Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
blob730bac653a40787c7595db90ab042bba0b0dc33f
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "ppc-codegen"
16 #include "PPC.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "PPCISelLowering.h"
20 #include "PPCHazardRecognizers.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/SSARegMap.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Constants.h"
28 #include "llvm/GlobalValue.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/Compiler.h"
33 #include <queue>
34 #include <set>
35 using namespace llvm;
37 namespace {
38 //===--------------------------------------------------------------------===//
39 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
40 /// instructions for SelectionDAG operations.
41 ///
42 class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
43 PPCTargetMachine &TM;
44 PPCTargetLowering PPCLowering;
45 unsigned GlobalBaseReg;
46 public:
47 PPCDAGToDAGISel(PPCTargetMachine &tm)
48 : SelectionDAGISel(PPCLowering), TM(tm),
49 PPCLowering(*TM.getTargetLowering()) {}
51 virtual bool runOnFunction(Function &Fn) {
52 // Make sure we re-emit a set of the global base reg if necessary
53 GlobalBaseReg = 0;
54 SelectionDAGISel::runOnFunction(Fn);
56 InsertVRSaveCode(Fn);
57 return true;
60 /// getI32Imm - Return a target constant with the specified value, of type
61 /// i32.
62 inline SDOperand getI32Imm(unsigned Imm) {
63 return CurDAG->getTargetConstant(Imm, MVT::i32);
66 /// getI64Imm - Return a target constant with the specified value, of type
67 /// i64.
68 inline SDOperand getI64Imm(uint64_t Imm) {
69 return CurDAG->getTargetConstant(Imm, MVT::i64);
72 /// getSmallIPtrImm - Return a target constant of pointer type.
73 inline SDOperand getSmallIPtrImm(unsigned Imm) {
74 return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
77 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
78 /// with any number of 0s on either side. The 1s are allowed to wrap from
79 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
80 /// 0x0F0F0000 is not, since all 1s are not contiguous.
81 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
84 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
85 /// rotate and mask opcode and mask operation.
86 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
87 unsigned &SH, unsigned &MB, unsigned &ME);
89 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
90 /// base register. Return the virtual register that holds this value.
91 SDNode *getGlobalBaseReg();
93 // Select - Convert the specified operand from a target-independent to a
94 // target-specific node if it hasn't already been changed.
95 SDNode *Select(SDOperand Op);
97 SDNode *SelectBitfieldInsert(SDNode *N);
99 /// SelectCC - Select a comparison of the specified values with the
100 /// specified condition code, returning the CR# of the expression.
101 SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
103 /// SelectAddrImm - Returns true if the address N can be represented by
104 /// a base register plus a signed 16-bit displacement [r+imm].
105 bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
106 SDOperand &Base) {
107 return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
110 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
111 /// immediate field. Because preinc imms have already been validated, just
112 /// accept it.
113 bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
114 Out = N;
115 return true;
118 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
119 /// represented as an indexed [r+r] operation. Returns false if it can
120 /// be represented by [r+imm], which are preferred.
121 bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
122 SDOperand &Index) {
123 return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
126 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
127 /// represented as an indexed [r+r] operation.
128 bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
129 SDOperand &Index) {
130 return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
133 /// SelectAddrImmShift - Returns true if the address N can be represented by
134 /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
135 /// for use by STD and friends.
136 bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
137 SDOperand &Base) {
138 return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
141 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
142 /// inline asm expressions.
143 virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
144 char ConstraintCode,
145 std::vector<SDOperand> &OutOps,
146 SelectionDAG &DAG) {
147 SDOperand Op0, Op1;
148 switch (ConstraintCode) {
149 default: return true;
150 case 'm': // memory
151 if (!SelectAddrIdx(Op, Op, Op0, Op1))
152 SelectAddrImm(Op, Op, Op0, Op1);
153 break;
154 case 'o': // offsetable
155 if (!SelectAddrImm(Op, Op, Op0, Op1)) {
156 Op0 = Op;
157 AddToISelQueue(Op0); // r+0.
158 Op1 = getSmallIPtrImm(0);
160 break;
161 case 'v': // not offsetable
162 SelectAddrIdxOnly(Op, Op, Op0, Op1);
163 break;
166 OutOps.push_back(Op0);
167 OutOps.push_back(Op1);
168 return false;
171 SDOperand BuildSDIVSequence(SDNode *N);
172 SDOperand BuildUDIVSequence(SDNode *N);
174 /// InstructionSelectBasicBlock - This callback is invoked by
175 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
176 virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
178 void InsertVRSaveCode(Function &Fn);
180 virtual const char *getPassName() const {
181 return "PowerPC DAG->DAG Pattern Instruction Selection";
184 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
185 /// this target when scheduling the DAG.
186 virtual HazardRecognizer *CreateTargetHazardRecognizer() {
187 // Should use subtarget info to pick the right hazard recognizer. For
188 // now, always return a PPC970 recognizer.
189 const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
190 assert(II && "No InstrInfo?");
191 return new PPCHazardRecognizer970(*II);
194 // Include the pieces autogenerated from the target description.
195 #include "PPCGenDAGISel.inc"
197 private:
198 SDNode *SelectSETCC(SDOperand Op);
202 /// InstructionSelectBasicBlock - This callback is invoked by
203 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
204 void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
205 DEBUG(BB->dump());
207 // Select target instructions for the DAG.
208 DAG.setRoot(SelectRoot(DAG.getRoot()));
209 DAG.RemoveDeadNodes();
211 // Emit machine code to BB.
212 ScheduleAndEmitDAG(DAG);
215 /// InsertVRSaveCode - Once the entire function has been instruction selected,
216 /// all virtual registers are created and all machine instructions are built,
217 /// check to see if we need to save/restore VRSAVE. If so, do it.
218 void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
219 // Check to see if this function uses vector registers, which means we have to
220 // save and restore the VRSAVE register and update it with the regs we use.
222 // In this case, there will be virtual registers of vector type type created
223 // by the scheduler. Detect them now.
224 MachineFunction &Fn = MachineFunction::get(&F);
225 SSARegMap *RegMap = Fn.getSSARegMap();
226 bool HasVectorVReg = false;
227 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
228 e = RegMap->getLastVirtReg()+1; i != e; ++i)
229 if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
230 HasVectorVReg = true;
231 break;
233 if (!HasVectorVReg) return; // nothing to do.
235 // If we have a vector register, we want to emit code into the entry and exit
236 // blocks to save and restore the VRSAVE register. We do this here (instead
237 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
239 // 1. This (trivially) reduces the load on the register allocator, by not
240 // having to represent the live range of the VRSAVE register.
241 // 2. This (more significantly) allows us to create a temporary virtual
242 // register to hold the saved VRSAVE value, allowing this temporary to be
243 // register allocated, instead of forcing it to be spilled to the stack.
245 // Create two vregs - one to hold the VRSAVE register that is live-in to the
246 // function and one for the value after having bits or'd into it.
247 unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
248 unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
250 const TargetInstrInfo &TII = *TM.getInstrInfo();
251 MachineBasicBlock &EntryBB = *Fn.begin();
252 // Emit the following code into the entry block:
253 // InVRSAVE = MFVRSAVE
254 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
255 // MTVRSAVE UpdatedVRSAVE
256 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
257 BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
258 BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE);
259 BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
261 // Find all return blocks, outputting a restore in each epilog.
262 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
263 if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
264 IP = BB->end(); --IP;
266 // Skip over all terminator instructions, which are part of the return
267 // sequence.
268 MachineBasicBlock::iterator I2 = IP;
269 while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
270 IP = I2;
272 // Emit: MTVRSAVE InVRSave
273 BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
279 /// getGlobalBaseReg - Output the instructions required to put the
280 /// base address to use for accessing globals into a register.
282 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
283 if (!GlobalBaseReg) {
284 const TargetInstrInfo &TII = *TM.getInstrInfo();
285 // Insert the set of GlobalBaseReg into the first MBB of the function
286 MachineBasicBlock &FirstMBB = BB->getParent()->front();
287 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
288 SSARegMap *RegMap = BB->getParent()->getSSARegMap();
290 if (PPCLowering.getPointerTy() == MVT::i32) {
291 GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
292 BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
293 BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
294 } else {
295 GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass);
296 BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
297 BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
300 return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
303 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
304 /// or 64-bit immediate, and if the value can be accurately represented as a
305 /// sign extension from a 16-bit value. If so, this returns true and the
306 /// immediate.
307 static bool isIntS16Immediate(SDNode *N, short &Imm) {
308 if (N->getOpcode() != ISD::Constant)
309 return false;
311 Imm = (short)cast<ConstantSDNode>(N)->getValue();
312 if (N->getValueType(0) == MVT::i32)
313 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
314 else
315 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
318 static bool isIntS16Immediate(SDOperand Op, short &Imm) {
319 return isIntS16Immediate(Op.Val, Imm);
323 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
324 /// operand. If so Imm will receive the 32-bit value.
325 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
326 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
327 Imm = cast<ConstantSDNode>(N)->getValue();
328 return true;
330 return false;
333 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
334 /// operand. If so Imm will receive the 64-bit value.
335 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
336 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
337 Imm = cast<ConstantSDNode>(N)->getValue();
338 return true;
340 return false;
343 // isInt32Immediate - This method tests to see if a constant operand.
344 // If so Imm will receive the 32 bit value.
345 static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
346 return isInt32Immediate(N.Val, Imm);
350 // isOpcWithIntImmediate - This method tests to see if the node is a specific
351 // opcode and that it has a immediate integer right operand.
352 // If so Imm will receive the 32 bit value.
353 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
354 return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
357 bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
358 if (isShiftedMask_32(Val)) {
359 // look for the first non-zero bit
360 MB = CountLeadingZeros_32(Val);
361 // look for the first zero bit after the run of ones
362 ME = CountLeadingZeros_32((Val - 1) ^ Val);
363 return true;
364 } else {
365 Val = ~Val; // invert mask
366 if (isShiftedMask_32(Val)) {
367 // effectively look for the first zero bit
368 ME = CountLeadingZeros_32(Val) - 1;
369 // effectively look for the first one bit after the run of zeros
370 MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
371 return true;
374 // no run present
375 return false;
378 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
379 bool IsShiftMask, unsigned &SH,
380 unsigned &MB, unsigned &ME) {
381 // Don't even go down this path for i64, since different logic will be
382 // necessary for rldicl/rldicr/rldimi.
383 if (N->getValueType(0) != MVT::i32)
384 return false;
386 unsigned Shift = 32;
387 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
388 unsigned Opcode = N->getOpcode();
389 if (N->getNumOperands() != 2 ||
390 !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
391 return false;
393 if (Opcode == ISD::SHL) {
394 // apply shift left to mask if it comes first
395 if (IsShiftMask) Mask = Mask << Shift;
396 // determine which bits are made indeterminant by shift
397 Indeterminant = ~(0xFFFFFFFFu << Shift);
398 } else if (Opcode == ISD::SRL) {
399 // apply shift right to mask if it comes first
400 if (IsShiftMask) Mask = Mask >> Shift;
401 // determine which bits are made indeterminant by shift
402 Indeterminant = ~(0xFFFFFFFFu >> Shift);
403 // adjust for the left rotate
404 Shift = 32 - Shift;
405 } else if (Opcode == ISD::ROTL) {
406 Indeterminant = 0;
407 } else {
408 return false;
411 // if the mask doesn't intersect any Indeterminant bits
412 if (Mask && !(Mask & Indeterminant)) {
413 SH = Shift & 31;
414 // make sure the mask is still a mask (wrap arounds may not be)
415 return isRunOfOnes(Mask, MB, ME);
417 return false;
420 /// SelectBitfieldInsert - turn an or of two masked values into
421 /// the rotate left word immediate then mask insert (rlwimi) instruction.
422 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
423 SDOperand Op0 = N->getOperand(0);
424 SDOperand Op1 = N->getOperand(1);
426 uint64_t LKZ, LKO, RKZ, RKO;
427 CurDAG->ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
428 CurDAG->ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
430 unsigned TargetMask = LKZ;
431 unsigned InsertMask = RKZ;
433 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
434 unsigned Op0Opc = Op0.getOpcode();
435 unsigned Op1Opc = Op1.getOpcode();
436 unsigned Value, SH = 0;
437 TargetMask = ~TargetMask;
438 InsertMask = ~InsertMask;
440 // If the LHS has a foldable shift and the RHS does not, then swap it to the
441 // RHS so that we can fold the shift into the insert.
442 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
443 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
444 Op0.getOperand(0).getOpcode() == ISD::SRL) {
445 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
446 Op1.getOperand(0).getOpcode() != ISD::SRL) {
447 std::swap(Op0, Op1);
448 std::swap(Op0Opc, Op1Opc);
449 std::swap(TargetMask, InsertMask);
452 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
453 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
454 Op1.getOperand(0).getOpcode() != ISD::SRL) {
455 std::swap(Op0, Op1);
456 std::swap(Op0Opc, Op1Opc);
457 std::swap(TargetMask, InsertMask);
461 unsigned MB, ME;
462 if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
463 SDOperand Tmp1, Tmp2, Tmp3;
464 bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
466 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
467 isInt32Immediate(Op1.getOperand(1), Value)) {
468 Op1 = Op1.getOperand(0);
469 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
471 if (Op1Opc == ISD::AND) {
472 unsigned SHOpc = Op1.getOperand(0).getOpcode();
473 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
474 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
475 Op1 = Op1.getOperand(0).getOperand(0);
476 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
477 } else {
478 Op1 = Op1.getOperand(0);
482 Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
483 AddToISelQueue(Tmp3);
484 AddToISelQueue(Op1);
485 SH &= 31;
486 SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
487 getI32Imm(ME) };
488 return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
491 return 0;
494 /// SelectCC - Select a comparison of the specified values with the specified
495 /// condition code, returning the CR# of the expression.
496 SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
497 ISD::CondCode CC) {
498 // Always select the LHS.
499 AddToISelQueue(LHS);
500 unsigned Opc;
502 if (LHS.getValueType() == MVT::i32) {
503 unsigned Imm;
504 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
505 if (isInt32Immediate(RHS, Imm)) {
506 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
507 if (isUInt16(Imm))
508 return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
509 getI32Imm(Imm & 0xFFFF)), 0);
510 // If this is a 16-bit signed immediate, fold it.
511 if (isInt16((int)Imm))
512 return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
513 getI32Imm(Imm & 0xFFFF)), 0);
515 // For non-equality comparisons, the default code would materialize the
516 // constant, then compare against it, like this:
517 // lis r2, 4660
518 // ori r2, r2, 22136
519 // cmpw cr0, r3, r2
520 // Since we are just comparing for equality, we can emit this instead:
521 // xoris r0,r3,0x1234
522 // cmplwi cr0,r0,0x5678
523 // beq cr0,L6
524 SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
525 getI32Imm(Imm >> 16)), 0);
526 return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
527 getI32Imm(Imm & 0xFFFF)), 0);
529 Opc = PPC::CMPLW;
530 } else if (ISD::isUnsignedIntSetCC(CC)) {
531 if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
532 return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
533 getI32Imm(Imm & 0xFFFF)), 0);
534 Opc = PPC::CMPLW;
535 } else {
536 short SImm;
537 if (isIntS16Immediate(RHS, SImm))
538 return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
539 getI32Imm((int)SImm & 0xFFFF)),
541 Opc = PPC::CMPW;
543 } else if (LHS.getValueType() == MVT::i64) {
544 uint64_t Imm;
545 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
546 if (isInt64Immediate(RHS.Val, Imm)) {
547 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
548 if (isUInt16(Imm))
549 return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
550 getI32Imm(Imm & 0xFFFF)), 0);
551 // If this is a 16-bit signed immediate, fold it.
552 if (isInt16(Imm))
553 return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
554 getI32Imm(Imm & 0xFFFF)), 0);
556 // For non-equality comparisons, the default code would materialize the
557 // constant, then compare against it, like this:
558 // lis r2, 4660
559 // ori r2, r2, 22136
560 // cmpd cr0, r3, r2
561 // Since we are just comparing for equality, we can emit this instead:
562 // xoris r0,r3,0x1234
563 // cmpldi cr0,r0,0x5678
564 // beq cr0,L6
565 if (isUInt32(Imm)) {
566 SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
567 getI64Imm(Imm >> 16)), 0);
568 return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
569 getI64Imm(Imm & 0xFFFF)), 0);
572 Opc = PPC::CMPLD;
573 } else if (ISD::isUnsignedIntSetCC(CC)) {
574 if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
575 return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
576 getI64Imm(Imm & 0xFFFF)), 0);
577 Opc = PPC::CMPLD;
578 } else {
579 short SImm;
580 if (isIntS16Immediate(RHS, SImm))
581 return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
582 getI64Imm(SImm & 0xFFFF)),
584 Opc = PPC::CMPD;
586 } else if (LHS.getValueType() == MVT::f32) {
587 Opc = PPC::FCMPUS;
588 } else {
589 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
590 Opc = PPC::FCMPUD;
592 AddToISelQueue(RHS);
593 return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
596 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
597 switch (CC) {
598 default: assert(0 && "Unknown condition!"); abort();
599 case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
600 case ISD::SETUEQ:
601 case ISD::SETEQ: return PPC::PRED_EQ;
602 case ISD::SETONE: // FIXME: This is incorrect see PR642.
603 case ISD::SETUNE:
604 case ISD::SETNE: return PPC::PRED_NE;
605 case ISD::SETOLT: // FIXME: This is incorrect see PR642.
606 case ISD::SETULT:
607 case ISD::SETLT: return PPC::PRED_LT;
608 case ISD::SETOLE: // FIXME: This is incorrect see PR642.
609 case ISD::SETULE:
610 case ISD::SETLE: return PPC::PRED_LE;
611 case ISD::SETOGT: // FIXME: This is incorrect see PR642.
612 case ISD::SETUGT:
613 case ISD::SETGT: return PPC::PRED_GT;
614 case ISD::SETOGE: // FIXME: This is incorrect see PR642.
615 case ISD::SETUGE:
616 case ISD::SETGE: return PPC::PRED_GE;
618 case ISD::SETO: return PPC::PRED_NU;
619 case ISD::SETUO: return PPC::PRED_UN;
623 /// getCRIdxForSetCC - Return the index of the condition register field
624 /// associated with the SetCC condition, and whether or not the field is
625 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
626 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
627 switch (CC) {
628 default: assert(0 && "Unknown condition!"); abort();
629 case ISD::SETOLT: // FIXME: This is incorrect see PR642.
630 case ISD::SETULT:
631 case ISD::SETLT: Inv = false; return 0;
632 case ISD::SETOGE: // FIXME: This is incorrect see PR642.
633 case ISD::SETUGE:
634 case ISD::SETGE: Inv = true; return 0;
635 case ISD::SETOGT: // FIXME: This is incorrect see PR642.
636 case ISD::SETUGT:
637 case ISD::SETGT: Inv = false; return 1;
638 case ISD::SETOLE: // FIXME: This is incorrect see PR642.
639 case ISD::SETULE:
640 case ISD::SETLE: Inv = true; return 1;
641 case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
642 case ISD::SETUEQ:
643 case ISD::SETEQ: Inv = false; return 2;
644 case ISD::SETONE: // FIXME: This is incorrect see PR642.
645 case ISD::SETUNE:
646 case ISD::SETNE: Inv = true; return 2;
647 case ISD::SETO: Inv = true; return 3;
648 case ISD::SETUO: Inv = false; return 3;
650 return 0;
653 SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
654 SDNode *N = Op.Val;
655 unsigned Imm;
656 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
657 if (isInt32Immediate(N->getOperand(1), Imm)) {
658 // We can codegen setcc op, imm very efficiently compared to a brcond.
659 // Check for those cases here.
660 // setcc op, 0
661 if (Imm == 0) {
662 SDOperand Op = N->getOperand(0);
663 AddToISelQueue(Op);
664 switch (CC) {
665 default: break;
666 case ISD::SETEQ: {
667 Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
668 SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
669 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
671 case ISD::SETNE: {
672 SDOperand AD =
673 SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
674 Op, getI32Imm(~0U)), 0);
675 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
676 AD.getValue(1));
678 case ISD::SETLT: {
679 SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
680 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
682 case ISD::SETGT: {
683 SDOperand T =
684 SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
685 T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
686 SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
687 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
690 } else if (Imm == ~0U) { // setcc op, -1
691 SDOperand Op = N->getOperand(0);
692 AddToISelQueue(Op);
693 switch (CC) {
694 default: break;
695 case ISD::SETEQ:
696 Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
697 Op, getI32Imm(1)), 0);
698 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
699 SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
700 getI32Imm(0)), 0),
701 Op.getValue(1));
702 case ISD::SETNE: {
703 Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
704 SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
705 Op, getI32Imm(~0U));
706 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
707 Op, SDOperand(AD, 1));
709 case ISD::SETLT: {
710 SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
711 getI32Imm(1)), 0);
712 SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
713 Op), 0);
714 SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
715 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
717 case ISD::SETGT: {
718 SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
719 Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
720 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
721 getI32Imm(1));
727 bool Inv;
728 unsigned Idx = getCRIdxForSetCC(CC, Inv);
729 SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
730 SDOperand IntCR;
732 // Force the ccreg into CR7.
733 SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
735 SDOperand InFlag(0, 0); // Null incoming flag value.
736 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
737 InFlag).getValue(1);
739 if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
740 IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
741 CCReg), 0);
742 else
743 IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
745 SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
746 getI32Imm(31), getI32Imm(31) };
747 if (!Inv) {
748 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
749 } else {
750 SDOperand Tmp =
751 SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
752 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
757 // Select - Convert the specified operand from a target-independent to a
758 // target-specific node if it hasn't already been changed.
759 SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
760 SDNode *N = Op.Val;
761 if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
762 N->getOpcode() < PPCISD::FIRST_NUMBER)
763 return NULL; // Already selected.
765 switch (N->getOpcode()) {
766 default: break;
768 case ISD::Constant: {
769 if (N->getValueType(0) == MVT::i64) {
770 // Get 64 bit value.
771 int64_t Imm = cast<ConstantSDNode>(N)->getValue();
772 // Assume no remaining bits.
773 unsigned Remainder = 0;
774 // Assume no shift required.
775 unsigned Shift = 0;
777 // If it can't be represented as a 32 bit value.
778 if (!isInt32(Imm)) {
779 Shift = CountTrailingZeros_64(Imm);
780 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
782 // If the shifted value fits 32 bits.
783 if (isInt32(ImmSh)) {
784 // Go with the shifted value.
785 Imm = ImmSh;
786 } else {
787 // Still stuck with a 64 bit value.
788 Remainder = Imm;
789 Shift = 32;
790 Imm >>= 32;
794 // Intermediate operand.
795 SDNode *Result;
797 // Handle first 32 bits.
798 unsigned Lo = Imm & 0xFFFF;
799 unsigned Hi = (Imm >> 16) & 0xFFFF;
801 // Simple value.
802 if (isInt16(Imm)) {
803 // Just the Lo bits.
804 Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
805 } else if (Lo) {
806 // Handle the Hi bits.
807 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
808 Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
809 // And Lo bits.
810 Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
811 SDOperand(Result, 0), getI32Imm(Lo));
812 } else {
813 // Just the Hi bits.
814 Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
817 // If no shift, we're done.
818 if (!Shift) return Result;
820 // Shift for next step if the upper 32-bits were not zero.
821 if (Imm) {
822 Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
823 SDOperand(Result, 0),
824 getI32Imm(Shift), getI32Imm(63 - Shift));
827 // Add in the last bits as required.
828 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
829 Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
830 SDOperand(Result, 0), getI32Imm(Hi));
832 if ((Lo = Remainder & 0xFFFF)) {
833 Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
834 SDOperand(Result, 0), getI32Imm(Lo));
837 return Result;
839 break;
842 case ISD::SETCC:
843 return SelectSETCC(Op);
844 case PPCISD::GlobalBaseReg:
845 return getGlobalBaseReg();
847 case ISD::FrameIndex: {
848 int FI = cast<FrameIndexSDNode>(N)->getIndex();
849 SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
850 unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
851 if (N->hasOneUse())
852 return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
853 getSmallIPtrImm(0));
854 return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
855 getSmallIPtrImm(0));
858 case PPCISD::MFCR: {
859 SDOperand InFlag = N->getOperand(1);
860 AddToISelQueue(InFlag);
861 // Use MFOCRF if supported.
862 if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
863 return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
864 N->getOperand(0), InFlag);
865 else
866 return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
869 case ISD::SDIV: {
870 // FIXME: since this depends on the setting of the carry flag from the srawi
871 // we should really be making notes about that for the scheduler.
872 // FIXME: It sure would be nice if we could cheaply recognize the
873 // srl/add/sra pattern the dag combiner will generate for this as
874 // sra/addze rather than having to handle sdiv ourselves. oh well.
875 unsigned Imm;
876 if (isInt32Immediate(N->getOperand(1), Imm)) {
877 SDOperand N0 = N->getOperand(0);
878 AddToISelQueue(N0);
879 if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
880 SDNode *Op =
881 CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
882 N0, getI32Imm(Log2_32(Imm)));
883 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
884 SDOperand(Op, 0), SDOperand(Op, 1));
885 } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
886 SDNode *Op =
887 CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
888 N0, getI32Imm(Log2_32(-Imm)));
889 SDOperand PT =
890 SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
891 SDOperand(Op, 0), SDOperand(Op, 1)),
893 return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
897 // Other cases are autogenerated.
898 break;
901 case ISD::LOAD: {
902 // Handle preincrement loads.
903 LoadSDNode *LD = cast<LoadSDNode>(Op);
904 MVT::ValueType LoadedVT = LD->getLoadedVT();
906 // Normal loads are handled by code generated from the .td file.
907 if (LD->getAddressingMode() != ISD::PRE_INC)
908 break;
910 SDOperand Offset = LD->getOffset();
911 if (isa<ConstantSDNode>(Offset) ||
912 Offset.getOpcode() == ISD::TargetGlobalAddress) {
914 unsigned Opcode;
915 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
916 if (LD->getValueType(0) != MVT::i64) {
917 // Handle PPC32 integer and normal FP loads.
918 assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
919 switch (LoadedVT) {
920 default: assert(0 && "Invalid PPC load type!");
921 case MVT::f64: Opcode = PPC::LFDU; break;
922 case MVT::f32: Opcode = PPC::LFSU; break;
923 case MVT::i32: Opcode = PPC::LWZU; break;
924 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
925 case MVT::i1:
926 case MVT::i8: Opcode = PPC::LBZU; break;
928 } else {
929 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
930 assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
931 switch (LoadedVT) {
932 default: assert(0 && "Invalid PPC load type!");
933 case MVT::i64: Opcode = PPC::LDU; break;
934 case MVT::i32: Opcode = PPC::LWZU8; break;
935 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
936 case MVT::i1:
937 case MVT::i8: Opcode = PPC::LBZU8; break;
941 SDOperand Chain = LD->getChain();
942 SDOperand Base = LD->getBasePtr();
943 AddToISelQueue(Chain);
944 AddToISelQueue(Base);
945 AddToISelQueue(Offset);
946 SDOperand Ops[] = { Offset, Base, Chain };
947 // FIXME: PPC64
948 return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
949 MVT::Other, Ops, 3);
950 } else {
951 assert(0 && "R+R preindex loads not supported yet!");
955 case ISD::AND: {
956 unsigned Imm, Imm2, SH, MB, ME;
958 // If this is an and of a value rotated between 0 and 31 bits and then and'd
959 // with a mask, emit rlwinm
960 if (isInt32Immediate(N->getOperand(1), Imm) &&
961 isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
962 SDOperand Val = N->getOperand(0).getOperand(0);
963 AddToISelQueue(Val);
964 SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
965 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
967 // If this is just a masked value where the input is not handled above, and
968 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
969 if (isInt32Immediate(N->getOperand(1), Imm) &&
970 isRunOfOnes(Imm, MB, ME) &&
971 N->getOperand(0).getOpcode() != ISD::ROTL) {
972 SDOperand Val = N->getOperand(0);
973 AddToISelQueue(Val);
974 SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
975 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
977 // AND X, 0 -> 0, not "rlwinm 32".
978 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
979 AddToISelQueue(N->getOperand(1));
980 ReplaceUses(SDOperand(N, 0), N->getOperand(1));
981 return NULL;
983 // ISD::OR doesn't get all the bitfield insertion fun.
984 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
985 if (isInt32Immediate(N->getOperand(1), Imm) &&
986 N->getOperand(0).getOpcode() == ISD::OR &&
987 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
988 unsigned MB, ME;
989 Imm = ~(Imm^Imm2);
990 if (isRunOfOnes(Imm, MB, ME)) {
991 AddToISelQueue(N->getOperand(0).getOperand(0));
992 AddToISelQueue(N->getOperand(0).getOperand(1));
993 SDOperand Ops[] = { N->getOperand(0).getOperand(0),
994 N->getOperand(0).getOperand(1),
995 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
996 return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
1000 // Other cases are autogenerated.
1001 break;
1003 case ISD::OR:
1004 if (N->getValueType(0) == MVT::i32)
1005 if (SDNode *I = SelectBitfieldInsert(N))
1006 return I;
1008 // Other cases are autogenerated.
1009 break;
1010 case ISD::SHL: {
1011 unsigned Imm, SH, MB, ME;
1012 if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1013 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1014 AddToISelQueue(N->getOperand(0).getOperand(0));
1015 SDOperand Ops[] = { N->getOperand(0).getOperand(0),
1016 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1017 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1020 // Other cases are autogenerated.
1021 break;
1023 case ISD::SRL: {
1024 unsigned Imm, SH, MB, ME;
1025 if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1026 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1027 AddToISelQueue(N->getOperand(0).getOperand(0));
1028 SDOperand Ops[] = { N->getOperand(0).getOperand(0),
1029 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1030 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1033 // Other cases are autogenerated.
1034 break;
1036 case ISD::SELECT_CC: {
1037 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1039 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
1040 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1041 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1042 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1043 if (N1C->isNullValue() && N3C->isNullValue() &&
1044 N2C->getValue() == 1ULL && CC == ISD::SETNE &&
1045 // FIXME: Implement this optzn for PPC64.
1046 N->getValueType(0) == MVT::i32) {
1047 AddToISelQueue(N->getOperand(0));
1048 SDNode *Tmp =
1049 CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1050 N->getOperand(0), getI32Imm(~0U));
1051 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1052 SDOperand(Tmp, 0), N->getOperand(0),
1053 SDOperand(Tmp, 1));
1056 SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
1057 unsigned BROpc = getPredicateForSetCC(CC);
1059 unsigned SelectCCOp;
1060 if (N->getValueType(0) == MVT::i32)
1061 SelectCCOp = PPC::SELECT_CC_I4;
1062 else if (N->getValueType(0) == MVT::i64)
1063 SelectCCOp = PPC::SELECT_CC_I8;
1064 else if (N->getValueType(0) == MVT::f32)
1065 SelectCCOp = PPC::SELECT_CC_F4;
1066 else if (N->getValueType(0) == MVT::f64)
1067 SelectCCOp = PPC::SELECT_CC_F8;
1068 else
1069 SelectCCOp = PPC::SELECT_CC_VRRC;
1071 AddToISelQueue(N->getOperand(2));
1072 AddToISelQueue(N->getOperand(3));
1073 SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1074 getI32Imm(BROpc) };
1075 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1077 case PPCISD::COND_BRANCH: {
1078 AddToISelQueue(N->getOperand(0)); // Op #0 is the Chain.
1079 // Op #1 is the PPC::PRED_* number.
1080 // Op #2 is the CR#
1081 // Op #3 is the Dest MBB
1082 AddToISelQueue(N->getOperand(4)); // Op #4 is the Flag.
1083 // Prevent PPC::PRED_* from being selected into LI.
1084 SDOperand Pred =
1085 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
1086 SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1087 N->getOperand(0), N->getOperand(4) };
1088 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1090 case ISD::BR_CC: {
1091 AddToISelQueue(N->getOperand(0));
1092 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1093 SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
1094 SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1095 N->getOperand(4), N->getOperand(0) };
1096 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1098 case ISD::BRIND: {
1099 // FIXME: Should custom lower this.
1100 SDOperand Chain = N->getOperand(0);
1101 SDOperand Target = N->getOperand(1);
1102 AddToISelQueue(Chain);
1103 AddToISelQueue(Target);
1104 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1105 Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
1106 Chain), 0);
1107 return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
1111 return SelectCode(Op);
1116 /// createPPCISelDag - This pass converts a legalized DAG into a
1117 /// PowerPC-specific DAG, ready for instruction scheduling.
1119 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1120 return new PPCDAGToDAGISel(TM);