1 //===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the JIT interfaces for the X86 target.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jit"
15 #include "X86JITInfo.h"
16 #include "X86Relocations.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/MachineCodeEmitter.h"
19 #include "llvm/Config/alloca.h"
24 extern "C" void *_AddressOfReturnAddress(void);
25 #pragma intrinsic(_AddressOfReturnAddress)
28 void X86JITInfo::replaceMachineCodeForFunction(void *Old
, void *New
) {
29 unsigned char *OldByte
= (unsigned char *)Old
;
30 *OldByte
++ = 0xE9; // Emit JMP opcode.
31 unsigned *OldWord
= (unsigned *)OldByte
;
32 unsigned NewAddr
= (intptr_t)New
;
33 unsigned OldAddr
= (intptr_t)OldWord
;
34 *OldWord
= NewAddr
- OldAddr
- 4; // Emit PC-relative addr of New code.
38 /// JITCompilerFunction - This contains the address of the JIT function used to
39 /// compile a function lazily.
40 static TargetJITInfo::JITCompilerFn JITCompilerFunction
;
42 // Get the ASMPREFIX for the current host. This is often '_'.
43 #ifndef __USER_LABEL_PREFIX__
44 #define __USER_LABEL_PREFIX__
46 #define GETASMPREFIX2(X) #X
47 #define GETASMPREFIX(X) GETASMPREFIX2(X)
48 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
50 // Provide a wrapper for X86CompilationCallback2 that saves non-traditional
51 // callee saved registers, for the fastcc calling convention.
53 #if defined(__x86_64__)
54 // No need to save EAX/EDX for X86-64.
55 void X86CompilationCallback(void);
59 ".globl " ASMPREFIX
"X86CompilationCallback\n"
60 ASMPREFIX
"X86CompilationCallback:\n"
65 // Save all int arg registers
72 // Align stack on 16-byte boundary. ESP might not be properly aligned
73 // (8 byte) if this is called from an indirect stub.
75 // Save all XMM arg registers
77 "movaps %xmm0, (%rsp)\n"
78 "movaps %xmm1, 16(%rsp)\n"
79 "movaps %xmm2, 32(%rsp)\n"
80 "movaps %xmm3, 48(%rsp)\n"
81 "movaps %xmm4, 64(%rsp)\n"
82 "movaps %xmm5, 80(%rsp)\n"
83 "movaps %xmm6, 96(%rsp)\n"
84 "movaps %xmm7, 112(%rsp)\n"
86 "movq %rbp, %rdi\n" // Pass prev frame and return address
87 "movq 8(%rbp), %rsi\n"
88 "call " ASMPREFIX
"X86CompilationCallback2\n"
89 // Restore all XMM arg registers
90 "movaps 112(%rsp), %xmm7\n"
91 "movaps 96(%rsp), %xmm6\n"
92 "movaps 80(%rsp), %xmm5\n"
93 "movaps 64(%rsp), %xmm4\n"
94 "movaps 48(%rsp), %xmm3\n"
95 "movaps 32(%rsp), %xmm2\n"
96 "movaps 16(%rsp), %xmm1\n"
97 "movaps (%rsp), %xmm0\n"
100 // Restore all int arg registers
111 #elif defined(__i386__) || defined(i386) || defined(_M_IX86)
113 void X86CompilationCallback(void);
117 ".globl " ASMPREFIX
"X86CompilationCallback\n"
118 ASMPREFIX
"X86CompilationCallback:\n"
120 "movl %esp, %ebp\n" // Standard prologue
122 "pushl %edx\n" // Save EAX/EDX/ECX
124 #if defined(__APPLE__)
125 "andl $-16, %esp\n" // Align ESP on 16-byte boundary
128 "movl 4(%ebp), %eax\n" // Pass prev frame and return address
129 "movl %eax, 4(%esp)\n"
130 "movl %ebp, (%esp)\n"
131 "call " ASMPREFIX
"X86CompilationCallback2\n"
132 "movl %ebp, %esp\n" // Restore ESP
140 // Same as X86CompilationCallback but also saves XMM argument registers.
141 void X86CompilationCallback_SSE(void);
145 ".globl " ASMPREFIX
"X86CompilationCallback_SSE\n"
146 ASMPREFIX
"X86CompilationCallback_SSE:\n"
148 "movl %esp, %ebp\n" // Standard prologue
150 "pushl %edx\n" // Save EAX/EDX/ECX
152 "andl $-16, %esp\n" // Align ESP on 16-byte boundary
153 // Save all XMM arg registers
155 "movaps %xmm0, (%esp)\n"
156 "movaps %xmm1, 16(%esp)\n"
157 "movaps %xmm2, 32(%esp)\n"
158 "movaps %xmm3, 48(%esp)\n"
160 "movl 4(%ebp), %eax\n" // Pass prev frame and return address
161 "movl %eax, 4(%esp)\n"
162 "movl %ebp, (%esp)\n"
163 "call " ASMPREFIX
"X86CompilationCallback2\n"
165 "movaps 48(%esp), %xmm3\n"
166 "movaps 32(%esp), %xmm2\n"
167 "movaps 16(%esp), %xmm1\n"
168 "movaps (%esp), %xmm0\n"
169 "movl %ebp, %esp\n" // Restore ESP
177 void X86CompilationCallback2(void);
179 _declspec(naked
) void X86CompilationCallback(void) {
184 call X86CompilationCallback2
193 #else // Not an i386 host
194 void X86CompilationCallback() {
195 assert(0 && "Cannot call X86CompilationCallback() on a non-x86 arch!\n");
201 /// X86CompilationCallback - This is the target-specific function invoked by the
202 /// function stub when we did not know the real target of a call. This function
203 /// must locate the start of the stub or call site and pass it into the JIT
204 /// compiler function.
206 extern "C" void X86CompilationCallback2() {
207 assert(sizeof(size_t) == 4); // FIXME: handle Win64
208 intptr_t *RetAddrLoc
= (intptr_t *)_AddressOfReturnAddress();
209 RetAddrLoc
+= 4; // skip over ret addr, edx, eax, ecx
210 intptr_t RetAddr
= *RetAddrLoc
;
212 extern "C" void X86CompilationCallback2(intptr_t *StackPtr
, intptr_t RetAddr
) {
213 intptr_t *RetAddrLoc
= &StackPtr
[1];
215 assert(*RetAddrLoc
== RetAddr
&&
216 "Could not find return address on the stack!");
218 // It's a stub if there is an interrupt marker after the call.
219 bool isStub
= ((unsigned char*)RetAddr
)[0] == 0xCD;
221 // The call instruction should have pushed the return value onto the stack...
223 RetAddr
--; // Backtrack to the reference itself...
225 RetAddr
-= 4; // Backtrack to the reference itself...
229 DOUT
<< "In callback! Addr=" << (void*)RetAddr
230 << " ESP=" << (void*)StackPtr
231 << ": Resolving call to function: "
232 << TheVM
->getFunctionReferencedName((void*)RetAddr
) << "\n";
235 // Sanity check to make sure this really is a call instruction.
237 assert(((unsigned char*)RetAddr
)[-2] == 0x41 &&"Not a call instr!");
238 assert(((unsigned char*)RetAddr
)[-1] == 0xFF &&"Not a call instr!");
240 assert(((unsigned char*)RetAddr
)[-1] == 0xE8 &&"Not a call instr!");
243 intptr_t NewVal
= (intptr_t)JITCompilerFunction((void*)RetAddr
);
245 // Rewrite the call target... so that we don't end up here every time we
248 *(intptr_t *)(RetAddr
- 0xa) = NewVal
;
250 *(intptr_t *)RetAddr
= (intptr_t)(NewVal
-RetAddr
-4);
254 // If this is a stub, rewrite the call into an unconditional branch
255 // instruction so that two return addresses are not pushed onto the stack
256 // when the requested function finally gets called. This also makes the
257 // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
259 ((unsigned char*)RetAddr
)[0] = (2 | (4 << 3) | (3 << 6));
261 ((unsigned char*)RetAddr
)[-1] = 0xE9;
265 // Change the return address to reexecute the call instruction...
273 TargetJITInfo::LazyResolverFn
274 X86JITInfo::getLazyResolverFunction(JITCompilerFn F
) {
275 JITCompilerFunction
= F
;
277 #if (defined(__i386__) || defined(i386) || defined(_M_IX86)) && \
278 !defined(_MSC_VER) && !defined(__x86_64__)
279 unsigned EAX
= 0, EBX
= 0, ECX
= 0, EDX
= 0;
285 if (!X86::GetCpuIDAndInfo(0, &EAX
, text
.u
+0, text
.u
+2, text
.u
+1)) {
286 // FIXME: support for AMD family of processors.
287 if (memcmp(text
.c
, "GenuineIntel", 12) == 0) {
288 X86::GetCpuIDAndInfo(0x1, &EAX
, &EBX
, &ECX
, &EDX
);
289 if ((EDX
>> 25) & 0x1)
290 return X86CompilationCallback_SSE
;
295 return X86CompilationCallback
;
298 void *X86JITInfo::emitFunctionStub(void *Fn
, MachineCodeEmitter
&MCE
) {
299 // Note, we cast to intptr_t here to silence a -pedantic warning that
300 // complains about casting a function pointer to a normal pointer.
301 #if (defined(__i386__) || defined(i386) || defined(_M_IX86)) && \
302 !defined(_MSC_VER) && !defined(__x86_64__)
303 bool NotCC
= (Fn
!= (void*)(intptr_t)X86CompilationCallback
&&
304 Fn
!= (void*)(intptr_t)X86CompilationCallback_SSE
);
306 bool NotCC
= Fn
!= (void*)(intptr_t)X86CompilationCallback
;
310 MCE
.startFunctionStub(13, 4);
311 MCE
.emitByte(0x49); // REX prefix
312 MCE
.emitByte(0xB8+2); // movabsq r10
313 MCE
.emitWordLE(((unsigned *)&Fn
)[0]);
314 MCE
.emitWordLE(((unsigned *)&Fn
)[1]);
315 MCE
.emitByte(0x41); // REX prefix
316 MCE
.emitByte(0xFF); // jmpq *r10
317 MCE
.emitByte(2 | (4 << 3) | (3 << 6));
319 MCE
.startFunctionStub(5, 4);
321 MCE
.emitWordLE((intptr_t)Fn
-MCE
.getCurrentPCValue()-4);
323 return MCE
.finishFunctionStub(0);
327 MCE
.startFunctionStub(14, 4);
328 MCE
.emitByte(0x49); // REX prefix
329 MCE
.emitByte(0xB8+2); // movabsq r10
330 MCE
.emitWordLE(((unsigned *)&Fn
)[0]);
331 MCE
.emitWordLE(((unsigned *)&Fn
)[1]);
332 MCE
.emitByte(0x41); // REX prefix
333 MCE
.emitByte(0xFF); // callq *r10
334 MCE
.emitByte(2 | (2 << 3) | (3 << 6));
336 MCE
.startFunctionStub(6, 4);
337 MCE
.emitByte(0xE8); // Call with 32 bit pc-rel destination...
339 MCE
.emitWordLE((intptr_t)Fn
-MCE
.getCurrentPCValue()-4);
342 MCE
.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
343 return MCE
.finishFunctionStub(0);
346 /// relocate - Before the JIT can run a block of code that has been emitted,
347 /// it must rewrite the code to contain the actual addresses of any
348 /// referenced global symbols.
349 void X86JITInfo::relocate(void *Function
, MachineRelocation
*MR
,
350 unsigned NumRelocs
, unsigned char* GOTBase
) {
351 for (unsigned i
= 0; i
!= NumRelocs
; ++i
, ++MR
) {
352 void *RelocPos
= (char*)Function
+ MR
->getMachineCodeOffset();
353 intptr_t ResultPtr
= (intptr_t)MR
->getResultPointer();
354 switch ((X86::RelocationType
)MR
->getRelocationType()) {
355 case X86::reloc_pcrel_word
: {
356 // PC relative relocation, add the relocated value to the value already in
357 // memory, after we adjust it for where the PC is.
358 ResultPtr
= ResultPtr
-(intptr_t)RelocPos
-4-MR
->getConstantVal();
359 *((unsigned*)RelocPos
) += (unsigned)ResultPtr
;
362 case X86::reloc_absolute_word
:
363 // Absolute relocation, just add the relocated value to the value already
365 *((unsigned*)RelocPos
) += (unsigned)ResultPtr
;
367 case X86::reloc_absolute_dword
:
368 *((intptr_t*)RelocPos
) += ResultPtr
;