CodeGenTarget", TimeRegions
);
349 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
350 if (Insts
.size() <= 2)
351 PrintFatalError("No 'Instruction' subclasses defined!");
353 // Parse the instructions defined in the .td file.
354 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
)
355 Instructions
[Insts
[i
]] = llvm::make_unique
<CodeGenInstruction
>(Insts
[i
]);
358 static const CodeGenInstruction
*
359 GetInstByName(const char *Name
,
360 const DenseMap
<const Record
*,
361 std::unique_ptr
<CodeGenInstruction
>> &Insts
,
362 RecordKeeper
&Records
) {
363 const Record
*Rec
= Records
.getDef(Name
);
365 const auto I
= Insts
.find(Rec
);
366 if (!Rec
|| I
== Insts
.end())
367 PrintFatalError(Twine("Could not find '") + Name
+ "' instruction!");
368 return I
->second
.get();
371 static const char *const FixedInstrs
[] = {
372 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
373 #include "llvm/Support/TargetOpcodes.def"
376 unsigned CodeGenTarget::getNumFixedInstructions() {
377 return array_lengthof(FixedInstrs
) - 1;
380 /// Return all of the instructions defined by the target, ordered by
381 /// their enum value.
382 void CodeGenTarget::ComputeInstrsByEnum() const {
383 const auto &Insts
= getInstructions();
384 for (const char *const *p
= FixedInstrs
; *p
; ++p
) {
385 const CodeGenInstruction
*Instr
= GetInstByName(*p
, Insts
, Records
);
386 assert(Instr
&& "Missing target independent instruction");
387 assert(Instr
->Namespace
== "TargetOpcode" && "Bad namespace");
388 InstrsByEnum
.push_back(Instr
);
390 unsigned EndOfPredefines
= InstrsByEnum
.size();
391 assert(EndOfPredefines
== getNumFixedInstructions() &&
392 "Missing generic opcode");
394 for (const auto &I
: Insts
) {
395 const CodeGenInstruction
*CGI
= I
.second
.get();
396 if (CGI
->Namespace
!= "TargetOpcode") {
397 InstrsByEnum
.push_back(CGI
);
398 if (CGI
->TheDef
->getValueAsBit("isPseudo"))
399 ++NumPseudoInstructions
;
403 assert(InstrsByEnum
.size() == Insts
.size() && "Missing predefined instr");
405 // All of the instructions are now in random order based on the map iteration.
407 InstrsByEnum
.begin() + EndOfPredefines
, InstrsByEnum
.end(),
408 [](const CodeGenInstruction
*Rec1
, const CodeGenInstruction
*Rec2
) {
409 const auto &D1
= *Rec1
->TheDef
;
410 const auto &D2
= *Rec2
->TheDef
;
411 return std::make_tuple(!D1
.getValueAsBit("isPseudo"), D1
.getName()) <
412 std::make_tuple(!D2
.getValueAsBit("isPseudo"), D2
.getName());
417 /// isLittleEndianEncoding - Return whether this target encodes its instruction
418 /// in little-endian format, i.e. bits laid out in the order [0..n]
420 bool CodeGenTarget::isLittleEndianEncoding() const {
421 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
424 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
425 /// encodings, reverse the bit order of all instructions.
426 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
427 if (!isLittleEndianEncoding())
430 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
431 for (Record
*R
: Insts
) {
432 if (R
->getValueAsString("Namespace") == "TargetOpcode" ||
433 R
->getValueAsBit("isPseudo"))
436 BitsInit
*BI
= R
->getValueAsBitsInit("Inst");
438 unsigned numBits
= BI
->getNumBits();
440 SmallVector
<Init
*, 16> NewBits(numBits
);
442 for (unsigned bit
= 0, end
= numBits
/ 2; bit
!= end
; ++bit
) {
443 unsigned bitSwapIdx
= numBits
- bit
- 1;
444 Init
*OrigBit
= BI
->getBit(bit
);
445 Init
*BitSwap
= BI
->getBit(bitSwapIdx
);
446 NewBits
[bit
] = BitSwap
;
447 NewBits
[bitSwapIdx
] = OrigBit
;
450 unsigned middle
= (numBits
+ 1) / 2;
451 NewBits
[middle
] = BI
->getBit(middle
);
454 BitsInit
*NewBI
= BitsInit::get(NewBits
);
456 // Update the bits in reversed order so that emitInstrOpBits will get the
457 // correct endianness.
458 R
->getValue("Inst")->setValue(NewBI
);
462 /// guessInstructionProperties - Return true if it's OK to guess instruction
463 /// properties instead of raising an error.
465 /// This is configurable as a temporary migration aid. It will eventually be
466 /// permanently false.
467 bool CodeGenTarget::guessInstructionProperties() const {
468 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
471 //===----------------------------------------------------------------------===//
472 // ComplexPattern implementation
474 ComplexPattern::ComplexPattern(Record
*R
) {
475 Ty
= ::getValueType(R
->getValueAsDef("Ty"));
476 NumOperands
= R
->getValueAsInt("NumOperands");
477 SelectFunc
= R
->getValueAsString("SelectFunc");
478 RootNodes
= R
->getValueAsListOfDefs("RootNodes");
480 // FIXME: This is a hack to statically increase the priority of patterns which
481 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
482 // possible pattern match we'll need to dynamically calculate the complexity
483 // of all patterns a dag can potentially map to.
484 int64_t RawComplexity
= R
->getValueAsInt("Complexity");
485 if (RawComplexity
== -1)
486 Complexity
= NumOperands
* 3;
488 Complexity
= RawComplexity
;
490 // FIXME: Why is this different from parseSDPatternOperatorProperties?
491 // Parse the properties.
493 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
494 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
)
495 if (PropList
[i
]->getName() == "SDNPHasChain") {
496 Properties
|= 1 << SDNPHasChain
;
497 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
498 Properties
|= 1 << SDNPOptInGlue
;
499 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
500 Properties
|= 1 << SDNPMayStore
;
501 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
502 Properties
|= 1 << SDNPMayLoad
;
503 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
504 Properties
|= 1 << SDNPSideEffect
;
505 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
506 Properties
|= 1 << SDNPMemOperand
;
507 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
508 Properties
|= 1 << SDNPVariadic
;
509 } else if (PropList
[i
]->getName() == "SDNPWantRoot") {
510 Properties
|= 1 << SDNPWantRoot
;
511 } else if (PropList
[i
]->getName() == "SDNPWantParent") {
512 Properties
|= 1 << SDNPWantParent
;
514 PrintFatalError(R
->getLoc(), "Unsupported SD Node property '" +
515 PropList
[i
]->getName() +
516 "' on ComplexPattern '" + R
->getName() +
521 //===----------------------------------------------------------------------===//
522 // CodeGenIntrinsic Implementation
523 //===----------------------------------------------------------------------===//
525 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper
&RC
,
527 std::vector
<Record
*> Defs
= RC
.getAllDerivedDefinitions("Intrinsic");
529 Intrinsics
.reserve(Defs
.size());
531 for (unsigned I
= 0, e
= Defs
.size(); I
!= e
; ++I
) {
532 bool isTarget
= Defs
[I
]->getValueAsBit("isTarget");
533 if (isTarget
== TargetOnly
)
534 Intrinsics
.push_back(CodeGenIntrinsic(Defs
[I
]));
536 llvm::sort(Intrinsics
,
537 [](const CodeGenIntrinsic
&LHS
, const CodeGenIntrinsic
&RHS
) {
538 return std::tie(LHS
.TargetPrefix
, LHS
.Name
) <
539 std::tie(RHS
.TargetPrefix
, RHS
.Name
);
541 Targets
.push_back({"", 0, 0});
542 for (size_t I
= 0, E
= Intrinsics
.size(); I
< E
; ++I
)
543 if (Intrinsics
[I
].TargetPrefix
!= Targets
.back().Name
) {
544 Targets
.back().Count
= I
- Targets
.back().Offset
;
545 Targets
.push_back({Intrinsics
[I
].TargetPrefix
, I
, 0});
547 Targets
.back().Count
= Intrinsics
.size() - Targets
.back().Offset
;
550 CodeGenIntrinsic::CodeGenIntrinsic(Record
*R
) {
552 std::string DefName
= R
->getName();
553 ArrayRef
<SMLoc
> DefLoc
= R
->getLoc();
554 ModRef
= ReadWriteMem
;
556 isOverloaded
= false;
557 isCommutative
= false;
560 isWillReturn
= false;
562 isNoDuplicate
= false;
563 isConvergent
= false;
564 isSpeculatable
= false;
565 hasSideEffects
= false;
567 if (DefName
.size() <= 4 ||
568 std::string(DefName
.begin(), DefName
.begin() + 4) != "int_")
569 PrintFatalError(DefLoc
,
570 "Intrinsic '" + DefName
+ "' does not start with 'int_'!");
572 EnumName
= std::string(DefName
.begin()+4, DefName
.end());
574 if (R
->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
575 GCCBuiltinName
= R
->getValueAsString("GCCBuiltinName");
576 if (R
->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
577 MSBuiltinName
= R
->getValueAsString("MSBuiltinName");
579 TargetPrefix
= R
->getValueAsString("TargetPrefix");
580 Name
= R
->getValueAsString("LLVMName");
583 // If an explicit name isn't specified, derive one from the DefName.
586 for (unsigned i
= 0, e
= EnumName
.size(); i
!= e
; ++i
)
587 Name
+= (EnumName
[i
] == '_') ? '.' : EnumName
[i
];
589 // Verify it starts with "llvm.".
590 if (Name
.size() <= 5 ||
591 std::string(Name
.begin(), Name
.begin() + 5) != "llvm.")
592 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
593 "'s name does not start with 'llvm.'!");
596 // If TargetPrefix is specified, make sure that Name starts with
597 // "llvm.<targetprefix>.".
598 if (!TargetPrefix
.empty()) {
599 if (Name
.size() < 6+TargetPrefix
.size() ||
600 std::string(Name
.begin() + 5, Name
.begin() + 6 + TargetPrefix
.size())
601 != (TargetPrefix
+ "."))
602 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
603 "' does not start with 'llvm." +
604 TargetPrefix
+ ".'!");
607 ListInit
*RetTypes
= R
->getValueAsListInit("RetTypes");
608 ListInit
*ParamTypes
= R
->getValueAsListInit("ParamTypes");
610 // First collate a list of overloaded types.
611 std::vector
<MVT::SimpleValueType
> OverloadedVTs
;
612 for (ListInit
*TypeList
: {RetTypes
, ParamTypes
}) {
613 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
614 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
615 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
617 if (TyEl
->isSubClassOf("LLVMMatchType"))
620 MVT::SimpleValueType VT
= getValueType(TyEl
->getValueAsDef("VT"));
621 if (MVT(VT
).isOverloaded()) {
622 OverloadedVTs
.push_back(VT
);
628 // Parse the list of return types.
629 ListInit
*TypeList
= RetTypes
;
630 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
631 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
632 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
633 MVT::SimpleValueType VT
;
634 if (TyEl
->isSubClassOf("LLVMMatchType")) {
635 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
636 assert(MatchTy
< OverloadedVTs
.size() &&
637 "Invalid matching number!");
638 VT
= OverloadedVTs
[MatchTy
];
639 // It only makes sense to use the extended and truncated vector element
640 // variants with iAny types; otherwise, if the intrinsic is not
641 // overloaded, all the types can be specified directly.
642 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
643 !TyEl
->isSubClassOf("LLVMTruncatedType")) ||
644 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
645 "Expected iAny or vAny type");
647 VT
= getValueType(TyEl
->getValueAsDef("VT"));
650 // Reject invalid types.
651 if (VT
== MVT::isVoid
)
652 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
653 " has void in result type list!");
655 IS
.RetVTs
.push_back(VT
);
656 IS
.RetTypeDefs
.push_back(TyEl
);
659 // Parse the list of parameter types.
660 TypeList
= ParamTypes
;
661 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
662 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
663 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
664 MVT::SimpleValueType VT
;
665 if (TyEl
->isSubClassOf("LLVMMatchType")) {
666 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
667 if (MatchTy
>= OverloadedVTs
.size()) {
668 PrintError(R
->getLoc(),
669 "Parameter #" + Twine(i
) + " has out of bounds matching "
670 "number " + Twine(MatchTy
));
671 PrintFatalError(DefLoc
,
672 Twine("ParamTypes is ") + TypeList
->getAsString());
674 VT
= OverloadedVTs
[MatchTy
];
675 // It only makes sense to use the extended and truncated vector element
676 // variants with iAny types; otherwise, if the intrinsic is not
677 // overloaded, all the types can be specified directly.
678 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
679 !TyEl
->isSubClassOf("LLVMTruncatedType") &&
680 !TyEl
->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
681 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
682 "Expected iAny or vAny type");
684 VT
= getValueType(TyEl
->getValueAsDef("VT"));
686 // Reject invalid types.
687 if (VT
== MVT::isVoid
&& i
!= e
-1 /*void at end means varargs*/)
688 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
689 " has void in result type list!");
691 IS
.ParamVTs
.push_back(VT
);
692 IS
.ParamTypeDefs
.push_back(TyEl
);
695 // Parse the intrinsic properties.
696 ListInit
*PropList
= R
->getValueAsListInit("IntrProperties");
697 for (unsigned i
= 0, e
= PropList
->size(); i
!= e
; ++i
) {
698 Record
*Property
= PropList
->getElementAsRecord(i
);
699 assert(Property
->isSubClassOf("IntrinsicProperty") &&
700 "Expected a property!");
702 if (Property
->getName() == "IntrNoMem")
704 else if (Property
->getName() == "IntrReadMem")
705 ModRef
= ModRefBehavior(ModRef
& ~MR_Mod
);
706 else if (Property
->getName() == "IntrWriteMem")
707 ModRef
= ModRefBehavior(ModRef
& ~MR_Ref
);
708 else if (Property
->getName() == "IntrArgMemOnly")
709 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
);
710 else if (Property
->getName() == "IntrInaccessibleMemOnly")
711 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_InaccessibleMem
);
712 else if (Property
->getName() == "IntrInaccessibleMemOrArgMemOnly")
713 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
|
715 else if (Property
->getName() == "Commutative")
716 isCommutative
= true;
717 else if (Property
->getName() == "Throws")
719 else if (Property
->getName() == "IntrNoDuplicate")
720 isNoDuplicate
= true;
721 else if (Property
->getName() == "IntrConvergent")
723 else if (Property
->getName() == "IntrNoReturn")
725 else if (Property
->getName() == "IntrWillReturn")
727 else if (Property
->getName() == "IntrCold")
729 else if (Property
->getName() == "IntrSpeculatable")
730 isSpeculatable
= true;
731 else if (Property
->getName() == "IntrHasSideEffects")
732 hasSideEffects
= true;
733 else if (Property
->isSubClassOf("NoCapture")) {
734 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
735 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoCapture
));
736 } else if (Property
->isSubClassOf("Returned")) {
737 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
738 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, Returned
));
739 } else if (Property
->isSubClassOf("ReadOnly")) {
740 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
741 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadOnly
));
742 } else if (Property
->isSubClassOf("WriteOnly")) {
743 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
744 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, WriteOnly
));
745 } else if (Property
->isSubClassOf("ReadNone")) {
746 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
747 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadNone
));
748 } else if (Property
->isSubClassOf("ImmArg")) {
749 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
750 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ImmArg
));
752 llvm_unreachable("Unknown property!");
755 // Also record the SDPatternOperator Properties.
756 Properties
= parseSDPatternOperatorProperties(R
);
758 // Sort the argument attributes for later benefit.
759 llvm::sort(ArgumentAttributes
);