Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / VMCore / ConstantFold.cpp
blob73ca47a9aa56c565f3e69b5e19d2c698d15fcb10
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <limits>
33 using namespace llvm;
35 //===----------------------------------------------------------------------===//
36 // ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
39 /// CastConstantVector - Convert the specified ConstantVector node to the
40 /// specified vector type. At this point, we know that the elements of the
41 /// input vector constant are all simple integer or FP values.
42 static Constant *CastConstantVector(ConstantVector *CV,
43 const VectorType *DstTy) {
44 unsigned SrcNumElts = CV->getType()->getNumElements();
45 unsigned DstNumElts = DstTy->getNumElements();
46 const Type *SrcEltTy = CV->getType()->getElementType();
47 const Type *DstEltTy = DstTy->getElementType();
49 // If both vectors have the same number of elements (thus, the elements
50 // are the same size), perform the conversion now.
51 if (SrcNumElts == DstNumElts) {
52 std::vector<Constant*> Result;
54 // If the src and dest elements are both integers, or both floats, we can
55 // just BitCast each element because the elements are the same size.
56 if ((SrcEltTy->isInteger() && DstEltTy->isInteger()) ||
57 (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
58 for (unsigned i = 0; i != SrcNumElts; ++i)
59 Result.push_back(
60 ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
61 return ConstantVector::get(Result);
64 // If this is an int-to-fp cast ..
65 if (SrcEltTy->isInteger()) {
66 // Ensure that it is int-to-fp cast
67 assert(DstEltTy->isFloatingPoint());
68 if (DstEltTy->getTypeID() == Type::DoubleTyID) {
69 for (unsigned i = 0; i != SrcNumElts; ++i) {
70 ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
71 double V = CI->getValue().bitsToDouble();
72 Result.push_back(ConstantFP::get(Type::DoubleTy, APFloat(V)));
74 return ConstantVector::get(Result);
76 assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
77 for (unsigned i = 0; i != SrcNumElts; ++i) {
78 ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
79 float V = CI->getValue().bitsToFloat();
80 Result.push_back(ConstantFP::get(Type::FloatTy, APFloat(V)));
82 return ConstantVector::get(Result);
85 // Otherwise, this is an fp-to-int cast.
86 assert(SrcEltTy->isFloatingPoint() && DstEltTy->isInteger());
88 if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
89 for (unsigned i = 0; i != SrcNumElts; ++i) {
90 uint64_t V = cast<ConstantFP>(CV->getOperand(i))->
91 getValueAPF().convertToAPInt().getZExtValue();
92 Constant *C = ConstantInt::get(Type::Int64Ty, V);
93 Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
95 return ConstantVector::get(Result);
98 assert(SrcEltTy->getTypeID() == Type::FloatTyID);
99 for (unsigned i = 0; i != SrcNumElts; ++i) {
100 uint32_t V = (uint32_t)cast<ConstantFP>(CV->getOperand(i))->
101 getValueAPF().convertToAPInt().getZExtValue();
102 Constant *C = ConstantInt::get(Type::Int32Ty, V);
103 Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
105 return ConstantVector::get(Result);
108 // Otherwise, this is a cast that changes element count and size. Handle
109 // casts which shrink the elements here.
111 // FIXME: We need to know endianness to do this!
113 return 0;
116 /// This function determines which opcode to use to fold two constant cast
117 /// expressions together. It uses CastInst::isEliminableCastPair to determine
118 /// the opcode. Consequently its just a wrapper around that function.
119 /// @brief Determine if it is valid to fold a cast of a cast
120 static unsigned
121 foldConstantCastPair(
122 unsigned opc, ///< opcode of the second cast constant expression
123 const ConstantExpr*Op, ///< the first cast constant expression
124 const Type *DstTy ///< desintation type of the first cast
126 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
127 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
128 assert(CastInst::isCast(opc) && "Invalid cast opcode");
130 // The the types and opcodes for the two Cast constant expressions
131 const Type *SrcTy = Op->getOperand(0)->getType();
132 const Type *MidTy = Op->getType();
133 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
134 Instruction::CastOps secondOp = Instruction::CastOps(opc);
136 // Let CastInst::isEliminableCastPair do the heavy lifting.
137 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
138 Type::Int64Ty);
141 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
142 const Type *DestTy) {
143 const Type *SrcTy = V->getType();
145 if (isa<UndefValue>(V)) {
146 // zext(undef) = 0, because the top bits will be zero.
147 // sext(undef) = 0, because the top bits will all be the same.
148 if (opc == Instruction::ZExt || opc == Instruction::SExt)
149 return Constant::getNullValue(DestTy);
150 return UndefValue::get(DestTy);
153 // If the cast operand is a constant expression, there's a few things we can
154 // do to try to simplify it.
155 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
156 if (CE->isCast()) {
157 // Try hard to fold cast of cast because they are often eliminable.
158 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
159 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
160 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
161 // If all of the indexes in the GEP are null values, there is no pointer
162 // adjustment going on. We might as well cast the source pointer.
163 bool isAllNull = true;
164 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
165 if (!CE->getOperand(i)->isNullValue()) {
166 isAllNull = false;
167 break;
169 if (isAllNull)
170 // This is casting one pointer type to another, always BitCast
171 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
175 // We actually have to do a cast now. Perform the cast according to the
176 // opcode specified.
177 switch (opc) {
178 case Instruction::FPTrunc:
179 case Instruction::FPExt:
180 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
181 APFloat Val = FPC->getValueAPF();
182 Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
183 DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
184 DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
185 DestTy == Type::FP128Ty ? APFloat::IEEEquad :
186 APFloat::Bogus,
187 APFloat::rmNearestTiesToEven);
188 return ConstantFP::get(DestTy, Val);
190 return 0; // Can't fold.
191 case Instruction::FPToUI:
192 case Instruction::FPToSI:
193 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
194 APFloat V = FPC->getValueAPF();
195 uint64_t x[2];
196 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
197 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
198 APFloat::rmTowardZero);
199 APInt Val(DestBitWidth, 2, x);
200 return ConstantInt::get(Val);
202 return 0; // Can't fold.
203 case Instruction::IntToPtr: //always treated as unsigned
204 if (V->isNullValue()) // Is it an integral null value?
205 return ConstantPointerNull::get(cast<PointerType>(DestTy));
206 return 0; // Other pointer types cannot be casted
207 case Instruction::PtrToInt: // always treated as unsigned
208 if (V->isNullValue()) // is it a null pointer value?
209 return ConstantInt::get(DestTy, 0);
210 return 0; // Other pointer types cannot be casted
211 case Instruction::UIToFP:
212 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
213 double d = CI->getValue().roundToDouble();
214 if (DestTy==Type::FloatTy)
215 return ConstantFP::get(DestTy, APFloat((float)d));
216 else if (DestTy==Type::DoubleTy)
217 return ConstantFP::get(DestTy, APFloat(d));
218 else
219 return 0; // FIXME do this for long double
221 return 0;
222 case Instruction::SIToFP:
223 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
224 double d = CI->getValue().signedRoundToDouble();
225 if (DestTy==Type::FloatTy)
226 return ConstantFP::get(DestTy, APFloat((float)d));
227 else if (DestTy==Type::DoubleTy)
228 return ConstantFP::get(DestTy, APFloat(d));
229 else
230 return 0; // FIXME do this for long double
232 return 0;
233 case Instruction::ZExt:
234 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
235 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
236 APInt Result(CI->getValue());
237 Result.zext(BitWidth);
238 return ConstantInt::get(Result);
240 return 0;
241 case Instruction::SExt:
242 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
243 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
244 APInt Result(CI->getValue());
245 Result.sext(BitWidth);
246 return ConstantInt::get(Result);
248 return 0;
249 case Instruction::Trunc:
250 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
251 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
252 APInt Result(CI->getValue());
253 Result.trunc(BitWidth);
254 return ConstantInt::get(Result);
256 return 0;
257 case Instruction::BitCast:
258 if (SrcTy == DestTy)
259 return (Constant*)V; // no-op cast
261 // Check to see if we are casting a pointer to an aggregate to a pointer to
262 // the first element. If so, return the appropriate GEP instruction.
263 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
264 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
265 SmallVector<Value*, 8> IdxList;
266 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
267 const Type *ElTy = PTy->getElementType();
268 while (ElTy != DPTy->getElementType()) {
269 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
270 if (STy->getNumElements() == 0) break;
271 ElTy = STy->getElementType(0);
272 IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
273 } else if (const SequentialType *STy =
274 dyn_cast<SequentialType>(ElTy)) {
275 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
276 ElTy = STy->getElementType();
277 IdxList.push_back(IdxList[0]);
278 } else {
279 break;
283 if (ElTy == DPTy->getElementType())
284 return ConstantExpr::getGetElementPtr(
285 const_cast<Constant*>(V), &IdxList[0], IdxList.size());
288 // Handle casts from one vector constant to another. We know that the src
289 // and dest type have the same size (otherwise its an illegal cast).
290 if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
291 if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
292 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
293 "Not cast between same sized vectors!");
294 // First, check for null and undef
295 if (isa<ConstantAggregateZero>(V))
296 return Constant::getNullValue(DestTy);
297 if (isa<UndefValue>(V))
298 return UndefValue::get(DestTy);
300 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
301 // This is a cast from a ConstantVector of one type to a
302 // ConstantVector of another type. Check to see if all elements of
303 // the input are simple.
304 bool AllSimpleConstants = true;
305 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
306 if (!isa<ConstantInt>(CV->getOperand(i)) &&
307 !isa<ConstantFP>(CV->getOperand(i))) {
308 AllSimpleConstants = false;
309 break;
313 // If all of the elements are simple constants, we can fold this.
314 if (AllSimpleConstants)
315 return CastConstantVector(const_cast<ConstantVector*>(CV), DestPTy);
320 // Finally, implement bitcast folding now. The code below doesn't handle
321 // bitcast right.
322 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
323 return ConstantPointerNull::get(cast<PointerType>(DestTy));
325 // Handle integral constant input.
326 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
327 if (DestTy->isInteger())
328 // Integral -> Integral. This is a no-op because the bit widths must
329 // be the same. Consequently, we just fold to V.
330 return const_cast<Constant*>(V);
332 if (DestTy->isFloatingPoint()) {
333 assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) &&
334 "Unknown FP type!");
335 return ConstantFP::get(DestTy, APFloat(CI->getValue()));
337 // Otherwise, can't fold this (vector?)
338 return 0;
341 // Handle ConstantFP input.
342 if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
343 // FP -> Integral.
344 if (DestTy == Type::Int32Ty) {
345 return ConstantInt::get(FP->getValueAPF().convertToAPInt());
346 } else {
347 assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
348 return ConstantInt::get(FP->getValueAPF().convertToAPInt());
351 return 0;
352 default:
353 assert(!"Invalid CE CastInst opcode");
354 break;
357 assert(0 && "Failed to cast constant expression");
358 return 0;
361 Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
362 const Constant *V1,
363 const Constant *V2) {
364 if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
365 return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
367 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
368 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
369 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
370 if (V1 == V2) return const_cast<Constant*>(V1);
371 return 0;
374 Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
375 const Constant *Idx) {
376 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
377 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
378 if (Val->isNullValue()) // ee(zero, x) -> zero
379 return Constant::getNullValue(
380 cast<VectorType>(Val->getType())->getElementType());
382 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
383 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
384 return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
385 } else if (isa<UndefValue>(Idx)) {
386 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
387 return const_cast<Constant*>(CVal->getOperand(0));
390 return 0;
393 Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
394 const Constant *Elt,
395 const Constant *Idx) {
396 const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
397 if (!CIdx) return 0;
398 APInt idxVal = CIdx->getValue();
399 if (isa<UndefValue>(Val)) {
400 // Insertion of scalar constant into vector undef
401 // Optimize away insertion of undef
402 if (isa<UndefValue>(Elt))
403 return const_cast<Constant*>(Val);
404 // Otherwise break the aggregate undef into multiple undefs and do
405 // the insertion
406 unsigned numOps =
407 cast<VectorType>(Val->getType())->getNumElements();
408 std::vector<Constant*> Ops;
409 Ops.reserve(numOps);
410 for (unsigned i = 0; i < numOps; ++i) {
411 const Constant *Op =
412 (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
413 Ops.push_back(const_cast<Constant*>(Op));
415 return ConstantVector::get(Ops);
417 if (isa<ConstantAggregateZero>(Val)) {
418 // Insertion of scalar constant into vector aggregate zero
419 // Optimize away insertion of zero
420 if (Elt->isNullValue())
421 return const_cast<Constant*>(Val);
422 // Otherwise break the aggregate zero into multiple zeros and do
423 // the insertion
424 unsigned numOps =
425 cast<VectorType>(Val->getType())->getNumElements();
426 std::vector<Constant*> Ops;
427 Ops.reserve(numOps);
428 for (unsigned i = 0; i < numOps; ++i) {
429 const Constant *Op =
430 (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
431 Ops.push_back(const_cast<Constant*>(Op));
433 return ConstantVector::get(Ops);
435 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
436 // Insertion of scalar constant into vector constant
437 std::vector<Constant*> Ops;
438 Ops.reserve(CVal->getNumOperands());
439 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
440 const Constant *Op =
441 (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
442 Ops.push_back(const_cast<Constant*>(Op));
444 return ConstantVector::get(Ops);
446 return 0;
449 Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
450 const Constant *V2,
451 const Constant *Mask) {
452 // TODO:
453 return 0;
456 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
457 /// function pointer to each element pair, producing a new ConstantVector
458 /// constant.
459 static Constant *EvalVectorOp(const ConstantVector *V1,
460 const ConstantVector *V2,
461 Constant *(*FP)(Constant*, Constant*)) {
462 std::vector<Constant*> Res;
463 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
464 Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
465 const_cast<Constant*>(V2->getOperand(i))));
466 return ConstantVector::get(Res);
469 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
470 const Constant *C1,
471 const Constant *C2) {
472 // Handle UndefValue up front
473 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
474 switch (Opcode) {
475 case Instruction::Add:
476 case Instruction::Sub:
477 case Instruction::Xor:
478 return UndefValue::get(C1->getType());
479 case Instruction::Mul:
480 case Instruction::And:
481 return Constant::getNullValue(C1->getType());
482 case Instruction::UDiv:
483 case Instruction::SDiv:
484 case Instruction::FDiv:
485 case Instruction::URem:
486 case Instruction::SRem:
487 case Instruction::FRem:
488 if (!isa<UndefValue>(C2)) // undef / X -> 0
489 return Constant::getNullValue(C1->getType());
490 return const_cast<Constant*>(C2); // X / undef -> undef
491 case Instruction::Or: // X | undef -> -1
492 if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
493 return ConstantVector::getAllOnesValue(PTy);
494 return ConstantInt::getAllOnesValue(C1->getType());
495 case Instruction::LShr:
496 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
497 return const_cast<Constant*>(C1); // undef lshr undef -> undef
498 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
499 // undef lshr X -> 0
500 case Instruction::AShr:
501 if (!isa<UndefValue>(C2))
502 return const_cast<Constant*>(C1); // undef ashr X --> undef
503 else if (isa<UndefValue>(C1))
504 return const_cast<Constant*>(C1); // undef ashr undef -> undef
505 else
506 return const_cast<Constant*>(C1); // X ashr undef --> X
507 case Instruction::Shl:
508 // undef << X -> 0 or X << undef -> 0
509 return Constant::getNullValue(C1->getType());
513 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
514 if (isa<ConstantExpr>(C2)) {
515 // There are many possible foldings we could do here. We should probably
516 // at least fold add of a pointer with an integer into the appropriate
517 // getelementptr. This will improve alias analysis a bit.
518 } else {
519 // Just implement a couple of simple identities.
520 switch (Opcode) {
521 case Instruction::Add:
522 if (C2->isNullValue()) return const_cast<Constant*>(C1); // X + 0 == X
523 break;
524 case Instruction::Sub:
525 if (C2->isNullValue()) return const_cast<Constant*>(C1); // X - 0 == X
526 break;
527 case Instruction::Mul:
528 if (C2->isNullValue()) return const_cast<Constant*>(C2); // X * 0 == 0
529 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
530 if (CI->equalsInt(1))
531 return const_cast<Constant*>(C1); // X * 1 == X
532 break;
533 case Instruction::UDiv:
534 case Instruction::SDiv:
535 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
536 if (CI->equalsInt(1))
537 return const_cast<Constant*>(C1); // X / 1 == X
538 break;
539 case Instruction::URem:
540 case Instruction::SRem:
541 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
542 if (CI->equalsInt(1))
543 return Constant::getNullValue(CI->getType()); // X % 1 == 0
544 break;
545 case Instruction::And:
546 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) {
547 if (CI->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
548 if (CI->isAllOnesValue())
549 return const_cast<Constant*>(C1); // X & -1 == X
551 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
552 if (CE1->getOpcode() == Instruction::ZExt) {
553 APInt PossiblySetBits
554 = cast<IntegerType>(CE1->getOperand(0)->getType())->getMask();
555 PossiblySetBits.zext(C1->getType()->getPrimitiveSizeInBits());
556 if ((PossiblySetBits & CI->getValue()) == PossiblySetBits)
557 return const_cast<Constant*>(C1);
560 if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
561 GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
563 // Functions are at least 4-byte aligned. If and'ing the address of a
564 // function with a constant < 4, fold it to zero.
565 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
566 if (CI->getValue().ult(APInt(CI->getType()->getBitWidth(),4)) &&
567 isa<Function>(CPR))
568 return Constant::getNullValue(CI->getType());
570 break;
571 case Instruction::Or:
572 if (C2->isNullValue()) return const_cast<Constant*>(C1); // X | 0 == X
573 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
574 if (CI->isAllOnesValue())
575 return const_cast<Constant*>(C2); // X | -1 == -1
576 break;
577 case Instruction::Xor:
578 if (C2->isNullValue()) return const_cast<Constant*>(C1); // X ^ 0 == X
579 break;
580 case Instruction::AShr:
581 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
582 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
583 return ConstantExpr::getLShr(const_cast<Constant*>(C1),
584 const_cast<Constant*>(C2));
585 break;
588 } else if (isa<ConstantExpr>(C2)) {
589 // If C2 is a constant expr and C1 isn't, flop them around and fold the
590 // other way if possible.
591 switch (Opcode) {
592 case Instruction::Add:
593 case Instruction::Mul:
594 case Instruction::And:
595 case Instruction::Or:
596 case Instruction::Xor:
597 // No change of opcode required.
598 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
600 case Instruction::Shl:
601 case Instruction::LShr:
602 case Instruction::AShr:
603 case Instruction::Sub:
604 case Instruction::SDiv:
605 case Instruction::UDiv:
606 case Instruction::FDiv:
607 case Instruction::URem:
608 case Instruction::SRem:
609 case Instruction::FRem:
610 default: // These instructions cannot be flopped around.
611 return 0;
615 // At this point we know neither constant is an UndefValue nor a ConstantExpr
616 // so look at directly computing the value.
617 if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
618 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
619 using namespace APIntOps;
620 APInt C1V = CI1->getValue();
621 APInt C2V = CI2->getValue();
622 switch (Opcode) {
623 default:
624 break;
625 case Instruction::Add:
626 return ConstantInt::get(C1V + C2V);
627 case Instruction::Sub:
628 return ConstantInt::get(C1V - C2V);
629 case Instruction::Mul:
630 return ConstantInt::get(C1V * C2V);
631 case Instruction::UDiv:
632 if (CI2->isNullValue())
633 return 0; // X / 0 -> can't fold
634 return ConstantInt::get(C1V.udiv(C2V));
635 case Instruction::SDiv:
636 if (CI2->isNullValue())
637 return 0; // X / 0 -> can't fold
638 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
639 return 0; // MIN_INT / -1 -> overflow
640 return ConstantInt::get(C1V.sdiv(C2V));
641 case Instruction::URem:
642 if (C2->isNullValue())
643 return 0; // X / 0 -> can't fold
644 return ConstantInt::get(C1V.urem(C2V));
645 case Instruction::SRem:
646 if (CI2->isNullValue())
647 return 0; // X % 0 -> can't fold
648 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
649 return 0; // MIN_INT % -1 -> overflow
650 return ConstantInt::get(C1V.srem(C2V));
651 case Instruction::And:
652 return ConstantInt::get(C1V & C2V);
653 case Instruction::Or:
654 return ConstantInt::get(C1V | C2V);
655 case Instruction::Xor:
656 return ConstantInt::get(C1V ^ C2V);
657 case Instruction::Shl:
658 if (uint32_t shiftAmt = C2V.getZExtValue())
659 if (shiftAmt < C1V.getBitWidth())
660 return ConstantInt::get(C1V.shl(shiftAmt));
661 else
662 return UndefValue::get(C1->getType()); // too big shift is undef
663 return const_cast<ConstantInt*>(CI1); // Zero shift is identity
664 case Instruction::LShr:
665 if (uint32_t shiftAmt = C2V.getZExtValue())
666 if (shiftAmt < C1V.getBitWidth())
667 return ConstantInt::get(C1V.lshr(shiftAmt));
668 else
669 return UndefValue::get(C1->getType()); // too big shift is undef
670 return const_cast<ConstantInt*>(CI1); // Zero shift is identity
671 case Instruction::AShr:
672 if (uint32_t shiftAmt = C2V.getZExtValue())
673 if (shiftAmt < C1V.getBitWidth())
674 return ConstantInt::get(C1V.ashr(shiftAmt));
675 else
676 return UndefValue::get(C1->getType()); // too big shift is undef
677 return const_cast<ConstantInt*>(CI1); // Zero shift is identity
680 } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
681 if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
682 APFloat C1V = CFP1->getValueAPF();
683 APFloat C2V = CFP2->getValueAPF();
684 APFloat C3V = C1V; // copy for modification
685 bool isDouble = CFP1->getType()==Type::DoubleTy;
686 switch (Opcode) {
687 default:
688 break;
689 case Instruction::Add:
690 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
691 return ConstantFP::get(CFP1->getType(), C3V);
692 case Instruction::Sub:
693 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
694 return ConstantFP::get(CFP1->getType(), C3V);
695 case Instruction::Mul:
696 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
697 return ConstantFP::get(CFP1->getType(), C3V);
698 case Instruction::FDiv:
699 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
700 return ConstantFP::get(CFP1->getType(), C3V);
701 case Instruction::FRem:
702 if (C2V.isZero())
703 // IEEE 754, Section 7.1, #5
704 return ConstantFP::get(CFP1->getType(), isDouble ?
705 APFloat(std::numeric_limits<double>::quiet_NaN()) :
706 APFloat(std::numeric_limits<float>::quiet_NaN()));
707 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
708 return ConstantFP::get(CFP1->getType(), C3V);
711 } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
712 if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
713 switch (Opcode) {
714 default:
715 break;
716 case Instruction::Add:
717 return EvalVectorOp(CP1, CP2, ConstantExpr::getAdd);
718 case Instruction::Sub:
719 return EvalVectorOp(CP1, CP2, ConstantExpr::getSub);
720 case Instruction::Mul:
721 return EvalVectorOp(CP1, CP2, ConstantExpr::getMul);
722 case Instruction::UDiv:
723 return EvalVectorOp(CP1, CP2, ConstantExpr::getUDiv);
724 case Instruction::SDiv:
725 return EvalVectorOp(CP1, CP2, ConstantExpr::getSDiv);
726 case Instruction::FDiv:
727 return EvalVectorOp(CP1, CP2, ConstantExpr::getFDiv);
728 case Instruction::URem:
729 return EvalVectorOp(CP1, CP2, ConstantExpr::getURem);
730 case Instruction::SRem:
731 return EvalVectorOp(CP1, CP2, ConstantExpr::getSRem);
732 case Instruction::FRem:
733 return EvalVectorOp(CP1, CP2, ConstantExpr::getFRem);
734 case Instruction::And:
735 return EvalVectorOp(CP1, CP2, ConstantExpr::getAnd);
736 case Instruction::Or:
737 return EvalVectorOp(CP1, CP2, ConstantExpr::getOr);
738 case Instruction::Xor:
739 return EvalVectorOp(CP1, CP2, ConstantExpr::getXor);
744 // We don't know how to fold this
745 return 0;
748 /// isZeroSizedType - This type is zero sized if its an array or structure of
749 /// zero sized types. The only leaf zero sized type is an empty structure.
750 static bool isMaybeZeroSizedType(const Type *Ty) {
751 if (isa<OpaqueType>(Ty)) return true; // Can't say.
752 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
754 // If all of elements have zero size, this does too.
755 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
756 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
757 return true;
759 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
760 return isMaybeZeroSizedType(ATy->getElementType());
762 return false;
765 /// IdxCompare - Compare the two constants as though they were getelementptr
766 /// indices. This allows coersion of the types to be the same thing.
768 /// If the two constants are the "same" (after coersion), return 0. If the
769 /// first is less than the second, return -1, if the second is less than the
770 /// first, return 1. If the constants are not integral, return -2.
772 static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
773 if (C1 == C2) return 0;
775 // Ok, we found a different index. If they are not ConstantInt, we can't do
776 // anything with them.
777 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
778 return -2; // don't know!
780 // Ok, we have two differing integer indices. Sign extend them to be the same
781 // type. Long is always big enough, so we use it.
782 if (C1->getType() != Type::Int64Ty)
783 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
785 if (C2->getType() != Type::Int64Ty)
786 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
788 if (C1 == C2) return 0; // They are equal
790 // If the type being indexed over is really just a zero sized type, there is
791 // no pointer difference being made here.
792 if (isMaybeZeroSizedType(ElTy))
793 return -2; // dunno.
795 // If they are really different, now that they are the same type, then we
796 // found a difference!
797 if (cast<ConstantInt>(C1)->getSExtValue() <
798 cast<ConstantInt>(C2)->getSExtValue())
799 return -1;
800 else
801 return 1;
804 /// evaluateFCmpRelation - This function determines if there is anything we can
805 /// decide about the two constants provided. This doesn't need to handle simple
806 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
807 /// If we can determine that the two constants have a particular relation to
808 /// each other, we should return the corresponding FCmpInst predicate,
809 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
810 /// ConstantFoldCompareInstruction.
812 /// To simplify this code we canonicalize the relation so that the first
813 /// operand is always the most "complex" of the two. We consider ConstantFP
814 /// to be the simplest, and ConstantExprs to be the most complex.
815 static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
816 const Constant *V2) {
817 assert(V1->getType() == V2->getType() &&
818 "Cannot compare values of different types!");
819 // Handle degenerate case quickly
820 if (V1 == V2) return FCmpInst::FCMP_OEQ;
822 if (!isa<ConstantExpr>(V1)) {
823 if (!isa<ConstantExpr>(V2)) {
824 // We distilled thisUse the standard constant folder for a few cases
825 ConstantInt *R = 0;
826 Constant *C1 = const_cast<Constant*>(V1);
827 Constant *C2 = const_cast<Constant*>(V2);
828 R = dyn_cast<ConstantInt>(
829 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
830 if (R && !R->isZero())
831 return FCmpInst::FCMP_OEQ;
832 R = dyn_cast<ConstantInt>(
833 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
834 if (R && !R->isZero())
835 return FCmpInst::FCMP_OLT;
836 R = dyn_cast<ConstantInt>(
837 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
838 if (R && !R->isZero())
839 return FCmpInst::FCMP_OGT;
841 // Nothing more we can do
842 return FCmpInst::BAD_FCMP_PREDICATE;
845 // If the first operand is simple and second is ConstantExpr, swap operands.
846 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
847 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
848 return FCmpInst::getSwappedPredicate(SwappedRelation);
849 } else {
850 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
851 // constantexpr or a simple constant.
852 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
853 switch (CE1->getOpcode()) {
854 case Instruction::FPTrunc:
855 case Instruction::FPExt:
856 case Instruction::UIToFP:
857 case Instruction::SIToFP:
858 // We might be able to do something with these but we don't right now.
859 break;
860 default:
861 break;
864 // There are MANY other foldings that we could perform here. They will
865 // probably be added on demand, as they seem needed.
866 return FCmpInst::BAD_FCMP_PREDICATE;
869 /// evaluateICmpRelation - This function determines if there is anything we can
870 /// decide about the two constants provided. This doesn't need to handle simple
871 /// things like integer comparisons, but should instead handle ConstantExprs
872 /// and GlobalValues. If we can determine that the two constants have a
873 /// particular relation to each other, we should return the corresponding ICmp
874 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
876 /// To simplify this code we canonicalize the relation so that the first
877 /// operand is always the most "complex" of the two. We consider simple
878 /// constants (like ConstantInt) to be the simplest, followed by
879 /// GlobalValues, followed by ConstantExpr's (the most complex).
881 static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
882 const Constant *V2,
883 bool isSigned) {
884 assert(V1->getType() == V2->getType() &&
885 "Cannot compare different types of values!");
886 if (V1 == V2) return ICmpInst::ICMP_EQ;
888 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
889 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
890 // We distilled this down to a simple case, use the standard constant
891 // folder.
892 ConstantInt *R = 0;
893 Constant *C1 = const_cast<Constant*>(V1);
894 Constant *C2 = const_cast<Constant*>(V2);
895 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
896 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
897 if (R && !R->isZero())
898 return pred;
899 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
900 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
901 if (R && !R->isZero())
902 return pred;
903 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
904 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
905 if (R && !R->isZero())
906 return pred;
908 // If we couldn't figure it out, bail.
909 return ICmpInst::BAD_ICMP_PREDICATE;
912 // If the first operand is simple, swap operands.
913 ICmpInst::Predicate SwappedRelation =
914 evaluateICmpRelation(V2, V1, isSigned);
915 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
916 return ICmpInst::getSwappedPredicate(SwappedRelation);
918 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
919 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
920 ICmpInst::Predicate SwappedRelation =
921 evaluateICmpRelation(V2, V1, isSigned);
922 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
923 return ICmpInst::getSwappedPredicate(SwappedRelation);
924 else
925 return ICmpInst::BAD_ICMP_PREDICATE;
928 // Now we know that the RHS is a GlobalValue or simple constant,
929 // which (since the types must match) means that it's a ConstantPointerNull.
930 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
931 // Don't try to decide equality of aliases.
932 if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
933 if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
934 return ICmpInst::ICMP_NE;
935 } else {
936 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
937 // GlobalVals can never be null. Don't try to evaluate aliases.
938 if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
939 return ICmpInst::ICMP_NE;
941 } else {
942 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
943 // constantexpr, a CPR, or a simple constant.
944 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
945 const Constant *CE1Op0 = CE1->getOperand(0);
947 switch (CE1->getOpcode()) {
948 case Instruction::Trunc:
949 case Instruction::FPTrunc:
950 case Instruction::FPExt:
951 case Instruction::FPToUI:
952 case Instruction::FPToSI:
953 break; // We can't evaluate floating point casts or truncations.
955 case Instruction::UIToFP:
956 case Instruction::SIToFP:
957 case Instruction::IntToPtr:
958 case Instruction::BitCast:
959 case Instruction::ZExt:
960 case Instruction::SExt:
961 case Instruction::PtrToInt:
962 // If the cast is not actually changing bits, and the second operand is a
963 // null pointer, do the comparison with the pre-casted value.
964 if (V2->isNullValue() &&
965 (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
966 bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
967 (CE1->getOpcode() == Instruction::SExt ? true :
968 (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
969 return evaluateICmpRelation(
970 CE1Op0, Constant::getNullValue(CE1Op0->getType()), sgnd);
973 // If the dest type is a pointer type, and the RHS is a constantexpr cast
974 // from the same type as the src of the LHS, evaluate the inputs. This is
975 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
976 // which happens a lot in compilers with tagged integers.
977 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
978 if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
979 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
980 CE1->getOperand(0)->getType()->isInteger()) {
981 bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
982 (CE1->getOpcode() == Instruction::SExt ? true :
983 (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
984 return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
985 sgnd);
987 break;
989 case Instruction::GetElementPtr:
990 // Ok, since this is a getelementptr, we know that the constant has a
991 // pointer type. Check the various cases.
992 if (isa<ConstantPointerNull>(V2)) {
993 // If we are comparing a GEP to a null pointer, check to see if the base
994 // of the GEP equals the null pointer.
995 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
996 if (GV->hasExternalWeakLinkage())
997 // Weak linkage GVals could be zero or not. We're comparing that
998 // to null pointer so its greater-or-equal
999 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1000 else
1001 // If its not weak linkage, the GVal must have a non-zero address
1002 // so the result is greater-than
1003 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1004 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1005 // If we are indexing from a null pointer, check to see if we have any
1006 // non-zero indices.
1007 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1008 if (!CE1->getOperand(i)->isNullValue())
1009 // Offsetting from null, must not be equal.
1010 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1011 // Only zero indexes from null, must still be zero.
1012 return ICmpInst::ICMP_EQ;
1014 // Otherwise, we can't really say if the first operand is null or not.
1015 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1016 if (isa<ConstantPointerNull>(CE1Op0)) {
1017 if (CPR2->hasExternalWeakLinkage())
1018 // Weak linkage GVals could be zero or not. We're comparing it to
1019 // a null pointer, so its less-or-equal
1020 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1021 else
1022 // If its not weak linkage, the GVal must have a non-zero address
1023 // so the result is less-than
1024 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1025 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1026 if (CPR1 == CPR2) {
1027 // If this is a getelementptr of the same global, then it must be
1028 // different. Because the types must match, the getelementptr could
1029 // only have at most one index, and because we fold getelementptr's
1030 // with a single zero index, it must be nonzero.
1031 assert(CE1->getNumOperands() == 2 &&
1032 !CE1->getOperand(1)->isNullValue() &&
1033 "Suprising getelementptr!");
1034 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1035 } else {
1036 // If they are different globals, we don't know what the value is,
1037 // but they can't be equal.
1038 return ICmpInst::ICMP_NE;
1041 } else {
1042 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1043 const Constant *CE2Op0 = CE2->getOperand(0);
1045 // There are MANY other foldings that we could perform here. They will
1046 // probably be added on demand, as they seem needed.
1047 switch (CE2->getOpcode()) {
1048 default: break;
1049 case Instruction::GetElementPtr:
1050 // By far the most common case to handle is when the base pointers are
1051 // obviously to the same or different globals.
1052 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1053 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1054 return ICmpInst::ICMP_NE;
1055 // Ok, we know that both getelementptr instructions are based on the
1056 // same global. From this, we can precisely determine the relative
1057 // ordering of the resultant pointers.
1058 unsigned i = 1;
1060 // Compare all of the operands the GEP's have in common.
1061 gep_type_iterator GTI = gep_type_begin(CE1);
1062 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1063 ++i, ++GTI)
1064 switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1065 GTI.getIndexedType())) {
1066 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1067 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1068 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1071 // Ok, we ran out of things they have in common. If any leftovers
1072 // are non-zero then we have a difference, otherwise we are equal.
1073 for (; i < CE1->getNumOperands(); ++i)
1074 if (!CE1->getOperand(i)->isNullValue())
1075 if (isa<ConstantInt>(CE1->getOperand(i)))
1076 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1077 else
1078 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1080 for (; i < CE2->getNumOperands(); ++i)
1081 if (!CE2->getOperand(i)->isNullValue())
1082 if (isa<ConstantInt>(CE2->getOperand(i)))
1083 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1084 else
1085 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1086 return ICmpInst::ICMP_EQ;
1090 default:
1091 break;
1095 return ICmpInst::BAD_ICMP_PREDICATE;
1098 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1099 const Constant *C1,
1100 const Constant *C2) {
1102 // Handle some degenerate cases first
1103 if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1104 return UndefValue::get(Type::Int1Ty);
1106 // icmp eq/ne(null,GV) -> false/true
1107 if (C1->isNullValue()) {
1108 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1109 // Don't try to evaluate aliases. External weak GV can be null.
1110 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage())
1111 if (pred == ICmpInst::ICMP_EQ)
1112 return ConstantInt::getFalse();
1113 else if (pred == ICmpInst::ICMP_NE)
1114 return ConstantInt::getTrue();
1115 // icmp eq/ne(GV,null) -> false/true
1116 } else if (C2->isNullValue()) {
1117 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1118 // Don't try to evaluate aliases. External weak GV can be null.
1119 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage())
1120 if (pred == ICmpInst::ICMP_EQ)
1121 return ConstantInt::getFalse();
1122 else if (pred == ICmpInst::ICMP_NE)
1123 return ConstantInt::getTrue();
1126 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1127 APInt V1 = cast<ConstantInt>(C1)->getValue();
1128 APInt V2 = cast<ConstantInt>(C2)->getValue();
1129 switch (pred) {
1130 default: assert(0 && "Invalid ICmp Predicate"); return 0;
1131 case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1132 case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1133 case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1134 case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1135 case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1136 case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1137 case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1138 case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1139 case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1140 case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1142 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1143 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1144 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1145 APFloat::cmpResult R = C1V.compare(C2V);
1146 switch (pred) {
1147 default: assert(0 && "Invalid FCmp Predicate"); return 0;
1148 case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1149 case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
1150 case FCmpInst::FCMP_UNO:
1151 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1152 case FCmpInst::FCMP_ORD:
1153 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1154 case FCmpInst::FCMP_UEQ:
1155 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1156 R==APFloat::cmpEqual);
1157 case FCmpInst::FCMP_OEQ:
1158 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1159 case FCmpInst::FCMP_UNE:
1160 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1161 case FCmpInst::FCMP_ONE:
1162 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1163 R==APFloat::cmpGreaterThan);
1164 case FCmpInst::FCMP_ULT:
1165 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1166 R==APFloat::cmpLessThan);
1167 case FCmpInst::FCMP_OLT:
1168 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1169 case FCmpInst::FCMP_UGT:
1170 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1171 R==APFloat::cmpGreaterThan);
1172 case FCmpInst::FCMP_OGT:
1173 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1174 case FCmpInst::FCMP_ULE:
1175 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1176 case FCmpInst::FCMP_OLE:
1177 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1178 R==APFloat::cmpEqual);
1179 case FCmpInst::FCMP_UGE:
1180 return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1181 case FCmpInst::FCMP_OGE:
1182 return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1183 R==APFloat::cmpEqual);
1185 } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
1186 if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
1187 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
1188 for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1189 Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
1190 const_cast<Constant*>(CP1->getOperand(i)),
1191 const_cast<Constant*>(CP2->getOperand(i)));
1192 if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1193 return CB;
1195 // Otherwise, could not decide from any element pairs.
1196 return 0;
1197 } else if (pred == ICmpInst::ICMP_EQ) {
1198 for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1199 Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
1200 const_cast<Constant*>(CP1->getOperand(i)),
1201 const_cast<Constant*>(CP2->getOperand(i)));
1202 if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1203 return CB;
1205 // Otherwise, could not decide from any element pairs.
1206 return 0;
1211 if (C1->getType()->isFloatingPoint()) {
1212 switch (evaluateFCmpRelation(C1, C2)) {
1213 default: assert(0 && "Unknown relation!");
1214 case FCmpInst::FCMP_UNO:
1215 case FCmpInst::FCMP_ORD:
1216 case FCmpInst::FCMP_UEQ:
1217 case FCmpInst::FCMP_UNE:
1218 case FCmpInst::FCMP_ULT:
1219 case FCmpInst::FCMP_UGT:
1220 case FCmpInst::FCMP_ULE:
1221 case FCmpInst::FCMP_UGE:
1222 case FCmpInst::FCMP_TRUE:
1223 case FCmpInst::FCMP_FALSE:
1224 case FCmpInst::BAD_FCMP_PREDICATE:
1225 break; // Couldn't determine anything about these constants.
1226 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1227 return ConstantInt::get(Type::Int1Ty,
1228 pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1229 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1230 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1231 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1232 return ConstantInt::get(Type::Int1Ty,
1233 pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1234 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1235 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1236 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1237 return ConstantInt::get(Type::Int1Ty,
1238 pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1239 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1240 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1241 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1242 // We can only partially decide this relation.
1243 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1244 return ConstantInt::getFalse();
1245 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1246 return ConstantInt::getTrue();
1247 break;
1248 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1249 // We can only partially decide this relation.
1250 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1251 return ConstantInt::getFalse();
1252 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1253 return ConstantInt::getTrue();
1254 break;
1255 case ICmpInst::ICMP_NE: // We know that C1 != C2
1256 // We can only partially decide this relation.
1257 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1258 return ConstantInt::getFalse();
1259 if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1260 return ConstantInt::getTrue();
1261 break;
1263 } else {
1264 // Evaluate the relation between the two constants, per the predicate.
1265 switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1266 default: assert(0 && "Unknown relational!");
1267 case ICmpInst::BAD_ICMP_PREDICATE:
1268 break; // Couldn't determine anything about these constants.
1269 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1270 // If we know the constants are equal, we can decide the result of this
1271 // computation precisely.
1272 return ConstantInt::get(Type::Int1Ty,
1273 pred == ICmpInst::ICMP_EQ ||
1274 pred == ICmpInst::ICMP_ULE ||
1275 pred == ICmpInst::ICMP_SLE ||
1276 pred == ICmpInst::ICMP_UGE ||
1277 pred == ICmpInst::ICMP_SGE);
1278 case ICmpInst::ICMP_ULT:
1279 // If we know that C1 < C2, we can decide the result of this computation
1280 // precisely.
1281 return ConstantInt::get(Type::Int1Ty,
1282 pred == ICmpInst::ICMP_ULT ||
1283 pred == ICmpInst::ICMP_NE ||
1284 pred == ICmpInst::ICMP_ULE);
1285 case ICmpInst::ICMP_SLT:
1286 // If we know that C1 < C2, we can decide the result of this computation
1287 // precisely.
1288 return ConstantInt::get(Type::Int1Ty,
1289 pred == ICmpInst::ICMP_SLT ||
1290 pred == ICmpInst::ICMP_NE ||
1291 pred == ICmpInst::ICMP_SLE);
1292 case ICmpInst::ICMP_UGT:
1293 // If we know that C1 > C2, we can decide the result of this computation
1294 // precisely.
1295 return ConstantInt::get(Type::Int1Ty,
1296 pred == ICmpInst::ICMP_UGT ||
1297 pred == ICmpInst::ICMP_NE ||
1298 pred == ICmpInst::ICMP_UGE);
1299 case ICmpInst::ICMP_SGT:
1300 // If we know that C1 > C2, we can decide the result of this computation
1301 // precisely.
1302 return ConstantInt::get(Type::Int1Ty,
1303 pred == ICmpInst::ICMP_SGT ||
1304 pred == ICmpInst::ICMP_NE ||
1305 pred == ICmpInst::ICMP_SGE);
1306 case ICmpInst::ICMP_ULE:
1307 // If we know that C1 <= C2, we can only partially decide this relation.
1308 if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
1309 if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
1310 break;
1311 case ICmpInst::ICMP_SLE:
1312 // If we know that C1 <= C2, we can only partially decide this relation.
1313 if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
1314 if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
1315 break;
1317 case ICmpInst::ICMP_UGE:
1318 // If we know that C1 >= C2, we can only partially decide this relation.
1319 if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
1320 if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
1321 break;
1322 case ICmpInst::ICMP_SGE:
1323 // If we know that C1 >= C2, we can only partially decide this relation.
1324 if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
1325 if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
1326 break;
1328 case ICmpInst::ICMP_NE:
1329 // If we know that C1 != C2, we can only partially decide this relation.
1330 if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
1331 if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
1332 break;
1335 if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1336 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1337 // other way if possible.
1338 switch (pred) {
1339 case ICmpInst::ICMP_EQ:
1340 case ICmpInst::ICMP_NE:
1341 // No change of predicate required.
1342 return ConstantFoldCompareInstruction(pred, C2, C1);
1344 case ICmpInst::ICMP_ULT:
1345 case ICmpInst::ICMP_SLT:
1346 case ICmpInst::ICMP_UGT:
1347 case ICmpInst::ICMP_SGT:
1348 case ICmpInst::ICMP_ULE:
1349 case ICmpInst::ICMP_SLE:
1350 case ICmpInst::ICMP_UGE:
1351 case ICmpInst::ICMP_SGE:
1352 // Change the predicate as necessary to swap the operands.
1353 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1354 return ConstantFoldCompareInstruction(pred, C2, C1);
1356 default: // These predicates cannot be flopped around.
1357 break;
1361 return 0;
1364 Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1365 Constant* const *Idxs,
1366 unsigned NumIdx) {
1367 if (NumIdx == 0 ||
1368 (NumIdx == 1 && Idxs[0]->isNullValue()))
1369 return const_cast<Constant*>(C);
1371 if (isa<UndefValue>(C)) {
1372 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
1373 (Value **)Idxs,
1374 (Value **)Idxs+NumIdx,
1375 true);
1376 assert(Ty != 0 && "Invalid indices for GEP!");
1377 return UndefValue::get(PointerType::get(Ty));
1380 Constant *Idx0 = Idxs[0];
1381 if (C->isNullValue()) {
1382 bool isNull = true;
1383 for (unsigned i = 0, e = NumIdx; i != e; ++i)
1384 if (!Idxs[i]->isNullValue()) {
1385 isNull = false;
1386 break;
1388 if (isNull) {
1389 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
1390 (Value**)Idxs,
1391 (Value**)Idxs+NumIdx,
1392 true);
1393 assert(Ty != 0 && "Invalid indices for GEP!");
1394 return ConstantPointerNull::get(PointerType::get(Ty));
1398 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1399 // Combine Indices - If the source pointer to this getelementptr instruction
1400 // is a getelementptr instruction, combine the indices of the two
1401 // getelementptr instructions into a single instruction.
1403 if (CE->getOpcode() == Instruction::GetElementPtr) {
1404 const Type *LastTy = 0;
1405 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1406 I != E; ++I)
1407 LastTy = *I;
1409 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1410 SmallVector<Value*, 16> NewIndices;
1411 NewIndices.reserve(NumIdx + CE->getNumOperands());
1412 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1413 NewIndices.push_back(CE->getOperand(i));
1415 // Add the last index of the source with the first index of the new GEP.
1416 // Make sure to handle the case when they are actually different types.
1417 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1418 // Otherwise it must be an array.
1419 if (!Idx0->isNullValue()) {
1420 const Type *IdxTy = Combined->getType();
1421 if (IdxTy != Idx0->getType()) {
1422 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1423 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1424 Type::Int64Ty);
1425 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1426 } else {
1427 Combined =
1428 ConstantExpr::get(Instruction::Add, Idx0, Combined);
1432 NewIndices.push_back(Combined);
1433 NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1434 return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1435 NewIndices.size());
1439 // Implement folding of:
1440 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1441 // long 0, long 0)
1442 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1444 if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1445 if (const PointerType *SPT =
1446 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1447 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1448 if (const ArrayType *CAT =
1449 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1450 if (CAT->getElementType() == SAT->getElementType())
1451 return ConstantExpr::getGetElementPtr(
1452 (Constant*)CE->getOperand(0), Idxs, NumIdx);
1455 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1456 // Into: inttoptr (i64 0 to i8*)
1457 // This happens with pointers to member functions in C++.
1458 if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1459 isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1460 cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1461 Constant *Base = CE->getOperand(0);
1462 Constant *Offset = Idxs[0];
1464 // Convert the smaller integer to the larger type.
1465 if (Offset->getType()->getPrimitiveSizeInBits() <
1466 Base->getType()->getPrimitiveSizeInBits())
1467 Offset = ConstantExpr::getSExt(Offset, Base->getType());
1468 else if (Base->getType()->getPrimitiveSizeInBits() <
1469 Offset->getType()->getPrimitiveSizeInBits())
1470 Base = ConstantExpr::getZExt(Base, Base->getType());
1472 Base = ConstantExpr::getAdd(Base, Offset);
1473 return ConstantExpr::getIntToPtr(Base, CE->getType());
1476 return 0;