1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
35 //===----------------------------------------------------------------------===//
36 // ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
39 /// CastConstantVector - Convert the specified ConstantVector node to the
40 /// specified vector type. At this point, we know that the elements of the
41 /// input vector constant are all simple integer or FP values.
42 static Constant
*CastConstantVector(ConstantVector
*CV
,
43 const VectorType
*DstTy
) {
44 unsigned SrcNumElts
= CV
->getType()->getNumElements();
45 unsigned DstNumElts
= DstTy
->getNumElements();
46 const Type
*SrcEltTy
= CV
->getType()->getElementType();
47 const Type
*DstEltTy
= DstTy
->getElementType();
49 // If both vectors have the same number of elements (thus, the elements
50 // are the same size), perform the conversion now.
51 if (SrcNumElts
== DstNumElts
) {
52 std::vector
<Constant
*> Result
;
54 // If the src and dest elements are both integers, or both floats, we can
55 // just BitCast each element because the elements are the same size.
56 if ((SrcEltTy
->isInteger() && DstEltTy
->isInteger()) ||
57 (SrcEltTy
->isFloatingPoint() && DstEltTy
->isFloatingPoint())) {
58 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
)
60 ConstantExpr::getBitCast(CV
->getOperand(i
), DstEltTy
));
61 return ConstantVector::get(Result
);
64 // If this is an int-to-fp cast ..
65 if (SrcEltTy
->isInteger()) {
66 // Ensure that it is int-to-fp cast
67 assert(DstEltTy
->isFloatingPoint());
68 if (DstEltTy
->getTypeID() == Type::DoubleTyID
) {
69 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
70 ConstantInt
*CI
= cast
<ConstantInt
>(CV
->getOperand(i
));
71 double V
= CI
->getValue().bitsToDouble();
72 Result
.push_back(ConstantFP::get(Type::DoubleTy
, APFloat(V
)));
74 return ConstantVector::get(Result
);
76 assert(DstEltTy
== Type::FloatTy
&& "Unknown fp type!");
77 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
78 ConstantInt
*CI
= cast
<ConstantInt
>(CV
->getOperand(i
));
79 float V
= CI
->getValue().bitsToFloat();
80 Result
.push_back(ConstantFP::get(Type::FloatTy
, APFloat(V
)));
82 return ConstantVector::get(Result
);
85 // Otherwise, this is an fp-to-int cast.
86 assert(SrcEltTy
->isFloatingPoint() && DstEltTy
->isInteger());
88 if (SrcEltTy
->getTypeID() == Type::DoubleTyID
) {
89 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
90 uint64_t V
= cast
<ConstantFP
>(CV
->getOperand(i
))->
91 getValueAPF().convertToAPInt().getZExtValue();
92 Constant
*C
= ConstantInt::get(Type::Int64Ty
, V
);
93 Result
.push_back(ConstantExpr::getBitCast(C
, DstEltTy
));
95 return ConstantVector::get(Result
);
98 assert(SrcEltTy
->getTypeID() == Type::FloatTyID
);
99 for (unsigned i
= 0; i
!= SrcNumElts
; ++i
) {
100 uint32_t V
= (uint32_t)cast
<ConstantFP
>(CV
->getOperand(i
))->
101 getValueAPF().convertToAPInt().getZExtValue();
102 Constant
*C
= ConstantInt::get(Type::Int32Ty
, V
);
103 Result
.push_back(ConstantExpr::getBitCast(C
, DstEltTy
));
105 return ConstantVector::get(Result
);
108 // Otherwise, this is a cast that changes element count and size. Handle
109 // casts which shrink the elements here.
111 // FIXME: We need to know endianness to do this!
116 /// This function determines which opcode to use to fold two constant cast
117 /// expressions together. It uses CastInst::isEliminableCastPair to determine
118 /// the opcode. Consequently its just a wrapper around that function.
119 /// @brief Determine if it is valid to fold a cast of a cast
121 foldConstantCastPair(
122 unsigned opc
, ///< opcode of the second cast constant expression
123 const ConstantExpr
*Op
, ///< the first cast constant expression
124 const Type
*DstTy
///< desintation type of the first cast
126 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
127 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
128 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
130 // The the types and opcodes for the two Cast constant expressions
131 const Type
*SrcTy
= Op
->getOperand(0)->getType();
132 const Type
*MidTy
= Op
->getType();
133 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
134 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
136 // Let CastInst::isEliminableCastPair do the heavy lifting.
137 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
141 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, const Constant
*V
,
142 const Type
*DestTy
) {
143 const Type
*SrcTy
= V
->getType();
145 if (isa
<UndefValue
>(V
)) {
146 // zext(undef) = 0, because the top bits will be zero.
147 // sext(undef) = 0, because the top bits will all be the same.
148 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
)
149 return Constant::getNullValue(DestTy
);
150 return UndefValue::get(DestTy
);
153 // If the cast operand is a constant expression, there's a few things we can
154 // do to try to simplify it.
155 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
157 // Try hard to fold cast of cast because they are often eliminable.
158 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
159 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
160 } else if (CE
->getOpcode() == Instruction::GetElementPtr
) {
161 // If all of the indexes in the GEP are null values, there is no pointer
162 // adjustment going on. We might as well cast the source pointer.
163 bool isAllNull
= true;
164 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
165 if (!CE
->getOperand(i
)->isNullValue()) {
170 // This is casting one pointer type to another, always BitCast
171 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
175 // We actually have to do a cast now. Perform the cast according to the
178 case Instruction::FPTrunc
:
179 case Instruction::FPExt
:
180 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
181 APFloat Val
= FPC
->getValueAPF();
182 Val
.convert(DestTy
== Type::FloatTy
? APFloat::IEEEsingle
:
183 DestTy
== Type::DoubleTy
? APFloat::IEEEdouble
:
184 DestTy
== Type::X86_FP80Ty
? APFloat::x87DoubleExtended
:
185 DestTy
== Type::FP128Ty
? APFloat::IEEEquad
:
187 APFloat::rmNearestTiesToEven
);
188 return ConstantFP::get(DestTy
, Val
);
190 return 0; // Can't fold.
191 case Instruction::FPToUI
:
192 case Instruction::FPToSI
:
193 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
194 APFloat V
= FPC
->getValueAPF();
196 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
197 (void) V
.convertToInteger(x
, DestBitWidth
, opc
==Instruction::FPToSI
,
198 APFloat::rmTowardZero
);
199 APInt
Val(DestBitWidth
, 2, x
);
200 return ConstantInt::get(Val
);
202 return 0; // Can't fold.
203 case Instruction::IntToPtr
: //always treated as unsigned
204 if (V
->isNullValue()) // Is it an integral null value?
205 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
206 return 0; // Other pointer types cannot be casted
207 case Instruction::PtrToInt
: // always treated as unsigned
208 if (V
->isNullValue()) // is it a null pointer value?
209 return ConstantInt::get(DestTy
, 0);
210 return 0; // Other pointer types cannot be casted
211 case Instruction::UIToFP
:
212 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
213 double d
= CI
->getValue().roundToDouble();
214 if (DestTy
==Type::FloatTy
)
215 return ConstantFP::get(DestTy
, APFloat((float)d
));
216 else if (DestTy
==Type::DoubleTy
)
217 return ConstantFP::get(DestTy
, APFloat(d
));
219 return 0; // FIXME do this for long double
222 case Instruction::SIToFP
:
223 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
224 double d
= CI
->getValue().signedRoundToDouble();
225 if (DestTy
==Type::FloatTy
)
226 return ConstantFP::get(DestTy
, APFloat((float)d
));
227 else if (DestTy
==Type::DoubleTy
)
228 return ConstantFP::get(DestTy
, APFloat(d
));
230 return 0; // FIXME do this for long double
233 case Instruction::ZExt
:
234 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
235 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
236 APInt
Result(CI
->getValue());
237 Result
.zext(BitWidth
);
238 return ConstantInt::get(Result
);
241 case Instruction::SExt
:
242 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
243 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
244 APInt
Result(CI
->getValue());
245 Result
.sext(BitWidth
);
246 return ConstantInt::get(Result
);
249 case Instruction::Trunc
:
250 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
251 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
252 APInt
Result(CI
->getValue());
253 Result
.trunc(BitWidth
);
254 return ConstantInt::get(Result
);
257 case Instruction::BitCast
:
259 return (Constant
*)V
; // no-op cast
261 // Check to see if we are casting a pointer to an aggregate to a pointer to
262 // the first element. If so, return the appropriate GEP instruction.
263 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
264 if (const PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
)) {
265 SmallVector
<Value
*, 8> IdxList
;
266 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
267 const Type
*ElTy
= PTy
->getElementType();
268 while (ElTy
!= DPTy
->getElementType()) {
269 if (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
270 if (STy
->getNumElements() == 0) break;
271 ElTy
= STy
->getElementType(0);
272 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
273 } else if (const SequentialType
*STy
=
274 dyn_cast
<SequentialType
>(ElTy
)) {
275 if (isa
<PointerType
>(ElTy
)) break; // Can't index into pointers!
276 ElTy
= STy
->getElementType();
277 IdxList
.push_back(IdxList
[0]);
283 if (ElTy
== DPTy
->getElementType())
284 return ConstantExpr::getGetElementPtr(
285 const_cast<Constant
*>(V
), &IdxList
[0], IdxList
.size());
288 // Handle casts from one vector constant to another. We know that the src
289 // and dest type have the same size (otherwise its an illegal cast).
290 if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
291 if (const VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
292 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
293 "Not cast between same sized vectors!");
294 // First, check for null and undef
295 if (isa
<ConstantAggregateZero
>(V
))
296 return Constant::getNullValue(DestTy
);
297 if (isa
<UndefValue
>(V
))
298 return UndefValue::get(DestTy
);
300 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
301 // This is a cast from a ConstantVector of one type to a
302 // ConstantVector of another type. Check to see if all elements of
303 // the input are simple.
304 bool AllSimpleConstants
= true;
305 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
306 if (!isa
<ConstantInt
>(CV
->getOperand(i
)) &&
307 !isa
<ConstantFP
>(CV
->getOperand(i
))) {
308 AllSimpleConstants
= false;
313 // If all of the elements are simple constants, we can fold this.
314 if (AllSimpleConstants
)
315 return CastConstantVector(const_cast<ConstantVector
*>(CV
), DestPTy
);
320 // Finally, implement bitcast folding now. The code below doesn't handle
322 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
323 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
325 // Handle integral constant input.
326 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
327 if (DestTy
->isInteger())
328 // Integral -> Integral. This is a no-op because the bit widths must
329 // be the same. Consequently, we just fold to V.
330 return const_cast<Constant
*>(V
);
332 if (DestTy
->isFloatingPoint()) {
333 assert((DestTy
== Type::DoubleTy
|| DestTy
== Type::FloatTy
) &&
335 return ConstantFP::get(DestTy
, APFloat(CI
->getValue()));
337 // Otherwise, can't fold this (vector?)
341 // Handle ConstantFP input.
342 if (const ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
344 if (DestTy
== Type::Int32Ty
) {
345 return ConstantInt::get(FP
->getValueAPF().convertToAPInt());
347 assert(DestTy
== Type::Int64Ty
&& "only support f32/f64 for now!");
348 return ConstantInt::get(FP
->getValueAPF().convertToAPInt());
353 assert(!"Invalid CE CastInst opcode");
357 assert(0 && "Failed to cast constant expression");
361 Constant
*llvm::ConstantFoldSelectInstruction(const Constant
*Cond
,
363 const Constant
*V2
) {
364 if (const ConstantInt
*CB
= dyn_cast
<ConstantInt
>(Cond
))
365 return const_cast<Constant
*>(CB
->getZExtValue() ? V1
: V2
);
367 if (isa
<UndefValue
>(V1
)) return const_cast<Constant
*>(V2
);
368 if (isa
<UndefValue
>(V2
)) return const_cast<Constant
*>(V1
);
369 if (isa
<UndefValue
>(Cond
)) return const_cast<Constant
*>(V1
);
370 if (V1
== V2
) return const_cast<Constant
*>(V1
);
374 Constant
*llvm::ConstantFoldExtractElementInstruction(const Constant
*Val
,
375 const Constant
*Idx
) {
376 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
377 return UndefValue::get(cast
<VectorType
>(Val
->getType())->getElementType());
378 if (Val
->isNullValue()) // ee(zero, x) -> zero
379 return Constant::getNullValue(
380 cast
<VectorType
>(Val
->getType())->getElementType());
382 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
383 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
384 return const_cast<Constant
*>(CVal
->getOperand(CIdx
->getZExtValue()));
385 } else if (isa
<UndefValue
>(Idx
)) {
386 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
387 return const_cast<Constant
*>(CVal
->getOperand(0));
393 Constant
*llvm::ConstantFoldInsertElementInstruction(const Constant
*Val
,
395 const Constant
*Idx
) {
396 const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
398 APInt idxVal
= CIdx
->getValue();
399 if (isa
<UndefValue
>(Val
)) {
400 // Insertion of scalar constant into vector undef
401 // Optimize away insertion of undef
402 if (isa
<UndefValue
>(Elt
))
403 return const_cast<Constant
*>(Val
);
404 // Otherwise break the aggregate undef into multiple undefs and do
407 cast
<VectorType
>(Val
->getType())->getNumElements();
408 std::vector
<Constant
*> Ops
;
410 for (unsigned i
= 0; i
< numOps
; ++i
) {
412 (idxVal
== i
) ? Elt
: UndefValue::get(Elt
->getType());
413 Ops
.push_back(const_cast<Constant
*>(Op
));
415 return ConstantVector::get(Ops
);
417 if (isa
<ConstantAggregateZero
>(Val
)) {
418 // Insertion of scalar constant into vector aggregate zero
419 // Optimize away insertion of zero
420 if (Elt
->isNullValue())
421 return const_cast<Constant
*>(Val
);
422 // Otherwise break the aggregate zero into multiple zeros and do
425 cast
<VectorType
>(Val
->getType())->getNumElements();
426 std::vector
<Constant
*> Ops
;
428 for (unsigned i
= 0; i
< numOps
; ++i
) {
430 (idxVal
== i
) ? Elt
: Constant::getNullValue(Elt
->getType());
431 Ops
.push_back(const_cast<Constant
*>(Op
));
433 return ConstantVector::get(Ops
);
435 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
436 // Insertion of scalar constant into vector constant
437 std::vector
<Constant
*> Ops
;
438 Ops
.reserve(CVal
->getNumOperands());
439 for (unsigned i
= 0; i
< CVal
->getNumOperands(); ++i
) {
441 (idxVal
== i
) ? Elt
: cast
<Constant
>(CVal
->getOperand(i
));
442 Ops
.push_back(const_cast<Constant
*>(Op
));
444 return ConstantVector::get(Ops
);
449 Constant
*llvm::ConstantFoldShuffleVectorInstruction(const Constant
*V1
,
451 const Constant
*Mask
) {
456 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
457 /// function pointer to each element pair, producing a new ConstantVector
459 static Constant
*EvalVectorOp(const ConstantVector
*V1
,
460 const ConstantVector
*V2
,
461 Constant
*(*FP
)(Constant
*, Constant
*)) {
462 std::vector
<Constant
*> Res
;
463 for (unsigned i
= 0, e
= V1
->getNumOperands(); i
!= e
; ++i
)
464 Res
.push_back(FP(const_cast<Constant
*>(V1
->getOperand(i
)),
465 const_cast<Constant
*>(V2
->getOperand(i
))));
466 return ConstantVector::get(Res
);
469 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
,
471 const Constant
*C2
) {
472 // Handle UndefValue up front
473 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
475 case Instruction::Add
:
476 case Instruction::Sub
:
477 case Instruction::Xor
:
478 return UndefValue::get(C1
->getType());
479 case Instruction::Mul
:
480 case Instruction::And
:
481 return Constant::getNullValue(C1
->getType());
482 case Instruction::UDiv
:
483 case Instruction::SDiv
:
484 case Instruction::FDiv
:
485 case Instruction::URem
:
486 case Instruction::SRem
:
487 case Instruction::FRem
:
488 if (!isa
<UndefValue
>(C2
)) // undef / X -> 0
489 return Constant::getNullValue(C1
->getType());
490 return const_cast<Constant
*>(C2
); // X / undef -> undef
491 case Instruction::Or
: // X | undef -> -1
492 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(C1
->getType()))
493 return ConstantVector::getAllOnesValue(PTy
);
494 return ConstantInt::getAllOnesValue(C1
->getType());
495 case Instruction::LShr
:
496 if (isa
<UndefValue
>(C2
) && isa
<UndefValue
>(C1
))
497 return const_cast<Constant
*>(C1
); // undef lshr undef -> undef
498 return Constant::getNullValue(C1
->getType()); // X lshr undef -> 0
500 case Instruction::AShr
:
501 if (!isa
<UndefValue
>(C2
))
502 return const_cast<Constant
*>(C1
); // undef ashr X --> undef
503 else if (isa
<UndefValue
>(C1
))
504 return const_cast<Constant
*>(C1
); // undef ashr undef -> undef
506 return const_cast<Constant
*>(C1
); // X ashr undef --> X
507 case Instruction::Shl
:
508 // undef << X -> 0 or X << undef -> 0
509 return Constant::getNullValue(C1
->getType());
513 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
514 if (isa
<ConstantExpr
>(C2
)) {
515 // There are many possible foldings we could do here. We should probably
516 // at least fold add of a pointer with an integer into the appropriate
517 // getelementptr. This will improve alias analysis a bit.
519 // Just implement a couple of simple identities.
521 case Instruction::Add
:
522 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X + 0 == X
524 case Instruction::Sub
:
525 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X - 0 == X
527 case Instruction::Mul
:
528 if (C2
->isNullValue()) return const_cast<Constant
*>(C2
); // X * 0 == 0
529 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
530 if (CI
->equalsInt(1))
531 return const_cast<Constant
*>(C1
); // X * 1 == X
533 case Instruction::UDiv
:
534 case Instruction::SDiv
:
535 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
536 if (CI
->equalsInt(1))
537 return const_cast<Constant
*>(C1
); // X / 1 == X
539 case Instruction::URem
:
540 case Instruction::SRem
:
541 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
542 if (CI
->equalsInt(1))
543 return Constant::getNullValue(CI
->getType()); // X % 1 == 0
545 case Instruction::And
:
546 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
)) {
547 if (CI
->isZero()) return const_cast<Constant
*>(C2
); // X & 0 == 0
548 if (CI
->isAllOnesValue())
549 return const_cast<Constant
*>(C1
); // X & -1 == X
551 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
552 if (CE1
->getOpcode() == Instruction::ZExt
) {
553 APInt PossiblySetBits
554 = cast
<IntegerType
>(CE1
->getOperand(0)->getType())->getMask();
555 PossiblySetBits
.zext(C1
->getType()->getPrimitiveSizeInBits());
556 if ((PossiblySetBits
& CI
->getValue()) == PossiblySetBits
)
557 return const_cast<Constant
*>(C1
);
560 if (CE1
->isCast() && isa
<GlobalValue
>(CE1
->getOperand(0))) {
561 GlobalValue
*CPR
= cast
<GlobalValue
>(CE1
->getOperand(0));
563 // Functions are at least 4-byte aligned. If and'ing the address of a
564 // function with a constant < 4, fold it to zero.
565 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
566 if (CI
->getValue().ult(APInt(CI
->getType()->getBitWidth(),4)) &&
568 return Constant::getNullValue(CI
->getType());
571 case Instruction::Or
:
572 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X | 0 == X
573 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C2
))
574 if (CI
->isAllOnesValue())
575 return const_cast<Constant
*>(C2
); // X | -1 == -1
577 case Instruction::Xor
:
578 if (C2
->isNullValue()) return const_cast<Constant
*>(C1
); // X ^ 0 == X
580 case Instruction::AShr
:
581 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
582 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
583 return ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
584 const_cast<Constant
*>(C2
));
588 } else if (isa
<ConstantExpr
>(C2
)) {
589 // If C2 is a constant expr and C1 isn't, flop them around and fold the
590 // other way if possible.
592 case Instruction::Add
:
593 case Instruction::Mul
:
594 case Instruction::And
:
595 case Instruction::Or
:
596 case Instruction::Xor
:
597 // No change of opcode required.
598 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
600 case Instruction::Shl
:
601 case Instruction::LShr
:
602 case Instruction::AShr
:
603 case Instruction::Sub
:
604 case Instruction::SDiv
:
605 case Instruction::UDiv
:
606 case Instruction::FDiv
:
607 case Instruction::URem
:
608 case Instruction::SRem
:
609 case Instruction::FRem
:
610 default: // These instructions cannot be flopped around.
615 // At this point we know neither constant is an UndefValue nor a ConstantExpr
616 // so look at directly computing the value.
617 if (const ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
618 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
619 using namespace APIntOps
;
620 APInt C1V
= CI1
->getValue();
621 APInt C2V
= CI2
->getValue();
625 case Instruction::Add
:
626 return ConstantInt::get(C1V
+ C2V
);
627 case Instruction::Sub
:
628 return ConstantInt::get(C1V
- C2V
);
629 case Instruction::Mul
:
630 return ConstantInt::get(C1V
* C2V
);
631 case Instruction::UDiv
:
632 if (CI2
->isNullValue())
633 return 0; // X / 0 -> can't fold
634 return ConstantInt::get(C1V
.udiv(C2V
));
635 case Instruction::SDiv
:
636 if (CI2
->isNullValue())
637 return 0; // X / 0 -> can't fold
638 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
639 return 0; // MIN_INT / -1 -> overflow
640 return ConstantInt::get(C1V
.sdiv(C2V
));
641 case Instruction::URem
:
642 if (C2
->isNullValue())
643 return 0; // X / 0 -> can't fold
644 return ConstantInt::get(C1V
.urem(C2V
));
645 case Instruction::SRem
:
646 if (CI2
->isNullValue())
647 return 0; // X % 0 -> can't fold
648 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
649 return 0; // MIN_INT % -1 -> overflow
650 return ConstantInt::get(C1V
.srem(C2V
));
651 case Instruction::And
:
652 return ConstantInt::get(C1V
& C2V
);
653 case Instruction::Or
:
654 return ConstantInt::get(C1V
| C2V
);
655 case Instruction::Xor
:
656 return ConstantInt::get(C1V
^ C2V
);
657 case Instruction::Shl
:
658 if (uint32_t shiftAmt
= C2V
.getZExtValue())
659 if (shiftAmt
< C1V
.getBitWidth())
660 return ConstantInt::get(C1V
.shl(shiftAmt
));
662 return UndefValue::get(C1
->getType()); // too big shift is undef
663 return const_cast<ConstantInt
*>(CI1
); // Zero shift is identity
664 case Instruction::LShr
:
665 if (uint32_t shiftAmt
= C2V
.getZExtValue())
666 if (shiftAmt
< C1V
.getBitWidth())
667 return ConstantInt::get(C1V
.lshr(shiftAmt
));
669 return UndefValue::get(C1
->getType()); // too big shift is undef
670 return const_cast<ConstantInt
*>(CI1
); // Zero shift is identity
671 case Instruction::AShr
:
672 if (uint32_t shiftAmt
= C2V
.getZExtValue())
673 if (shiftAmt
< C1V
.getBitWidth())
674 return ConstantInt::get(C1V
.ashr(shiftAmt
));
676 return UndefValue::get(C1
->getType()); // too big shift is undef
677 return const_cast<ConstantInt
*>(CI1
); // Zero shift is identity
680 } else if (const ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
681 if (const ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
682 APFloat C1V
= CFP1
->getValueAPF();
683 APFloat C2V
= CFP2
->getValueAPF();
684 APFloat C3V
= C1V
; // copy for modification
685 bool isDouble
= CFP1
->getType()==Type::DoubleTy
;
689 case Instruction::Add
:
690 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
691 return ConstantFP::get(CFP1
->getType(), C3V
);
692 case Instruction::Sub
:
693 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
694 return ConstantFP::get(CFP1
->getType(), C3V
);
695 case Instruction::Mul
:
696 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
697 return ConstantFP::get(CFP1
->getType(), C3V
);
698 case Instruction::FDiv
:
699 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
700 return ConstantFP::get(CFP1
->getType(), C3V
);
701 case Instruction::FRem
:
703 // IEEE 754, Section 7.1, #5
704 return ConstantFP::get(CFP1
->getType(), isDouble
?
705 APFloat(std::numeric_limits
<double>::quiet_NaN()) :
706 APFloat(std::numeric_limits
<float>::quiet_NaN()));
707 (void)C3V
.mod(C2V
, APFloat::rmNearestTiesToEven
);
708 return ConstantFP::get(CFP1
->getType(), C3V
);
711 } else if (const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
)) {
712 if (const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
)) {
716 case Instruction::Add
:
717 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getAdd
);
718 case Instruction::Sub
:
719 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getSub
);
720 case Instruction::Mul
:
721 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getMul
);
722 case Instruction::UDiv
:
723 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getUDiv
);
724 case Instruction::SDiv
:
725 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getSDiv
);
726 case Instruction::FDiv
:
727 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getFDiv
);
728 case Instruction::URem
:
729 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getURem
);
730 case Instruction::SRem
:
731 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getSRem
);
732 case Instruction::FRem
:
733 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getFRem
);
734 case Instruction::And
:
735 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getAnd
);
736 case Instruction::Or
:
737 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getOr
);
738 case Instruction::Xor
:
739 return EvalVectorOp(CP1
, CP2
, ConstantExpr::getXor
);
744 // We don't know how to fold this
748 /// isZeroSizedType - This type is zero sized if its an array or structure of
749 /// zero sized types. The only leaf zero sized type is an empty structure.
750 static bool isMaybeZeroSizedType(const Type
*Ty
) {
751 if (isa
<OpaqueType
>(Ty
)) return true; // Can't say.
752 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
754 // If all of elements have zero size, this does too.
755 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
756 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
759 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
760 return isMaybeZeroSizedType(ATy
->getElementType());
765 /// IdxCompare - Compare the two constants as though they were getelementptr
766 /// indices. This allows coersion of the types to be the same thing.
768 /// If the two constants are the "same" (after coersion), return 0. If the
769 /// first is less than the second, return -1, if the second is less than the
770 /// first, return 1. If the constants are not integral, return -2.
772 static int IdxCompare(Constant
*C1
, Constant
*C2
, const Type
*ElTy
) {
773 if (C1
== C2
) return 0;
775 // Ok, we found a different index. If they are not ConstantInt, we can't do
776 // anything with them.
777 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
778 return -2; // don't know!
780 // Ok, we have two differing integer indices. Sign extend them to be the same
781 // type. Long is always big enough, so we use it.
782 if (C1
->getType() != Type::Int64Ty
)
783 C1
= ConstantExpr::getSExt(C1
, Type::Int64Ty
);
785 if (C2
->getType() != Type::Int64Ty
)
786 C2
= ConstantExpr::getSExt(C2
, Type::Int64Ty
);
788 if (C1
== C2
) return 0; // They are equal
790 // If the type being indexed over is really just a zero sized type, there is
791 // no pointer difference being made here.
792 if (isMaybeZeroSizedType(ElTy
))
795 // If they are really different, now that they are the same type, then we
796 // found a difference!
797 if (cast
<ConstantInt
>(C1
)->getSExtValue() <
798 cast
<ConstantInt
>(C2
)->getSExtValue())
804 /// evaluateFCmpRelation - This function determines if there is anything we can
805 /// decide about the two constants provided. This doesn't need to handle simple
806 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
807 /// If we can determine that the two constants have a particular relation to
808 /// each other, we should return the corresponding FCmpInst predicate,
809 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
810 /// ConstantFoldCompareInstruction.
812 /// To simplify this code we canonicalize the relation so that the first
813 /// operand is always the most "complex" of the two. We consider ConstantFP
814 /// to be the simplest, and ConstantExprs to be the most complex.
815 static FCmpInst::Predicate
evaluateFCmpRelation(const Constant
*V1
,
816 const Constant
*V2
) {
817 assert(V1
->getType() == V2
->getType() &&
818 "Cannot compare values of different types!");
819 // Handle degenerate case quickly
820 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
822 if (!isa
<ConstantExpr
>(V1
)) {
823 if (!isa
<ConstantExpr
>(V2
)) {
824 // We distilled thisUse the standard constant folder for a few cases
826 Constant
*C1
= const_cast<Constant
*>(V1
);
827 Constant
*C2
= const_cast<Constant
*>(V2
);
828 R
= dyn_cast
<ConstantInt
>(
829 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, C1
, C2
));
830 if (R
&& !R
->isZero())
831 return FCmpInst::FCMP_OEQ
;
832 R
= dyn_cast
<ConstantInt
>(
833 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, C1
, C2
));
834 if (R
&& !R
->isZero())
835 return FCmpInst::FCMP_OLT
;
836 R
= dyn_cast
<ConstantInt
>(
837 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, C1
, C2
));
838 if (R
&& !R
->isZero())
839 return FCmpInst::FCMP_OGT
;
841 // Nothing more we can do
842 return FCmpInst::BAD_FCMP_PREDICATE
;
845 // If the first operand is simple and second is ConstantExpr, swap operands.
846 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
847 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
848 return FCmpInst::getSwappedPredicate(SwappedRelation
);
850 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
851 // constantexpr or a simple constant.
852 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
853 switch (CE1
->getOpcode()) {
854 case Instruction::FPTrunc
:
855 case Instruction::FPExt
:
856 case Instruction::UIToFP
:
857 case Instruction::SIToFP
:
858 // We might be able to do something with these but we don't right now.
864 // There are MANY other foldings that we could perform here. They will
865 // probably be added on demand, as they seem needed.
866 return FCmpInst::BAD_FCMP_PREDICATE
;
869 /// evaluateICmpRelation - This function determines if there is anything we can
870 /// decide about the two constants provided. This doesn't need to handle simple
871 /// things like integer comparisons, but should instead handle ConstantExprs
872 /// and GlobalValues. If we can determine that the two constants have a
873 /// particular relation to each other, we should return the corresponding ICmp
874 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
876 /// To simplify this code we canonicalize the relation so that the first
877 /// operand is always the most "complex" of the two. We consider simple
878 /// constants (like ConstantInt) to be the simplest, followed by
879 /// GlobalValues, followed by ConstantExpr's (the most complex).
881 static ICmpInst::Predicate
evaluateICmpRelation(const Constant
*V1
,
884 assert(V1
->getType() == V2
->getType() &&
885 "Cannot compare different types of values!");
886 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
888 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
)) {
889 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
)) {
890 // We distilled this down to a simple case, use the standard constant
893 Constant
*C1
= const_cast<Constant
*>(V1
);
894 Constant
*C2
= const_cast<Constant
*>(V2
);
895 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
896 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
897 if (R
&& !R
->isZero())
899 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
900 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
901 if (R
&& !R
->isZero())
903 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
904 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
905 if (R
&& !R
->isZero())
908 // If we couldn't figure it out, bail.
909 return ICmpInst::BAD_ICMP_PREDICATE
;
912 // If the first operand is simple, swap operands.
913 ICmpInst::Predicate SwappedRelation
=
914 evaluateICmpRelation(V2
, V1
, isSigned
);
915 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
916 return ICmpInst::getSwappedPredicate(SwappedRelation
);
918 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(V1
)) {
919 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
920 ICmpInst::Predicate SwappedRelation
=
921 evaluateICmpRelation(V2
, V1
, isSigned
);
922 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
923 return ICmpInst::getSwappedPredicate(SwappedRelation
);
925 return ICmpInst::BAD_ICMP_PREDICATE
;
928 // Now we know that the RHS is a GlobalValue or simple constant,
929 // which (since the types must match) means that it's a ConstantPointerNull.
930 if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
931 // Don't try to decide equality of aliases.
932 if (!isa
<GlobalAlias
>(CPR1
) && !isa
<GlobalAlias
>(CPR2
))
933 if (!CPR1
->hasExternalWeakLinkage() || !CPR2
->hasExternalWeakLinkage())
934 return ICmpInst::ICMP_NE
;
936 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
937 // GlobalVals can never be null. Don't try to evaluate aliases.
938 if (!CPR1
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(CPR1
))
939 return ICmpInst::ICMP_NE
;
942 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
943 // constantexpr, a CPR, or a simple constant.
944 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
945 const Constant
*CE1Op0
= CE1
->getOperand(0);
947 switch (CE1
->getOpcode()) {
948 case Instruction::Trunc
:
949 case Instruction::FPTrunc
:
950 case Instruction::FPExt
:
951 case Instruction::FPToUI
:
952 case Instruction::FPToSI
:
953 break; // We can't evaluate floating point casts or truncations.
955 case Instruction::UIToFP
:
956 case Instruction::SIToFP
:
957 case Instruction::IntToPtr
:
958 case Instruction::BitCast
:
959 case Instruction::ZExt
:
960 case Instruction::SExt
:
961 case Instruction::PtrToInt
:
962 // If the cast is not actually changing bits, and the second operand is a
963 // null pointer, do the comparison with the pre-casted value.
964 if (V2
->isNullValue() &&
965 (isa
<PointerType
>(CE1
->getType()) || CE1
->getType()->isInteger())) {
966 bool sgnd
= CE1
->getOpcode() == Instruction::ZExt
? false :
967 (CE1
->getOpcode() == Instruction::SExt
? true :
968 (CE1
->getOpcode() == Instruction::PtrToInt
? false : isSigned
));
969 return evaluateICmpRelation(
970 CE1Op0
, Constant::getNullValue(CE1Op0
->getType()), sgnd
);
973 // If the dest type is a pointer type, and the RHS is a constantexpr cast
974 // from the same type as the src of the LHS, evaluate the inputs. This is
975 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
976 // which happens a lot in compilers with tagged integers.
977 if (const ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(V2
))
978 if (CE2
->isCast() && isa
<PointerType
>(CE1
->getType()) &&
979 CE1
->getOperand(0)->getType() == CE2
->getOperand(0)->getType() &&
980 CE1
->getOperand(0)->getType()->isInteger()) {
981 bool sgnd
= CE1
->getOpcode() == Instruction::ZExt
? false :
982 (CE1
->getOpcode() == Instruction::SExt
? true :
983 (CE1
->getOpcode() == Instruction::PtrToInt
? false : isSigned
));
984 return evaluateICmpRelation(CE1
->getOperand(0), CE2
->getOperand(0),
989 case Instruction::GetElementPtr
:
990 // Ok, since this is a getelementptr, we know that the constant has a
991 // pointer type. Check the various cases.
992 if (isa
<ConstantPointerNull
>(V2
)) {
993 // If we are comparing a GEP to a null pointer, check to see if the base
994 // of the GEP equals the null pointer.
995 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
996 if (GV
->hasExternalWeakLinkage())
997 // Weak linkage GVals could be zero or not. We're comparing that
998 // to null pointer so its greater-or-equal
999 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1001 // If its not weak linkage, the GVal must have a non-zero address
1002 // so the result is greater-than
1003 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1004 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1005 // If we are indexing from a null pointer, check to see if we have any
1006 // non-zero indices.
1007 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1008 if (!CE1
->getOperand(i
)->isNullValue())
1009 // Offsetting from null, must not be equal.
1010 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1011 // Only zero indexes from null, must still be zero.
1012 return ICmpInst::ICMP_EQ
;
1014 // Otherwise, we can't really say if the first operand is null or not.
1015 } else if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1016 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1017 if (CPR2
->hasExternalWeakLinkage())
1018 // Weak linkage GVals could be zero or not. We're comparing it to
1019 // a null pointer, so its less-or-equal
1020 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1022 // If its not weak linkage, the GVal must have a non-zero address
1023 // so the result is less-than
1024 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1025 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1027 // If this is a getelementptr of the same global, then it must be
1028 // different. Because the types must match, the getelementptr could
1029 // only have at most one index, and because we fold getelementptr's
1030 // with a single zero index, it must be nonzero.
1031 assert(CE1
->getNumOperands() == 2 &&
1032 !CE1
->getOperand(1)->isNullValue() &&
1033 "Suprising getelementptr!");
1034 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1036 // If they are different globals, we don't know what the value is,
1037 // but they can't be equal.
1038 return ICmpInst::ICMP_NE
;
1042 const ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1043 const Constant
*CE2Op0
= CE2
->getOperand(0);
1045 // There are MANY other foldings that we could perform here. They will
1046 // probably be added on demand, as they seem needed.
1047 switch (CE2
->getOpcode()) {
1049 case Instruction::GetElementPtr
:
1050 // By far the most common case to handle is when the base pointers are
1051 // obviously to the same or different globals.
1052 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1053 if (CE1Op0
!= CE2Op0
) // Don't know relative ordering, but not equal
1054 return ICmpInst::ICMP_NE
;
1055 // Ok, we know that both getelementptr instructions are based on the
1056 // same global. From this, we can precisely determine the relative
1057 // ordering of the resultant pointers.
1060 // Compare all of the operands the GEP's have in common.
1061 gep_type_iterator GTI
= gep_type_begin(CE1
);
1062 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1064 switch (IdxCompare(CE1
->getOperand(i
), CE2
->getOperand(i
),
1065 GTI
.getIndexedType())) {
1066 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1067 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1068 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1071 // Ok, we ran out of things they have in common. If any leftovers
1072 // are non-zero then we have a difference, otherwise we are equal.
1073 for (; i
< CE1
->getNumOperands(); ++i
)
1074 if (!CE1
->getOperand(i
)->isNullValue())
1075 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1076 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1078 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1080 for (; i
< CE2
->getNumOperands(); ++i
)
1081 if (!CE2
->getOperand(i
)->isNullValue())
1082 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1083 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1085 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1086 return ICmpInst::ICMP_EQ
;
1095 return ICmpInst::BAD_ICMP_PREDICATE
;
1098 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1100 const Constant
*C2
) {
1102 // Handle some degenerate cases first
1103 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
))
1104 return UndefValue::get(Type::Int1Ty
);
1106 // icmp eq/ne(null,GV) -> false/true
1107 if (C1
->isNullValue()) {
1108 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1109 // Don't try to evaluate aliases. External weak GV can be null.
1110 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage())
1111 if (pred
== ICmpInst::ICMP_EQ
)
1112 return ConstantInt::getFalse();
1113 else if (pred
== ICmpInst::ICMP_NE
)
1114 return ConstantInt::getTrue();
1115 // icmp eq/ne(GV,null) -> false/true
1116 } else if (C2
->isNullValue()) {
1117 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1118 // Don't try to evaluate aliases. External weak GV can be null.
1119 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage())
1120 if (pred
== ICmpInst::ICMP_EQ
)
1121 return ConstantInt::getFalse();
1122 else if (pred
== ICmpInst::ICMP_NE
)
1123 return ConstantInt::getTrue();
1126 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1127 APInt V1
= cast
<ConstantInt
>(C1
)->getValue();
1128 APInt V2
= cast
<ConstantInt
>(C2
)->getValue();
1130 default: assert(0 && "Invalid ICmp Predicate"); return 0;
1131 case ICmpInst::ICMP_EQ
: return ConstantInt::get(Type::Int1Ty
, V1
== V2
);
1132 case ICmpInst::ICMP_NE
: return ConstantInt::get(Type::Int1Ty
, V1
!= V2
);
1133 case ICmpInst::ICMP_SLT
:return ConstantInt::get(Type::Int1Ty
, V1
.slt(V2
));
1134 case ICmpInst::ICMP_SGT
:return ConstantInt::get(Type::Int1Ty
, V1
.sgt(V2
));
1135 case ICmpInst::ICMP_SLE
:return ConstantInt::get(Type::Int1Ty
, V1
.sle(V2
));
1136 case ICmpInst::ICMP_SGE
:return ConstantInt::get(Type::Int1Ty
, V1
.sge(V2
));
1137 case ICmpInst::ICMP_ULT
:return ConstantInt::get(Type::Int1Ty
, V1
.ult(V2
));
1138 case ICmpInst::ICMP_UGT
:return ConstantInt::get(Type::Int1Ty
, V1
.ugt(V2
));
1139 case ICmpInst::ICMP_ULE
:return ConstantInt::get(Type::Int1Ty
, V1
.ule(V2
));
1140 case ICmpInst::ICMP_UGE
:return ConstantInt::get(Type::Int1Ty
, V1
.uge(V2
));
1142 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1143 APFloat C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1144 APFloat C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1145 APFloat::cmpResult R
= C1V
.compare(C2V
);
1147 default: assert(0 && "Invalid FCmp Predicate"); return 0;
1148 case FCmpInst::FCMP_FALSE
: return ConstantInt::getFalse();
1149 case FCmpInst::FCMP_TRUE
: return ConstantInt::getTrue();
1150 case FCmpInst::FCMP_UNO
:
1151 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
);
1152 case FCmpInst::FCMP_ORD
:
1153 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpUnordered
);
1154 case FCmpInst::FCMP_UEQ
:
1155 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1156 R
==APFloat::cmpEqual
);
1157 case FCmpInst::FCMP_OEQ
:
1158 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpEqual
);
1159 case FCmpInst::FCMP_UNE
:
1160 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpEqual
);
1161 case FCmpInst::FCMP_ONE
:
1162 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1163 R
==APFloat::cmpGreaterThan
);
1164 case FCmpInst::FCMP_ULT
:
1165 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1166 R
==APFloat::cmpLessThan
);
1167 case FCmpInst::FCMP_OLT
:
1168 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
);
1169 case FCmpInst::FCMP_UGT
:
1170 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1171 R
==APFloat::cmpGreaterThan
);
1172 case FCmpInst::FCMP_OGT
:
1173 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
);
1174 case FCmpInst::FCMP_ULE
:
1175 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpGreaterThan
);
1176 case FCmpInst::FCMP_OLE
:
1177 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1178 R
==APFloat::cmpEqual
);
1179 case FCmpInst::FCMP_UGE
:
1180 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpLessThan
);
1181 case FCmpInst::FCMP_OGE
:
1182 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
||
1183 R
==APFloat::cmpEqual
);
1185 } else if (const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
)) {
1186 if (const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
)) {
1187 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
) {
1188 for (unsigned i
= 0, e
= CP1
->getNumOperands(); i
!= e
; ++i
) {
1189 Constant
*C
= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
,
1190 const_cast<Constant
*>(CP1
->getOperand(i
)),
1191 const_cast<Constant
*>(CP2
->getOperand(i
)));
1192 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(C
))
1195 // Otherwise, could not decide from any element pairs.
1197 } else if (pred
== ICmpInst::ICMP_EQ
) {
1198 for (unsigned i
= 0, e
= CP1
->getNumOperands(); i
!= e
; ++i
) {
1199 Constant
*C
= ConstantExpr::getICmp(ICmpInst::ICMP_EQ
,
1200 const_cast<Constant
*>(CP1
->getOperand(i
)),
1201 const_cast<Constant
*>(CP2
->getOperand(i
)));
1202 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(C
))
1205 // Otherwise, could not decide from any element pairs.
1211 if (C1
->getType()->isFloatingPoint()) {
1212 switch (evaluateFCmpRelation(C1
, C2
)) {
1213 default: assert(0 && "Unknown relation!");
1214 case FCmpInst::FCMP_UNO
:
1215 case FCmpInst::FCMP_ORD
:
1216 case FCmpInst::FCMP_UEQ
:
1217 case FCmpInst::FCMP_UNE
:
1218 case FCmpInst::FCMP_ULT
:
1219 case FCmpInst::FCMP_UGT
:
1220 case FCmpInst::FCMP_ULE
:
1221 case FCmpInst::FCMP_UGE
:
1222 case FCmpInst::FCMP_TRUE
:
1223 case FCmpInst::FCMP_FALSE
:
1224 case FCmpInst::BAD_FCMP_PREDICATE
:
1225 break; // Couldn't determine anything about these constants.
1226 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1227 return ConstantInt::get(Type::Int1Ty
,
1228 pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1229 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1230 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1231 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1232 return ConstantInt::get(Type::Int1Ty
,
1233 pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1234 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1235 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1236 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1237 return ConstantInt::get(Type::Int1Ty
,
1238 pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1239 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1240 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1241 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1242 // We can only partially decide this relation.
1243 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1244 return ConstantInt::getFalse();
1245 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1246 return ConstantInt::getTrue();
1248 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1249 // We can only partially decide this relation.
1250 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1251 return ConstantInt::getFalse();
1252 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1253 return ConstantInt::getTrue();
1255 case ICmpInst::ICMP_NE
: // We know that C1 != C2
1256 // We can only partially decide this relation.
1257 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1258 return ConstantInt::getFalse();
1259 if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1260 return ConstantInt::getTrue();
1264 // Evaluate the relation between the two constants, per the predicate.
1265 switch (evaluateICmpRelation(C1
, C2
, CmpInst::isSigned(pred
))) {
1266 default: assert(0 && "Unknown relational!");
1267 case ICmpInst::BAD_ICMP_PREDICATE
:
1268 break; // Couldn't determine anything about these constants.
1269 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1270 // If we know the constants are equal, we can decide the result of this
1271 // computation precisely.
1272 return ConstantInt::get(Type::Int1Ty
,
1273 pred
== ICmpInst::ICMP_EQ
||
1274 pred
== ICmpInst::ICMP_ULE
||
1275 pred
== ICmpInst::ICMP_SLE
||
1276 pred
== ICmpInst::ICMP_UGE
||
1277 pred
== ICmpInst::ICMP_SGE
);
1278 case ICmpInst::ICMP_ULT
:
1279 // If we know that C1 < C2, we can decide the result of this computation
1281 return ConstantInt::get(Type::Int1Ty
,
1282 pred
== ICmpInst::ICMP_ULT
||
1283 pred
== ICmpInst::ICMP_NE
||
1284 pred
== ICmpInst::ICMP_ULE
);
1285 case ICmpInst::ICMP_SLT
:
1286 // If we know that C1 < C2, we can decide the result of this computation
1288 return ConstantInt::get(Type::Int1Ty
,
1289 pred
== ICmpInst::ICMP_SLT
||
1290 pred
== ICmpInst::ICMP_NE
||
1291 pred
== ICmpInst::ICMP_SLE
);
1292 case ICmpInst::ICMP_UGT
:
1293 // If we know that C1 > C2, we can decide the result of this computation
1295 return ConstantInt::get(Type::Int1Ty
,
1296 pred
== ICmpInst::ICMP_UGT
||
1297 pred
== ICmpInst::ICMP_NE
||
1298 pred
== ICmpInst::ICMP_UGE
);
1299 case ICmpInst::ICMP_SGT
:
1300 // If we know that C1 > C2, we can decide the result of this computation
1302 return ConstantInt::get(Type::Int1Ty
,
1303 pred
== ICmpInst::ICMP_SGT
||
1304 pred
== ICmpInst::ICMP_NE
||
1305 pred
== ICmpInst::ICMP_SGE
);
1306 case ICmpInst::ICMP_ULE
:
1307 // If we know that C1 <= C2, we can only partially decide this relation.
1308 if (pred
== ICmpInst::ICMP_UGT
) return ConstantInt::getFalse();
1309 if (pred
== ICmpInst::ICMP_ULT
) return ConstantInt::getTrue();
1311 case ICmpInst::ICMP_SLE
:
1312 // If we know that C1 <= C2, we can only partially decide this relation.
1313 if (pred
== ICmpInst::ICMP_SGT
) return ConstantInt::getFalse();
1314 if (pred
== ICmpInst::ICMP_SLT
) return ConstantInt::getTrue();
1317 case ICmpInst::ICMP_UGE
:
1318 // If we know that C1 >= C2, we can only partially decide this relation.
1319 if (pred
== ICmpInst::ICMP_ULT
) return ConstantInt::getFalse();
1320 if (pred
== ICmpInst::ICMP_UGT
) return ConstantInt::getTrue();
1322 case ICmpInst::ICMP_SGE
:
1323 // If we know that C1 >= C2, we can only partially decide this relation.
1324 if (pred
== ICmpInst::ICMP_SLT
) return ConstantInt::getFalse();
1325 if (pred
== ICmpInst::ICMP_SGT
) return ConstantInt::getTrue();
1328 case ICmpInst::ICMP_NE
:
1329 // If we know that C1 != C2, we can only partially decide this relation.
1330 if (pred
== ICmpInst::ICMP_EQ
) return ConstantInt::getFalse();
1331 if (pred
== ICmpInst::ICMP_NE
) return ConstantInt::getTrue();
1335 if (!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) {
1336 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1337 // other way if possible.
1339 case ICmpInst::ICMP_EQ
:
1340 case ICmpInst::ICMP_NE
:
1341 // No change of predicate required.
1342 return ConstantFoldCompareInstruction(pred
, C2
, C1
);
1344 case ICmpInst::ICMP_ULT
:
1345 case ICmpInst::ICMP_SLT
:
1346 case ICmpInst::ICMP_UGT
:
1347 case ICmpInst::ICMP_SGT
:
1348 case ICmpInst::ICMP_ULE
:
1349 case ICmpInst::ICMP_SLE
:
1350 case ICmpInst::ICMP_UGE
:
1351 case ICmpInst::ICMP_SGE
:
1352 // Change the predicate as necessary to swap the operands.
1353 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
1354 return ConstantFoldCompareInstruction(pred
, C2
, C1
);
1356 default: // These predicates cannot be flopped around.
1364 Constant
*llvm::ConstantFoldGetElementPtr(const Constant
*C
,
1365 Constant
* const *Idxs
,
1368 (NumIdx
== 1 && Idxs
[0]->isNullValue()))
1369 return const_cast<Constant
*>(C
);
1371 if (isa
<UndefValue
>(C
)) {
1372 const Type
*Ty
= GetElementPtrInst::getIndexedType(C
->getType(),
1374 (Value
**)Idxs
+NumIdx
,
1376 assert(Ty
!= 0 && "Invalid indices for GEP!");
1377 return UndefValue::get(PointerType::get(Ty
));
1380 Constant
*Idx0
= Idxs
[0];
1381 if (C
->isNullValue()) {
1383 for (unsigned i
= 0, e
= NumIdx
; i
!= e
; ++i
)
1384 if (!Idxs
[i
]->isNullValue()) {
1389 const Type
*Ty
= GetElementPtrInst::getIndexedType(C
->getType(),
1391 (Value
**)Idxs
+NumIdx
,
1393 assert(Ty
!= 0 && "Invalid indices for GEP!");
1394 return ConstantPointerNull::get(PointerType::get(Ty
));
1398 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(const_cast<Constant
*>(C
))) {
1399 // Combine Indices - If the source pointer to this getelementptr instruction
1400 // is a getelementptr instruction, combine the indices of the two
1401 // getelementptr instructions into a single instruction.
1403 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
1404 const Type
*LastTy
= 0;
1405 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
1409 if ((LastTy
&& isa
<ArrayType
>(LastTy
)) || Idx0
->isNullValue()) {
1410 SmallVector
<Value
*, 16> NewIndices
;
1411 NewIndices
.reserve(NumIdx
+ CE
->getNumOperands());
1412 for (unsigned i
= 1, e
= CE
->getNumOperands()-1; i
!= e
; ++i
)
1413 NewIndices
.push_back(CE
->getOperand(i
));
1415 // Add the last index of the source with the first index of the new GEP.
1416 // Make sure to handle the case when they are actually different types.
1417 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
1418 // Otherwise it must be an array.
1419 if (!Idx0
->isNullValue()) {
1420 const Type
*IdxTy
= Combined
->getType();
1421 if (IdxTy
!= Idx0
->getType()) {
1422 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, Type::Int64Ty
);
1423 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
,
1425 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
1428 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
1432 NewIndices
.push_back(Combined
);
1433 NewIndices
.insert(NewIndices
.end(), Idxs
+1, Idxs
+NumIdx
);
1434 return ConstantExpr::getGetElementPtr(CE
->getOperand(0), &NewIndices
[0],
1439 // Implement folding of:
1440 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1442 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1444 if (CE
->isCast() && NumIdx
> 1 && Idx0
->isNullValue()) {
1445 if (const PointerType
*SPT
=
1446 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType()))
1447 if (const ArrayType
*SAT
= dyn_cast
<ArrayType
>(SPT
->getElementType()))
1448 if (const ArrayType
*CAT
=
1449 dyn_cast
<ArrayType
>(cast
<PointerType
>(C
->getType())->getElementType()))
1450 if (CAT
->getElementType() == SAT
->getElementType())
1451 return ConstantExpr::getGetElementPtr(
1452 (Constant
*)CE
->getOperand(0), Idxs
, NumIdx
);
1455 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1456 // Into: inttoptr (i64 0 to i8*)
1457 // This happens with pointers to member functions in C++.
1458 if (CE
->getOpcode() == Instruction::IntToPtr
&& NumIdx
== 1 &&
1459 isa
<ConstantInt
>(CE
->getOperand(0)) && isa
<ConstantInt
>(Idxs
[0]) &&
1460 cast
<PointerType
>(CE
->getType())->getElementType() == Type::Int8Ty
) {
1461 Constant
*Base
= CE
->getOperand(0);
1462 Constant
*Offset
= Idxs
[0];
1464 // Convert the smaller integer to the larger type.
1465 if (Offset
->getType()->getPrimitiveSizeInBits() <
1466 Base
->getType()->getPrimitiveSizeInBits())
1467 Offset
= ConstantExpr::getSExt(Offset
, Base
->getType());
1468 else if (Base
->getType()->getPrimitiveSizeInBits() <
1469 Offset
->getType()->getPrimitiveSizeInBits())
1470 Base
= ConstantExpr::getZExt(Base
, Base
->getType());
1472 Base
= ConstantExpr::getAdd(Base
, Offset
);
1473 return ConstantExpr::getIntToPtr(Base
, CE
->getType());