Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / Target / X86 / X86ISelLowering.cpp
blob48f4f15159417435e220c690cae3082c3028fe5f
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/ADT/VectorExtras.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SSARegMap.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ParameterAttributes.h"
39 using namespace llvm;
41 X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42 : TargetLowering(TM) {
43 Subtarget = &TM.getSubtarget<X86Subtarget>();
44 X86ScalarSSEf64 = Subtarget->hasSSE2();
45 X86ScalarSSEf32 = Subtarget->hasSSE1();
46 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
48 RegInfo = TM.getRegisterInfo();
50 // Set up the TargetLowering object.
52 // X86 is weird, it always uses i8 for shift amounts and setcc results.
53 setShiftAmountType(MVT::i8);
54 setSetCCResultType(MVT::i8);
55 setSetCCResultContents(ZeroOrOneSetCCResult);
56 setSchedulingPreference(SchedulingForRegPressure);
57 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
58 setStackPointerRegisterToSaveRestore(X86StackPtr);
60 if (Subtarget->isTargetDarwin()) {
61 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
62 setUseUnderscoreSetJmp(false);
63 setUseUnderscoreLongJmp(false);
64 } else if (Subtarget->isTargetMingw()) {
65 // MS runtime is weird: it exports _setjmp, but longjmp!
66 setUseUnderscoreSetJmp(true);
67 setUseUnderscoreLongJmp(false);
68 } else {
69 setUseUnderscoreSetJmp(true);
70 setUseUnderscoreLongJmp(true);
73 // Set up the register classes.
74 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
75 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
76 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
77 if (Subtarget->is64Bit())
78 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
80 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
82 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
83 // operation.
84 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
85 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
86 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
88 if (Subtarget->is64Bit()) {
89 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
90 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
91 } else {
92 if (X86ScalarSSEf64)
93 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
94 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
95 else
96 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
99 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
100 // this operation.
101 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
102 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
103 // SSE has no i16 to fp conversion, only i32
104 if (X86ScalarSSEf32) {
105 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
106 // f32 and f64 cases are Legal, f80 case is not
107 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
108 } else {
109 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
110 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
113 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
114 // are Legal, f80 is custom lowered.
115 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
116 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
118 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
119 // this operation.
120 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
121 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
123 if (X86ScalarSSEf32) {
124 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
125 // f32 and f64 cases are Legal, f80 case is not
126 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
127 } else {
128 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
129 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
132 // Handle FP_TO_UINT by promoting the destination to a larger signed
133 // conversion.
134 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
135 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
136 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
138 if (Subtarget->is64Bit()) {
139 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
140 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
141 } else {
142 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
143 // Expand FP_TO_UINT into a select.
144 // FIXME: We would like to use a Custom expander here eventually to do
145 // the optimal thing for SSE vs. the default expansion in the legalizer.
146 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
147 else
148 // With SSE3 we can use fisttpll to convert to a signed i64.
149 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
152 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
153 if (!X86ScalarSSEf64) {
154 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
155 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
158 // Divide and remainder are lowered to use div or idiv in legalize in
159 // order to expose the intermediate computations to trivial CSE. This is
160 // most noticeable when both x/y and x%y are being computed; they can be
161 // done with a single div or idiv.
162 setOperationAction(ISD::SDIV , MVT::i8 , Custom);
163 setOperationAction(ISD::UDIV , MVT::i8 , Custom);
164 setOperationAction(ISD::SREM , MVT::i8 , Custom);
165 setOperationAction(ISD::UREM , MVT::i8 , Custom);
166 setOperationAction(ISD::SDIV , MVT::i16 , Custom);
167 setOperationAction(ISD::UDIV , MVT::i16 , Custom);
168 setOperationAction(ISD::SREM , MVT::i16 , Custom);
169 setOperationAction(ISD::UREM , MVT::i16 , Custom);
170 setOperationAction(ISD::SDIV , MVT::i32 , Custom);
171 setOperationAction(ISD::UDIV , MVT::i32 , Custom);
172 setOperationAction(ISD::SREM , MVT::i32 , Custom);
173 setOperationAction(ISD::UREM , MVT::i32 , Custom);
174 setOperationAction(ISD::SDIV , MVT::i64 , Custom);
175 setOperationAction(ISD::UDIV , MVT::i64 , Custom);
176 setOperationAction(ISD::SREM , MVT::i64 , Custom);
177 setOperationAction(ISD::UREM , MVT::i64 , Custom);
179 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
180 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
181 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
182 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
183 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
184 if (Subtarget->is64Bit())
185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
186 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
189 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
190 setOperationAction(ISD::FREM , MVT::f64 , Expand);
192 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
193 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
194 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
195 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
196 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
197 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
198 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
199 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
200 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
201 if (Subtarget->is64Bit()) {
202 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
203 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
204 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
207 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
208 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
210 // These should be promoted to a larger select which is supported.
211 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
212 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
213 // X86 wants to expand cmov itself.
214 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
215 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
216 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
217 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
218 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
219 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
220 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
221 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
222 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
223 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
224 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
225 if (Subtarget->is64Bit()) {
226 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
227 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
229 // X86 ret instruction may pop stack.
230 setOperationAction(ISD::RET , MVT::Other, Custom);
231 if (!Subtarget->is64Bit())
232 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
234 // Darwin ABI issue.
235 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
236 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
237 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
238 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
239 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
240 if (Subtarget->is64Bit()) {
241 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
242 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
243 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
244 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
246 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
247 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
248 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
249 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
250 // X86 wants to expand memset / memcpy itself.
251 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
252 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
254 // Use the default ISD::LOCATION expansion.
255 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
256 // FIXME - use subtarget debug flags
257 if (!Subtarget->isTargetDarwin() &&
258 !Subtarget->isTargetELF() &&
259 !Subtarget->isTargetCygMing())
260 setOperationAction(ISD::LABEL, MVT::Other, Expand);
262 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
263 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
264 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
265 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
266 if (Subtarget->is64Bit()) {
267 // FIXME: Verify
268 setExceptionPointerRegister(X86::RAX);
269 setExceptionSelectorRegister(X86::RDX);
270 } else {
271 setExceptionPointerRegister(X86::EAX);
272 setExceptionSelectorRegister(X86::EDX);
274 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
276 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
278 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
279 setOperationAction(ISD::VASTART , MVT::Other, Custom);
280 setOperationAction(ISD::VAARG , MVT::Other, Expand);
281 setOperationAction(ISD::VAEND , MVT::Other, Expand);
282 if (Subtarget->is64Bit())
283 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
284 else
285 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
287 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
288 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
289 if (Subtarget->is64Bit())
290 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
291 if (Subtarget->isTargetCygMing())
292 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
293 else
294 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
296 if (X86ScalarSSEf64) {
297 // f32 and f64 use SSE.
298 // Set up the FP register classes.
299 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
300 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
302 // Use ANDPD to simulate FABS.
303 setOperationAction(ISD::FABS , MVT::f64, Custom);
304 setOperationAction(ISD::FABS , MVT::f32, Custom);
306 // Use XORP to simulate FNEG.
307 setOperationAction(ISD::FNEG , MVT::f64, Custom);
308 setOperationAction(ISD::FNEG , MVT::f32, Custom);
310 // Use ANDPD and ORPD to simulate FCOPYSIGN.
311 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
312 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
314 // We don't support sin/cos/fmod
315 setOperationAction(ISD::FSIN , MVT::f64, Expand);
316 setOperationAction(ISD::FCOS , MVT::f64, Expand);
317 setOperationAction(ISD::FREM , MVT::f64, Expand);
318 setOperationAction(ISD::FSIN , MVT::f32, Expand);
319 setOperationAction(ISD::FCOS , MVT::f32, Expand);
320 setOperationAction(ISD::FREM , MVT::f32, Expand);
322 // Expand FP immediates into loads from the stack, except for the special
323 // cases we handle.
324 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
325 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
326 addLegalFPImmediate(APFloat(+0.0)); // xorpd
327 addLegalFPImmediate(APFloat(+0.0f)); // xorps
329 // Conversions to long double (in X87) go through memory.
330 setConvertAction(MVT::f32, MVT::f80, Expand);
331 setConvertAction(MVT::f64, MVT::f80, Expand);
333 // Conversions from long double (in X87) go through memory.
334 setConvertAction(MVT::f80, MVT::f32, Expand);
335 setConvertAction(MVT::f80, MVT::f64, Expand);
336 } else if (X86ScalarSSEf32) {
337 // Use SSE for f32, x87 for f64.
338 // Set up the FP register classes.
339 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
340 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
342 // Use ANDPS to simulate FABS.
343 setOperationAction(ISD::FABS , MVT::f32, Custom);
345 // Use XORP to simulate FNEG.
346 setOperationAction(ISD::FNEG , MVT::f32, Custom);
348 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
350 // Use ANDPS and ORPS to simulate FCOPYSIGN.
351 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
352 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
354 // We don't support sin/cos/fmod
355 setOperationAction(ISD::FSIN , MVT::f32, Expand);
356 setOperationAction(ISD::FCOS , MVT::f32, Expand);
357 setOperationAction(ISD::FREM , MVT::f32, Expand);
359 // Expand FP immediates into loads from the stack, except for the special
360 // cases we handle.
361 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
362 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
363 addLegalFPImmediate(APFloat(+0.0f)); // xorps
364 addLegalFPImmediate(APFloat(+0.0)); // FLD0
365 addLegalFPImmediate(APFloat(+1.0)); // FLD1
366 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
367 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
369 // SSE->x87 conversions go through memory.
370 setConvertAction(MVT::f32, MVT::f64, Expand);
371 setConvertAction(MVT::f32, MVT::f80, Expand);
373 // x87->SSE truncations need to go through memory.
374 setConvertAction(MVT::f80, MVT::f32, Expand);
375 setConvertAction(MVT::f64, MVT::f32, Expand);
376 // And x87->x87 truncations also.
377 setConvertAction(MVT::f80, MVT::f64, Expand);
379 if (!UnsafeFPMath) {
380 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
381 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
383 } else {
384 // f32 and f64 in x87.
385 // Set up the FP register classes.
386 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
387 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
389 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
390 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
391 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
392 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
394 // Floating truncations need to go through memory.
395 setConvertAction(MVT::f80, MVT::f32, Expand);
396 setConvertAction(MVT::f64, MVT::f32, Expand);
397 setConvertAction(MVT::f80, MVT::f64, Expand);
399 if (!UnsafeFPMath) {
400 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
401 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
404 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
405 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
406 addLegalFPImmediate(APFloat(+0.0)); // FLD0
407 addLegalFPImmediate(APFloat(+1.0)); // FLD1
408 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
409 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
410 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
411 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
412 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
413 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
416 // Long double always uses X87.
417 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
418 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
419 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
420 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
421 if (!UnsafeFPMath) {
422 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
423 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
426 // First set operation action for all vector types to expand. Then we
427 // will selectively turn on ones that can be effectively codegen'd.
428 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
429 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
430 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
431 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
432 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
433 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
434 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
435 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
436 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
437 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
438 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
439 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
440 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
441 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
442 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
443 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
444 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
445 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
446 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
447 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
448 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
449 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
450 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
451 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
452 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
455 if (Subtarget->hasMMX()) {
456 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
457 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
458 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
459 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
461 // FIXME: add MMX packed arithmetics
463 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
464 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
465 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
466 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
468 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
469 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
470 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
472 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
473 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
475 setOperationAction(ISD::AND, MVT::v8i8, Promote);
476 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
477 setOperationAction(ISD::AND, MVT::v4i16, Promote);
478 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
479 setOperationAction(ISD::AND, MVT::v2i32, Promote);
480 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
481 setOperationAction(ISD::AND, MVT::v1i64, Legal);
483 setOperationAction(ISD::OR, MVT::v8i8, Promote);
484 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
485 setOperationAction(ISD::OR, MVT::v4i16, Promote);
486 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
487 setOperationAction(ISD::OR, MVT::v2i32, Promote);
488 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
489 setOperationAction(ISD::OR, MVT::v1i64, Legal);
491 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
492 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
493 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
494 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
495 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
496 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
497 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
499 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
500 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
501 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
502 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
503 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
504 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
505 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
507 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
508 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
509 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
510 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
512 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
513 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
514 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
515 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
517 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
518 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
519 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
520 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
523 if (Subtarget->hasSSE1()) {
524 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
526 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
527 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
528 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
529 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
530 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
531 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
532 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
533 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
534 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
536 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
539 if (Subtarget->hasSSE2()) {
540 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
541 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
542 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
543 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
544 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
546 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
547 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
548 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
549 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
550 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
551 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
552 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
553 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
554 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
555 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
556 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
557 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
558 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
559 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
560 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
562 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
564 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
565 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
566 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
567 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
569 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
570 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
571 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
572 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
575 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
576 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
577 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
578 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
579 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
580 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
582 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
583 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
584 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
585 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
586 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
587 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
588 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
589 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
590 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
591 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
592 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
593 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
596 // Custom lower v2i64 and v2f64 selects.
597 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
598 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
599 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
600 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
603 // We want to custom lower some of our intrinsics.
604 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
606 // We have target-specific dag combine patterns for the following nodes:
607 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
608 setTargetDAGCombine(ISD::SELECT);
610 computeRegisterProperties();
612 // FIXME: These should be based on subtarget info. Plus, the values should
613 // be smaller when we are in optimizing for size mode.
614 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
615 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
616 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
617 allowUnalignedMemoryAccesses = true; // x86 supports it!
621 //===----------------------------------------------------------------------===//
622 // Return Value Calling Convention Implementation
623 //===----------------------------------------------------------------------===//
625 #include "X86GenCallingConv.inc"
627 /// LowerRET - Lower an ISD::RET node.
628 SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
629 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
631 SmallVector<CCValAssign, 16> RVLocs;
632 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
633 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
634 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
635 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
638 // If this is the first return lowered for this function, add the regs to the
639 // liveout set for the function.
640 if (DAG.getMachineFunction().liveout_empty()) {
641 for (unsigned i = 0; i != RVLocs.size(); ++i)
642 if (RVLocs[i].isRegLoc())
643 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
646 SDOperand Chain = Op.getOperand(0);
647 SDOperand Flag;
649 // Copy the result values into the output registers.
650 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
651 RVLocs[0].getLocReg() != X86::ST0) {
652 for (unsigned i = 0; i != RVLocs.size(); ++i) {
653 CCValAssign &VA = RVLocs[i];
654 assert(VA.isRegLoc() && "Can only return in registers!");
655 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
656 Flag);
657 Flag = Chain.getValue(1);
659 } else {
660 // We need to handle a destination of ST0 specially, because it isn't really
661 // a register.
662 SDOperand Value = Op.getOperand(1);
664 // If this is an FP return with ScalarSSE, we need to move the value from
665 // an XMM register onto the fp-stack.
666 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
667 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
668 SDOperand MemLoc;
670 // If this is a load into a scalarsse value, don't store the loaded value
671 // back to the stack, only to reload it: just replace the scalar-sse load.
672 if (ISD::isNON_EXTLoad(Value.Val) &&
673 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
674 Chain = Value.getOperand(0);
675 MemLoc = Value.getOperand(1);
676 } else {
677 // Spill the value to memory and reload it into top of stack.
678 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
679 MachineFunction &MF = DAG.getMachineFunction();
680 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
681 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
682 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
684 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
685 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
686 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
687 Chain = Value.getValue(1);
690 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
691 SDOperand Ops[] = { Chain, Value };
692 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
693 Flag = Chain.getValue(1);
696 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
697 if (Flag.Val)
698 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
699 else
700 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
704 /// LowerCallResult - Lower the result values of an ISD::CALL into the
705 /// appropriate copies out of appropriate physical registers. This assumes that
706 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
707 /// being lowered. The returns a SDNode with the same number of values as the
708 /// ISD::CALL.
709 SDNode *X86TargetLowering::
710 LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
711 unsigned CallingConv, SelectionDAG &DAG) {
713 // Assign locations to each value returned by this call.
714 SmallVector<CCValAssign, 16> RVLocs;
715 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
716 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
717 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
720 SmallVector<SDOperand, 8> ResultVals;
722 // Copy all of the result registers out of their specified physreg.
723 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
724 for (unsigned i = 0; i != RVLocs.size(); ++i) {
725 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
726 RVLocs[i].getValVT(), InFlag).getValue(1);
727 InFlag = Chain.getValue(2);
728 ResultVals.push_back(Chain.getValue(0));
730 } else {
731 // Copies from the FP stack are special, as ST0 isn't a valid register
732 // before the fp stackifier runs.
734 // Copy ST0 into an RFP register with FP_GET_RESULT.
735 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
736 SDOperand GROps[] = { Chain, InFlag };
737 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
738 Chain = RetVal.getValue(1);
739 InFlag = RetVal.getValue(2);
741 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
742 // an XMM register.
743 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
744 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
745 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
746 // shouldn't be necessary except that RFP cannot be live across
747 // multiple blocks. When stackifier is fixed, they can be uncoupled.
748 MachineFunction &MF = DAG.getMachineFunction();
749 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
750 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
751 SDOperand Ops[] = {
752 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
754 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
755 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
756 Chain = RetVal.getValue(1);
758 ResultVals.push_back(RetVal);
761 // Merge everything together with a MERGE_VALUES node.
762 ResultVals.push_back(Chain);
763 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
764 &ResultVals[0], ResultVals.size()).Val;
768 //===----------------------------------------------------------------------===//
769 // C & StdCall Calling Convention implementation
770 //===----------------------------------------------------------------------===//
771 // StdCall calling convention seems to be standard for many Windows' API
772 // routines and around. It differs from C calling convention just a little:
773 // callee should clean up the stack, not caller. Symbols should be also
774 // decorated in some fancy way :) It doesn't support any vector arguments.
776 /// AddLiveIn - This helper function adds the specified physical register to the
777 /// MachineFunction as a live in value. It also creates a corresponding virtual
778 /// register for it.
779 static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
780 const TargetRegisterClass *RC) {
781 assert(RC->contains(PReg) && "Not the correct regclass!");
782 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
783 MF.addLiveIn(PReg, VReg);
784 return VReg;
787 SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
788 const CCValAssign &VA,
789 MachineFrameInfo *MFI,
790 SDOperand Root, unsigned i) {
791 // Create the nodes corresponding to a load from this parameter slot.
792 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
793 VA.getLocMemOffset());
794 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
796 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
798 if (Flags & ISD::ParamFlags::ByVal)
799 return FIN;
800 else
801 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
804 SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
805 bool isStdCall) {
806 unsigned NumArgs = Op.Val->getNumValues() - 1;
807 MachineFunction &MF = DAG.getMachineFunction();
808 MachineFrameInfo *MFI = MF.getFrameInfo();
809 SDOperand Root = Op.getOperand(0);
810 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
812 // Assign locations to all of the incoming arguments.
813 SmallVector<CCValAssign, 16> ArgLocs;
814 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
815 getTargetMachine(), ArgLocs);
816 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
818 SmallVector<SDOperand, 8> ArgValues;
819 unsigned LastVal = ~0U;
820 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
821 CCValAssign &VA = ArgLocs[i];
822 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
823 // places.
824 assert(VA.getValNo() != LastVal &&
825 "Don't support value assigned to multiple locs yet");
826 LastVal = VA.getValNo();
828 if (VA.isRegLoc()) {
829 MVT::ValueType RegVT = VA.getLocVT();
830 TargetRegisterClass *RC;
831 if (RegVT == MVT::i32)
832 RC = X86::GR32RegisterClass;
833 else {
834 assert(MVT::isVector(RegVT));
835 RC = X86::VR128RegisterClass;
838 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
839 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
841 // If this is an 8 or 16-bit value, it is really passed promoted to 32
842 // bits. Insert an assert[sz]ext to capture this, then truncate to the
843 // right size.
844 if (VA.getLocInfo() == CCValAssign::SExt)
845 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
846 DAG.getValueType(VA.getValVT()));
847 else if (VA.getLocInfo() == CCValAssign::ZExt)
848 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
849 DAG.getValueType(VA.getValVT()));
851 if (VA.getLocInfo() != CCValAssign::Full)
852 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
854 ArgValues.push_back(ArgValue);
855 } else {
856 assert(VA.isMemLoc());
857 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
861 unsigned StackSize = CCInfo.getNextStackOffset();
863 ArgValues.push_back(Root);
865 // If the function takes variable number of arguments, make a frame index for
866 // the start of the first vararg value... for expansion of llvm.va_start.
867 if (isVarArg)
868 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
870 if (isStdCall && !isVarArg) {
871 BytesToPopOnReturn = StackSize; // Callee pops everything..
872 BytesCallerReserves = 0;
873 } else {
874 BytesToPopOnReturn = 0; // Callee pops nothing.
876 // If this is an sret function, the return should pop the hidden pointer.
877 if (NumArgs &&
878 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
879 ISD::ParamFlags::StructReturn))
880 BytesToPopOnReturn = 4;
882 BytesCallerReserves = StackSize;
885 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
887 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
888 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
890 // Return the new list of results.
891 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
892 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
895 SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
896 unsigned CC) {
897 SDOperand Chain = Op.getOperand(0);
898 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
899 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
900 SDOperand Callee = Op.getOperand(4);
901 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
903 // Analyze operands of the call, assigning locations to each operand.
904 SmallVector<CCValAssign, 16> ArgLocs;
905 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
906 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
908 // Get a count of how many bytes are to be pushed on the stack.
909 unsigned NumBytes = CCInfo.getNextStackOffset();
911 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
913 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
914 SmallVector<SDOperand, 8> MemOpChains;
916 SDOperand StackPtr;
918 // Walk the register/memloc assignments, inserting copies/loads.
919 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
920 CCValAssign &VA = ArgLocs[i];
921 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
923 // Promote the value if needed.
924 switch (VA.getLocInfo()) {
925 default: assert(0 && "Unknown loc info!");
926 case CCValAssign::Full: break;
927 case CCValAssign::SExt:
928 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
929 break;
930 case CCValAssign::ZExt:
931 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
932 break;
933 case CCValAssign::AExt:
934 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
935 break;
938 if (VA.isRegLoc()) {
939 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
940 } else {
941 assert(VA.isMemLoc());
942 if (StackPtr.Val == 0)
943 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
945 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
946 Arg));
950 // If the first argument is an sret pointer, remember it.
951 bool isSRet = NumOps &&
952 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
953 ISD::ParamFlags::StructReturn);
955 if (!MemOpChains.empty())
956 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
957 &MemOpChains[0], MemOpChains.size());
959 // Build a sequence of copy-to-reg nodes chained together with token chain
960 // and flag operands which copy the outgoing args into registers.
961 SDOperand InFlag;
962 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
963 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
964 InFlag);
965 InFlag = Chain.getValue(1);
968 // ELF / PIC requires GOT in the EBX register before function calls via PLT
969 // GOT pointer.
970 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
971 Subtarget->isPICStyleGOT()) {
972 Chain = DAG.getCopyToReg(Chain, X86::EBX,
973 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
974 InFlag);
975 InFlag = Chain.getValue(1);
978 // If the callee is a GlobalAddress node (quite common, every direct call is)
979 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
980 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
981 // We should use extra load for direct calls to dllimported functions in
982 // non-JIT mode.
983 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
984 getTargetMachine(), true))
985 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
986 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
987 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
989 // Returns a chain & a flag for retval copy to use.
990 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
991 SmallVector<SDOperand, 8> Ops;
992 Ops.push_back(Chain);
993 Ops.push_back(Callee);
995 // Add argument registers to the end of the list so that they are known live
996 // into the call.
997 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
998 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
999 RegsToPass[i].second.getValueType()));
1001 // Add an implicit use GOT pointer in EBX.
1002 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1003 Subtarget->isPICStyleGOT())
1004 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1006 if (InFlag.Val)
1007 Ops.push_back(InFlag);
1009 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1010 NodeTys, &Ops[0], Ops.size());
1011 InFlag = Chain.getValue(1);
1013 // Create the CALLSEQ_END node.
1014 unsigned NumBytesForCalleeToPush = 0;
1016 if (CC == CallingConv::X86_StdCall) {
1017 if (isVarArg)
1018 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1019 else
1020 NumBytesForCalleeToPush = NumBytes;
1021 } else {
1022 // If this is is a call to a struct-return function, the callee
1023 // pops the hidden struct pointer, so we have to push it back.
1024 // This is common for Darwin/X86, Linux & Mingw32 targets.
1025 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1028 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1029 Ops.clear();
1030 Ops.push_back(Chain);
1031 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1032 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1033 Ops.push_back(InFlag);
1034 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1035 InFlag = Chain.getValue(1);
1037 // Handle result values, copying them out of physregs into vregs that we
1038 // return.
1039 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1043 //===----------------------------------------------------------------------===//
1044 // FastCall Calling Convention implementation
1045 //===----------------------------------------------------------------------===//
1047 // The X86 'fastcall' calling convention passes up to two integer arguments in
1048 // registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1049 // and requires that the callee pop its arguments off the stack (allowing proper
1050 // tail calls), and has the same return value conventions as C calling convs.
1052 // This calling convention always arranges for the callee pop value to be 8n+4
1053 // bytes, which is needed for tail recursion elimination and stack alignment
1054 // reasons.
1055 SDOperand
1056 X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1057 MachineFunction &MF = DAG.getMachineFunction();
1058 MachineFrameInfo *MFI = MF.getFrameInfo();
1059 SDOperand Root = Op.getOperand(0);
1060 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1062 // Assign locations to all of the incoming arguments.
1063 SmallVector<CCValAssign, 16> ArgLocs;
1064 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1065 getTargetMachine(), ArgLocs);
1066 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1068 SmallVector<SDOperand, 8> ArgValues;
1069 unsigned LastVal = ~0U;
1070 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1071 CCValAssign &VA = ArgLocs[i];
1072 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1073 // places.
1074 assert(VA.getValNo() != LastVal &&
1075 "Don't support value assigned to multiple locs yet");
1076 LastVal = VA.getValNo();
1078 if (VA.isRegLoc()) {
1079 MVT::ValueType RegVT = VA.getLocVT();
1080 TargetRegisterClass *RC;
1081 if (RegVT == MVT::i32)
1082 RC = X86::GR32RegisterClass;
1083 else {
1084 assert(MVT::isVector(RegVT));
1085 RC = X86::VR128RegisterClass;
1088 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1089 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1091 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1092 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1093 // right size.
1094 if (VA.getLocInfo() == CCValAssign::SExt)
1095 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1096 DAG.getValueType(VA.getValVT()));
1097 else if (VA.getLocInfo() == CCValAssign::ZExt)
1098 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1099 DAG.getValueType(VA.getValVT()));
1101 if (VA.getLocInfo() != CCValAssign::Full)
1102 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1104 ArgValues.push_back(ArgValue);
1105 } else {
1106 assert(VA.isMemLoc());
1107 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1111 ArgValues.push_back(Root);
1113 unsigned StackSize = CCInfo.getNextStackOffset();
1115 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1116 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1117 // arguments and the arguments after the retaddr has been pushed are aligned.
1118 if ((StackSize & 7) == 0)
1119 StackSize += 4;
1122 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1123 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
1124 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1125 BytesCallerReserves = 0;
1127 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1128 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1130 // Return the new list of results.
1131 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1132 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1135 SDOperand
1136 X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1137 const SDOperand &StackPtr,
1138 const CCValAssign &VA,
1139 SDOperand Chain,
1140 SDOperand Arg) {
1141 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1142 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1143 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1144 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1145 if (Flags & ISD::ParamFlags::ByVal) {
1146 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1147 ISD::ParamFlags::ByValAlignOffs);
1149 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1150 ISD::ParamFlags::ByValSizeOffs;
1152 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1153 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1155 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1156 AlignNode);
1157 } else {
1158 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1162 SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1163 unsigned CC) {
1164 SDOperand Chain = Op.getOperand(0);
1165 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1166 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1167 SDOperand Callee = Op.getOperand(4);
1169 // Analyze operands of the call, assigning locations to each operand.
1170 SmallVector<CCValAssign, 16> ArgLocs;
1171 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1172 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1174 // Get a count of how many bytes are to be pushed on the stack.
1175 unsigned NumBytes = CCInfo.getNextStackOffset();
1177 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1178 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1179 // arguments and the arguments after the retaddr has been pushed are aligned.
1180 if ((NumBytes & 7) == 0)
1181 NumBytes += 4;
1184 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1186 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1187 SmallVector<SDOperand, 8> MemOpChains;
1189 SDOperand StackPtr;
1191 // Walk the register/memloc assignments, inserting copies/loads.
1192 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1193 CCValAssign &VA = ArgLocs[i];
1194 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1196 // Promote the value if needed.
1197 switch (VA.getLocInfo()) {
1198 default: assert(0 && "Unknown loc info!");
1199 case CCValAssign::Full: break;
1200 case CCValAssign::SExt:
1201 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1202 break;
1203 case CCValAssign::ZExt:
1204 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1205 break;
1206 case CCValAssign::AExt:
1207 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1208 break;
1211 if (VA.isRegLoc()) {
1212 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1213 } else {
1214 assert(VA.isMemLoc());
1215 if (StackPtr.Val == 0)
1216 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1218 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1219 Arg));
1223 if (!MemOpChains.empty())
1224 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1225 &MemOpChains[0], MemOpChains.size());
1227 // Build a sequence of copy-to-reg nodes chained together with token chain
1228 // and flag operands which copy the outgoing args into registers.
1229 SDOperand InFlag;
1230 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1231 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1232 InFlag);
1233 InFlag = Chain.getValue(1);
1236 // If the callee is a GlobalAddress node (quite common, every direct call is)
1237 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1238 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1239 // We should use extra load for direct calls to dllimported functions in
1240 // non-JIT mode.
1241 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1242 getTargetMachine(), true))
1243 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1244 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1245 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1247 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1248 // GOT pointer.
1249 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1250 Subtarget->isPICStyleGOT()) {
1251 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1252 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1253 InFlag);
1254 InFlag = Chain.getValue(1);
1257 // Returns a chain & a flag for retval copy to use.
1258 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1259 SmallVector<SDOperand, 8> Ops;
1260 Ops.push_back(Chain);
1261 Ops.push_back(Callee);
1263 // Add argument registers to the end of the list so that they are known live
1264 // into the call.
1265 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1266 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1267 RegsToPass[i].second.getValueType()));
1269 // Add an implicit use GOT pointer in EBX.
1270 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1271 Subtarget->isPICStyleGOT())
1272 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1274 if (InFlag.Val)
1275 Ops.push_back(InFlag);
1277 // FIXME: Do not generate X86ISD::TAILCALL for now.
1278 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1279 NodeTys, &Ops[0], Ops.size());
1280 InFlag = Chain.getValue(1);
1282 // Returns a flag for retval copy to use.
1283 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1284 Ops.clear();
1285 Ops.push_back(Chain);
1286 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1287 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1288 Ops.push_back(InFlag);
1289 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1290 InFlag = Chain.getValue(1);
1292 // Handle result values, copying them out of physregs into vregs that we
1293 // return.
1294 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1298 //===----------------------------------------------------------------------===//
1299 // X86-64 C Calling Convention implementation
1300 //===----------------------------------------------------------------------===//
1302 SDOperand
1303 X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1304 MachineFunction &MF = DAG.getMachineFunction();
1305 MachineFrameInfo *MFI = MF.getFrameInfo();
1306 SDOperand Root = Op.getOperand(0);
1307 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1309 static const unsigned GPR64ArgRegs[] = {
1310 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1312 static const unsigned XMMArgRegs[] = {
1313 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1314 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1318 // Assign locations to all of the incoming arguments.
1319 SmallVector<CCValAssign, 16> ArgLocs;
1320 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1321 getTargetMachine(), ArgLocs);
1322 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1324 SmallVector<SDOperand, 8> ArgValues;
1325 unsigned LastVal = ~0U;
1326 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1327 CCValAssign &VA = ArgLocs[i];
1328 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1329 // places.
1330 assert(VA.getValNo() != LastVal &&
1331 "Don't support value assigned to multiple locs yet");
1332 LastVal = VA.getValNo();
1334 if (VA.isRegLoc()) {
1335 MVT::ValueType RegVT = VA.getLocVT();
1336 TargetRegisterClass *RC;
1337 if (RegVT == MVT::i32)
1338 RC = X86::GR32RegisterClass;
1339 else if (RegVT == MVT::i64)
1340 RC = X86::GR64RegisterClass;
1341 else if (RegVT == MVT::f32)
1342 RC = X86::FR32RegisterClass;
1343 else if (RegVT == MVT::f64)
1344 RC = X86::FR64RegisterClass;
1345 else {
1346 assert(MVT::isVector(RegVT));
1347 if (MVT::getSizeInBits(RegVT) == 64) {
1348 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1349 RegVT = MVT::i64;
1350 } else
1351 RC = X86::VR128RegisterClass;
1354 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1355 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1357 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1358 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1359 // right size.
1360 if (VA.getLocInfo() == CCValAssign::SExt)
1361 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1362 DAG.getValueType(VA.getValVT()));
1363 else if (VA.getLocInfo() == CCValAssign::ZExt)
1364 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1365 DAG.getValueType(VA.getValVT()));
1367 if (VA.getLocInfo() != CCValAssign::Full)
1368 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1370 // Handle MMX values passed in GPRs.
1371 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1372 MVT::getSizeInBits(RegVT) == 64)
1373 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1375 ArgValues.push_back(ArgValue);
1376 } else {
1377 assert(VA.isMemLoc());
1378 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1382 unsigned StackSize = CCInfo.getNextStackOffset();
1384 // If the function takes variable number of arguments, make a frame index for
1385 // the start of the first vararg value... for expansion of llvm.va_start.
1386 if (isVarArg) {
1387 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1388 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1390 // For X86-64, if there are vararg parameters that are passed via
1391 // registers, then we must store them to their spots on the stack so they
1392 // may be loaded by deferencing the result of va_next.
1393 VarArgsGPOffset = NumIntRegs * 8;
1394 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1395 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1396 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1398 // Store the integer parameter registers.
1399 SmallVector<SDOperand, 8> MemOps;
1400 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1401 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1402 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1403 for (; NumIntRegs != 6; ++NumIntRegs) {
1404 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1405 X86::GR64RegisterClass);
1406 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1407 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1408 MemOps.push_back(Store);
1409 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1410 DAG.getConstant(8, getPointerTy()));
1413 // Now store the XMM (fp + vector) parameter registers.
1414 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1415 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1416 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1417 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1418 X86::VR128RegisterClass);
1419 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1420 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1421 MemOps.push_back(Store);
1422 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1423 DAG.getConstant(16, getPointerTy()));
1425 if (!MemOps.empty())
1426 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1427 &MemOps[0], MemOps.size());
1430 ArgValues.push_back(Root);
1432 BytesToPopOnReturn = 0; // Callee pops nothing.
1433 BytesCallerReserves = StackSize;
1435 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1436 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1438 // Return the new list of results.
1439 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1440 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1443 SDOperand
1444 X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1445 unsigned CC) {
1446 SDOperand Chain = Op.getOperand(0);
1447 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1448 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1449 SDOperand Callee = Op.getOperand(4);
1451 // Analyze operands of the call, assigning locations to each operand.
1452 SmallVector<CCValAssign, 16> ArgLocs;
1453 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1454 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1456 // Get a count of how many bytes are to be pushed on the stack.
1457 unsigned NumBytes = CCInfo.getNextStackOffset();
1458 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1460 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1461 SmallVector<SDOperand, 8> MemOpChains;
1463 SDOperand StackPtr;
1465 // Walk the register/memloc assignments, inserting copies/loads.
1466 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1467 CCValAssign &VA = ArgLocs[i];
1468 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1470 // Promote the value if needed.
1471 switch (VA.getLocInfo()) {
1472 default: assert(0 && "Unknown loc info!");
1473 case CCValAssign::Full: break;
1474 case CCValAssign::SExt:
1475 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1476 break;
1477 case CCValAssign::ZExt:
1478 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1479 break;
1480 case CCValAssign::AExt:
1481 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1482 break;
1485 if (VA.isRegLoc()) {
1486 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1487 } else {
1488 assert(VA.isMemLoc());
1489 if (StackPtr.Val == 0)
1490 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1492 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1493 Arg));
1497 if (!MemOpChains.empty())
1498 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1499 &MemOpChains[0], MemOpChains.size());
1501 // Build a sequence of copy-to-reg nodes chained together with token chain
1502 // and flag operands which copy the outgoing args into registers.
1503 SDOperand InFlag;
1504 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1505 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1506 InFlag);
1507 InFlag = Chain.getValue(1);
1510 if (isVarArg) {
1511 // From AMD64 ABI document:
1512 // For calls that may call functions that use varargs or stdargs
1513 // (prototype-less calls or calls to functions containing ellipsis (...) in
1514 // the declaration) %al is used as hidden argument to specify the number
1515 // of SSE registers used. The contents of %al do not need to match exactly
1516 // the number of registers, but must be an ubound on the number of SSE
1517 // registers used and is in the range 0 - 8 inclusive.
1519 // Count the number of XMM registers allocated.
1520 static const unsigned XMMArgRegs[] = {
1521 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1522 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1524 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1526 Chain = DAG.getCopyToReg(Chain, X86::AL,
1527 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1528 InFlag = Chain.getValue(1);
1531 // If the callee is a GlobalAddress node (quite common, every direct call is)
1532 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1533 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1534 // We should use extra load for direct calls to dllimported functions in
1535 // non-JIT mode.
1536 if (getTargetMachine().getCodeModel() != CodeModel::Large
1537 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1538 getTargetMachine(), true))
1539 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1540 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1541 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1542 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1544 // Returns a chain & a flag for retval copy to use.
1545 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1546 SmallVector<SDOperand, 8> Ops;
1547 Ops.push_back(Chain);
1548 Ops.push_back(Callee);
1550 // Add argument registers to the end of the list so that they are known live
1551 // into the call.
1552 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1553 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1554 RegsToPass[i].second.getValueType()));
1556 if (InFlag.Val)
1557 Ops.push_back(InFlag);
1559 // FIXME: Do not generate X86ISD::TAILCALL for now.
1560 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1561 NodeTys, &Ops[0], Ops.size());
1562 InFlag = Chain.getValue(1);
1564 // Returns a flag for retval copy to use.
1565 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1566 Ops.clear();
1567 Ops.push_back(Chain);
1568 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1569 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1570 Ops.push_back(InFlag);
1571 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1572 InFlag = Chain.getValue(1);
1574 // Handle result values, copying them out of physregs into vregs that we
1575 // return.
1576 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1580 //===----------------------------------------------------------------------===//
1581 // Other Lowering Hooks
1582 //===----------------------------------------------------------------------===//
1585 SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1586 MachineFunction &MF = DAG.getMachineFunction();
1587 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1588 int ReturnAddrIndex = FuncInfo->getRAIndex();
1590 if (ReturnAddrIndex == 0) {
1591 // Set up a frame object for the return address.
1592 if (Subtarget->is64Bit())
1593 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1594 else
1595 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1597 FuncInfo->setRAIndex(ReturnAddrIndex);
1600 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1605 /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1606 /// specific condition code. It returns a false if it cannot do a direct
1607 /// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1608 /// needed.
1609 static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1610 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1611 SelectionDAG &DAG) {
1612 X86CC = X86::COND_INVALID;
1613 if (!isFP) {
1614 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1615 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1616 // X > -1 -> X == 0, jump !sign.
1617 RHS = DAG.getConstant(0, RHS.getValueType());
1618 X86CC = X86::COND_NS;
1619 return true;
1620 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1621 // X < 0 -> X == 0, jump on sign.
1622 X86CC = X86::COND_S;
1623 return true;
1624 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1625 // X < 1 -> X <= 0
1626 RHS = DAG.getConstant(0, RHS.getValueType());
1627 X86CC = X86::COND_LE;
1628 return true;
1632 switch (SetCCOpcode) {
1633 default: break;
1634 case ISD::SETEQ: X86CC = X86::COND_E; break;
1635 case ISD::SETGT: X86CC = X86::COND_G; break;
1636 case ISD::SETGE: X86CC = X86::COND_GE; break;
1637 case ISD::SETLT: X86CC = X86::COND_L; break;
1638 case ISD::SETLE: X86CC = X86::COND_LE; break;
1639 case ISD::SETNE: X86CC = X86::COND_NE; break;
1640 case ISD::SETULT: X86CC = X86::COND_B; break;
1641 case ISD::SETUGT: X86CC = X86::COND_A; break;
1642 case ISD::SETULE: X86CC = X86::COND_BE; break;
1643 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1645 } else {
1646 // On a floating point condition, the flags are set as follows:
1647 // ZF PF CF op
1648 // 0 | 0 | 0 | X > Y
1649 // 0 | 0 | 1 | X < Y
1650 // 1 | 0 | 0 | X == Y
1651 // 1 | 1 | 1 | unordered
1652 bool Flip = false;
1653 switch (SetCCOpcode) {
1654 default: break;
1655 case ISD::SETUEQ:
1656 case ISD::SETEQ: X86CC = X86::COND_E; break;
1657 case ISD::SETOLT: Flip = true; // Fallthrough
1658 case ISD::SETOGT:
1659 case ISD::SETGT: X86CC = X86::COND_A; break;
1660 case ISD::SETOLE: Flip = true; // Fallthrough
1661 case ISD::SETOGE:
1662 case ISD::SETGE: X86CC = X86::COND_AE; break;
1663 case ISD::SETUGT: Flip = true; // Fallthrough
1664 case ISD::SETULT:
1665 case ISD::SETLT: X86CC = X86::COND_B; break;
1666 case ISD::SETUGE: Flip = true; // Fallthrough
1667 case ISD::SETULE:
1668 case ISD::SETLE: X86CC = X86::COND_BE; break;
1669 case ISD::SETONE:
1670 case ISD::SETNE: X86CC = X86::COND_NE; break;
1671 case ISD::SETUO: X86CC = X86::COND_P; break;
1672 case ISD::SETO: X86CC = X86::COND_NP; break;
1674 if (Flip)
1675 std::swap(LHS, RHS);
1678 return X86CC != X86::COND_INVALID;
1681 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
1682 /// code. Current x86 isa includes the following FP cmov instructions:
1683 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1684 static bool hasFPCMov(unsigned X86CC) {
1685 switch (X86CC) {
1686 default:
1687 return false;
1688 case X86::COND_B:
1689 case X86::COND_BE:
1690 case X86::COND_E:
1691 case X86::COND_P:
1692 case X86::COND_A:
1693 case X86::COND_AE:
1694 case X86::COND_NE:
1695 case X86::COND_NP:
1696 return true;
1700 /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1701 /// true if Op is undef or if its value falls within the specified range (L, H].
1702 static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1703 if (Op.getOpcode() == ISD::UNDEF)
1704 return true;
1706 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1707 return (Val >= Low && Val < Hi);
1710 /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1711 /// true if Op is undef or if its value equal to the specified value.
1712 static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1713 if (Op.getOpcode() == ISD::UNDEF)
1714 return true;
1715 return cast<ConstantSDNode>(Op)->getValue() == Val;
1718 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1719 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
1720 bool X86::isPSHUFDMask(SDNode *N) {
1721 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1723 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1724 return false;
1726 // Check if the value doesn't reference the second vector.
1727 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1728 SDOperand Arg = N->getOperand(i);
1729 if (Arg.getOpcode() == ISD::UNDEF) continue;
1730 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1731 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1732 return false;
1735 return true;
1738 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1739 /// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1740 bool X86::isPSHUFHWMask(SDNode *N) {
1741 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1743 if (N->getNumOperands() != 8)
1744 return false;
1746 // Lower quadword copied in order.
1747 for (unsigned i = 0; i != 4; ++i) {
1748 SDOperand Arg = N->getOperand(i);
1749 if (Arg.getOpcode() == ISD::UNDEF) continue;
1750 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1751 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1752 return false;
1755 // Upper quadword shuffled.
1756 for (unsigned i = 4; i != 8; ++i) {
1757 SDOperand Arg = N->getOperand(i);
1758 if (Arg.getOpcode() == ISD::UNDEF) continue;
1759 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1760 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1761 if (Val < 4 || Val > 7)
1762 return false;
1765 return true;
1768 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1769 /// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1770 bool X86::isPSHUFLWMask(SDNode *N) {
1771 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1773 if (N->getNumOperands() != 8)
1774 return false;
1776 // Upper quadword copied in order.
1777 for (unsigned i = 4; i != 8; ++i)
1778 if (!isUndefOrEqual(N->getOperand(i), i))
1779 return false;
1781 // Lower quadword shuffled.
1782 for (unsigned i = 0; i != 4; ++i)
1783 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1784 return false;
1786 return true;
1789 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1790 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
1791 static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1792 if (NumElems != 2 && NumElems != 4) return false;
1794 unsigned Half = NumElems / 2;
1795 for (unsigned i = 0; i < Half; ++i)
1796 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1797 return false;
1798 for (unsigned i = Half; i < NumElems; ++i)
1799 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1800 return false;
1802 return true;
1805 bool X86::isSHUFPMask(SDNode *N) {
1806 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1807 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1810 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1811 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1812 /// half elements to come from vector 1 (which would equal the dest.) and
1813 /// the upper half to come from vector 2.
1814 static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1815 if (NumOps != 2 && NumOps != 4) return false;
1817 unsigned Half = NumOps / 2;
1818 for (unsigned i = 0; i < Half; ++i)
1819 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1820 return false;
1821 for (unsigned i = Half; i < NumOps; ++i)
1822 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1823 return false;
1824 return true;
1827 static bool isCommutedSHUFP(SDNode *N) {
1828 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1829 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1832 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1833 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1834 bool X86::isMOVHLPSMask(SDNode *N) {
1835 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1837 if (N->getNumOperands() != 4)
1838 return false;
1840 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1841 return isUndefOrEqual(N->getOperand(0), 6) &&
1842 isUndefOrEqual(N->getOperand(1), 7) &&
1843 isUndefOrEqual(N->getOperand(2), 2) &&
1844 isUndefOrEqual(N->getOperand(3), 3);
1847 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1848 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1849 /// <2, 3, 2, 3>
1850 bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1851 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1853 if (N->getNumOperands() != 4)
1854 return false;
1856 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1857 return isUndefOrEqual(N->getOperand(0), 2) &&
1858 isUndefOrEqual(N->getOperand(1), 3) &&
1859 isUndefOrEqual(N->getOperand(2), 2) &&
1860 isUndefOrEqual(N->getOperand(3), 3);
1863 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1864 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1865 bool X86::isMOVLPMask(SDNode *N) {
1866 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1868 unsigned NumElems = N->getNumOperands();
1869 if (NumElems != 2 && NumElems != 4)
1870 return false;
1872 for (unsigned i = 0; i < NumElems/2; ++i)
1873 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1874 return false;
1876 for (unsigned i = NumElems/2; i < NumElems; ++i)
1877 if (!isUndefOrEqual(N->getOperand(i), i))
1878 return false;
1880 return true;
1883 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1884 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1885 /// and MOVLHPS.
1886 bool X86::isMOVHPMask(SDNode *N) {
1887 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1889 unsigned NumElems = N->getNumOperands();
1890 if (NumElems != 2 && NumElems != 4)
1891 return false;
1893 for (unsigned i = 0; i < NumElems/2; ++i)
1894 if (!isUndefOrEqual(N->getOperand(i), i))
1895 return false;
1897 for (unsigned i = 0; i < NumElems/2; ++i) {
1898 SDOperand Arg = N->getOperand(i + NumElems/2);
1899 if (!isUndefOrEqual(Arg, i + NumElems))
1900 return false;
1903 return true;
1906 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1907 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
1908 bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1909 bool V2IsSplat = false) {
1910 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1911 return false;
1913 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1914 SDOperand BitI = Elts[i];
1915 SDOperand BitI1 = Elts[i+1];
1916 if (!isUndefOrEqual(BitI, j))
1917 return false;
1918 if (V2IsSplat) {
1919 if (isUndefOrEqual(BitI1, NumElts))
1920 return false;
1921 } else {
1922 if (!isUndefOrEqual(BitI1, j + NumElts))
1923 return false;
1927 return true;
1930 bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1931 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1932 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1935 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1936 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
1937 bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1938 bool V2IsSplat = false) {
1939 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1940 return false;
1942 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1943 SDOperand BitI = Elts[i];
1944 SDOperand BitI1 = Elts[i+1];
1945 if (!isUndefOrEqual(BitI, j + NumElts/2))
1946 return false;
1947 if (V2IsSplat) {
1948 if (isUndefOrEqual(BitI1, NumElts))
1949 return false;
1950 } else {
1951 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1952 return false;
1956 return true;
1959 bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1960 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1961 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1964 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1965 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1966 /// <0, 0, 1, 1>
1967 bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1968 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1970 unsigned NumElems = N->getNumOperands();
1971 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1972 return false;
1974 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1975 SDOperand BitI = N->getOperand(i);
1976 SDOperand BitI1 = N->getOperand(i+1);
1978 if (!isUndefOrEqual(BitI, j))
1979 return false;
1980 if (!isUndefOrEqual(BitI1, j))
1981 return false;
1984 return true;
1987 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1988 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1989 /// <2, 2, 3, 3>
1990 bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1991 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1993 unsigned NumElems = N->getNumOperands();
1994 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1995 return false;
1997 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1998 SDOperand BitI = N->getOperand(i);
1999 SDOperand BitI1 = N->getOperand(i + 1);
2001 if (!isUndefOrEqual(BitI, j))
2002 return false;
2003 if (!isUndefOrEqual(BitI1, j))
2004 return false;
2007 return true;
2010 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2011 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2012 /// MOVSD, and MOVD, i.e. setting the lowest element.
2013 static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2014 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2015 return false;
2017 if (!isUndefOrEqual(Elts[0], NumElts))
2018 return false;
2020 for (unsigned i = 1; i < NumElts; ++i) {
2021 if (!isUndefOrEqual(Elts[i], i))
2022 return false;
2025 return true;
2028 bool X86::isMOVLMask(SDNode *N) {
2029 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2030 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2033 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2034 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2035 /// element of vector 2 and the other elements to come from vector 1 in order.
2036 static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2037 bool V2IsSplat = false,
2038 bool V2IsUndef = false) {
2039 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2040 return false;
2042 if (!isUndefOrEqual(Ops[0], 0))
2043 return false;
2045 for (unsigned i = 1; i < NumOps; ++i) {
2046 SDOperand Arg = Ops[i];
2047 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2048 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2049 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2050 return false;
2053 return true;
2056 static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2057 bool V2IsUndef = false) {
2058 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2059 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2060 V2IsSplat, V2IsUndef);
2063 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2064 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2065 bool X86::isMOVSHDUPMask(SDNode *N) {
2066 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2068 if (N->getNumOperands() != 4)
2069 return false;
2071 // Expect 1, 1, 3, 3
2072 for (unsigned i = 0; i < 2; ++i) {
2073 SDOperand Arg = N->getOperand(i);
2074 if (Arg.getOpcode() == ISD::UNDEF) continue;
2075 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2076 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2077 if (Val != 1) return false;
2080 bool HasHi = false;
2081 for (unsigned i = 2; i < 4; ++i) {
2082 SDOperand Arg = N->getOperand(i);
2083 if (Arg.getOpcode() == ISD::UNDEF) continue;
2084 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2085 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2086 if (Val != 3) return false;
2087 HasHi = true;
2090 // Don't use movshdup if it can be done with a shufps.
2091 return HasHi;
2094 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2095 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2096 bool X86::isMOVSLDUPMask(SDNode *N) {
2097 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2099 if (N->getNumOperands() != 4)
2100 return false;
2102 // Expect 0, 0, 2, 2
2103 for (unsigned i = 0; i < 2; ++i) {
2104 SDOperand Arg = N->getOperand(i);
2105 if (Arg.getOpcode() == ISD::UNDEF) continue;
2106 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2107 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2108 if (Val != 0) return false;
2111 bool HasHi = false;
2112 for (unsigned i = 2; i < 4; ++i) {
2113 SDOperand Arg = N->getOperand(i);
2114 if (Arg.getOpcode() == ISD::UNDEF) continue;
2115 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2116 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2117 if (Val != 2) return false;
2118 HasHi = true;
2121 // Don't use movshdup if it can be done with a shufps.
2122 return HasHi;
2125 /// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2126 /// specifies a identity operation on the LHS or RHS.
2127 static bool isIdentityMask(SDNode *N, bool RHS = false) {
2128 unsigned NumElems = N->getNumOperands();
2129 for (unsigned i = 0; i < NumElems; ++i)
2130 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2131 return false;
2132 return true;
2135 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2136 /// a splat of a single element.
2137 static bool isSplatMask(SDNode *N) {
2138 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2140 // This is a splat operation if each element of the permute is the same, and
2141 // if the value doesn't reference the second vector.
2142 unsigned NumElems = N->getNumOperands();
2143 SDOperand ElementBase;
2144 unsigned i = 0;
2145 for (; i != NumElems; ++i) {
2146 SDOperand Elt = N->getOperand(i);
2147 if (isa<ConstantSDNode>(Elt)) {
2148 ElementBase = Elt;
2149 break;
2153 if (!ElementBase.Val)
2154 return false;
2156 for (; i != NumElems; ++i) {
2157 SDOperand Arg = N->getOperand(i);
2158 if (Arg.getOpcode() == ISD::UNDEF) continue;
2159 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2160 if (Arg != ElementBase) return false;
2163 // Make sure it is a splat of the first vector operand.
2164 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2167 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2168 /// a splat of a single element and it's a 2 or 4 element mask.
2169 bool X86::isSplatMask(SDNode *N) {
2170 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2172 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2173 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2174 return false;
2175 return ::isSplatMask(N);
2178 /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2179 /// specifies a splat of zero element.
2180 bool X86::isSplatLoMask(SDNode *N) {
2181 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2183 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2184 if (!isUndefOrEqual(N->getOperand(i), 0))
2185 return false;
2186 return true;
2189 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2190 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2191 /// instructions.
2192 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2193 unsigned NumOperands = N->getNumOperands();
2194 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2195 unsigned Mask = 0;
2196 for (unsigned i = 0; i < NumOperands; ++i) {
2197 unsigned Val = 0;
2198 SDOperand Arg = N->getOperand(NumOperands-i-1);
2199 if (Arg.getOpcode() != ISD::UNDEF)
2200 Val = cast<ConstantSDNode>(Arg)->getValue();
2201 if (Val >= NumOperands) Val -= NumOperands;
2202 Mask |= Val;
2203 if (i != NumOperands - 1)
2204 Mask <<= Shift;
2207 return Mask;
2210 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2211 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2212 /// instructions.
2213 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2214 unsigned Mask = 0;
2215 // 8 nodes, but we only care about the last 4.
2216 for (unsigned i = 7; i >= 4; --i) {
2217 unsigned Val = 0;
2218 SDOperand Arg = N->getOperand(i);
2219 if (Arg.getOpcode() != ISD::UNDEF)
2220 Val = cast<ConstantSDNode>(Arg)->getValue();
2221 Mask |= (Val - 4);
2222 if (i != 4)
2223 Mask <<= 2;
2226 return Mask;
2229 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2230 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2231 /// instructions.
2232 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2233 unsigned Mask = 0;
2234 // 8 nodes, but we only care about the first 4.
2235 for (int i = 3; i >= 0; --i) {
2236 unsigned Val = 0;
2237 SDOperand Arg = N->getOperand(i);
2238 if (Arg.getOpcode() != ISD::UNDEF)
2239 Val = cast<ConstantSDNode>(Arg)->getValue();
2240 Mask |= Val;
2241 if (i != 0)
2242 Mask <<= 2;
2245 return Mask;
2248 /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2249 /// specifies a 8 element shuffle that can be broken into a pair of
2250 /// PSHUFHW and PSHUFLW.
2251 static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2252 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2254 if (N->getNumOperands() != 8)
2255 return false;
2257 // Lower quadword shuffled.
2258 for (unsigned i = 0; i != 4; ++i) {
2259 SDOperand Arg = N->getOperand(i);
2260 if (Arg.getOpcode() == ISD::UNDEF) continue;
2261 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2262 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2263 if (Val > 4)
2264 return false;
2267 // Upper quadword shuffled.
2268 for (unsigned i = 4; i != 8; ++i) {
2269 SDOperand Arg = N->getOperand(i);
2270 if (Arg.getOpcode() == ISD::UNDEF) continue;
2271 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2272 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2273 if (Val < 4 || Val > 7)
2274 return false;
2277 return true;
2280 /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2281 /// values in ther permute mask.
2282 static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2283 SDOperand &V2, SDOperand &Mask,
2284 SelectionDAG &DAG) {
2285 MVT::ValueType VT = Op.getValueType();
2286 MVT::ValueType MaskVT = Mask.getValueType();
2287 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2288 unsigned NumElems = Mask.getNumOperands();
2289 SmallVector<SDOperand, 8> MaskVec;
2291 for (unsigned i = 0; i != NumElems; ++i) {
2292 SDOperand Arg = Mask.getOperand(i);
2293 if (Arg.getOpcode() == ISD::UNDEF) {
2294 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2295 continue;
2297 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2298 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2299 if (Val < NumElems)
2300 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2301 else
2302 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2305 std::swap(V1, V2);
2306 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2307 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2310 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2311 /// match movhlps. The lower half elements should come from upper half of
2312 /// V1 (and in order), and the upper half elements should come from the upper
2313 /// half of V2 (and in order).
2314 static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2315 unsigned NumElems = Mask->getNumOperands();
2316 if (NumElems != 4)
2317 return false;
2318 for (unsigned i = 0, e = 2; i != e; ++i)
2319 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2320 return false;
2321 for (unsigned i = 2; i != 4; ++i)
2322 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2323 return false;
2324 return true;
2327 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2328 /// is promoted to a vector.
2329 static inline bool isScalarLoadToVector(SDNode *N) {
2330 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2331 N = N->getOperand(0).Val;
2332 return ISD::isNON_EXTLoad(N);
2334 return false;
2337 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2338 /// match movlp{s|d}. The lower half elements should come from lower half of
2339 /// V1 (and in order), and the upper half elements should come from the upper
2340 /// half of V2 (and in order). And since V1 will become the source of the
2341 /// MOVLP, it must be either a vector load or a scalar load to vector.
2342 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2343 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2344 return false;
2345 // Is V2 is a vector load, don't do this transformation. We will try to use
2346 // load folding shufps op.
2347 if (ISD::isNON_EXTLoad(V2))
2348 return false;
2350 unsigned NumElems = Mask->getNumOperands();
2351 if (NumElems != 2 && NumElems != 4)
2352 return false;
2353 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2354 if (!isUndefOrEqual(Mask->getOperand(i), i))
2355 return false;
2356 for (unsigned i = NumElems/2; i != NumElems; ++i)
2357 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2358 return false;
2359 return true;
2362 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2363 /// all the same.
2364 static bool isSplatVector(SDNode *N) {
2365 if (N->getOpcode() != ISD::BUILD_VECTOR)
2366 return false;
2368 SDOperand SplatValue = N->getOperand(0);
2369 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2370 if (N->getOperand(i) != SplatValue)
2371 return false;
2372 return true;
2375 /// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2376 /// to an undef.
2377 static bool isUndefShuffle(SDNode *N) {
2378 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2379 return false;
2381 SDOperand V1 = N->getOperand(0);
2382 SDOperand V2 = N->getOperand(1);
2383 SDOperand Mask = N->getOperand(2);
2384 unsigned NumElems = Mask.getNumOperands();
2385 for (unsigned i = 0; i != NumElems; ++i) {
2386 SDOperand Arg = Mask.getOperand(i);
2387 if (Arg.getOpcode() != ISD::UNDEF) {
2388 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2389 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2390 return false;
2391 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2392 return false;
2395 return true;
2398 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2399 /// constant +0.0.
2400 static inline bool isZeroNode(SDOperand Elt) {
2401 return ((isa<ConstantSDNode>(Elt) &&
2402 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2403 (isa<ConstantFPSDNode>(Elt) &&
2404 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2407 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2408 /// to an zero vector.
2409 static bool isZeroShuffle(SDNode *N) {
2410 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2411 return false;
2413 SDOperand V1 = N->getOperand(0);
2414 SDOperand V2 = N->getOperand(1);
2415 SDOperand Mask = N->getOperand(2);
2416 unsigned NumElems = Mask.getNumOperands();
2417 for (unsigned i = 0; i != NumElems; ++i) {
2418 SDOperand Arg = Mask.getOperand(i);
2419 if (Arg.getOpcode() != ISD::UNDEF) {
2420 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2421 if (Idx < NumElems) {
2422 unsigned Opc = V1.Val->getOpcode();
2423 if (Opc == ISD::UNDEF)
2424 continue;
2425 if (Opc != ISD::BUILD_VECTOR ||
2426 !isZeroNode(V1.Val->getOperand(Idx)))
2427 return false;
2428 } else if (Idx >= NumElems) {
2429 unsigned Opc = V2.Val->getOpcode();
2430 if (Opc == ISD::UNDEF)
2431 continue;
2432 if (Opc != ISD::BUILD_VECTOR ||
2433 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2434 return false;
2438 return true;
2441 /// getZeroVector - Returns a vector of specified type with all zero elements.
2443 static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2444 assert(MVT::isVector(VT) && "Expected a vector type");
2445 unsigned NumElems = MVT::getVectorNumElements(VT);
2446 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2447 bool isFP = MVT::isFloatingPoint(EVT);
2448 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2449 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2450 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2453 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2454 /// that point to V2 points to its first element.
2455 static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2456 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2458 bool Changed = false;
2459 SmallVector<SDOperand, 8> MaskVec;
2460 unsigned NumElems = Mask.getNumOperands();
2461 for (unsigned i = 0; i != NumElems; ++i) {
2462 SDOperand Arg = Mask.getOperand(i);
2463 if (Arg.getOpcode() != ISD::UNDEF) {
2464 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2465 if (Val > NumElems) {
2466 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2467 Changed = true;
2470 MaskVec.push_back(Arg);
2473 if (Changed)
2474 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2475 &MaskVec[0], MaskVec.size());
2476 return Mask;
2479 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2480 /// operation of specified width.
2481 static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2482 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2483 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2485 SmallVector<SDOperand, 8> MaskVec;
2486 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2487 for (unsigned i = 1; i != NumElems; ++i)
2488 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2489 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2492 /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2493 /// of specified width.
2494 static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2495 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2496 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2497 SmallVector<SDOperand, 8> MaskVec;
2498 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2499 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2500 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2502 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2505 /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2506 /// of specified width.
2507 static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2508 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2509 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2510 unsigned Half = NumElems/2;
2511 SmallVector<SDOperand, 8> MaskVec;
2512 for (unsigned i = 0; i != Half; ++i) {
2513 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2514 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2516 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2519 /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2521 static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2522 SDOperand V1 = Op.getOperand(0);
2523 SDOperand Mask = Op.getOperand(2);
2524 MVT::ValueType VT = Op.getValueType();
2525 unsigned NumElems = Mask.getNumOperands();
2526 Mask = getUnpacklMask(NumElems, DAG);
2527 while (NumElems != 4) {
2528 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2529 NumElems >>= 1;
2531 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2533 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2534 Mask = getZeroVector(MaskVT, DAG);
2535 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2536 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2537 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2540 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2541 /// vector of zero or undef vector.
2542 static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2543 unsigned NumElems, unsigned Idx,
2544 bool isZero, SelectionDAG &DAG) {
2545 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2546 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2547 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2548 SDOperand Zero = DAG.getConstant(0, EVT);
2549 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2550 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2551 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2552 &MaskVec[0], MaskVec.size());
2553 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2556 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2558 static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2559 unsigned NumNonZero, unsigned NumZero,
2560 SelectionDAG &DAG, TargetLowering &TLI) {
2561 if (NumNonZero > 8)
2562 return SDOperand();
2564 SDOperand V(0, 0);
2565 bool First = true;
2566 for (unsigned i = 0; i < 16; ++i) {
2567 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2568 if (ThisIsNonZero && First) {
2569 if (NumZero)
2570 V = getZeroVector(MVT::v8i16, DAG);
2571 else
2572 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2573 First = false;
2576 if ((i & 1) != 0) {
2577 SDOperand ThisElt(0, 0), LastElt(0, 0);
2578 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2579 if (LastIsNonZero) {
2580 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2582 if (ThisIsNonZero) {
2583 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2584 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2585 ThisElt, DAG.getConstant(8, MVT::i8));
2586 if (LastIsNonZero)
2587 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2588 } else
2589 ThisElt = LastElt;
2591 if (ThisElt.Val)
2592 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2593 DAG.getConstant(i/2, TLI.getPointerTy()));
2597 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2600 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2602 static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2603 unsigned NumNonZero, unsigned NumZero,
2604 SelectionDAG &DAG, TargetLowering &TLI) {
2605 if (NumNonZero > 4)
2606 return SDOperand();
2608 SDOperand V(0, 0);
2609 bool First = true;
2610 for (unsigned i = 0; i < 8; ++i) {
2611 bool isNonZero = (NonZeros & (1 << i)) != 0;
2612 if (isNonZero) {
2613 if (First) {
2614 if (NumZero)
2615 V = getZeroVector(MVT::v8i16, DAG);
2616 else
2617 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2618 First = false;
2620 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2621 DAG.getConstant(i, TLI.getPointerTy()));
2625 return V;
2628 SDOperand
2629 X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2630 // All zero's are handled with pxor.
2631 if (ISD::isBuildVectorAllZeros(Op.Val))
2632 return Op;
2634 // All one's are handled with pcmpeqd.
2635 if (ISD::isBuildVectorAllOnes(Op.Val))
2636 return Op;
2638 MVT::ValueType VT = Op.getValueType();
2639 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2640 unsigned EVTBits = MVT::getSizeInBits(EVT);
2642 unsigned NumElems = Op.getNumOperands();
2643 unsigned NumZero = 0;
2644 unsigned NumNonZero = 0;
2645 unsigned NonZeros = 0;
2646 unsigned NumNonZeroImms = 0;
2647 std::set<SDOperand> Values;
2648 for (unsigned i = 0; i < NumElems; ++i) {
2649 SDOperand Elt = Op.getOperand(i);
2650 if (Elt.getOpcode() != ISD::UNDEF) {
2651 Values.insert(Elt);
2652 if (isZeroNode(Elt))
2653 NumZero++;
2654 else {
2655 NonZeros |= (1 << i);
2656 NumNonZero++;
2657 if (Elt.getOpcode() == ISD::Constant ||
2658 Elt.getOpcode() == ISD::ConstantFP)
2659 NumNonZeroImms++;
2664 if (NumNonZero == 0) {
2665 if (NumZero == 0)
2666 // All undef vector. Return an UNDEF.
2667 return DAG.getNode(ISD::UNDEF, VT);
2668 else
2669 // A mix of zero and undef. Return a zero vector.
2670 return getZeroVector(VT, DAG);
2673 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2674 if (Values.size() == 1)
2675 return SDOperand();
2677 // Special case for single non-zero element.
2678 if (NumNonZero == 1) {
2679 unsigned Idx = CountTrailingZeros_32(NonZeros);
2680 SDOperand Item = Op.getOperand(Idx);
2681 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2682 if (Idx == 0)
2683 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2684 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2685 NumZero > 0, DAG);
2687 if (EVTBits == 32) {
2688 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2689 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2690 DAG);
2691 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2692 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2693 SmallVector<SDOperand, 8> MaskVec;
2694 for (unsigned i = 0; i < NumElems; i++)
2695 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2696 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2697 &MaskVec[0], MaskVec.size());
2698 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2699 DAG.getNode(ISD::UNDEF, VT), Mask);
2703 // A vector full of immediates; various special cases are already
2704 // handled, so this is best done with a single constant-pool load.
2705 if (NumNonZero == NumNonZeroImms)
2706 return SDOperand();
2708 // Let legalizer expand 2-wide build_vectors.
2709 if (EVTBits == 64)
2710 return SDOperand();
2712 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2713 if (EVTBits == 8 && NumElems == 16) {
2714 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2715 *this);
2716 if (V.Val) return V;
2719 if (EVTBits == 16 && NumElems == 8) {
2720 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2721 *this);
2722 if (V.Val) return V;
2725 // If element VT is == 32 bits, turn it into a number of shuffles.
2726 SmallVector<SDOperand, 8> V;
2727 V.resize(NumElems);
2728 if (NumElems == 4 && NumZero > 0) {
2729 for (unsigned i = 0; i < 4; ++i) {
2730 bool isZero = !(NonZeros & (1 << i));
2731 if (isZero)
2732 V[i] = getZeroVector(VT, DAG);
2733 else
2734 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2737 for (unsigned i = 0; i < 2; ++i) {
2738 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2739 default: break;
2740 case 0:
2741 V[i] = V[i*2]; // Must be a zero vector.
2742 break;
2743 case 1:
2744 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2745 getMOVLMask(NumElems, DAG));
2746 break;
2747 case 2:
2748 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2749 getMOVLMask(NumElems, DAG));
2750 break;
2751 case 3:
2752 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2753 getUnpacklMask(NumElems, DAG));
2754 break;
2758 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2759 // clears the upper bits.
2760 // FIXME: we can do the same for v4f32 case when we know both parts of
2761 // the lower half come from scalar_to_vector (loadf32). We should do
2762 // that in post legalizer dag combiner with target specific hooks.
2763 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2764 return V[0];
2765 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2766 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2767 SmallVector<SDOperand, 8> MaskVec;
2768 bool Reverse = (NonZeros & 0x3) == 2;
2769 for (unsigned i = 0; i < 2; ++i)
2770 if (Reverse)
2771 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2772 else
2773 MaskVec.push_back(DAG.getConstant(i, EVT));
2774 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2775 for (unsigned i = 0; i < 2; ++i)
2776 if (Reverse)
2777 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2778 else
2779 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2780 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2781 &MaskVec[0], MaskVec.size());
2782 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2785 if (Values.size() > 2) {
2786 // Expand into a number of unpckl*.
2787 // e.g. for v4f32
2788 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2789 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2790 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2791 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2792 for (unsigned i = 0; i < NumElems; ++i)
2793 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2794 NumElems >>= 1;
2795 while (NumElems != 0) {
2796 for (unsigned i = 0; i < NumElems; ++i)
2797 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2798 UnpckMask);
2799 NumElems >>= 1;
2801 return V[0];
2804 return SDOperand();
2807 SDOperand
2808 X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2809 SDOperand V1 = Op.getOperand(0);
2810 SDOperand V2 = Op.getOperand(1);
2811 SDOperand PermMask = Op.getOperand(2);
2812 MVT::ValueType VT = Op.getValueType();
2813 unsigned NumElems = PermMask.getNumOperands();
2814 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2815 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2816 bool V1IsSplat = false;
2817 bool V2IsSplat = false;
2819 if (isUndefShuffle(Op.Val))
2820 return DAG.getNode(ISD::UNDEF, VT);
2822 if (isZeroShuffle(Op.Val))
2823 return getZeroVector(VT, DAG);
2825 if (isIdentityMask(PermMask.Val))
2826 return V1;
2827 else if (isIdentityMask(PermMask.Val, true))
2828 return V2;
2830 if (isSplatMask(PermMask.Val)) {
2831 if (NumElems <= 4) return Op;
2832 // Promote it to a v4i32 splat.
2833 return PromoteSplat(Op, DAG);
2836 if (X86::isMOVLMask(PermMask.Val))
2837 return (V1IsUndef) ? V2 : Op;
2839 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2840 X86::isMOVSLDUPMask(PermMask.Val) ||
2841 X86::isMOVHLPSMask(PermMask.Val) ||
2842 X86::isMOVHPMask(PermMask.Val) ||
2843 X86::isMOVLPMask(PermMask.Val))
2844 return Op;
2846 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2847 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2848 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2850 bool Commuted = false;
2851 V1IsSplat = isSplatVector(V1.Val);
2852 V2IsSplat = isSplatVector(V2.Val);
2853 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2854 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2855 std::swap(V1IsSplat, V2IsSplat);
2856 std::swap(V1IsUndef, V2IsUndef);
2857 Commuted = true;
2860 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2861 if (V2IsUndef) return V1;
2862 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2863 if (V2IsSplat) {
2864 // V2 is a splat, so the mask may be malformed. That is, it may point
2865 // to any V2 element. The instruction selectior won't like this. Get
2866 // a corrected mask and commute to form a proper MOVS{S|D}.
2867 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2868 if (NewMask.Val != PermMask.Val)
2869 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2871 return Op;
2874 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2875 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2876 X86::isUNPCKLMask(PermMask.Val) ||
2877 X86::isUNPCKHMask(PermMask.Val))
2878 return Op;
2880 if (V2IsSplat) {
2881 // Normalize mask so all entries that point to V2 points to its first
2882 // element then try to match unpck{h|l} again. If match, return a
2883 // new vector_shuffle with the corrected mask.
2884 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2885 if (NewMask.Val != PermMask.Val) {
2886 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2887 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2888 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2889 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2890 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2891 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2896 // Normalize the node to match x86 shuffle ops if needed
2897 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2898 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2900 if (Commuted) {
2901 // Commute is back and try unpck* again.
2902 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2903 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2904 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2905 X86::isUNPCKLMask(PermMask.Val) ||
2906 X86::isUNPCKHMask(PermMask.Val))
2907 return Op;
2910 // If VT is integer, try PSHUF* first, then SHUFP*.
2911 if (MVT::isInteger(VT)) {
2912 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2913 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2914 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2915 X86::isPSHUFDMask(PermMask.Val)) ||
2916 X86::isPSHUFHWMask(PermMask.Val) ||
2917 X86::isPSHUFLWMask(PermMask.Val)) {
2918 if (V2.getOpcode() != ISD::UNDEF)
2919 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2920 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2921 return Op;
2924 if (X86::isSHUFPMask(PermMask.Val) &&
2925 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2926 return Op;
2928 // Handle v8i16 shuffle high / low shuffle node pair.
2929 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2930 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2931 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2932 SmallVector<SDOperand, 8> MaskVec;
2933 for (unsigned i = 0; i != 4; ++i)
2934 MaskVec.push_back(PermMask.getOperand(i));
2935 for (unsigned i = 4; i != 8; ++i)
2936 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2937 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2938 &MaskVec[0], MaskVec.size());
2939 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2940 MaskVec.clear();
2941 for (unsigned i = 0; i != 4; ++i)
2942 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2943 for (unsigned i = 4; i != 8; ++i)
2944 MaskVec.push_back(PermMask.getOperand(i));
2945 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2946 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2948 } else {
2949 // Floating point cases in the other order.
2950 if (X86::isSHUFPMask(PermMask.Val))
2951 return Op;
2952 if (X86::isPSHUFDMask(PermMask.Val) ||
2953 X86::isPSHUFHWMask(PermMask.Val) ||
2954 X86::isPSHUFLWMask(PermMask.Val)) {
2955 if (V2.getOpcode() != ISD::UNDEF)
2956 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2957 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2958 return Op;
2962 if (NumElems == 4 &&
2963 // Don't do this for MMX.
2964 MVT::getSizeInBits(VT) != 64) {
2965 MVT::ValueType MaskVT = PermMask.getValueType();
2966 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2967 SmallVector<std::pair<int, int>, 8> Locs;
2968 Locs.reserve(NumElems);
2969 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2970 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2971 unsigned NumHi = 0;
2972 unsigned NumLo = 0;
2973 // If no more than two elements come from either vector. This can be
2974 // implemented with two shuffles. First shuffle gather the elements.
2975 // The second shuffle, which takes the first shuffle as both of its
2976 // vector operands, put the elements into the right order.
2977 for (unsigned i = 0; i != NumElems; ++i) {
2978 SDOperand Elt = PermMask.getOperand(i);
2979 if (Elt.getOpcode() == ISD::UNDEF) {
2980 Locs[i] = std::make_pair(-1, -1);
2981 } else {
2982 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2983 if (Val < NumElems) {
2984 Locs[i] = std::make_pair(0, NumLo);
2985 Mask1[NumLo] = Elt;
2986 NumLo++;
2987 } else {
2988 Locs[i] = std::make_pair(1, NumHi);
2989 if (2+NumHi < NumElems)
2990 Mask1[2+NumHi] = Elt;
2991 NumHi++;
2995 if (NumLo <= 2 && NumHi <= 2) {
2996 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2997 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2998 &Mask1[0], Mask1.size()));
2999 for (unsigned i = 0; i != NumElems; ++i) {
3000 if (Locs[i].first == -1)
3001 continue;
3002 else {
3003 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3004 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3005 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3009 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3010 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3011 &Mask2[0], Mask2.size()));
3014 // Break it into (shuffle shuffle_hi, shuffle_lo).
3015 Locs.clear();
3016 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3017 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3018 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3019 unsigned MaskIdx = 0;
3020 unsigned LoIdx = 0;
3021 unsigned HiIdx = NumElems/2;
3022 for (unsigned i = 0; i != NumElems; ++i) {
3023 if (i == NumElems/2) {
3024 MaskPtr = &HiMask;
3025 MaskIdx = 1;
3026 LoIdx = 0;
3027 HiIdx = NumElems/2;
3029 SDOperand Elt = PermMask.getOperand(i);
3030 if (Elt.getOpcode() == ISD::UNDEF) {
3031 Locs[i] = std::make_pair(-1, -1);
3032 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3033 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3034 (*MaskPtr)[LoIdx] = Elt;
3035 LoIdx++;
3036 } else {
3037 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3038 (*MaskPtr)[HiIdx] = Elt;
3039 HiIdx++;
3043 SDOperand LoShuffle =
3044 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3045 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3046 &LoMask[0], LoMask.size()));
3047 SDOperand HiShuffle =
3048 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3049 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3050 &HiMask[0], HiMask.size()));
3051 SmallVector<SDOperand, 8> MaskOps;
3052 for (unsigned i = 0; i != NumElems; ++i) {
3053 if (Locs[i].first == -1) {
3054 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3055 } else {
3056 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3057 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3060 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3061 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3062 &MaskOps[0], MaskOps.size()));
3065 return SDOperand();
3068 SDOperand
3069 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3070 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3071 return SDOperand();
3073 MVT::ValueType VT = Op.getValueType();
3074 // TODO: handle v16i8.
3075 if (MVT::getSizeInBits(VT) == 16) {
3076 // Transform it so it match pextrw which produces a 32-bit result.
3077 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3078 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3079 Op.getOperand(0), Op.getOperand(1));
3080 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3081 DAG.getValueType(VT));
3082 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3083 } else if (MVT::getSizeInBits(VT) == 32) {
3084 SDOperand Vec = Op.getOperand(0);
3085 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3086 if (Idx == 0)
3087 return Op;
3088 // SHUFPS the element to the lowest double word, then movss.
3089 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3090 SmallVector<SDOperand, 8> IdxVec;
3091 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3092 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3093 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3094 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3095 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3096 &IdxVec[0], IdxVec.size());
3097 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3098 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3099 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3100 DAG.getConstant(0, getPointerTy()));
3101 } else if (MVT::getSizeInBits(VT) == 64) {
3102 SDOperand Vec = Op.getOperand(0);
3103 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3104 if (Idx == 0)
3105 return Op;
3107 // UNPCKHPD the element to the lowest double word, then movsd.
3108 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3109 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3110 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3111 SmallVector<SDOperand, 8> IdxVec;
3112 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3113 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3114 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3115 &IdxVec[0], IdxVec.size());
3116 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3117 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3118 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3119 DAG.getConstant(0, getPointerTy()));
3122 return SDOperand();
3125 SDOperand
3126 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3127 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3128 // as its second argument.
3129 MVT::ValueType VT = Op.getValueType();
3130 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3131 SDOperand N0 = Op.getOperand(0);
3132 SDOperand N1 = Op.getOperand(1);
3133 SDOperand N2 = Op.getOperand(2);
3134 if (MVT::getSizeInBits(BaseVT) == 16) {
3135 if (N1.getValueType() != MVT::i32)
3136 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3137 if (N2.getValueType() != MVT::i32)
3138 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3139 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3140 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3141 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3142 if (Idx == 0) {
3143 // Use a movss.
3144 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3145 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3146 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3147 SmallVector<SDOperand, 8> MaskVec;
3148 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3149 for (unsigned i = 1; i <= 3; ++i)
3150 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3151 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3152 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3153 &MaskVec[0], MaskVec.size()));
3154 } else {
3155 // Use two pinsrw instructions to insert a 32 bit value.
3156 Idx <<= 1;
3157 if (MVT::isFloatingPoint(N1.getValueType())) {
3158 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3159 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3160 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3161 DAG.getConstant(0, getPointerTy()));
3163 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3164 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3165 DAG.getConstant(Idx, getPointerTy()));
3166 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3167 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3168 DAG.getConstant(Idx+1, getPointerTy()));
3169 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3173 return SDOperand();
3176 SDOperand
3177 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3178 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3179 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3182 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3183 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3184 // one of the above mentioned nodes. It has to be wrapped because otherwise
3185 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3186 // be used to form addressing mode. These wrapped nodes will be selected
3187 // into MOV32ri.
3188 SDOperand
3189 X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3190 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3191 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3192 getPointerTy(),
3193 CP->getAlignment());
3194 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3195 // With PIC, the address is actually $g + Offset.
3196 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3197 !Subtarget->isPICStyleRIPRel()) {
3198 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3199 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3200 Result);
3203 return Result;
3206 SDOperand
3207 X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3208 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3209 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3210 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3211 // With PIC, the address is actually $g + Offset.
3212 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3213 !Subtarget->isPICStyleRIPRel()) {
3214 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3215 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3216 Result);
3219 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3220 // load the value at address GV, not the value of GV itself. This means that
3221 // the GlobalAddress must be in the base or index register of the address, not
3222 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3223 // The same applies for external symbols during PIC codegen
3224 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3225 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3227 return Result;
3230 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3231 static SDOperand
3232 LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3233 const MVT::ValueType PtrVT) {
3234 SDOperand InFlag;
3235 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3236 DAG.getNode(X86ISD::GlobalBaseReg,
3237 PtrVT), InFlag);
3238 InFlag = Chain.getValue(1);
3240 // emit leal symbol@TLSGD(,%ebx,1), %eax
3241 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3242 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3243 GA->getValueType(0),
3244 GA->getOffset());
3245 SDOperand Ops[] = { Chain, TGA, InFlag };
3246 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3247 InFlag = Result.getValue(2);
3248 Chain = Result.getValue(1);
3250 // call ___tls_get_addr. This function receives its argument in
3251 // the register EAX.
3252 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3253 InFlag = Chain.getValue(1);
3255 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3256 SDOperand Ops1[] = { Chain,
3257 DAG.getTargetExternalSymbol("___tls_get_addr",
3258 PtrVT),
3259 DAG.getRegister(X86::EAX, PtrVT),
3260 DAG.getRegister(X86::EBX, PtrVT),
3261 InFlag };
3262 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3263 InFlag = Chain.getValue(1);
3265 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3268 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3269 // "local exec" model.
3270 static SDOperand
3271 LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3272 const MVT::ValueType PtrVT) {
3273 // Get the Thread Pointer
3274 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3275 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3276 // exec)
3277 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3278 GA->getValueType(0),
3279 GA->getOffset());
3280 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3282 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3283 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3285 // The address of the thread local variable is the add of the thread
3286 // pointer with the offset of the variable.
3287 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3290 SDOperand
3291 X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3292 // TODO: implement the "local dynamic" model
3293 // TODO: implement the "initial exec"model for pic executables
3294 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3295 "TLS not implemented for non-ELF and 64-bit targets");
3296 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3297 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3298 // otherwise use the "Local Exec"TLS Model
3299 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3300 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3301 else
3302 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3305 SDOperand
3306 X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3307 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3308 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3309 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3310 // With PIC, the address is actually $g + Offset.
3311 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3312 !Subtarget->isPICStyleRIPRel()) {
3313 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3314 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3315 Result);
3318 return Result;
3321 SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3322 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3323 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3324 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3325 // With PIC, the address is actually $g + Offset.
3326 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3327 !Subtarget->isPICStyleRIPRel()) {
3328 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3329 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3330 Result);
3333 return Result;
3336 SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3337 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3338 "Not an i64 shift!");
3339 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3340 SDOperand ShOpLo = Op.getOperand(0);
3341 SDOperand ShOpHi = Op.getOperand(1);
3342 SDOperand ShAmt = Op.getOperand(2);
3343 SDOperand Tmp1 = isSRA ?
3344 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3345 DAG.getConstant(0, MVT::i32);
3347 SDOperand Tmp2, Tmp3;
3348 if (Op.getOpcode() == ISD::SHL_PARTS) {
3349 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3350 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3351 } else {
3352 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3353 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3356 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3357 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3358 DAG.getConstant(32, MVT::i8));
3359 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3360 SDOperand Cond = NewCCModeling
3361 ? DAG.getNode(X86ISD::CMP_NEW, MVT::i32,
3362 AndNode, DAG.getConstant(0, MVT::i8))
3363 : DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3365 SDOperand Hi, Lo;
3366 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3367 unsigned Opc = NewCCModeling ? X86ISD::CMOV_NEW : X86ISD::CMOV;
3368 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3369 SmallVector<SDOperand, 4> Ops;
3370 if (Op.getOpcode() == ISD::SHL_PARTS) {
3371 Ops.push_back(Tmp2);
3372 Ops.push_back(Tmp3);
3373 Ops.push_back(CC);
3374 Ops.push_back(Cond);
3375 if (NewCCModeling)
3376 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3377 else {
3378 Hi = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3379 Cond = Hi.getValue(1);
3382 Ops.clear();
3383 Ops.push_back(Tmp3);
3384 Ops.push_back(Tmp1);
3385 Ops.push_back(CC);
3386 Ops.push_back(Cond);
3387 if (NewCCModeling)
3388 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3389 else
3390 Lo = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3391 } else {
3392 Ops.push_back(Tmp2);
3393 Ops.push_back(Tmp3);
3394 Ops.push_back(CC);
3395 Ops.push_back(Cond);
3396 if (NewCCModeling)
3397 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3398 else {
3399 Lo = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3400 Cond = Lo.getValue(1);
3403 Ops.clear();
3404 Ops.push_back(Tmp3);
3405 Ops.push_back(Tmp1);
3406 Ops.push_back(CC);
3407 Ops.push_back(Cond);
3408 if (NewCCModeling)
3409 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3410 else
3411 Hi = DAG.getNode(Opc, VTs, 2, &Ops[0], Ops.size());
3414 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3415 Ops.clear();
3416 Ops.push_back(Lo);
3417 Ops.push_back(Hi);
3418 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3421 SDOperand X86TargetLowering::LowerIntegerDivOrRem(SDOperand Op, SelectionDAG &DAG) {
3422 unsigned Opcode = Op.getOpcode();
3423 MVT::ValueType NVT = Op.getValueType();
3424 bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
3425 bool isDiv = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
3426 unsigned Opc = isSigned ? X86ISD::IDIV : X86ISD::DIV;
3428 SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3429 SDOperand DR = DAG.getNode(Opc, DAG.getVTList(NVT, NVT), Ops, 2);
3431 if (isDiv)
3432 return DR;
3434 return SDOperand(DR.Val, 1);
3437 SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3438 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3439 Op.getOperand(0).getValueType() >= MVT::i16 &&
3440 "Unknown SINT_TO_FP to lower!");
3442 SDOperand Result;
3443 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3444 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3445 MachineFunction &MF = DAG.getMachineFunction();
3446 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3447 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3448 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3449 StackSlot, NULL, 0);
3451 // These are really Legal; caller falls through into that case.
3452 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3453 return Result;
3454 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
3455 return Result;
3456 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3457 Subtarget->is64Bit())
3458 return Result;
3460 // Build the FILD
3461 SDVTList Tys;
3462 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3463 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
3464 if (useSSE)
3465 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3466 else
3467 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3468 SmallVector<SDOperand, 8> Ops;
3469 Ops.push_back(Chain);
3470 Ops.push_back(StackSlot);
3471 Ops.push_back(DAG.getValueType(SrcVT));
3472 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3473 Tys, &Ops[0], Ops.size());
3475 if (useSSE) {
3476 Chain = Result.getValue(1);
3477 SDOperand InFlag = Result.getValue(2);
3479 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3480 // shouldn't be necessary except that RFP cannot be live across
3481 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3482 MachineFunction &MF = DAG.getMachineFunction();
3483 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3484 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3485 Tys = DAG.getVTList(MVT::Other);
3486 SmallVector<SDOperand, 8> Ops;
3487 Ops.push_back(Chain);
3488 Ops.push_back(Result);
3489 Ops.push_back(StackSlot);
3490 Ops.push_back(DAG.getValueType(Op.getValueType()));
3491 Ops.push_back(InFlag);
3492 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3493 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3496 return Result;
3499 SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3500 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3501 "Unknown FP_TO_SINT to lower!");
3502 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3503 // stack slot.
3504 SDOperand Result;
3505 MachineFunction &MF = DAG.getMachineFunction();
3506 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3507 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3508 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3510 // These are really Legal.
3511 if (Op.getValueType() == MVT::i32 &&
3512 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3513 return Result;
3514 if (Op.getValueType() == MVT::i32 &&
3515 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
3516 return Result;
3517 if (Subtarget->is64Bit() &&
3518 Op.getValueType() == MVT::i64 &&
3519 Op.getOperand(0).getValueType() != MVT::f80)
3520 return Result;
3522 unsigned Opc;
3523 switch (Op.getValueType()) {
3524 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3525 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3526 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3527 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3530 SDOperand Chain = DAG.getEntryNode();
3531 SDOperand Value = Op.getOperand(0);
3532 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3533 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
3534 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3535 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3536 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3537 SDOperand Ops[] = {
3538 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3540 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3541 Chain = Value.getValue(1);
3542 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3543 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3546 // Build the FP_TO_INT*_IN_MEM
3547 SDOperand Ops[] = { Chain, Value, StackSlot };
3548 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3550 // Load the result.
3551 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3554 SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3555 MVT::ValueType VT = Op.getValueType();
3556 MVT::ValueType EltVT = VT;
3557 if (MVT::isVector(VT))
3558 EltVT = MVT::getVectorElementType(VT);
3559 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3560 std::vector<Constant*> CV;
3561 if (EltVT == MVT::f64) {
3562 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3563 CV.push_back(C);
3564 CV.push_back(C);
3565 } else {
3566 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3567 CV.push_back(C);
3568 CV.push_back(C);
3569 CV.push_back(C);
3570 CV.push_back(C);
3572 Constant *C = ConstantVector::get(CV);
3573 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3574 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3575 false, 16);
3576 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3579 SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3580 MVT::ValueType VT = Op.getValueType();
3581 MVT::ValueType EltVT = VT;
3582 unsigned EltNum = 1;
3583 if (MVT::isVector(VT)) {
3584 EltVT = MVT::getVectorElementType(VT);
3585 EltNum = MVT::getVectorNumElements(VT);
3587 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3588 std::vector<Constant*> CV;
3589 if (EltVT == MVT::f64) {
3590 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3591 CV.push_back(C);
3592 CV.push_back(C);
3593 } else {
3594 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3595 CV.push_back(C);
3596 CV.push_back(C);
3597 CV.push_back(C);
3598 CV.push_back(C);
3600 Constant *C = ConstantVector::get(CV);
3601 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3602 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3603 false, 16);
3604 if (MVT::isVector(VT)) {
3605 return DAG.getNode(ISD::BIT_CONVERT, VT,
3606 DAG.getNode(ISD::XOR, MVT::v2i64,
3607 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3608 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3609 } else {
3610 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3614 SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3615 SDOperand Op0 = Op.getOperand(0);
3616 SDOperand Op1 = Op.getOperand(1);
3617 MVT::ValueType VT = Op.getValueType();
3618 MVT::ValueType SrcVT = Op1.getValueType();
3619 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3621 // If second operand is smaller, extend it first.
3622 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3623 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3624 SrcVT = VT;
3625 SrcTy = MVT::getTypeForValueType(SrcVT);
3628 // First get the sign bit of second operand.
3629 std::vector<Constant*> CV;
3630 if (SrcVT == MVT::f64) {
3631 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3632 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3633 } else {
3634 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3635 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3636 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3637 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3639 Constant *C = ConstantVector::get(CV);
3640 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3641 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3642 false, 16);
3643 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3645 // Shift sign bit right or left if the two operands have different types.
3646 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3647 // Op0 is MVT::f32, Op1 is MVT::f64.
3648 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3649 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3650 DAG.getConstant(32, MVT::i32));
3651 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3652 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3653 DAG.getConstant(0, getPointerTy()));
3656 // Clear first operand sign bit.
3657 CV.clear();
3658 if (VT == MVT::f64) {
3659 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3660 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3661 } else {
3662 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3663 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3664 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3665 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3667 C = ConstantVector::get(CV);
3668 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3669 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3670 false, 16);
3671 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3673 // Or the value with the sign bit.
3674 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3677 SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3678 SDOperand Chain) {
3679 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3680 SDOperand Cond;
3681 SDOperand Op0 = Op.getOperand(0);
3682 SDOperand Op1 = Op.getOperand(1);
3683 SDOperand CC = Op.getOperand(2);
3684 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3685 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3686 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3687 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3688 unsigned X86CC;
3690 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3691 Op0, Op1, DAG)) {
3692 SDOperand Ops1[] = { Chain, Op0, Op1 };
3693 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3694 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3695 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3698 assert(isFP && "Illegal integer SetCC!");
3700 SDOperand COps[] = { Chain, Op0, Op1 };
3701 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3703 switch (SetCCOpcode) {
3704 default: assert(false && "Illegal floating point SetCC!");
3705 case ISD::SETOEQ: { // !PF & ZF
3706 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3707 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3708 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3709 Tmp1.getValue(1) };
3710 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3711 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3713 case ISD::SETUNE: { // PF | !ZF
3714 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3715 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3716 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3717 Tmp1.getValue(1) };
3718 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3719 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3724 SDOperand X86TargetLowering::LowerSETCC_New(SDOperand Op, SelectionDAG &DAG) {
3725 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3726 SDOperand Cond;
3727 SDOperand Op0 = Op.getOperand(0);
3728 SDOperand Op1 = Op.getOperand(1);
3729 SDOperand CC = Op.getOperand(2);
3730 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3731 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3732 unsigned X86CC;
3734 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3735 Op0, Op1, DAG)) {
3736 Cond = DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Op0, Op1);
3737 return DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3738 DAG.getConstant(X86CC, MVT::i8), Cond);
3741 assert(isFP && "Illegal integer SetCC!");
3743 Cond = DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Op0, Op1);
3744 switch (SetCCOpcode) {
3745 default: assert(false && "Illegal floating point SetCC!");
3746 case ISD::SETOEQ: { // !PF & ZF
3747 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3748 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
3749 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3750 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
3751 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3753 case ISD::SETUNE: { // PF | !ZF
3754 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3755 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
3756 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
3757 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
3758 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3764 SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3765 bool addTest = true;
3766 SDOperand Chain = DAG.getEntryNode();
3767 SDOperand Cond = Op.getOperand(0);
3768 SDOperand CC;
3769 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3771 if (Cond.getOpcode() == ISD::SETCC)
3772 Cond = LowerSETCC(Cond, DAG, Chain);
3774 if (Cond.getOpcode() == X86ISD::SETCC) {
3775 CC = Cond.getOperand(0);
3777 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3778 // (since flag operand cannot be shared). Use it as the condition setting
3779 // operand in place of the X86ISD::SETCC.
3780 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3781 // to use a test instead of duplicating the X86ISD::CMP (for register
3782 // pressure reason)?
3783 SDOperand Cmp = Cond.getOperand(1);
3784 unsigned Opc = Cmp.getOpcode();
3785 bool IllegalFPCMov =
3786 ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3787 (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
3788 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3789 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3790 !IllegalFPCMov) {
3791 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3792 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3793 addTest = false;
3797 if (addTest) {
3798 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3799 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3800 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3803 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3804 SmallVector<SDOperand, 4> Ops;
3805 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3806 // condition is true.
3807 Ops.push_back(Op.getOperand(2));
3808 Ops.push_back(Op.getOperand(1));
3809 Ops.push_back(CC);
3810 Ops.push_back(Cond.getValue(1));
3811 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3814 SDOperand X86TargetLowering::LowerSELECT_New(SDOperand Op, SelectionDAG &DAG) {
3815 bool addTest = true;
3816 SDOperand Cond = Op.getOperand(0);
3817 SDOperand CC;
3819 if (Cond.getOpcode() == ISD::SETCC)
3820 Cond = LowerSETCC_New(Cond, DAG);
3822 if (Cond.getOpcode() == X86ISD::SETCC_NEW) {
3823 CC = Cond.getOperand(0);
3825 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3826 // (since flag operand cannot be shared). Use it as the condition setting
3827 // operand in place of the X86ISD::SETCC.
3828 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3829 // to use a test instead of duplicating the X86ISD::CMP (for register
3830 // pressure reason)?
3831 SDOperand Cmp = Cond.getOperand(1);
3832 unsigned Opc = Cmp.getOpcode();
3833 bool IllegalFPCMov =
3834 ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3835 (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
3836 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3837 if ((Opc == X86ISD::CMP_NEW ||
3838 Opc == X86ISD::COMI_NEW ||
3839 Opc == X86ISD::UCOMI_NEW) &&
3840 !IllegalFPCMov) {
3841 Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3842 addTest = false;
3846 if (addTest) {
3847 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3848 Cond = DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Cond,
3849 DAG.getConstant(0, MVT::i8));
3852 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
3853 MVT::Flag);
3854 SmallVector<SDOperand, 4> Ops;
3855 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3856 // condition is true.
3857 Ops.push_back(Op.getOperand(2));
3858 Ops.push_back(Op.getOperand(1));
3859 Ops.push_back(CC);
3860 Ops.push_back(Cond);
3861 return DAG.getNode(X86ISD::CMOV_NEW, VTs, 2, &Ops[0], Ops.size());
3864 SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3865 bool addTest = true;
3866 SDOperand Chain = Op.getOperand(0);
3867 SDOperand Cond = Op.getOperand(1);
3868 SDOperand Dest = Op.getOperand(2);
3869 SDOperand CC;
3870 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3872 if (Cond.getOpcode() == ISD::SETCC)
3873 Cond = LowerSETCC(Cond, DAG, Chain);
3875 if (Cond.getOpcode() == X86ISD::SETCC) {
3876 CC = Cond.getOperand(0);
3878 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3879 // (since flag operand cannot be shared). Use it as the condition setting
3880 // operand in place of the X86ISD::SETCC.
3881 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3882 // to use a test instead of duplicating the X86ISD::CMP (for register
3883 // pressure reason)?
3884 SDOperand Cmp = Cond.getOperand(1);
3885 unsigned Opc = Cmp.getOpcode();
3886 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3887 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3888 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3889 addTest = false;
3893 if (addTest) {
3894 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3895 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3896 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3898 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3899 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3902 SDOperand X86TargetLowering::LowerBRCOND_New(SDOperand Op, SelectionDAG &DAG) {
3903 bool addTest = true;
3904 SDOperand Chain = Op.getOperand(0);
3905 SDOperand Cond = Op.getOperand(1);
3906 SDOperand Dest = Op.getOperand(2);
3907 SDOperand CC;
3909 if (Cond.getOpcode() == ISD::SETCC)
3910 Cond = LowerSETCC_New(Cond, DAG);
3912 if (Cond.getOpcode() == X86ISD::SETCC_NEW) {
3913 CC = Cond.getOperand(0);
3915 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3916 // (since flag operand cannot be shared). Use it as the condition setting
3917 // operand in place of the X86ISD::SETCC.
3918 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3919 // to use a test instead of duplicating the X86ISD::CMP (for register
3920 // pressure reason)?
3921 SDOperand Cmp = Cond.getOperand(1);
3922 unsigned Opc = Cmp.getOpcode();
3923 if (Opc == X86ISD::CMP_NEW ||
3924 Opc == X86ISD::COMI_NEW ||
3925 Opc == X86ISD::UCOMI_NEW) {
3926 Cond = DAG.getNode(Opc, MVT::i32, Cmp.getOperand(0), Cmp.getOperand(1));
3927 addTest = false;
3931 if (addTest) {
3932 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3933 Cond= DAG.getNode(X86ISD::CMP_NEW, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
3935 return DAG.getNode(X86ISD::BRCOND_NEW, Op.getValueType(),
3936 Chain, Op.getOperand(2), CC, Cond);
3939 SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3940 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3942 if (Subtarget->is64Bit())
3943 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3944 else
3945 switch (CallingConv) {
3946 default:
3947 assert(0 && "Unsupported calling convention");
3948 case CallingConv::Fast:
3949 // TODO: Implement fastcc
3950 // Falls through
3951 case CallingConv::C:
3952 case CallingConv::X86_StdCall:
3953 return LowerCCCCallTo(Op, DAG, CallingConv);
3954 case CallingConv::X86_FastCall:
3955 return LowerFastCCCallTo(Op, DAG, CallingConv);
3960 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3961 // Calls to _alloca is needed to probe the stack when allocating more than 4k
3962 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
3963 // that the guard pages used by the OS virtual memory manager are allocated in
3964 // correct sequence.
3965 SDOperand
3966 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3967 SelectionDAG &DAG) {
3968 assert(Subtarget->isTargetCygMing() &&
3969 "This should be used only on Cygwin/Mingw targets");
3971 // Get the inputs.
3972 SDOperand Chain = Op.getOperand(0);
3973 SDOperand Size = Op.getOperand(1);
3974 // FIXME: Ensure alignment here
3976 SDOperand Flag;
3978 MVT::ValueType IntPtr = getPointerTy();
3979 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3981 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3982 Flag = Chain.getValue(1);
3984 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3985 SDOperand Ops[] = { Chain,
3986 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3987 DAG.getRegister(X86::EAX, IntPtr),
3988 Flag };
3989 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3990 Flag = Chain.getValue(1);
3992 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3994 std::vector<MVT::ValueType> Tys;
3995 Tys.push_back(SPTy);
3996 Tys.push_back(MVT::Other);
3997 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3998 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4001 SDOperand
4002 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4003 MachineFunction &MF = DAG.getMachineFunction();
4004 const Function* Fn = MF.getFunction();
4005 if (Fn->hasExternalLinkage() &&
4006 Subtarget->isTargetCygMing() &&
4007 Fn->getName() == "main")
4008 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4010 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4011 if (Subtarget->is64Bit())
4012 return LowerX86_64CCCArguments(Op, DAG);
4013 else
4014 switch(CC) {
4015 default:
4016 assert(0 && "Unsupported calling convention");
4017 case CallingConv::Fast:
4018 // TODO: implement fastcc.
4020 // Falls through
4021 case CallingConv::C:
4022 return LowerCCCArguments(Op, DAG);
4023 case CallingConv::X86_StdCall:
4024 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4025 return LowerCCCArguments(Op, DAG, true);
4026 case CallingConv::X86_FastCall:
4027 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4028 return LowerFastCCArguments(Op, DAG);
4032 SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4033 SDOperand InFlag(0, 0);
4034 SDOperand Chain = Op.getOperand(0);
4035 unsigned Align =
4036 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4037 if (Align == 0) Align = 1;
4039 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4040 // If not DWORD aligned or size is more than the threshold, call memset.
4041 // The libc version is likely to be faster for these cases. It can use the
4042 // address value and run time information about the CPU.
4043 if ((Align & 3) != 0 ||
4044 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
4045 MVT::ValueType IntPtr = getPointerTy();
4046 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4047 TargetLowering::ArgListTy Args;
4048 TargetLowering::ArgListEntry Entry;
4049 Entry.Node = Op.getOperand(1);
4050 Entry.Ty = IntPtrTy;
4051 Args.push_back(Entry);
4052 // Extend the unsigned i8 argument to be an int value for the call.
4053 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4054 Entry.Ty = IntPtrTy;
4055 Args.push_back(Entry);
4056 Entry.Node = Op.getOperand(3);
4057 Args.push_back(Entry);
4058 std::pair<SDOperand,SDOperand> CallResult =
4059 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4060 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4061 return CallResult.second;
4064 MVT::ValueType AVT;
4065 SDOperand Count;
4066 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4067 unsigned BytesLeft = 0;
4068 bool TwoRepStos = false;
4069 if (ValC) {
4070 unsigned ValReg;
4071 uint64_t Val = ValC->getValue() & 255;
4073 // If the value is a constant, then we can potentially use larger sets.
4074 switch (Align & 3) {
4075 case 2: // WORD aligned
4076 AVT = MVT::i16;
4077 ValReg = X86::AX;
4078 Val = (Val << 8) | Val;
4079 break;
4080 case 0: // DWORD aligned
4081 AVT = MVT::i32;
4082 ValReg = X86::EAX;
4083 Val = (Val << 8) | Val;
4084 Val = (Val << 16) | Val;
4085 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4086 AVT = MVT::i64;
4087 ValReg = X86::RAX;
4088 Val = (Val << 32) | Val;
4090 break;
4091 default: // Byte aligned
4092 AVT = MVT::i8;
4093 ValReg = X86::AL;
4094 Count = Op.getOperand(3);
4095 break;
4098 if (AVT > MVT::i8) {
4099 if (I) {
4100 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4101 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4102 BytesLeft = I->getValue() % UBytes;
4103 } else {
4104 assert(AVT >= MVT::i32 &&
4105 "Do not use rep;stos if not at least DWORD aligned");
4106 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4107 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4108 TwoRepStos = true;
4112 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4113 InFlag);
4114 InFlag = Chain.getValue(1);
4115 } else {
4116 AVT = MVT::i8;
4117 Count = Op.getOperand(3);
4118 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4119 InFlag = Chain.getValue(1);
4122 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4123 Count, InFlag);
4124 InFlag = Chain.getValue(1);
4125 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4126 Op.getOperand(1), InFlag);
4127 InFlag = Chain.getValue(1);
4129 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4130 SmallVector<SDOperand, 8> Ops;
4131 Ops.push_back(Chain);
4132 Ops.push_back(DAG.getValueType(AVT));
4133 Ops.push_back(InFlag);
4134 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4136 if (TwoRepStos) {
4137 InFlag = Chain.getValue(1);
4138 Count = Op.getOperand(3);
4139 MVT::ValueType CVT = Count.getValueType();
4140 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4141 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4142 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4143 Left, InFlag);
4144 InFlag = Chain.getValue(1);
4145 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4146 Ops.clear();
4147 Ops.push_back(Chain);
4148 Ops.push_back(DAG.getValueType(MVT::i8));
4149 Ops.push_back(InFlag);
4150 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4151 } else if (BytesLeft) {
4152 // Issue stores for the last 1 - 7 bytes.
4153 SDOperand Value;
4154 unsigned Val = ValC->getValue() & 255;
4155 unsigned Offset = I->getValue() - BytesLeft;
4156 SDOperand DstAddr = Op.getOperand(1);
4157 MVT::ValueType AddrVT = DstAddr.getValueType();
4158 if (BytesLeft >= 4) {
4159 Val = (Val << 8) | Val;
4160 Val = (Val << 16) | Val;
4161 Value = DAG.getConstant(Val, MVT::i32);
4162 Chain = DAG.getStore(Chain, Value,
4163 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4164 DAG.getConstant(Offset, AddrVT)),
4165 NULL, 0);
4166 BytesLeft -= 4;
4167 Offset += 4;
4169 if (BytesLeft >= 2) {
4170 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4171 Chain = DAG.getStore(Chain, Value,
4172 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4173 DAG.getConstant(Offset, AddrVT)),
4174 NULL, 0);
4175 BytesLeft -= 2;
4176 Offset += 2;
4178 if (BytesLeft == 1) {
4179 Value = DAG.getConstant(Val, MVT::i8);
4180 Chain = DAG.getStore(Chain, Value,
4181 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4182 DAG.getConstant(Offset, AddrVT)),
4183 NULL, 0);
4187 return Chain;
4190 SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4191 SDOperand Chain = Op.getOperand(0);
4192 unsigned Align =
4193 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4194 if (Align == 0) Align = 1;
4196 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4197 // If not DWORD aligned or size is more than the threshold, call memcpy.
4198 // The libc version is likely to be faster for these cases. It can use the
4199 // address value and run time information about the CPU.
4200 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
4201 if ((Align & 3) != 0 ||
4202 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
4203 MVT::ValueType IntPtr = getPointerTy();
4204 TargetLowering::ArgListTy Args;
4205 TargetLowering::ArgListEntry Entry;
4206 Entry.Ty = getTargetData()->getIntPtrType();
4207 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4208 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4209 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4210 std::pair<SDOperand,SDOperand> CallResult =
4211 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4212 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4213 return CallResult.second;
4216 MVT::ValueType AVT;
4217 SDOperand Count;
4218 unsigned BytesLeft = 0;
4219 bool TwoRepMovs = false;
4220 switch (Align & 3) {
4221 case 2: // WORD aligned
4222 AVT = MVT::i16;
4223 break;
4224 case 0: // DWORD aligned
4225 AVT = MVT::i32;
4226 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4227 AVT = MVT::i64;
4228 break;
4229 default: // Byte aligned
4230 AVT = MVT::i8;
4231 Count = Op.getOperand(3);
4232 break;
4235 if (AVT > MVT::i8) {
4236 if (I) {
4237 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4238 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4239 BytesLeft = I->getValue() % UBytes;
4240 } else {
4241 assert(AVT >= MVT::i32 &&
4242 "Do not use rep;movs if not at least DWORD aligned");
4243 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4244 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4245 TwoRepMovs = true;
4249 SDOperand InFlag(0, 0);
4250 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4251 Count, InFlag);
4252 InFlag = Chain.getValue(1);
4253 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4254 Op.getOperand(1), InFlag);
4255 InFlag = Chain.getValue(1);
4256 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4257 Op.getOperand(2), InFlag);
4258 InFlag = Chain.getValue(1);
4260 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4261 SmallVector<SDOperand, 8> Ops;
4262 Ops.push_back(Chain);
4263 Ops.push_back(DAG.getValueType(AVT));
4264 Ops.push_back(InFlag);
4265 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4267 if (TwoRepMovs) {
4268 InFlag = Chain.getValue(1);
4269 Count = Op.getOperand(3);
4270 MVT::ValueType CVT = Count.getValueType();
4271 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4272 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4273 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4274 Left, InFlag);
4275 InFlag = Chain.getValue(1);
4276 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4277 Ops.clear();
4278 Ops.push_back(Chain);
4279 Ops.push_back(DAG.getValueType(MVT::i8));
4280 Ops.push_back(InFlag);
4281 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4282 } else if (BytesLeft) {
4283 // Issue loads and stores for the last 1 - 7 bytes.
4284 unsigned Offset = I->getValue() - BytesLeft;
4285 SDOperand DstAddr = Op.getOperand(1);
4286 MVT::ValueType DstVT = DstAddr.getValueType();
4287 SDOperand SrcAddr = Op.getOperand(2);
4288 MVT::ValueType SrcVT = SrcAddr.getValueType();
4289 SDOperand Value;
4290 if (BytesLeft >= 4) {
4291 Value = DAG.getLoad(MVT::i32, Chain,
4292 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4293 DAG.getConstant(Offset, SrcVT)),
4294 NULL, 0);
4295 Chain = Value.getValue(1);
4296 Chain = DAG.getStore(Chain, Value,
4297 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4298 DAG.getConstant(Offset, DstVT)),
4299 NULL, 0);
4300 BytesLeft -= 4;
4301 Offset += 4;
4303 if (BytesLeft >= 2) {
4304 Value = DAG.getLoad(MVT::i16, Chain,
4305 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4306 DAG.getConstant(Offset, SrcVT)),
4307 NULL, 0);
4308 Chain = Value.getValue(1);
4309 Chain = DAG.getStore(Chain, Value,
4310 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4311 DAG.getConstant(Offset, DstVT)),
4312 NULL, 0);
4313 BytesLeft -= 2;
4314 Offset += 2;
4317 if (BytesLeft == 1) {
4318 Value = DAG.getLoad(MVT::i8, Chain,
4319 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4320 DAG.getConstant(Offset, SrcVT)),
4321 NULL, 0);
4322 Chain = Value.getValue(1);
4323 Chain = DAG.getStore(Chain, Value,
4324 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4325 DAG.getConstant(Offset, DstVT)),
4326 NULL, 0);
4330 return Chain;
4333 SDOperand
4334 X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4335 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4336 SDOperand TheOp = Op.getOperand(0);
4337 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4338 if (Subtarget->is64Bit()) {
4339 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4340 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4341 MVT::i64, Copy1.getValue(2));
4342 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4343 DAG.getConstant(32, MVT::i8));
4344 SDOperand Ops[] = {
4345 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4348 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4349 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4352 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4353 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4354 MVT::i32, Copy1.getValue(2));
4355 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4356 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4357 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4360 SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4361 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4363 if (!Subtarget->is64Bit()) {
4364 // vastart just stores the address of the VarArgsFrameIndex slot into the
4365 // memory location argument.
4366 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4367 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4368 SV->getOffset());
4371 // __va_list_tag:
4372 // gp_offset (0 - 6 * 8)
4373 // fp_offset (48 - 48 + 8 * 16)
4374 // overflow_arg_area (point to parameters coming in memory).
4375 // reg_save_area
4376 SmallVector<SDOperand, 8> MemOps;
4377 SDOperand FIN = Op.getOperand(1);
4378 // Store gp_offset
4379 SDOperand Store = DAG.getStore(Op.getOperand(0),
4380 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4381 FIN, SV->getValue(), SV->getOffset());
4382 MemOps.push_back(Store);
4384 // Store fp_offset
4385 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4386 DAG.getConstant(4, getPointerTy()));
4387 Store = DAG.getStore(Op.getOperand(0),
4388 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4389 FIN, SV->getValue(), SV->getOffset());
4390 MemOps.push_back(Store);
4392 // Store ptr to overflow_arg_area
4393 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4394 DAG.getConstant(4, getPointerTy()));
4395 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4396 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4397 SV->getOffset());
4398 MemOps.push_back(Store);
4400 // Store ptr to reg_save_area.
4401 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4402 DAG.getConstant(8, getPointerTy()));
4403 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4404 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4405 SV->getOffset());
4406 MemOps.push_back(Store);
4407 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4410 SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4411 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4412 SDOperand Chain = Op.getOperand(0);
4413 SDOperand DstPtr = Op.getOperand(1);
4414 SDOperand SrcPtr = Op.getOperand(2);
4415 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4416 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4418 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4419 SrcSV->getValue(), SrcSV->getOffset());
4420 Chain = SrcPtr.getValue(1);
4421 for (unsigned i = 0; i < 3; ++i) {
4422 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4423 SrcSV->getValue(), SrcSV->getOffset());
4424 Chain = Val.getValue(1);
4425 Chain = DAG.getStore(Chain, Val, DstPtr,
4426 DstSV->getValue(), DstSV->getOffset());
4427 if (i == 2)
4428 break;
4429 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4430 DAG.getConstant(8, getPointerTy()));
4431 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4432 DAG.getConstant(8, getPointerTy()));
4434 return Chain;
4437 SDOperand
4438 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4439 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4440 switch (IntNo) {
4441 default: return SDOperand(); // Don't custom lower most intrinsics.
4442 // Comparison intrinsics.
4443 case Intrinsic::x86_sse_comieq_ss:
4444 case Intrinsic::x86_sse_comilt_ss:
4445 case Intrinsic::x86_sse_comile_ss:
4446 case Intrinsic::x86_sse_comigt_ss:
4447 case Intrinsic::x86_sse_comige_ss:
4448 case Intrinsic::x86_sse_comineq_ss:
4449 case Intrinsic::x86_sse_ucomieq_ss:
4450 case Intrinsic::x86_sse_ucomilt_ss:
4451 case Intrinsic::x86_sse_ucomile_ss:
4452 case Intrinsic::x86_sse_ucomigt_ss:
4453 case Intrinsic::x86_sse_ucomige_ss:
4454 case Intrinsic::x86_sse_ucomineq_ss:
4455 case Intrinsic::x86_sse2_comieq_sd:
4456 case Intrinsic::x86_sse2_comilt_sd:
4457 case Intrinsic::x86_sse2_comile_sd:
4458 case Intrinsic::x86_sse2_comigt_sd:
4459 case Intrinsic::x86_sse2_comige_sd:
4460 case Intrinsic::x86_sse2_comineq_sd:
4461 case Intrinsic::x86_sse2_ucomieq_sd:
4462 case Intrinsic::x86_sse2_ucomilt_sd:
4463 case Intrinsic::x86_sse2_ucomile_sd:
4464 case Intrinsic::x86_sse2_ucomigt_sd:
4465 case Intrinsic::x86_sse2_ucomige_sd:
4466 case Intrinsic::x86_sse2_ucomineq_sd: {
4467 unsigned Opc = 0;
4468 ISD::CondCode CC = ISD::SETCC_INVALID;
4469 switch (IntNo) {
4470 default: break;
4471 case Intrinsic::x86_sse_comieq_ss:
4472 case Intrinsic::x86_sse2_comieq_sd:
4473 Opc = X86ISD::COMI;
4474 CC = ISD::SETEQ;
4475 break;
4476 case Intrinsic::x86_sse_comilt_ss:
4477 case Intrinsic::x86_sse2_comilt_sd:
4478 Opc = X86ISD::COMI;
4479 CC = ISD::SETLT;
4480 break;
4481 case Intrinsic::x86_sse_comile_ss:
4482 case Intrinsic::x86_sse2_comile_sd:
4483 Opc = X86ISD::COMI;
4484 CC = ISD::SETLE;
4485 break;
4486 case Intrinsic::x86_sse_comigt_ss:
4487 case Intrinsic::x86_sse2_comigt_sd:
4488 Opc = X86ISD::COMI;
4489 CC = ISD::SETGT;
4490 break;
4491 case Intrinsic::x86_sse_comige_ss:
4492 case Intrinsic::x86_sse2_comige_sd:
4493 Opc = X86ISD::COMI;
4494 CC = ISD::SETGE;
4495 break;
4496 case Intrinsic::x86_sse_comineq_ss:
4497 case Intrinsic::x86_sse2_comineq_sd:
4498 Opc = X86ISD::COMI;
4499 CC = ISD::SETNE;
4500 break;
4501 case Intrinsic::x86_sse_ucomieq_ss:
4502 case Intrinsic::x86_sse2_ucomieq_sd:
4503 Opc = X86ISD::UCOMI;
4504 CC = ISD::SETEQ;
4505 break;
4506 case Intrinsic::x86_sse_ucomilt_ss:
4507 case Intrinsic::x86_sse2_ucomilt_sd:
4508 Opc = X86ISD::UCOMI;
4509 CC = ISD::SETLT;
4510 break;
4511 case Intrinsic::x86_sse_ucomile_ss:
4512 case Intrinsic::x86_sse2_ucomile_sd:
4513 Opc = X86ISD::UCOMI;
4514 CC = ISD::SETLE;
4515 break;
4516 case Intrinsic::x86_sse_ucomigt_ss:
4517 case Intrinsic::x86_sse2_ucomigt_sd:
4518 Opc = X86ISD::UCOMI;
4519 CC = ISD::SETGT;
4520 break;
4521 case Intrinsic::x86_sse_ucomige_ss:
4522 case Intrinsic::x86_sse2_ucomige_sd:
4523 Opc = X86ISD::UCOMI;
4524 CC = ISD::SETGE;
4525 break;
4526 case Intrinsic::x86_sse_ucomineq_ss:
4527 case Intrinsic::x86_sse2_ucomineq_sd:
4528 Opc = X86ISD::UCOMI;
4529 CC = ISD::SETNE;
4530 break;
4533 unsigned X86CC;
4534 SDOperand LHS = Op.getOperand(1);
4535 SDOperand RHS = Op.getOperand(2);
4536 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4538 if (NewCCModeling) {
4539 Opc = (Opc == X86ISD::UCOMI) ? X86ISD::UCOMI_NEW : X86ISD::COMI_NEW;
4540 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4541 SDOperand SetCC = DAG.getNode(X86ISD::SETCC_NEW, MVT::i8,
4542 DAG.getConstant(X86CC, MVT::i8), Cond);
4543 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4544 } else {
4545 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4546 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4547 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4548 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4549 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4550 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4551 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4557 SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4558 // Depths > 0 not supported yet!
4559 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4560 return SDOperand();
4562 // Just load the return address
4563 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4564 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4567 SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4568 // Depths > 0 not supported yet!
4569 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4570 return SDOperand();
4572 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4573 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4574 DAG.getConstant(4, getPointerTy()));
4577 SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4578 SelectionDAG &DAG) {
4579 // Is not yet supported on x86-64
4580 if (Subtarget->is64Bit())
4581 return SDOperand();
4583 return DAG.getConstant(8, getPointerTy());
4586 SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4588 assert(!Subtarget->is64Bit() &&
4589 "Lowering of eh_return builtin is not supported yet on x86-64");
4591 MachineFunction &MF = DAG.getMachineFunction();
4592 SDOperand Chain = Op.getOperand(0);
4593 SDOperand Offset = Op.getOperand(1);
4594 SDOperand Handler = Op.getOperand(2);
4596 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4597 getPointerTy());
4599 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4600 DAG.getConstant(-4UL, getPointerTy()));
4601 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4602 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4603 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4604 MF.addLiveOut(X86::ECX);
4606 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4607 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4610 SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4611 SelectionDAG &DAG) {
4612 SDOperand Root = Op.getOperand(0);
4613 SDOperand Trmp = Op.getOperand(1); // trampoline
4614 SDOperand FPtr = Op.getOperand(2); // nested function
4615 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4617 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4619 if (Subtarget->is64Bit()) {
4620 return SDOperand(); // not yet supported
4621 } else {
4622 Function *Func = (Function *)
4623 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4624 unsigned CC = Func->getCallingConv();
4625 unsigned NestReg;
4627 switch (CC) {
4628 default:
4629 assert(0 && "Unsupported calling convention");
4630 case CallingConv::C:
4631 case CallingConv::Fast:
4632 case CallingConv::X86_StdCall: {
4633 // Pass 'nest' parameter in ECX.
4634 // Must be kept in sync with X86CallingConv.td
4635 NestReg = X86::ECX;
4637 // Check that ECX wasn't needed by an 'inreg' parameter.
4638 const FunctionType *FTy = Func->getFunctionType();
4639 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4641 if (Attrs && !Func->isVarArg()) {
4642 unsigned InRegCount = 0;
4643 unsigned Idx = 1;
4645 for (FunctionType::param_iterator I = FTy->param_begin(),
4646 E = FTy->param_end(); I != E; ++I, ++Idx)
4647 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4648 // FIXME: should only count parameters that are lowered to integers.
4649 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4651 if (InRegCount > 2) {
4652 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4653 abort();
4656 break;
4658 case CallingConv::X86_FastCall:
4659 // Pass 'nest' parameter in EAX.
4660 // Must be kept in sync with X86CallingConv.td
4661 NestReg = X86::EAX;
4662 break;
4665 const X86InstrInfo *TII =
4666 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4668 SDOperand OutChains[4];
4669 SDOperand Addr, Disp;
4671 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4672 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4674 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4675 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4676 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4677 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4679 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4680 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4681 TrmpSV->getOffset() + 1, false, 1);
4683 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4684 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4685 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4686 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4688 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4689 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4690 TrmpSV->getOffset() + 6, false, 1);
4692 SDOperand Ops[] =
4693 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4694 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4698 /// LowerOperation - Provide custom lowering hooks for some operations.
4700 SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4701 switch (Op.getOpcode()) {
4702 default: assert(0 && "Should not custom lower this!");
4703 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4704 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4705 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4706 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4707 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4708 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4709 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4710 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4711 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4712 case ISD::SHL_PARTS:
4713 case ISD::SRA_PARTS:
4714 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4715 case ISD::SDIV:
4716 case ISD::UDIV:
4717 case ISD::SREM:
4718 case ISD::UREM: return LowerIntegerDivOrRem(Op, DAG);
4719 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4720 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4721 case ISD::FABS: return LowerFABS(Op, DAG);
4722 case ISD::FNEG: return LowerFNEG(Op, DAG);
4723 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4724 case ISD::SETCC: return NewCCModeling
4725 ? LowerSETCC_New(Op, DAG)
4726 : LowerSETCC(Op, DAG, DAG.getEntryNode());
4727 case ISD::SELECT: return NewCCModeling
4728 ? LowerSELECT_New(Op, DAG)
4729 : LowerSELECT(Op, DAG);
4730 case ISD::BRCOND: return NewCCModeling
4731 ? LowerBRCOND_New(Op, DAG)
4732 : LowerBRCOND(Op, DAG);
4733 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4734 case ISD::CALL: return LowerCALL(Op, DAG);
4735 case ISD::RET: return LowerRET(Op, DAG);
4736 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4737 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4738 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4739 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4740 case ISD::VASTART: return LowerVASTART(Op, DAG);
4741 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4742 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4743 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4744 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4745 case ISD::FRAME_TO_ARGS_OFFSET:
4746 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4747 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4748 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
4749 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
4751 return SDOperand();
4754 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4755 switch (Opcode) {
4756 default: return NULL;
4757 case X86ISD::SHLD: return "X86ISD::SHLD";
4758 case X86ISD::SHRD: return "X86ISD::SHRD";
4759 case X86ISD::FAND: return "X86ISD::FAND";
4760 case X86ISD::FOR: return "X86ISD::FOR";
4761 case X86ISD::FXOR: return "X86ISD::FXOR";
4762 case X86ISD::FSRL: return "X86ISD::FSRL";
4763 case X86ISD::FILD: return "X86ISD::FILD";
4764 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4765 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4766 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4767 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4768 case X86ISD::FLD: return "X86ISD::FLD";
4769 case X86ISD::FST: return "X86ISD::FST";
4770 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4771 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4772 case X86ISD::CALL: return "X86ISD::CALL";
4773 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4774 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4775 case X86ISD::CMP: return "X86ISD::CMP";
4776 case X86ISD::CMP_NEW: return "X86ISD::CMP_NEW";
4777 case X86ISD::COMI: return "X86ISD::COMI";
4778 case X86ISD::COMI_NEW: return "X86ISD::COMI_NEW";
4779 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4780 case X86ISD::UCOMI_NEW: return "X86ISD::UCOMI_NEW";
4781 case X86ISD::SETCC: return "X86ISD::SETCC";
4782 case X86ISD::SETCC_NEW: return "X86ISD::SETCC_NEW";
4783 case X86ISD::CMOV: return "X86ISD::CMOV";
4784 case X86ISD::CMOV_NEW: return "X86ISD::CMOV_NEW";
4785 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4786 case X86ISD::BRCOND_NEW: return "X86ISD::BRCOND_NEW";
4787 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4788 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4789 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
4790 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4791 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4792 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4793 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4794 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4795 case X86ISD::FMAX: return "X86ISD::FMAX";
4796 case X86ISD::FMIN: return "X86ISD::FMIN";
4797 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4798 case X86ISD::FRCP: return "X86ISD::FRCP";
4799 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4800 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4801 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4802 case X86ISD::DIV: return "X86ISD::DIV";
4803 case X86ISD::IDIV: return "X86ISD::IDIV";
4807 // isLegalAddressingMode - Return true if the addressing mode represented
4808 // by AM is legal for this target, for a load/store of the specified type.
4809 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4810 const Type *Ty) const {
4811 // X86 supports extremely general addressing modes.
4813 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4814 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4815 return false;
4817 if (AM.BaseGV) {
4818 // We can only fold this if we don't need an extra load.
4819 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4820 return false;
4822 // X86-64 only supports addr of globals in small code model.
4823 if (Subtarget->is64Bit()) {
4824 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4825 return false;
4826 // If lower 4G is not available, then we must use rip-relative addressing.
4827 if (AM.BaseOffs || AM.Scale > 1)
4828 return false;
4832 switch (AM.Scale) {
4833 case 0:
4834 case 1:
4835 case 2:
4836 case 4:
4837 case 8:
4838 // These scales always work.
4839 break;
4840 case 3:
4841 case 5:
4842 case 9:
4843 // These scales are formed with basereg+scalereg. Only accept if there is
4844 // no basereg yet.
4845 if (AM.HasBaseReg)
4846 return false;
4847 break;
4848 default: // Other stuff never works.
4849 return false;
4852 return true;
4856 /// isShuffleMaskLegal - Targets can use this to indicate that they only
4857 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4858 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4859 /// are assumed to be legal.
4860 bool
4861 X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4862 // Only do shuffles on 128-bit vector types for now.
4863 if (MVT::getSizeInBits(VT) == 64) return false;
4864 return (Mask.Val->getNumOperands() <= 4 ||
4865 isIdentityMask(Mask.Val) ||
4866 isIdentityMask(Mask.Val, true) ||
4867 isSplatMask(Mask.Val) ||
4868 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4869 X86::isUNPCKLMask(Mask.Val) ||
4870 X86::isUNPCKHMask(Mask.Val) ||
4871 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4872 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4875 bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4876 MVT::ValueType EVT,
4877 SelectionDAG &DAG) const {
4878 unsigned NumElts = BVOps.size();
4879 // Only do shuffles on 128-bit vector types for now.
4880 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4881 if (NumElts == 2) return true;
4882 if (NumElts == 4) {
4883 return (isMOVLMask(&BVOps[0], 4) ||
4884 isCommutedMOVL(&BVOps[0], 4, true) ||
4885 isSHUFPMask(&BVOps[0], 4) ||
4886 isCommutedSHUFP(&BVOps[0], 4));
4888 return false;
4891 //===----------------------------------------------------------------------===//
4892 // X86 Scheduler Hooks
4893 //===----------------------------------------------------------------------===//
4895 MachineBasicBlock *
4896 X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4897 MachineBasicBlock *BB) {
4898 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4899 switch (MI->getOpcode()) {
4900 default: assert(false && "Unexpected instr type to insert");
4901 case X86::CMOV_FR32:
4902 case X86::CMOV_FR64:
4903 case X86::CMOV_V4F32:
4904 case X86::CMOV_V2F64:
4905 case X86::CMOV_V2I64:
4907 case X86::NEW_CMOV_FR32:
4908 case X86::NEW_CMOV_FR64:
4909 case X86::NEW_CMOV_V4F32:
4910 case X86::NEW_CMOV_V2F64:
4911 case X86::NEW_CMOV_V2I64: {
4912 // To "insert" a SELECT_CC instruction, we actually have to insert the
4913 // diamond control-flow pattern. The incoming instruction knows the
4914 // destination vreg to set, the condition code register to branch on, the
4915 // true/false values to select between, and a branch opcode to use.
4916 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4917 ilist<MachineBasicBlock>::iterator It = BB;
4918 ++It;
4920 // thisMBB:
4921 // ...
4922 // TrueVal = ...
4923 // cmpTY ccX, r1, r2
4924 // bCC copy1MBB
4925 // fallthrough --> copy0MBB
4926 MachineBasicBlock *thisMBB = BB;
4927 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4928 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4929 unsigned Opc =
4930 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4931 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4932 MachineFunction *F = BB->getParent();
4933 F->getBasicBlockList().insert(It, copy0MBB);
4934 F->getBasicBlockList().insert(It, sinkMBB);
4935 // Update machine-CFG edges by first adding all successors of the current
4936 // block to the new block which will contain the Phi node for the select.
4937 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4938 e = BB->succ_end(); i != e; ++i)
4939 sinkMBB->addSuccessor(*i);
4940 // Next, remove all successors of the current block, and add the true
4941 // and fallthrough blocks as its successors.
4942 while(!BB->succ_empty())
4943 BB->removeSuccessor(BB->succ_begin());
4944 BB->addSuccessor(copy0MBB);
4945 BB->addSuccessor(sinkMBB);
4947 // copy0MBB:
4948 // %FalseValue = ...
4949 // # fallthrough to sinkMBB
4950 BB = copy0MBB;
4952 // Update machine-CFG edges
4953 BB->addSuccessor(sinkMBB);
4955 // sinkMBB:
4956 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4957 // ...
4958 BB = sinkMBB;
4959 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4960 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4961 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4963 delete MI; // The pseudo instruction is gone now.
4964 return BB;
4967 case X86::FP32_TO_INT16_IN_MEM:
4968 case X86::FP32_TO_INT32_IN_MEM:
4969 case X86::FP32_TO_INT64_IN_MEM:
4970 case X86::FP64_TO_INT16_IN_MEM:
4971 case X86::FP64_TO_INT32_IN_MEM:
4972 case X86::FP64_TO_INT64_IN_MEM:
4973 case X86::FP80_TO_INT16_IN_MEM:
4974 case X86::FP80_TO_INT32_IN_MEM:
4975 case X86::FP80_TO_INT64_IN_MEM: {
4976 // Change the floating point control register to use "round towards zero"
4977 // mode when truncating to an integer value.
4978 MachineFunction *F = BB->getParent();
4979 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4980 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4982 // Load the old value of the high byte of the control word...
4983 unsigned OldCW =
4984 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4985 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4987 // Set the high part to be round to zero...
4988 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4989 .addImm(0xC7F);
4991 // Reload the modified control word now...
4992 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4994 // Restore the memory image of control word to original value
4995 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4996 .addReg(OldCW);
4998 // Get the X86 opcode to use.
4999 unsigned Opc;
5000 switch (MI->getOpcode()) {
5001 default: assert(0 && "illegal opcode!");
5002 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5003 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5004 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5005 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5006 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5007 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5008 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5009 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5010 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5013 X86AddressMode AM;
5014 MachineOperand &Op = MI->getOperand(0);
5015 if (Op.isRegister()) {
5016 AM.BaseType = X86AddressMode::RegBase;
5017 AM.Base.Reg = Op.getReg();
5018 } else {
5019 AM.BaseType = X86AddressMode::FrameIndexBase;
5020 AM.Base.FrameIndex = Op.getFrameIndex();
5022 Op = MI->getOperand(1);
5023 if (Op.isImmediate())
5024 AM.Scale = Op.getImm();
5025 Op = MI->getOperand(2);
5026 if (Op.isImmediate())
5027 AM.IndexReg = Op.getImm();
5028 Op = MI->getOperand(3);
5029 if (Op.isGlobalAddress()) {
5030 AM.GV = Op.getGlobal();
5031 } else {
5032 AM.Disp = Op.getImm();
5034 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5035 .addReg(MI->getOperand(4).getReg());
5037 // Reload the original control word now.
5038 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5040 delete MI; // The pseudo instruction is gone now.
5041 return BB;
5046 //===----------------------------------------------------------------------===//
5047 // X86 Optimization Hooks
5048 //===----------------------------------------------------------------------===//
5050 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5051 uint64_t Mask,
5052 uint64_t &KnownZero,
5053 uint64_t &KnownOne,
5054 const SelectionDAG &DAG,
5055 unsigned Depth) const {
5056 unsigned Opc = Op.getOpcode();
5057 assert((Opc >= ISD::BUILTIN_OP_END ||
5058 Opc == ISD::INTRINSIC_WO_CHAIN ||
5059 Opc == ISD::INTRINSIC_W_CHAIN ||
5060 Opc == ISD::INTRINSIC_VOID) &&
5061 "Should use MaskedValueIsZero if you don't know whether Op"
5062 " is a target node!");
5064 KnownZero = KnownOne = 0; // Don't know anything.
5065 switch (Opc) {
5066 default: break;
5067 case X86ISD::SETCC:
5068 case X86ISD::SETCC_NEW:
5069 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5070 break;
5074 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
5075 /// element of the result of the vector shuffle.
5076 static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5077 MVT::ValueType VT = N->getValueType(0);
5078 SDOperand PermMask = N->getOperand(2);
5079 unsigned NumElems = PermMask.getNumOperands();
5080 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5081 i %= NumElems;
5082 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5083 return (i == 0)
5084 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5085 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5086 SDOperand Idx = PermMask.getOperand(i);
5087 if (Idx.getOpcode() == ISD::UNDEF)
5088 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5089 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5091 return SDOperand();
5094 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5095 /// node is a GlobalAddress + an offset.
5096 static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5097 unsigned Opc = N->getOpcode();
5098 if (Opc == X86ISD::Wrapper) {
5099 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5100 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5101 return true;
5103 } else if (Opc == ISD::ADD) {
5104 SDOperand N1 = N->getOperand(0);
5105 SDOperand N2 = N->getOperand(1);
5106 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5107 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5108 if (V) {
5109 Offset += V->getSignExtended();
5110 return true;
5112 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5113 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5114 if (V) {
5115 Offset += V->getSignExtended();
5116 return true;
5120 return false;
5123 /// isConsecutiveLoad - Returns true if N is loading from an address of Base
5124 /// + Dist * Size.
5125 static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5126 MachineFrameInfo *MFI) {
5127 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5128 return false;
5130 SDOperand Loc = N->getOperand(1);
5131 SDOperand BaseLoc = Base->getOperand(1);
5132 if (Loc.getOpcode() == ISD::FrameIndex) {
5133 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5134 return false;
5135 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5136 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5137 int FS = MFI->getObjectSize(FI);
5138 int BFS = MFI->getObjectSize(BFI);
5139 if (FS != BFS || FS != Size) return false;
5140 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5141 } else {
5142 GlobalValue *GV1 = NULL;
5143 GlobalValue *GV2 = NULL;
5144 int64_t Offset1 = 0;
5145 int64_t Offset2 = 0;
5146 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5147 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5148 if (isGA1 && isGA2 && GV1 == GV2)
5149 return Offset1 == (Offset2 + Dist*Size);
5152 return false;
5155 static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5156 const X86Subtarget *Subtarget) {
5157 GlobalValue *GV;
5158 int64_t Offset;
5159 if (isGAPlusOffset(Base, GV, Offset))
5160 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5161 else {
5162 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5163 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5164 if (BFI < 0)
5165 // Fixed objects do not specify alignment, however the offsets are known.
5166 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5167 (MFI->getObjectOffset(BFI) % 16) == 0);
5168 else
5169 return MFI->getObjectAlignment(BFI) >= 16;
5171 return false;
5175 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5176 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5177 /// if the load addresses are consecutive, non-overlapping, and in the right
5178 /// order.
5179 static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5180 const X86Subtarget *Subtarget) {
5181 MachineFunction &MF = DAG.getMachineFunction();
5182 MachineFrameInfo *MFI = MF.getFrameInfo();
5183 MVT::ValueType VT = N->getValueType(0);
5184 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5185 SDOperand PermMask = N->getOperand(2);
5186 int NumElems = (int)PermMask.getNumOperands();
5187 SDNode *Base = NULL;
5188 for (int i = 0; i < NumElems; ++i) {
5189 SDOperand Idx = PermMask.getOperand(i);
5190 if (Idx.getOpcode() == ISD::UNDEF) {
5191 if (!Base) return SDOperand();
5192 } else {
5193 SDOperand Arg =
5194 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5195 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5196 return SDOperand();
5197 if (!Base)
5198 Base = Arg.Val;
5199 else if (!isConsecutiveLoad(Arg.Val, Base,
5200 i, MVT::getSizeInBits(EVT)/8,MFI))
5201 return SDOperand();
5205 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5206 LoadSDNode *LD = cast<LoadSDNode>(Base);
5207 if (isAlign16) {
5208 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5209 LD->getSrcValueOffset(), LD->isVolatile());
5210 } else {
5211 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5212 LD->getSrcValueOffset(), LD->isVolatile(),
5213 LD->getAlignment());
5217 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5218 static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5219 const X86Subtarget *Subtarget) {
5220 SDOperand Cond = N->getOperand(0);
5222 // If we have SSE[12] support, try to form min/max nodes.
5223 if (Subtarget->hasSSE2() &&
5224 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5225 if (Cond.getOpcode() == ISD::SETCC) {
5226 // Get the LHS/RHS of the select.
5227 SDOperand LHS = N->getOperand(1);
5228 SDOperand RHS = N->getOperand(2);
5229 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5231 unsigned Opcode = 0;
5232 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5233 switch (CC) {
5234 default: break;
5235 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5236 case ISD::SETULE:
5237 case ISD::SETLE:
5238 if (!UnsafeFPMath) break;
5239 // FALL THROUGH.
5240 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5241 case ISD::SETLT:
5242 Opcode = X86ISD::FMIN;
5243 break;
5245 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5246 case ISD::SETUGT:
5247 case ISD::SETGT:
5248 if (!UnsafeFPMath) break;
5249 // FALL THROUGH.
5250 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5251 case ISD::SETGE:
5252 Opcode = X86ISD::FMAX;
5253 break;
5255 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5256 switch (CC) {
5257 default: break;
5258 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5259 case ISD::SETUGT:
5260 case ISD::SETGT:
5261 if (!UnsafeFPMath) break;
5262 // FALL THROUGH.
5263 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5264 case ISD::SETGE:
5265 Opcode = X86ISD::FMIN;
5266 break;
5268 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5269 case ISD::SETULE:
5270 case ISD::SETLE:
5271 if (!UnsafeFPMath) break;
5272 // FALL THROUGH.
5273 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5274 case ISD::SETLT:
5275 Opcode = X86ISD::FMAX;
5276 break;
5280 if (Opcode)
5281 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5286 return SDOperand();
5290 SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5291 DAGCombinerInfo &DCI) const {
5292 SelectionDAG &DAG = DCI.DAG;
5293 switch (N->getOpcode()) {
5294 default: break;
5295 case ISD::VECTOR_SHUFFLE:
5296 return PerformShuffleCombine(N, DAG, Subtarget);
5297 case ISD::SELECT:
5298 return PerformSELECTCombine(N, DAG, Subtarget);
5301 return SDOperand();
5304 //===----------------------------------------------------------------------===//
5305 // X86 Inline Assembly Support
5306 //===----------------------------------------------------------------------===//
5308 /// getConstraintType - Given a constraint letter, return the type of
5309 /// constraint it is for this target.
5310 X86TargetLowering::ConstraintType
5311 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5312 if (Constraint.size() == 1) {
5313 switch (Constraint[0]) {
5314 case 'A':
5315 case 'r':
5316 case 'R':
5317 case 'l':
5318 case 'q':
5319 case 'Q':
5320 case 'x':
5321 case 'Y':
5322 return C_RegisterClass;
5323 default:
5324 break;
5327 return TargetLowering::getConstraintType(Constraint);
5330 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5331 /// vector. If it is invalid, don't add anything to Ops.
5332 void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5333 char Constraint,
5334 std::vector<SDOperand>&Ops,
5335 SelectionDAG &DAG) {
5336 SDOperand Result(0, 0);
5338 switch (Constraint) {
5339 default: break;
5340 case 'I':
5341 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5342 if (C->getValue() <= 31) {
5343 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5344 break;
5347 return;
5348 case 'N':
5349 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5350 if (C->getValue() <= 255) {
5351 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5352 break;
5355 return;
5356 case 'i': {
5357 // Literal immediates are always ok.
5358 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5359 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5360 break;
5363 // If we are in non-pic codegen mode, we allow the address of a global (with
5364 // an optional displacement) to be used with 'i'.
5365 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5366 int64_t Offset = 0;
5368 // Match either (GA) or (GA+C)
5369 if (GA) {
5370 Offset = GA->getOffset();
5371 } else if (Op.getOpcode() == ISD::ADD) {
5372 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5373 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5374 if (C && GA) {
5375 Offset = GA->getOffset()+C->getValue();
5376 } else {
5377 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5378 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5379 if (C && GA)
5380 Offset = GA->getOffset()+C->getValue();
5381 else
5382 C = 0, GA = 0;
5386 if (GA) {
5387 // If addressing this global requires a load (e.g. in PIC mode), we can't
5388 // match.
5389 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5390 false))
5391 return;
5393 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5394 Offset);
5395 Result = Op;
5396 break;
5399 // Otherwise, not valid for this mode.
5400 return;
5404 if (Result.Val) {
5405 Ops.push_back(Result);
5406 return;
5408 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5411 std::vector<unsigned> X86TargetLowering::
5412 getRegClassForInlineAsmConstraint(const std::string &Constraint,
5413 MVT::ValueType VT) const {
5414 if (Constraint.size() == 1) {
5415 // FIXME: not handling fp-stack yet!
5416 switch (Constraint[0]) { // GCC X86 Constraint Letters
5417 default: break; // Unknown constraint letter
5418 case 'A': // EAX/EDX
5419 if (VT == MVT::i32 || VT == MVT::i64)
5420 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5421 break;
5422 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5423 case 'Q': // Q_REGS
5424 if (VT == MVT::i32)
5425 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5426 else if (VT == MVT::i16)
5427 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5428 else if (VT == MVT::i8)
5429 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5430 break;
5434 return std::vector<unsigned>();
5437 std::pair<unsigned, const TargetRegisterClass*>
5438 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5439 MVT::ValueType VT) const {
5440 // First, see if this is a constraint that directly corresponds to an LLVM
5441 // register class.
5442 if (Constraint.size() == 1) {
5443 // GCC Constraint Letters
5444 switch (Constraint[0]) {
5445 default: break;
5446 case 'r': // GENERAL_REGS
5447 case 'R': // LEGACY_REGS
5448 case 'l': // INDEX_REGS
5449 if (VT == MVT::i64 && Subtarget->is64Bit())
5450 return std::make_pair(0U, X86::GR64RegisterClass);
5451 if (VT == MVT::i32)
5452 return std::make_pair(0U, X86::GR32RegisterClass);
5453 else if (VT == MVT::i16)
5454 return std::make_pair(0U, X86::GR16RegisterClass);
5455 else if (VT == MVT::i8)
5456 return std::make_pair(0U, X86::GR8RegisterClass);
5457 break;
5458 case 'y': // MMX_REGS if MMX allowed.
5459 if (!Subtarget->hasMMX()) break;
5460 return std::make_pair(0U, X86::VR64RegisterClass);
5461 break;
5462 case 'Y': // SSE_REGS if SSE2 allowed
5463 if (!Subtarget->hasSSE2()) break;
5464 // FALL THROUGH.
5465 case 'x': // SSE_REGS if SSE1 allowed
5466 if (!Subtarget->hasSSE1()) break;
5468 switch (VT) {
5469 default: break;
5470 // Scalar SSE types.
5471 case MVT::f32:
5472 case MVT::i32:
5473 return std::make_pair(0U, X86::FR32RegisterClass);
5474 case MVT::f64:
5475 case MVT::i64:
5476 return std::make_pair(0U, X86::FR64RegisterClass);
5477 // Vector types.
5478 case MVT::v16i8:
5479 case MVT::v8i16:
5480 case MVT::v4i32:
5481 case MVT::v2i64:
5482 case MVT::v4f32:
5483 case MVT::v2f64:
5484 return std::make_pair(0U, X86::VR128RegisterClass);
5486 break;
5490 // Use the default implementation in TargetLowering to convert the register
5491 // constraint into a member of a register class.
5492 std::pair<unsigned, const TargetRegisterClass*> Res;
5493 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5495 // Not found as a standard register?
5496 if (Res.second == 0) {
5497 // GCC calls "st(0)" just plain "st".
5498 if (StringsEqualNoCase("{st}", Constraint)) {
5499 Res.first = X86::ST0;
5500 Res.second = X86::RFP80RegisterClass;
5503 return Res;
5506 // Otherwise, check to see if this is a register class of the wrong value
5507 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5508 // turn into {ax},{dx}.
5509 if (Res.second->hasType(VT))
5510 return Res; // Correct type already, nothing to do.
5512 // All of the single-register GCC register classes map their values onto
5513 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5514 // really want an 8-bit or 32-bit register, map to the appropriate register
5515 // class and return the appropriate register.
5516 if (Res.second != X86::GR16RegisterClass)
5517 return Res;
5519 if (VT == MVT::i8) {
5520 unsigned DestReg = 0;
5521 switch (Res.first) {
5522 default: break;
5523 case X86::AX: DestReg = X86::AL; break;
5524 case X86::DX: DestReg = X86::DL; break;
5525 case X86::CX: DestReg = X86::CL; break;
5526 case X86::BX: DestReg = X86::BL; break;
5528 if (DestReg) {
5529 Res.first = DestReg;
5530 Res.second = Res.second = X86::GR8RegisterClass;
5532 } else if (VT == MVT::i32) {
5533 unsigned DestReg = 0;
5534 switch (Res.first) {
5535 default: break;
5536 case X86::AX: DestReg = X86::EAX; break;
5537 case X86::DX: DestReg = X86::EDX; break;
5538 case X86::CX: DestReg = X86::ECX; break;
5539 case X86::BX: DestReg = X86::EBX; break;
5540 case X86::SI: DestReg = X86::ESI; break;
5541 case X86::DI: DestReg = X86::EDI; break;
5542 case X86::BP: DestReg = X86::EBP; break;
5543 case X86::SP: DestReg = X86::ESP; break;
5545 if (DestReg) {
5546 Res.first = DestReg;
5547 Res.second = Res.second = X86::GR32RegisterClass;
5549 } else if (VT == MVT::i64) {
5550 unsigned DestReg = 0;
5551 switch (Res.first) {
5552 default: break;
5553 case X86::AX: DestReg = X86::RAX; break;
5554 case X86::DX: DestReg = X86::RDX; break;
5555 case X86::CX: DestReg = X86::RCX; break;
5556 case X86::BX: DestReg = X86::RBX; break;
5557 case X86::SI: DestReg = X86::RSI; break;
5558 case X86::DI: DestReg = X86::RDI; break;
5559 case X86::BP: DestReg = X86::RBP; break;
5560 case X86::SP: DestReg = X86::RSP; break;
5562 if (DestReg) {
5563 Res.first = DestReg;
5564 Res.second = Res.second = X86::GR64RegisterClass;
5568 return Res;