1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/SSARegMap.h"
24 #include "llvm/Target/TargetOptions.h"
27 X86InstrInfo::X86InstrInfo(X86TargetMachine
&tm
)
28 : TargetInstrInfo(X86Insts
, array_lengthof(X86Insts
)),
29 TM(tm
), RI(tm
, *this) {
32 bool X86InstrInfo::isMoveInstr(const MachineInstr
& MI
,
34 unsigned& destReg
) const {
35 MachineOpCode oc
= MI
.getOpcode();
36 if (oc
== X86::MOV8rr
|| oc
== X86::MOV16rr
||
37 oc
== X86::MOV32rr
|| oc
== X86::MOV64rr
||
38 oc
== X86::MOV16to16_
|| oc
== X86::MOV32to32_
||
39 oc
== X86::MOV_Fp3232
|| oc
== X86::MOVSSrr
|| oc
== X86::MOVSDrr
||
40 oc
== X86::MOV_Fp3264
|| oc
== X86::MOV_Fp6432
|| oc
== X86::MOV_Fp6464
||
41 oc
== X86::FsMOVAPSrr
|| oc
== X86::FsMOVAPDrr
||
42 oc
== X86::MOVAPSrr
|| oc
== X86::MOVAPDrr
||
43 oc
== X86::MOVSS2PSrr
|| oc
== X86::MOVSD2PDrr
||
44 oc
== X86::MOVPS2SSrr
|| oc
== X86::MOVPD2SDrr
||
45 oc
== X86::MMX_MOVD64rr
|| oc
== X86::MMX_MOVQ64rr
) {
46 assert(MI
.getNumOperands() >= 2 &&
47 MI
.getOperand(0).isRegister() &&
48 MI
.getOperand(1).isRegister() &&
49 "invalid register-register move instruction");
50 sourceReg
= MI
.getOperand(1).getReg();
51 destReg
= MI
.getOperand(0).getReg();
57 unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr
*MI
,
58 int &FrameIndex
) const {
59 switch (MI
->getOpcode()) {
72 case X86::MMX_MOVD64rm
:
73 case X86::MMX_MOVQ64rm
:
74 if (MI
->getOperand(1).isFrameIndex() && MI
->getOperand(2).isImmediate() &&
75 MI
->getOperand(3).isRegister() && MI
->getOperand(4).isImmediate() &&
76 MI
->getOperand(2).getImmedValue() == 1 &&
77 MI
->getOperand(3).getReg() == 0 &&
78 MI
->getOperand(4).getImmedValue() == 0) {
79 FrameIndex
= MI
->getOperand(1).getFrameIndex();
80 return MI
->getOperand(0).getReg();
87 unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr
*MI
,
88 int &FrameIndex
) const {
89 switch (MI
->getOpcode()) {
102 case X86::MMX_MOVD64mr
:
103 case X86::MMX_MOVQ64mr
:
104 case X86::MMX_MOVNTQmr
:
105 if (MI
->getOperand(0).isFrameIndex() && MI
->getOperand(1).isImmediate() &&
106 MI
->getOperand(2).isRegister() && MI
->getOperand(3).isImmediate() &&
107 MI
->getOperand(1).getImmedValue() == 1 &&
108 MI
->getOperand(2).getReg() == 0 &&
109 MI
->getOperand(3).getImmedValue() == 0) {
110 FrameIndex
= MI
->getOperand(0).getFrameIndex();
111 return MI
->getOperand(4).getReg();
119 bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr
*MI
) const {
120 switch (MI
->getOpcode()) {
133 case X86::MMX_MOVD64rm
:
134 case X86::MMX_MOVQ64rm
:
135 // Loads from constant pools are trivially rematerializable.
136 return MI
->getOperand(1).isRegister() && MI
->getOperand(2).isImmediate() &&
137 MI
->getOperand(3).isRegister() && MI
->getOperand(4).isConstantPoolIndex() &&
138 MI
->getOperand(1).getReg() == 0 &&
139 MI
->getOperand(2).getImmedValue() == 1 &&
140 MI
->getOperand(3).getReg() == 0;
142 // All other instructions marked M_REMATERIALIZABLE are always trivially
147 /// convertToThreeAddress - This method must be implemented by targets that
148 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
149 /// may be able to convert a two-address instruction into a true
150 /// three-address instruction on demand. This allows the X86 target (for
151 /// example) to convert ADD and SHL instructions into LEA instructions if they
152 /// would require register copies due to two-addressness.
154 /// This method returns a null pointer if the transformation cannot be
155 /// performed, otherwise it returns the new instruction.
158 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
159 MachineBasicBlock::iterator
&MBBI
,
160 LiveVariables
&LV
) const {
161 MachineInstr
*MI
= MBBI
;
162 // All instructions input are two-addr instructions. Get the known operands.
163 unsigned Dest
= MI
->getOperand(0).getReg();
164 unsigned Src
= MI
->getOperand(1).getReg();
166 MachineInstr
*NewMI
= NULL
;
167 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
168 // we have better subtarget support, enable the 16-bit LEA generation here.
169 bool DisableLEA16
= true;
171 switch (MI
->getOpcode()) {
173 case X86::SHUFPSrri
: {
174 assert(MI
->getNumOperands() == 4 && "Unknown shufps instruction!");
175 if (!TM
.getSubtarget
<X86Subtarget
>().hasSSE2()) return 0;
177 unsigned A
= MI
->getOperand(0).getReg();
178 unsigned B
= MI
->getOperand(1).getReg();
179 unsigned C
= MI
->getOperand(2).getReg();
180 unsigned M
= MI
->getOperand(3).getImm();
181 if (B
!= C
) return 0;
182 NewMI
= BuildMI(get(X86::PSHUFDri
), A
).addReg(B
).addImm(M
);
186 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
187 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
188 // the flags produced by a shift yet, so this is safe.
189 unsigned Dest
= MI
->getOperand(0).getReg();
190 unsigned Src
= MI
->getOperand(1).getReg();
191 unsigned ShAmt
= MI
->getOperand(2).getImm();
192 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
194 NewMI
= BuildMI(get(X86::LEA64r
), Dest
)
195 .addReg(0).addImm(1 << ShAmt
).addReg(Src
).addImm(0);
199 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
200 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
201 // the flags produced by a shift yet, so this is safe.
202 unsigned Dest
= MI
->getOperand(0).getReg();
203 unsigned Src
= MI
->getOperand(1).getReg();
204 unsigned ShAmt
= MI
->getOperand(2).getImm();
205 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
207 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit() ?
208 X86::LEA64_32r
: X86::LEA32r
;
209 NewMI
= BuildMI(get(Opc
), Dest
)
210 .addReg(0).addImm(1 << ShAmt
).addReg(Src
).addImm(0);
214 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
215 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
216 // the flags produced by a shift yet, so this is safe.
217 unsigned Dest
= MI
->getOperand(0).getReg();
218 unsigned Src
= MI
->getOperand(1).getReg();
219 unsigned ShAmt
= MI
->getOperand(2).getImm();
220 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
223 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
224 SSARegMap
*RegMap
= MFI
->getParent()->getSSARegMap();
225 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit()
226 ? X86::LEA64_32r
: X86::LEA32r
;
227 unsigned leaInReg
= RegMap
->createVirtualRegister(&X86::GR32RegClass
);
228 unsigned leaOutReg
= RegMap
->createVirtualRegister(&X86::GR32RegClass
);
231 BuildMI(get(X86::INSERT_SUBREG
), leaInReg
).addReg(Src
).addImm(2);
232 Ins
->copyKillDeadInfo(MI
);
234 NewMI
= BuildMI(get(Opc
), leaOutReg
)
235 .addReg(0).addImm(1 << ShAmt
).addReg(leaInReg
).addImm(0);
238 BuildMI(get(X86::EXTRACT_SUBREG
), Dest
).addReg(leaOutReg
).addImm(2);
239 Ext
->copyKillDeadInfo(MI
);
241 MFI
->insert(MBBI
, Ins
); // Insert the insert_subreg
242 LV
.instructionChanged(MI
, NewMI
); // Update live variables
243 LV
.addVirtualRegisterKilled(leaInReg
, NewMI
);
244 MFI
->insert(MBBI
, NewMI
); // Insert the new inst
245 LV
.addVirtualRegisterKilled(leaOutReg
, Ext
);
246 MFI
->insert(MBBI
, Ext
); // Insert the extract_subreg
249 NewMI
= BuildMI(get(X86::LEA16r
), Dest
)
250 .addReg(0).addImm(1 << ShAmt
).addReg(Src
).addImm(0);
256 // FIXME: None of these instructions are promotable to LEAs without
257 // additional information. In particular, LEA doesn't set the flags that
258 // add and inc do. :(
260 switch (MI
->getOpcode()) {
263 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
264 NewMI
= addRegOffset(BuildMI(get(X86::LEA32r
), Dest
), Src
, 1);
268 if (DisableLEA16
) return 0;
269 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
270 NewMI
= addRegOffset(BuildMI(get(X86::LEA16r
), Dest
), Src
, 1);
274 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
275 NewMI
= addRegOffset(BuildMI(get(X86::LEA32r
), Dest
), Src
, -1);
279 if (DisableLEA16
) return 0;
280 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
281 NewMI
= addRegOffset(BuildMI(get(X86::LEA16r
), Dest
), Src
, -1);
284 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
285 NewMI
= addRegReg(BuildMI(get(X86::LEA32r
), Dest
), Src
,
286 MI
->getOperand(2).getReg());
289 if (DisableLEA16
) return 0;
290 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
291 NewMI
= addRegReg(BuildMI(get(X86::LEA16r
), Dest
), Src
,
292 MI
->getOperand(2).getReg());
296 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
297 if (MI
->getOperand(2).isImmediate())
298 NewMI
= addRegOffset(BuildMI(get(X86::LEA32r
), Dest
), Src
,
299 MI
->getOperand(2).getImmedValue());
303 if (DisableLEA16
) return 0;
304 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
305 if (MI
->getOperand(2).isImmediate())
306 NewMI
= addRegOffset(BuildMI(get(X86::LEA16r
), Dest
), Src
,
307 MI
->getOperand(2).getImmedValue());
310 if (DisableLEA16
) return 0;
312 assert(MI
->getNumOperands() >= 3 && MI
->getOperand(2).isImmediate() &&
313 "Unknown shl instruction!");
314 unsigned ShAmt
= MI
->getOperand(2).getImmedValue();
315 if (ShAmt
== 1 || ShAmt
== 2 || ShAmt
== 3) {
317 AM
.Scale
= 1 << ShAmt
;
319 unsigned Opc
= MI
->getOpcode() == X86::SHL32ri
? X86::LEA32r
:X86::LEA16r
;
320 NewMI
= addFullAddress(BuildMI(get(Opc
), Dest
), AM
);
326 NewMI
->copyKillDeadInfo(MI
);
327 LV
.instructionChanged(MI
, NewMI
); // Update live variables
328 MFI
->insert(MBBI
, NewMI
); // Insert the new inst
333 /// commuteInstruction - We have a few instructions that must be hacked on to
336 MachineInstr
*X86InstrInfo::commuteInstruction(MachineInstr
*MI
) const {
337 // FIXME: Can commute cmoves by changing the condition!
338 switch (MI
->getOpcode()) {
339 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
340 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
341 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
342 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
343 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
344 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
347 switch (MI
->getOpcode()) {
348 default: assert(0 && "Unreachable!");
349 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
350 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
351 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
352 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
353 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
354 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
356 unsigned Amt
= MI
->getOperand(3).getImmedValue();
357 unsigned A
= MI
->getOperand(0).getReg();
358 unsigned B
= MI
->getOperand(1).getReg();
359 unsigned C
= MI
->getOperand(2).getReg();
360 bool BisKill
= MI
->getOperand(1).isKill();
361 bool CisKill
= MI
->getOperand(2).isKill();
362 return BuildMI(get(Opc
), A
).addReg(C
, false, false, CisKill
)
363 .addReg(B
, false, false, BisKill
).addImm(Size
-Amt
);
366 return TargetInstrInfo::commuteInstruction(MI
);
370 static X86::CondCode
GetCondFromBranchOpc(unsigned BrOpc
) {
372 default: return X86::COND_INVALID
;
373 case X86::JE
: return X86::COND_E
;
374 case X86::JNE
: return X86::COND_NE
;
375 case X86::JL
: return X86::COND_L
;
376 case X86::JLE
: return X86::COND_LE
;
377 case X86::JG
: return X86::COND_G
;
378 case X86::JGE
: return X86::COND_GE
;
379 case X86::JB
: return X86::COND_B
;
380 case X86::JBE
: return X86::COND_BE
;
381 case X86::JA
: return X86::COND_A
;
382 case X86::JAE
: return X86::COND_AE
;
383 case X86::JS
: return X86::COND_S
;
384 case X86::JNS
: return X86::COND_NS
;
385 case X86::JP
: return X86::COND_P
;
386 case X86::JNP
: return X86::COND_NP
;
387 case X86::JO
: return X86::COND_O
;
388 case X86::JNO
: return X86::COND_NO
;
390 case X86::NEW_JE
: return X86::COND_E
;
391 case X86::NEW_JNE
: return X86::COND_NE
;
392 case X86::NEW_JL
: return X86::COND_L
;
393 case X86::NEW_JLE
: return X86::COND_LE
;
394 case X86::NEW_JG
: return X86::COND_G
;
395 case X86::NEW_JGE
: return X86::COND_GE
;
396 case X86::NEW_JB
: return X86::COND_B
;
397 case X86::NEW_JBE
: return X86::COND_BE
;
398 case X86::NEW_JA
: return X86::COND_A
;
399 case X86::NEW_JAE
: return X86::COND_AE
;
400 case X86::NEW_JS
: return X86::COND_S
;
401 case X86::NEW_JNS
: return X86::COND_NS
;
402 case X86::NEW_JP
: return X86::COND_P
;
403 case X86::NEW_JNP
: return X86::COND_NP
;
404 case X86::NEW_JO
: return X86::COND_O
;
405 case X86::NEW_JNO
: return X86::COND_NO
;
410 unsigned X86::GetCondBranchFromCond(X86::CondCode CC
) {
411 if (!NewCCModeling
) {
413 default: assert(0 && "Illegal condition code!");
414 case X86::COND_E
: return X86::JE
;
415 case X86::COND_NE
: return X86::JNE
;
416 case X86::COND_L
: return X86::JL
;
417 case X86::COND_LE
: return X86::JLE
;
418 case X86::COND_G
: return X86::JG
;
419 case X86::COND_GE
: return X86::JGE
;
420 case X86::COND_B
: return X86::JB
;
421 case X86::COND_BE
: return X86::JBE
;
422 case X86::COND_A
: return X86::JA
;
423 case X86::COND_AE
: return X86::JAE
;
424 case X86::COND_S
: return X86::JS
;
425 case X86::COND_NS
: return X86::JNS
;
426 case X86::COND_P
: return X86::JP
;
427 case X86::COND_NP
: return X86::JNP
;
428 case X86::COND_O
: return X86::JO
;
429 case X86::COND_NO
: return X86::JNO
;
434 default: assert(0 && "Illegal condition code!");
435 case X86::COND_E
: return X86::NEW_JE
;
436 case X86::COND_NE
: return X86::NEW_JNE
;
437 case X86::COND_L
: return X86::NEW_JL
;
438 case X86::COND_LE
: return X86::NEW_JLE
;
439 case X86::COND_G
: return X86::NEW_JG
;
440 case X86::COND_GE
: return X86::NEW_JGE
;
441 case X86::COND_B
: return X86::NEW_JB
;
442 case X86::COND_BE
: return X86::NEW_JBE
;
443 case X86::COND_A
: return X86::NEW_JA
;
444 case X86::COND_AE
: return X86::NEW_JAE
;
445 case X86::COND_S
: return X86::NEW_JS
;
446 case X86::COND_NS
: return X86::NEW_JNS
;
447 case X86::COND_P
: return X86::NEW_JP
;
448 case X86::COND_NP
: return X86::NEW_JNP
;
449 case X86::COND_O
: return X86::NEW_JO
;
450 case X86::COND_NO
: return X86::NEW_JNO
;
454 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
455 /// e.g. turning COND_E to COND_NE.
456 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
458 default: assert(0 && "Illegal condition code!");
459 case X86::COND_E
: return X86::COND_NE
;
460 case X86::COND_NE
: return X86::COND_E
;
461 case X86::COND_L
: return X86::COND_GE
;
462 case X86::COND_LE
: return X86::COND_G
;
463 case X86::COND_G
: return X86::COND_LE
;
464 case X86::COND_GE
: return X86::COND_L
;
465 case X86::COND_B
: return X86::COND_AE
;
466 case X86::COND_BE
: return X86::COND_A
;
467 case X86::COND_A
: return X86::COND_BE
;
468 case X86::COND_AE
: return X86::COND_B
;
469 case X86::COND_S
: return X86::COND_NS
;
470 case X86::COND_NS
: return X86::COND_S
;
471 case X86::COND_P
: return X86::COND_NP
;
472 case X86::COND_NP
: return X86::COND_P
;
473 case X86::COND_O
: return X86::COND_NO
;
474 case X86::COND_NO
: return X86::COND_O
;
478 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
*MI
) const {
479 const TargetInstrDescriptor
*TID
= MI
->getInstrDescriptor();
480 if (TID
->Flags
& M_TERMINATOR_FLAG
) {
481 // Conditional branch is a special case.
482 if ((TID
->Flags
& M_BRANCH_FLAG
) != 0 && (TID
->Flags
& M_BARRIER_FLAG
) == 0)
484 if ((TID
->Flags
& M_PREDICABLE
) == 0)
486 return !isPredicated(MI
);
491 // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
492 static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr
*MI
,
493 const X86InstrInfo
&TII
) {
494 if (MI
->getOpcode() == X86::FP_REG_KILL
)
496 return TII
.isUnpredicatedTerminator(MI
);
499 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB
,
500 MachineBasicBlock
*&TBB
,
501 MachineBasicBlock
*&FBB
,
502 std::vector
<MachineOperand
> &Cond
) const {
503 // If the block has no terminators, it just falls into the block after it.
504 MachineBasicBlock::iterator I
= MBB
.end();
505 if (I
== MBB
.begin() || !isBrAnalysisUnpredicatedTerminator(--I
, *this))
508 // Get the last instruction in the block.
509 MachineInstr
*LastInst
= I
;
511 // If there is only one terminator instruction, process it.
512 if (I
== MBB
.begin() || !isBrAnalysisUnpredicatedTerminator(--I
, *this)) {
513 if (!isBranch(LastInst
->getOpcode()))
516 // If the block ends with a branch there are 3 possibilities:
517 // it's an unconditional, conditional, or indirect branch.
519 if (LastInst
->getOpcode() == X86::JMP
) {
520 TBB
= LastInst
->getOperand(0).getMachineBasicBlock();
523 X86::CondCode BranchCode
= GetCondFromBranchOpc(LastInst
->getOpcode());
524 if (BranchCode
== X86::COND_INVALID
)
525 return true; // Can't handle indirect branch.
527 // Otherwise, block ends with fall-through condbranch.
528 TBB
= LastInst
->getOperand(0).getMachineBasicBlock();
529 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
533 // Get the instruction before it if it's a terminator.
534 MachineInstr
*SecondLastInst
= I
;
536 // If there are three terminators, we don't know what sort of block this is.
537 if (SecondLastInst
&& I
!= MBB
.begin() &&
538 isBrAnalysisUnpredicatedTerminator(--I
, *this))
541 // If the block ends with X86::JMP and a conditional branch, handle it.
542 X86::CondCode BranchCode
= GetCondFromBranchOpc(SecondLastInst
->getOpcode());
543 if (BranchCode
!= X86::COND_INVALID
&& LastInst
->getOpcode() == X86::JMP
) {
544 TBB
= SecondLastInst
->getOperand(0).getMachineBasicBlock();
545 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
546 FBB
= LastInst
->getOperand(0).getMachineBasicBlock();
550 // If the block ends with two X86::JMPs, handle it. The second one is not
551 // executed, so remove it.
552 if (SecondLastInst
->getOpcode() == X86::JMP
&&
553 LastInst
->getOpcode() == X86::JMP
) {
554 TBB
= SecondLastInst
->getOperand(0).getMachineBasicBlock();
556 I
->eraseFromParent();
560 // Otherwise, can't handle this.
564 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock
&MBB
) const {
565 MachineBasicBlock::iterator I
= MBB
.end();
566 if (I
== MBB
.begin()) return 0;
568 if (I
->getOpcode() != X86::JMP
&&
569 GetCondFromBranchOpc(I
->getOpcode()) == X86::COND_INVALID
)
572 // Remove the branch.
573 I
->eraseFromParent();
577 if (I
== MBB
.begin()) return 1;
579 if (GetCondFromBranchOpc(I
->getOpcode()) == X86::COND_INVALID
)
582 // Remove the branch.
583 I
->eraseFromParent();
588 X86InstrInfo::InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
589 MachineBasicBlock
*FBB
,
590 const std::vector
<MachineOperand
> &Cond
) const {
591 // Shouldn't be a fall through.
592 assert(TBB
&& "InsertBranch must not be told to insert a fallthrough");
593 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
594 "X86 branch conditions have one component!");
596 if (FBB
== 0) { // One way branch.
598 // Unconditional branch?
599 BuildMI(&MBB
, get(X86::JMP
)).addMBB(TBB
);
601 // Conditional branch.
602 unsigned Opc
= GetCondBranchFromCond((X86::CondCode
)Cond
[0].getImm());
603 BuildMI(&MBB
, get(Opc
)).addMBB(TBB
);
608 // Two-way Conditional branch.
609 unsigned Opc
= GetCondBranchFromCond((X86::CondCode
)Cond
[0].getImm());
610 BuildMI(&MBB
, get(Opc
)).addMBB(TBB
);
611 BuildMI(&MBB
, get(X86::JMP
)).addMBB(FBB
);
615 bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock
&MBB
) const {
616 if (MBB
.empty()) return false;
618 switch (MBB
.back().getOpcode()) {
619 case X86::RET
: // Return.
624 case X86::JMP
: // Uncond branch.
625 case X86::JMP32r
: // Indirect branch.
626 case X86::JMP64r
: // Indirect branch (64-bit).
627 case X86::JMP32m
: // Indirect branch through mem.
628 case X86::JMP64m
: // Indirect branch through mem (64-bit).
630 default: return false;
635 ReverseBranchCondition(std::vector
<MachineOperand
> &Cond
) const {
636 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
637 Cond
[0].setImm(GetOppositeBranchCondition((X86::CondCode
)Cond
[0].getImm()));
641 const TargetRegisterClass
*X86InstrInfo::getPointerRegClass() const {
642 const X86Subtarget
*Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
643 if (Subtarget
->is64Bit())
644 return &X86::GR64RegClass
;
646 return &X86::GR32RegClass
;