1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86RegisterInfo.h"
21 class X86RegisterInfo
;
22 class X86TargetMachine
;
25 // X86 specific condition code. These correspond to X86_*_COND in
26 // X86InstrInfo.td. They must be kept in synch.
47 // Turn condition code into conditional branch opcode.
48 unsigned GetCondBranchFromCond(CondCode CC
);
50 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
51 /// e.g. turning COND_E to COND_NE.
52 CondCode
GetOppositeBranchCondition(X86::CondCode CC
);
56 /// X86II - This namespace holds all of the target specific flags that
57 /// instruction info tracks.
61 //===------------------------------------------------------------------===//
62 // Instruction types. These are the standard/most common forms for X86
66 // PseudoFrm - This represents an instruction that is a pseudo instruction
67 // or one that has not been implemented yet. It is illegal to code generate
68 // it, but tolerated for intermediate implementation stages.
71 /// Raw - This form is for instructions that don't have any operands, so
72 /// they are just a fixed opcode value, like 'leave'.
75 /// AddRegFrm - This form is used for instructions like 'push r32' that have
76 /// their one register operand added to their opcode.
79 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
80 /// to specify a destination, which in this case is a register.
84 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
85 /// to specify a destination, which in this case is memory.
89 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
90 /// to specify a source, which in this case is a register.
94 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
95 /// to specify a source, which in this case is memory.
99 /// MRM[0-7][rm] - These forms are used to represent instructions that use
100 /// a Mod/RM byte, and use the middle field to hold extended opcode
101 /// information. In the intel manual these are represented as /0, /1, ...
104 // First, instructions that operate on a register r/m operand...
105 MRM0r
= 16, MRM1r
= 17, MRM2r
= 18, MRM3r
= 19, // Format /0 /1 /2 /3
106 MRM4r
= 20, MRM5r
= 21, MRM6r
= 22, MRM7r
= 23, // Format /4 /5 /6 /7
108 // Next, instructions that operate on a memory r/m operand...
109 MRM0m
= 24, MRM1m
= 25, MRM2m
= 26, MRM3m
= 27, // Format /0 /1 /2 /3
110 MRM4m
= 28, MRM5m
= 29, MRM6m
= 30, MRM7m
= 31, // Format /4 /5 /6 /7
112 // MRMInitReg - This form is used for instructions whose source and
113 // destinations are the same register.
118 //===------------------------------------------------------------------===//
121 // OpSize - Set if this instruction requires an operand size prefix (0x66),
122 // which most often indicates that the instruction operates on 16 bit data
123 // instead of 32 bit data.
126 // AsSize - Set if this instruction requires an operand size prefix (0x67),
127 // which most often indicates that the instruction address 16 bit address
128 // instead of 32 bit address (or 32 bit address in 64 bit mode).
131 //===------------------------------------------------------------------===//
132 // Op0Mask - There are several prefix bytes that are used to form two byte
133 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
134 // used to obtain the setting of this field. If no bits in this field is
135 // set, there is no prefix byte for obtaining a multibyte opcode.
138 Op0Mask
= 0xF << Op0Shift
,
140 // TB - TwoByte - Set if this instruction has a two byte opcode, which
141 // starts with a 0x0F byte before the real opcode.
144 // REP - The 0xF3 prefix byte indicating repetition of the following
148 // D8-DF - These escape opcodes are used by the floating point unit. These
149 // values must remain sequential.
150 D8
= 3 << Op0Shift
, D9
= 4 << Op0Shift
,
151 DA
= 5 << Op0Shift
, DB
= 6 << Op0Shift
,
152 DC
= 7 << Op0Shift
, DD
= 8 << Op0Shift
,
153 DE
= 9 << Op0Shift
, DF
= 10 << Op0Shift
,
155 // XS, XD - These prefix codes are for single and double precision scalar
156 // floating point operations performed in the SSE registers.
157 XD
= 11 << Op0Shift
, XS
= 12 << Op0Shift
,
159 // T8, TA - Prefix after the 0x0F prefix.
160 T8
= 13 << Op0Shift
, TA
= 14 << Op0Shift
,
162 //===------------------------------------------------------------------===//
163 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
164 // They are used to specify GPRs and SSE registers, 64-bit operand size,
165 // etc. We only cares about REX.W and REX.R bits and only the former is
166 // statically determined.
169 REX_W
= 1 << REXShift
,
171 //===------------------------------------------------------------------===//
172 // This three-bit field describes the size of an immediate operand. Zero is
173 // unused so that we can tell if we forgot to set a value.
175 ImmMask
= 7 << ImmShift
,
176 Imm8
= 1 << ImmShift
,
177 Imm16
= 2 << ImmShift
,
178 Imm32
= 3 << ImmShift
,
179 Imm64
= 4 << ImmShift
,
181 //===------------------------------------------------------------------===//
182 // FP Instruction Classification... Zero is non-fp instruction.
184 // FPTypeMask - Mask for all of the FP types...
186 FPTypeMask
= 7 << FPTypeShift
,
188 // NotFP - The default, set for instructions that do not use FP registers.
189 NotFP
= 0 << FPTypeShift
,
191 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
192 ZeroArgFP
= 1 << FPTypeShift
,
194 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
195 OneArgFP
= 2 << FPTypeShift
,
197 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
198 // result back to ST(0). For example, fcos, fsqrt, etc.
200 OneArgFPRW
= 3 << FPTypeShift
,
202 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
203 // explicit argument, storing the result to either ST(0) or the implicit
204 // argument. For example: fadd, fsub, fmul, etc...
205 TwoArgFP
= 4 << FPTypeShift
,
207 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
208 // explicit argument, but have no destination. Example: fucom, fucomi, ...
209 CompareFP
= 5 << FPTypeShift
,
211 // CondMovFP - "2 operand" floating point conditional move instructions.
212 CondMovFP
= 6 << FPTypeShift
,
214 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
215 SpecialFP
= 7 << FPTypeShift
,
217 // Bits 19 -> 23 are unused
219 OpcodeMask
= 0xFF << OpcodeShift
223 class X86InstrInfo
: public TargetInstrInfo
{
224 X86TargetMachine
&TM
;
225 const X86RegisterInfo RI
;
227 X86InstrInfo(X86TargetMachine
&tm
);
229 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
230 /// such, whenever a client has an instance of instruction info, it should
231 /// always be able to get register info as well (through this method).
233 virtual const MRegisterInfo
&getRegisterInfo() const { return RI
; }
235 // Return true if the instruction is a register to register move and
236 // leave the source and dest operands in the passed parameters.
238 bool isMoveInstr(const MachineInstr
& MI
, unsigned& sourceReg
,
239 unsigned& destReg
) const;
240 unsigned isLoadFromStackSlot(MachineInstr
*MI
, int &FrameIndex
) const;
241 unsigned isStoreToStackSlot(MachineInstr
*MI
, int &FrameIndex
) const;
242 bool isReallyTriviallyReMaterializable(MachineInstr
*MI
) const;
244 /// convertToThreeAddress - This method must be implemented by targets that
245 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
246 /// may be able to convert a two-address instruction into a true
247 /// three-address instruction on demand. This allows the X86 target (for
248 /// example) to convert ADD and SHL instructions into LEA instructions if they
249 /// would require register copies due to two-addressness.
251 /// This method returns a null pointer if the transformation cannot be
252 /// performed, otherwise it returns the new instruction.
254 virtual MachineInstr
*convertToThreeAddress(MachineFunction::iterator
&MFI
,
255 MachineBasicBlock::iterator
&MBBI
,
256 LiveVariables
&LV
) const;
258 /// commuteInstruction - We have a few instructions that must be hacked on to
261 virtual MachineInstr
*commuteInstruction(MachineInstr
*MI
) const;
264 virtual bool isUnpredicatedTerminator(const MachineInstr
* MI
) const;
265 virtual bool AnalyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
266 MachineBasicBlock
*&FBB
,
267 std::vector
<MachineOperand
> &Cond
) const;
268 virtual unsigned RemoveBranch(MachineBasicBlock
&MBB
) const;
269 virtual unsigned InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
270 MachineBasicBlock
*FBB
,
271 const std::vector
<MachineOperand
> &Cond
) const;
272 virtual bool BlockHasNoFallThrough(MachineBasicBlock
&MBB
) const;
273 virtual bool ReverseBranchCondition(std::vector
<MachineOperand
> &Cond
) const;
275 const TargetRegisterClass
*getPointerRegClass() const;
277 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
278 // specified machine instruction.
280 unsigned char getBaseOpcodeFor(const TargetInstrDescriptor
*TID
) const {
281 return TID
->TSFlags
>> X86II::OpcodeShift
;
283 unsigned char getBaseOpcodeFor(MachineOpCode Opcode
) const {
284 return getBaseOpcodeFor(&get(Opcode
));
288 } // End llvm namespace