1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the pass which converts floating point instructions from
11 // virtual registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
15 // This pass is hampered by the lack of decent CFG manipulation routines for
16 // machine code. In particular, this wants to be able to split critical edges
17 // as necessary, traverse the machine basic block CFG in depth-first order, and
18 // allow there to be multiple machine basic blocks for each LLVM basicblock
19 // (needed for critical edge splitting).
21 // In particular, this pass currently barfs on critical edges. Because of this,
22 // it requires the instruction selector to insert FP_REG_KILL instructions on
23 // the exits of any basic block that has critical edges going from it, or which
24 // branch to a critical basic block.
26 // FIXME: this is not implemented yet. The stackifier pass only works on local
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "x86-codegen"
33 #include "X86InstrInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/LiveVariables.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/STLExtras.h"
50 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
51 STATISTIC(NumFP
, "Number of floating point instructions");
54 struct VISIBILITY_HIDDEN FPS
: public MachineFunctionPass
{
56 FPS() : MachineFunctionPass((intptr_t)&ID
) {}
58 virtual bool runOnMachineFunction(MachineFunction
&MF
);
60 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
62 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
63 AU
.addRequired
<LiveVariables
>();
64 MachineFunctionPass::getAnalysisUsage(AU
);
67 const TargetInstrInfo
*TII
; // Machine instruction info.
68 LiveVariables
*LV
; // Live variable info for current function...
69 MachineBasicBlock
*MBB
; // Current basic block
70 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
71 unsigned RegMap
[8]; // Track which stack slot contains each register
72 unsigned StackTop
; // The current top of the FP stack.
74 void dumpStack() const {
75 cerr
<< "Stack contents:";
76 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
77 cerr
<< " FP" << Stack
[i
];
78 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
83 // getSlot - Return the stack slot number a particular register number is
85 unsigned getSlot(unsigned RegNo
) const {
86 assert(RegNo
< 8 && "Regno out of range!");
90 // getStackEntry - Return the X86::FP<n> register in register ST(i)
91 unsigned getStackEntry(unsigned STi
) const {
92 assert(STi
< StackTop
&& "Access past stack top!");
93 return Stack
[StackTop
-1-STi
];
96 // getSTReg - Return the X86::ST(i) register which contains the specified
98 unsigned getSTReg(unsigned RegNo
) const {
99 return StackTop
- 1 - getSlot(RegNo
) + llvm::X86::ST0
;
102 // pushReg - Push the specified FP<n> register onto the stack
103 void pushReg(unsigned Reg
) {
104 assert(Reg
< 8 && "Register number out of range!");
105 assert(StackTop
< 8 && "Stack overflow!");
106 Stack
[StackTop
] = Reg
;
107 RegMap
[Reg
] = StackTop
++;
110 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
111 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator
&I
) {
112 if (!isAtTop(RegNo
)) {
113 unsigned STReg
= getSTReg(RegNo
);
114 unsigned RegOnTop
= getStackEntry(0);
116 // Swap the slots the regs are in
117 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
119 // Swap stack slot contents
120 assert(RegMap
[RegOnTop
] < StackTop
);
121 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
123 // Emit an fxch to update the runtime processors version of the state
124 BuildMI(*MBB
, I
, TII
->get(X86::XCH_F
)).addReg(STReg
);
129 void duplicateToTop(unsigned RegNo
, unsigned AsReg
, MachineInstr
*I
) {
130 unsigned STReg
= getSTReg(RegNo
);
131 pushReg(AsReg
); // New register on top of stack
133 BuildMI(*MBB
, I
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
136 // popStackAfter - Pop the current value off of the top of the FP stack
137 // after the specified instruction.
138 void popStackAfter(MachineBasicBlock::iterator
&I
);
140 // freeStackSlotAfter - Free the specified register from the register stack,
141 // so that it is no longer in a register. If the register is currently at
142 // the top of the stack, we just pop the current instruction, otherwise we
143 // store the current top-of-stack into the specified slot, then pop the top
145 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
147 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
149 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
150 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
151 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
152 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
153 void handleCompareFP(MachineBasicBlock::iterator
&I
);
154 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
155 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
160 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
162 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
163 /// register references into FP stack references.
165 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
166 // We only need to run this pass if there are any FP registers used in this
167 // function. If it is all integer, there is nothing for us to do!
168 bool FPIsUsed
= false;
170 assert(X86::FP6
== X86::FP0
+6 && "Register enums aren't sorted right!");
171 for (unsigned i
= 0; i
<= 6; ++i
)
172 if (MF
.isPhysRegUsed(X86::FP0
+i
)) {
178 if (!FPIsUsed
) return false;
180 TII
= MF
.getTarget().getInstrInfo();
181 LV
= &getAnalysis
<LiveVariables
>();
184 // Process the function in depth first order so that we process at least one
185 // of the predecessors for every reachable block in the function.
186 std::set
<MachineBasicBlock
*> Processed
;
187 MachineBasicBlock
*Entry
= MF
.begin();
189 bool Changed
= false;
190 for (df_ext_iterator
<MachineBasicBlock
*, std::set
<MachineBasicBlock
*> >
191 I
= df_ext_begin(Entry
, Processed
), E
= df_ext_end(Entry
, Processed
);
193 Changed
|= processBasicBlock(MF
, **I
);
198 /// processBasicBlock - Loop over all of the instructions in the basic block,
199 /// transforming FP instructions into their stack form.
201 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
202 bool Changed
= false;
205 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
206 MachineInstr
*MI
= I
;
207 unsigned Flags
= MI
->getInstrDescriptor()->TSFlags
;
208 if ((Flags
& X86II::FPTypeMask
) == X86II::NotFP
)
209 continue; // Efficiently ignore non-fp insts!
211 MachineInstr
*PrevMI
= 0;
215 ++NumFP
; // Keep track of # of pseudo instrs
216 DOUT
<< "\nFPInst:\t" << *MI
;
218 // Get dead variables list now because the MI pointer may be deleted as part
220 SmallVector
<unsigned, 8> DeadRegs
;
221 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
222 const MachineOperand
&MO
= MI
->getOperand(i
);
223 if (MO
.isRegister() && MO
.isDead())
224 DeadRegs
.push_back(MO
.getReg());
227 switch (Flags
& X86II::FPTypeMask
) {
228 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
229 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
230 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
231 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
232 case X86II::CompareFP
: handleCompareFP(I
); break;
233 case X86II::CondMovFP
: handleCondMovFP(I
); break;
234 case X86II::SpecialFP
: handleSpecialFP(I
); break;
235 default: assert(0 && "Unknown FP Type!");
238 // Check to see if any of the values defined by this instruction are dead
239 // after definition. If so, pop them.
240 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
241 unsigned Reg
= DeadRegs
[i
];
242 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
243 DOUT
<< "Register FP#" << Reg
-X86::FP0
<< " is dead!\n";
244 freeStackSlotAfter(I
, Reg
-X86::FP0
);
248 // Print out all of the instructions expanded to if -debug
250 MachineBasicBlock::iterator
PrevI(PrevMI
);
252 cerr
<< "Just deleted pseudo instruction\n";
254 MachineBasicBlock::iterator Start
= I
;
255 // Rewind to first instruction newly inserted.
256 while (Start
!= BB
.begin() && prior(Start
) != PrevI
) --Start
;
257 cerr
<< "Inserted instructions:\n\t";
258 Start
->print(*cerr
.stream(), &MF
.getTarget());
259 while (++Start
!= next(I
)) {}
267 assert(StackTop
== 0 && "Stack not empty at end of basic block?");
271 //===----------------------------------------------------------------------===//
272 // Efficient Lookup Table Support
273 //===----------------------------------------------------------------------===//
279 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
280 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
283 friend bool operator<(unsigned V
, const TableEntry
&TE
) {
289 static bool TableIsSorted(const TableEntry
*Table
, unsigned NumEntries
) {
290 for (unsigned i
= 0; i
!= NumEntries
-1; ++i
)
291 if (!(Table
[i
] < Table
[i
+1])) return false;
295 static int Lookup(const TableEntry
*Table
, unsigned N
, unsigned Opcode
) {
296 const TableEntry
*I
= std::lower_bound(Table
, Table
+N
, Opcode
);
297 if (I
!= Table
+N
&& I
->from
== Opcode
)
303 #define ASSERT_SORTED(TABLE)
305 #define ASSERT_SORTED(TABLE) \
306 { static bool TABLE##Checked = false; \
307 if (!TABLE##Checked) { \
308 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
309 "All lookup tables must be sorted for efficient access!"); \
310 TABLE##Checked = true; \
315 //===----------------------------------------------------------------------===//
316 // Register File -> Register Stack Mapping Methods
317 //===----------------------------------------------------------------------===//
319 // OpcodeTable - Sorted map of register instructions to their stack version.
320 // The first element is an register file pseudo instruction, the second is the
321 // concrete X86 instruction which uses the register stack.
323 static const TableEntry OpcodeTable
[] = {
324 { X86::ABS_Fp32
, X86::ABS_F
},
325 { X86::ABS_Fp64
, X86::ABS_F
},
326 { X86::ABS_Fp80
, X86::ABS_F
},
327 { X86::ADD_Fp32m
, X86::ADD_F32m
},
328 { X86::ADD_Fp64m
, X86::ADD_F64m
},
329 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
330 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
331 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
332 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
333 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
334 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
335 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
336 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
337 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
338 { X86::CHS_Fp32
, X86::CHS_F
},
339 { X86::CHS_Fp64
, X86::CHS_F
},
340 { X86::CHS_Fp80
, X86::CHS_F
},
341 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
342 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
343 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
344 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
345 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
346 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
347 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
348 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
349 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
350 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
351 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
352 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
353 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
354 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
355 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
356 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
357 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
358 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
359 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
360 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
361 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
362 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
363 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
364 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
365 { X86::COS_Fp32
, X86::COS_F
},
366 { X86::COS_Fp64
, X86::COS_F
},
367 { X86::COS_Fp80
, X86::COS_F
},
368 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
369 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
370 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
371 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
372 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
373 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
374 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
375 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
376 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
377 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
378 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
379 { X86::DIV_Fp32m
, X86::DIV_F32m
},
380 { X86::DIV_Fp64m
, X86::DIV_F64m
},
381 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
382 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
383 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
384 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
385 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
386 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
387 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
388 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
389 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
390 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
391 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
392 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
393 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
394 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
395 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
396 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
397 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
398 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
399 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
400 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
401 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
402 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
403 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
404 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
405 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
406 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
407 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
408 { X86::IST_Fp16m32
, X86::IST_F16m
},
409 { X86::IST_Fp16m64
, X86::IST_F16m
},
410 { X86::IST_Fp16m80
, X86::IST_F16m
},
411 { X86::IST_Fp32m32
, X86::IST_F32m
},
412 { X86::IST_Fp32m64
, X86::IST_F32m
},
413 { X86::IST_Fp32m80
, X86::IST_F32m
},
414 { X86::IST_Fp64m32
, X86::IST_FP64m
},
415 { X86::IST_Fp64m64
, X86::IST_FP64m
},
416 { X86::IST_Fp64m80
, X86::IST_FP64m
},
417 { X86::LD_Fp032
, X86::LD_F0
},
418 { X86::LD_Fp064
, X86::LD_F0
},
419 { X86::LD_Fp080
, X86::LD_F0
},
420 { X86::LD_Fp132
, X86::LD_F1
},
421 { X86::LD_Fp164
, X86::LD_F1
},
422 { X86::LD_Fp180
, X86::LD_F1
},
423 { X86::LD_Fp32m
, X86::LD_F32m
},
424 { X86::LD_Fp32m64
, X86::LD_F32m
},
425 { X86::LD_Fp32m80
, X86::LD_F32m
},
426 { X86::LD_Fp64m
, X86::LD_F64m
},
427 { X86::LD_Fp64m80
, X86::LD_F64m
},
428 { X86::LD_Fp80m
, X86::LD_F80m
},
429 { X86::MUL_Fp32m
, X86::MUL_F32m
},
430 { X86::MUL_Fp64m
, X86::MUL_F64m
},
431 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
432 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
433 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
434 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
435 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
436 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
437 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
438 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
439 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
442 { X86::NEW_CMOVBE_Fp32
, X86::CMOVBE_F
},
443 { X86::NEW_CMOVBE_Fp64
, X86::CMOVBE_F
},
444 { X86::NEW_CMOVBE_Fp80
, X86::CMOVBE_F
},
445 { X86::NEW_CMOVB_Fp32
, X86::CMOVB_F
},
446 { X86::NEW_CMOVB_Fp64
, X86::CMOVB_F
},
447 { X86::NEW_CMOVB_Fp80
, X86::CMOVB_F
},
448 { X86::NEW_CMOVE_Fp32
, X86::CMOVE_F
},
449 { X86::NEW_CMOVE_Fp64
, X86::CMOVE_F
},
450 { X86::NEW_CMOVE_Fp80
, X86::CMOVE_F
},
451 { X86::NEW_CMOVNBE_Fp32
, X86::CMOVNBE_F
},
452 { X86::NEW_CMOVNBE_Fp64
, X86::CMOVNBE_F
},
453 { X86::NEW_CMOVNBE_Fp80
, X86::CMOVNBE_F
},
454 { X86::NEW_CMOVNB_Fp32
, X86::CMOVNB_F
},
455 { X86::NEW_CMOVNB_Fp64
, X86::CMOVNB_F
},
456 { X86::NEW_CMOVNB_Fp80
, X86::CMOVNB_F
},
457 { X86::NEW_CMOVNE_Fp32
, X86::CMOVNE_F
},
458 { X86::NEW_CMOVNE_Fp64
, X86::CMOVNE_F
},
459 { X86::NEW_CMOVNE_Fp80
, X86::CMOVNE_F
},
460 { X86::NEW_CMOVNP_Fp32
, X86::CMOVNP_F
},
461 { X86::NEW_CMOVNP_Fp64
, X86::CMOVNP_F
},
462 { X86::NEW_CMOVNP_Fp80
, X86::CMOVNP_F
},
463 { X86::NEW_CMOVP_Fp32
, X86::CMOVP_F
},
464 { X86::NEW_CMOVP_Fp64
, X86::CMOVP_F
},
465 { X86::NEW_CMOVP_Fp80
, X86::CMOVP_F
},
466 { X86::NEW_UCOM_FpIr32
, X86::UCOM_FIr
},
467 { X86::NEW_UCOM_FpIr64
, X86::UCOM_FIr
},
468 { X86::NEW_UCOM_FpIr80
, X86::UCOM_FIr
},
469 { X86::NEW_UCOM_Fpr32
, X86::UCOM_Fr
},
470 { X86::NEW_UCOM_Fpr64
, X86::UCOM_Fr
},
471 { X86::NEW_UCOM_Fpr80
, X86::UCOM_Fr
},
473 { X86::SIN_Fp32
, X86::SIN_F
},
474 { X86::SIN_Fp64
, X86::SIN_F
},
475 { X86::SIN_Fp80
, X86::SIN_F
},
476 { X86::SQRT_Fp32
, X86::SQRT_F
},
477 { X86::SQRT_Fp64
, X86::SQRT_F
},
478 { X86::SQRT_Fp80
, X86::SQRT_F
},
479 { X86::ST_Fp32m
, X86::ST_F32m
},
480 { X86::ST_Fp64m
, X86::ST_F64m
},
481 { X86::ST_Fp64m32
, X86::ST_F32m
},
482 { X86::ST_Fp80m32
, X86::ST_F32m
},
483 { X86::ST_Fp80m64
, X86::ST_F64m
},
484 { X86::ST_FpP80m
, X86::ST_FP80m
},
485 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
486 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
487 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
488 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
489 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
490 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
491 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
492 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
493 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
494 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
495 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
496 { X86::SUB_Fp32m
, X86::SUB_F32m
},
497 { X86::SUB_Fp64m
, X86::SUB_F64m
},
498 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
499 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
500 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
501 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
502 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
503 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
504 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
505 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
506 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
507 { X86::TST_Fp32
, X86::TST_F
},
508 { X86::TST_Fp64
, X86::TST_F
},
509 { X86::TST_Fp80
, X86::TST_F
},
510 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
511 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
512 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
513 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
514 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
515 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
518 static unsigned getConcreteOpcode(unsigned Opcode
) {
519 ASSERT_SORTED(OpcodeTable
);
520 int Opc
= Lookup(OpcodeTable
, array_lengthof(OpcodeTable
), Opcode
);
521 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
525 //===----------------------------------------------------------------------===//
527 //===----------------------------------------------------------------------===//
529 // PopTable - Sorted map of instructions to their popping version. The first
530 // element is an instruction, the second is the version which pops.
532 static const TableEntry PopTable
[] = {
533 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
535 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
536 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
538 { X86::IST_F16m
, X86::IST_FP16m
},
539 { X86::IST_F32m
, X86::IST_FP32m
},
541 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
543 { X86::ST_F32m
, X86::ST_FP32m
},
544 { X86::ST_F64m
, X86::ST_FP64m
},
545 { X86::ST_Frr
, X86::ST_FPrr
},
547 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
548 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
550 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
552 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
553 { X86::UCOM_Fr
, X86::UCOM_FPr
},
556 /// popStackAfter - Pop the current value off of the top of the FP stack after
557 /// the specified instruction. This attempts to be sneaky and combine the pop
558 /// into the instruction itself if possible. The iterator is left pointing to
559 /// the last instruction, be it a new pop instruction inserted, or the old
560 /// instruction if it was modified in place.
562 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
563 ASSERT_SORTED(PopTable
);
564 assert(StackTop
> 0 && "Cannot pop empty stack!");
565 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
567 // Check to see if there is a popping version of this instruction...
568 int Opcode
= Lookup(PopTable
, array_lengthof(PopTable
), I
->getOpcode());
570 I
->setInstrDescriptor(TII
->get(Opcode
));
571 if (Opcode
== X86::UCOM_FPPr
)
573 } else { // Insert an explicit pop
574 I
= BuildMI(*MBB
, ++I
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
578 /// freeStackSlotAfter - Free the specified register from the register stack, so
579 /// that it is no longer in a register. If the register is currently at the top
580 /// of the stack, we just pop the current instruction, otherwise we store the
581 /// current top-of-stack into the specified slot, then pop the top of stack.
582 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
583 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
588 // Otherwise, store the top of stack into the dead slot, killing the operand
589 // without having to add in an explicit xchg then pop.
591 unsigned STReg
= getSTReg(FPRegNo
);
592 unsigned OldSlot
= getSlot(FPRegNo
);
593 unsigned TopReg
= Stack
[StackTop
-1];
594 Stack
[OldSlot
] = TopReg
;
595 RegMap
[TopReg
] = OldSlot
;
596 RegMap
[FPRegNo
] = ~0;
597 Stack
[--StackTop
] = ~0;
598 I
= BuildMI(*MBB
, ++I
, TII
->get(X86::ST_FPrr
)).addReg(STReg
);
602 static unsigned getFPReg(const MachineOperand
&MO
) {
603 assert(MO
.isRegister() && "Expected an FP register!");
604 unsigned Reg
= MO
.getReg();
605 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
606 return Reg
- X86::FP0
;
610 //===----------------------------------------------------------------------===//
611 // Instruction transformation implementation
612 //===----------------------------------------------------------------------===//
614 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
616 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
617 MachineInstr
*MI
= I
;
618 unsigned DestReg
= getFPReg(MI
->getOperand(0));
620 // Change from the pseudo instruction to the concrete instruction.
621 MI
->RemoveOperand(0); // Remove the explicit ST(0) operand
622 MI
->setInstrDescriptor(TII
->get(getConcreteOpcode(MI
->getOpcode())));
624 // Result gets pushed on the stack.
628 /// handleOneArgFP - fst <mem>, ST(0)
630 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
631 MachineInstr
*MI
= I
;
632 unsigned NumOps
= MI
->getInstrDescriptor()->numOperands
;
633 assert((NumOps
== 5 || NumOps
== 1) &&
634 "Can only handle fst* & ftst instructions!");
636 // Is this the last use of the source register?
637 unsigned Reg
= getFPReg(MI
->getOperand(NumOps
-1));
638 bool KillsSrc
= LV
->KillsRegister(MI
, X86::FP0
+Reg
);
640 // FISTP64m is strange because there isn't a non-popping versions.
641 // If we have one _and_ we don't want to pop the operand, duplicate the value
642 // on the stack instead of moving it. This ensure that popping the value is
644 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
647 (MI
->getOpcode() == X86::IST_Fp64m32
||
648 MI
->getOpcode() == X86::ISTT_Fp16m32
||
649 MI
->getOpcode() == X86::ISTT_Fp32m32
||
650 MI
->getOpcode() == X86::ISTT_Fp64m32
||
651 MI
->getOpcode() == X86::IST_Fp64m64
||
652 MI
->getOpcode() == X86::ISTT_Fp16m64
||
653 MI
->getOpcode() == X86::ISTT_Fp32m64
||
654 MI
->getOpcode() == X86::ISTT_Fp64m64
||
655 MI
->getOpcode() == X86::IST_Fp64m80
||
656 MI
->getOpcode() == X86::ISTT_Fp16m80
||
657 MI
->getOpcode() == X86::ISTT_Fp32m80
||
658 MI
->getOpcode() == X86::ISTT_Fp64m80
||
659 MI
->getOpcode() == X86::ST_FpP80m
)) {
660 duplicateToTop(Reg
, 7 /*temp register*/, I
);
662 moveToTop(Reg
, I
); // Move to the top of the stack...
665 // Convert from the pseudo instruction to the concrete instruction.
666 MI
->RemoveOperand(NumOps
-1); // Remove explicit ST(0) operand
667 MI
->setInstrDescriptor(TII
->get(getConcreteOpcode(MI
->getOpcode())));
669 if (MI
->getOpcode() == X86::IST_FP64m
||
670 MI
->getOpcode() == X86::ISTT_FP16m
||
671 MI
->getOpcode() == X86::ISTT_FP32m
||
672 MI
->getOpcode() == X86::ISTT_FP64m
||
673 MI
->getOpcode() == X86::ST_FP80m
) {
674 assert(StackTop
> 0 && "Stack empty??");
676 } else if (KillsSrc
) { // Last use of operand?
682 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
683 /// replace the value with a newly computed value. These instructions may have
684 /// non-fp operands after their FP operands.
688 /// R1 = fadd R2, [mem]
690 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
691 MachineInstr
*MI
= I
;
692 unsigned NumOps
= MI
->getInstrDescriptor()->numOperands
;
693 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
695 // Is this the last use of the source register?
696 unsigned Reg
= getFPReg(MI
->getOperand(1));
697 bool KillsSrc
= LV
->KillsRegister(MI
, X86::FP0
+Reg
);
700 // If this is the last use of the source register, just make sure it's on
701 // the top of the stack.
703 assert(StackTop
> 0 && "Stack cannot be empty!");
705 pushReg(getFPReg(MI
->getOperand(0)));
707 // If this is not the last use of the source register, _copy_ it to the top
709 duplicateToTop(Reg
, getFPReg(MI
->getOperand(0)), I
);
712 // Change from the pseudo instruction to the concrete instruction.
713 MI
->RemoveOperand(1); // Drop the source operand.
714 MI
->RemoveOperand(0); // Drop the destination operand.
715 MI
->setInstrDescriptor(TII
->get(getConcreteOpcode(MI
->getOpcode())));
719 //===----------------------------------------------------------------------===//
720 // Define tables of various ways to map pseudo instructions
723 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
724 static const TableEntry ForwardST0Table
[] = {
725 { X86::ADD_Fp32
, X86::ADD_FST0r
},
726 { X86::ADD_Fp64
, X86::ADD_FST0r
},
727 { X86::ADD_Fp80
, X86::ADD_FST0r
},
728 { X86::DIV_Fp32
, X86::DIV_FST0r
},
729 { X86::DIV_Fp64
, X86::DIV_FST0r
},
730 { X86::DIV_Fp80
, X86::DIV_FST0r
},
731 { X86::MUL_Fp32
, X86::MUL_FST0r
},
732 { X86::MUL_Fp64
, X86::MUL_FST0r
},
733 { X86::MUL_Fp80
, X86::MUL_FST0r
},
734 { X86::SUB_Fp32
, X86::SUB_FST0r
},
735 { X86::SUB_Fp64
, X86::SUB_FST0r
},
736 { X86::SUB_Fp80
, X86::SUB_FST0r
},
739 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
740 static const TableEntry ReverseST0Table
[] = {
741 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
742 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
743 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
744 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
745 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
746 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
747 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
748 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
749 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
750 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
751 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
752 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
755 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
756 static const TableEntry ForwardSTiTable
[] = {
757 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
758 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
759 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
760 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
761 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
762 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
763 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
764 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
765 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
766 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
767 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
768 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
771 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
772 static const TableEntry ReverseSTiTable
[] = {
773 { X86::ADD_Fp32
, X86::ADD_FrST0
},
774 { X86::ADD_Fp64
, X86::ADD_FrST0
},
775 { X86::ADD_Fp80
, X86::ADD_FrST0
},
776 { X86::DIV_Fp32
, X86::DIV_FrST0
},
777 { X86::DIV_Fp64
, X86::DIV_FrST0
},
778 { X86::DIV_Fp80
, X86::DIV_FrST0
},
779 { X86::MUL_Fp32
, X86::MUL_FrST0
},
780 { X86::MUL_Fp64
, X86::MUL_FrST0
},
781 { X86::MUL_Fp80
, X86::MUL_FrST0
},
782 { X86::SUB_Fp32
, X86::SUB_FrST0
},
783 { X86::SUB_Fp64
, X86::SUB_FrST0
},
784 { X86::SUB_Fp80
, X86::SUB_FrST0
},
788 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
789 /// instructions which need to be simplified and possibly transformed.
791 /// Result: ST(0) = fsub ST(0), ST(i)
792 /// ST(i) = fsub ST(0), ST(i)
793 /// ST(0) = fsubr ST(0), ST(i)
794 /// ST(i) = fsubr ST(0), ST(i)
796 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
797 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
798 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
799 MachineInstr
*MI
= I
;
801 unsigned NumOperands
= MI
->getInstrDescriptor()->numOperands
;
802 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
803 unsigned Dest
= getFPReg(MI
->getOperand(0));
804 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
805 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
806 bool KillsOp0
= LV
->KillsRegister(MI
, X86::FP0
+Op0
);
807 bool KillsOp1
= LV
->KillsRegister(MI
, X86::FP0
+Op1
);
809 unsigned TOS
= getStackEntry(0);
811 // One of our operands must be on the top of the stack. If neither is yet, we
813 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
814 // We can choose to move either operand to the top of the stack. If one of
815 // the operands is killed by this instruction, we want that one so that we
816 // can update right on top of the old version.
818 moveToTop(Op0
, I
); // Move dead operand to TOS.
820 } else if (KillsOp1
) {
824 // All of the operands are live after this instruction executes, so we
825 // cannot update on top of any operand. Because of this, we must
826 // duplicate one of the stack elements to the top. It doesn't matter
827 // which one we pick.
829 duplicateToTop(Op0
, Dest
, I
);
833 } else if (!KillsOp0
&& !KillsOp1
) {
834 // If we DO have one of our operands at the top of the stack, but we don't
835 // have a dead operand, we must duplicate one of the operands to a new slot
837 duplicateToTop(Op0
, Dest
, I
);
842 // Now we know that one of our operands is on the top of the stack, and at
843 // least one of our operands is killed by this instruction.
844 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
845 "Stack conditions not set up right!");
847 // We decide which form to use based on what is on the top of the stack, and
848 // which operand is killed by this instruction.
849 const TableEntry
*InstTable
;
850 bool isForward
= TOS
== Op0
;
851 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
854 InstTable
= ForwardST0Table
;
856 InstTable
= ReverseST0Table
;
859 InstTable
= ForwardSTiTable
;
861 InstTable
= ReverseSTiTable
;
864 int Opcode
= Lookup(InstTable
, array_lengthof(ForwardST0Table
),
866 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
868 // NotTOS - The register which is not on the top of stack...
869 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
871 // Replace the old instruction with a new instruction
873 I
= BuildMI(*MBB
, I
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
875 // If both operands are killed, pop one off of the stack in addition to
876 // overwriting the other one.
877 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
878 assert(!updateST0
&& "Should have updated other operand!");
879 popStackAfter(I
); // Pop the top of stack
882 // Update stack information so that we know the destination register is now on
884 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
885 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
886 Stack
[UpdatedSlot
] = Dest
;
887 RegMap
[Dest
] = UpdatedSlot
;
888 delete MI
; // Remove the old instruction
891 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
892 /// register arguments and no explicit destinations.
894 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
895 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
896 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
897 MachineInstr
*MI
= I
;
899 unsigned NumOperands
= MI
->getInstrDescriptor()->numOperands
;
900 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
901 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
902 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
903 bool KillsOp0
= LV
->KillsRegister(MI
, X86::FP0
+Op0
);
904 bool KillsOp1
= LV
->KillsRegister(MI
, X86::FP0
+Op1
);
906 // Make sure the first operand is on the top of stack, the other one can be
910 // Change from the pseudo instruction to the concrete instruction.
911 MI
->getOperand(0).setReg(getSTReg(Op1
));
912 MI
->RemoveOperand(1);
913 MI
->setInstrDescriptor(TII
->get(getConcreteOpcode(MI
->getOpcode())));
915 // If any of the operands are killed by this instruction, free them.
916 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
917 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
920 /// handleCondMovFP - Handle two address conditional move instructions. These
921 /// instructions move a st(i) register to st(0) iff a condition is true. These
922 /// instructions require that the first operand is at the top of the stack, but
923 /// otherwise don't modify the stack at all.
924 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
925 MachineInstr
*MI
= I
;
927 unsigned Op0
= getFPReg(MI
->getOperand(0));
928 unsigned Op1
= getFPReg(MI
->getOperand(2));
929 bool KillsOp1
= LV
->KillsRegister(MI
, X86::FP0
+Op1
);
931 // The first operand *must* be on the top of the stack.
934 // Change the second operand to the stack register that the operand is in.
935 // Change from the pseudo instruction to the concrete instruction.
936 MI
->RemoveOperand(0);
937 MI
->RemoveOperand(1);
938 MI
->getOperand(0).setReg(getSTReg(Op1
));
939 MI
->setInstrDescriptor(TII
->get(getConcreteOpcode(MI
->getOpcode())));
941 // If we kill the second operand, make sure to pop it from the stack.
942 if (Op0
!= Op1
&& KillsOp1
) {
943 // Get this value off of the register stack.
944 freeStackSlotAfter(I
, Op1
);
949 /// handleSpecialFP - Handle special instructions which behave unlike other
950 /// floating point instructions. This is primarily intended for use by pseudo
953 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&I
) {
954 MachineInstr
*MI
= I
;
955 switch (MI
->getOpcode()) {
956 default: assert(0 && "Unknown SpecialFP instruction!");
957 case X86::FpGETRESULT32
: // Appears immediately after a call returning FP type!
958 case X86::FpGETRESULT64
: // Appears immediately after a call returning FP type!
959 case X86::FpGETRESULT80
:
960 assert(StackTop
== 0 && "Stack should be empty after a call!");
961 pushReg(getFPReg(MI
->getOperand(0)));
963 case X86::FpSETRESULT32
:
964 case X86::FpSETRESULT64
:
965 case X86::FpSETRESULT80
:
966 assert(StackTop
== 1 && "Stack should have one element on it to return!");
967 --StackTop
; // "Forget" we have something on the top of stack!
969 case X86::MOV_Fp3232
:
970 case X86::MOV_Fp3264
:
971 case X86::MOV_Fp6432
:
972 case X86::MOV_Fp6464
:
973 case X86::MOV_Fp3280
:
974 case X86::MOV_Fp6480
:
975 case X86::MOV_Fp8032
:
976 case X86::MOV_Fp8064
:
977 case X86::MOV_Fp8080
: {
978 unsigned SrcReg
= getFPReg(MI
->getOperand(1));
979 unsigned DestReg
= getFPReg(MI
->getOperand(0));
981 if (LV
->KillsRegister(MI
, X86::FP0
+SrcReg
)) {
982 // If the input operand is killed, we can just change the owner of the
983 // incoming stack slot into the result.
984 unsigned Slot
= getSlot(SrcReg
);
985 assert(Slot
< 7 && DestReg
< 7 && "FpMOV operands invalid!");
986 Stack
[Slot
] = DestReg
;
987 RegMap
[DestReg
] = Slot
;
990 // For FMOV we just duplicate the specified value to a new stack slot.
991 // This could be made better, but would require substantial changes.
992 duplicateToTop(SrcReg
, DestReg
, I
);
998 I
= MBB
->erase(I
); // Remove the pseudo instruction