Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / VMCore / Constants.cpp
blob28b7e45bf55fa2b3db57bfd088d1ffeff7859430
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "ConstantFold.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/GlobalValue.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ManagedStatic.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include <algorithm>
28 #include <map>
29 using namespace llvm;
31 //===----------------------------------------------------------------------===//
32 // Constant Class
33 //===----------------------------------------------------------------------===//
35 void Constant::destroyConstantImpl() {
36 // When a Constant is destroyed, there may be lingering
37 // references to the constant by other constants in the constant pool. These
38 // constants are implicitly dependent on the module that is being deleted,
39 // but they don't know that. Because we only find out when the CPV is
40 // deleted, we must now notify all of our users (that should only be
41 // Constants) that they are, in fact, invalid now and should be deleted.
43 while (!use_empty()) {
44 Value *V = use_back();
45 #ifndef NDEBUG // Only in -g mode...
46 if (!isa<Constant>(V))
47 DOUT << "While deleting: " << *this
48 << "\n\nUse still stuck around after Def is destroyed: "
49 << *V << "\n\n";
50 #endif
51 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
52 Constant *CV = cast<Constant>(V);
53 CV->destroyConstant();
55 // The constant should remove itself from our use list...
56 assert((use_empty() || use_back() != V) && "Constant not removed!");
59 // Value has no outstanding references it is safe to delete it now...
60 delete this;
63 /// canTrap - Return true if evaluation of this constant could trap. This is
64 /// true for things like constant expressions that could divide by zero.
65 bool Constant::canTrap() const {
66 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
67 // The only thing that could possibly trap are constant exprs.
68 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
69 if (!CE) return false;
71 // ConstantExpr traps if any operands can trap.
72 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
73 if (getOperand(i)->canTrap())
74 return true;
76 // Otherwise, only specific operations can trap.
77 switch (CE->getOpcode()) {
78 default:
79 return false;
80 case Instruction::UDiv:
81 case Instruction::SDiv:
82 case Instruction::FDiv:
83 case Instruction::URem:
84 case Instruction::SRem:
85 case Instruction::FRem:
86 // Div and rem can trap if the RHS is not known to be non-zero.
87 if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
88 return true;
89 return false;
93 /// ContaintsRelocations - Return true if the constant value contains
94 /// relocations which cannot be resolved at compile time.
95 bool Constant::ContainsRelocations() const {
96 if (isa<GlobalValue>(this))
97 return true;
98 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
99 if (getOperand(i)->ContainsRelocations())
100 return true;
101 return false;
104 // Static constructor to create a '0' constant of arbitrary type...
105 Constant *Constant::getNullValue(const Type *Ty) {
106 static uint64_t zero[2] = {0, 0};
107 switch (Ty->getTypeID()) {
108 case Type::IntegerTyID:
109 return ConstantInt::get(Ty, 0);
110 case Type::FloatTyID:
111 return ConstantFP::get(Ty, APFloat(APInt(32, 0)));
112 case Type::DoubleTyID:
113 return ConstantFP::get(Ty, APFloat(APInt(64, 0)));
114 case Type::X86_FP80TyID:
115 return ConstantFP::get(Ty, APFloat(APInt(80, 2, zero)));
116 case Type::FP128TyID:
117 case Type::PPC_FP128TyID:
118 return ConstantFP::get(Ty, APFloat(APInt(128, 2, zero)));
119 case Type::PointerTyID:
120 return ConstantPointerNull::get(cast<PointerType>(Ty));
121 case Type::StructTyID:
122 case Type::ArrayTyID:
123 case Type::VectorTyID:
124 return ConstantAggregateZero::get(Ty);
125 default:
126 // Function, Label, or Opaque type?
127 assert(!"Cannot create a null constant of that type!");
128 return 0;
132 Constant *Constant::getAllOnesValue(const Type *Ty) {
133 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
134 return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
135 return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
138 // Static constructor to create an integral constant with all bits set
139 ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
140 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
141 return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
142 return 0;
145 /// @returns the value for a vector integer constant of the given type that
146 /// has all its bits set to true.
147 /// @brief Get the all ones value
148 ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
149 std::vector<Constant*> Elts;
150 Elts.resize(Ty->getNumElements(),
151 ConstantInt::getAllOnesValue(Ty->getElementType()));
152 assert(Elts[0] && "Not a vector integer type!");
153 return cast<ConstantVector>(ConstantVector::get(Elts));
157 //===----------------------------------------------------------------------===//
158 // ConstantInt
159 //===----------------------------------------------------------------------===//
161 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
162 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
163 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
166 ConstantInt *ConstantInt::TheTrueVal = 0;
167 ConstantInt *ConstantInt::TheFalseVal = 0;
169 namespace llvm {
170 void CleanupTrueFalse(void *) {
171 ConstantInt::ResetTrueFalse();
175 static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
177 ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
178 assert(TheTrueVal == 0 && TheFalseVal == 0);
179 TheTrueVal = get(Type::Int1Ty, 1);
180 TheFalseVal = get(Type::Int1Ty, 0);
182 // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
183 TrueFalseCleanup.Register();
185 return WhichOne ? TheTrueVal : TheFalseVal;
189 namespace {
190 struct DenseMapAPIntKeyInfo {
191 struct KeyTy {
192 APInt val;
193 const Type* type;
194 KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
195 KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
196 bool operator==(const KeyTy& that) const {
197 return type == that.type && this->val == that.val;
199 bool operator!=(const KeyTy& that) const {
200 return !this->operator==(that);
203 static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
204 static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
205 static unsigned getHashValue(const KeyTy &Key) {
206 return DenseMapInfo<void*>::getHashValue(Key.type) ^
207 Key.val.getHashValue();
209 static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
210 return LHS == RHS;
212 static bool isPod() { return false; }
217 typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
218 DenseMapAPIntKeyInfo> IntMapTy;
219 static ManagedStatic<IntMapTy> IntConstants;
221 ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
222 const IntegerType *ITy = cast<IntegerType>(Ty);
223 return get(APInt(ITy->getBitWidth(), V, isSigned));
226 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
227 // as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the
228 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
229 // compare APInt's of different widths, which would violate an APInt class
230 // invariant which generates an assertion.
231 ConstantInt *ConstantInt::get(const APInt& V) {
232 // Get the corresponding integer type for the bit width of the value.
233 const IntegerType *ITy = IntegerType::get(V.getBitWidth());
234 // get an existing value or the insertion position
235 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
236 ConstantInt *&Slot = (*IntConstants)[Key];
237 // if it exists, return it.
238 if (Slot)
239 return Slot;
240 // otherwise create a new one, insert it, and return it.
241 return Slot = new ConstantInt(ITy, V);
244 //===----------------------------------------------------------------------===//
245 // ConstantFP
246 //===----------------------------------------------------------------------===//
248 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
249 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
250 // temporary
251 if (Ty==Type::FloatTy)
252 assert(&V.getSemantics()==&APFloat::IEEEsingle);
253 else if (Ty==Type::DoubleTy)
254 assert(&V.getSemantics()==&APFloat::IEEEdouble);
255 else if (Ty==Type::X86_FP80Ty)
256 assert(&V.getSemantics()==&APFloat::x87DoubleExtended);
257 else if (Ty==Type::FP128Ty)
258 assert(&V.getSemantics()==&APFloat::IEEEquad);
259 else
260 assert(0);
263 bool ConstantFP::isNullValue() const {
264 return Val.isZero() && !Val.isNegative();
267 ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
268 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
269 apf.changeSign();
270 return ConstantFP::get(Ty, apf);
273 bool ConstantFP::isExactlyValue(const APFloat& V) const {
274 return Val.bitwiseIsEqual(V);
277 namespace {
278 struct DenseMapAPFloatKeyInfo {
279 struct KeyTy {
280 APFloat val;
281 KeyTy(const APFloat& V) : val(V){}
282 KeyTy(const KeyTy& that) : val(that.val) {}
283 bool operator==(const KeyTy& that) const {
284 return this->val.bitwiseIsEqual(that.val);
286 bool operator!=(const KeyTy& that) const {
287 return !this->operator==(that);
290 static inline KeyTy getEmptyKey() {
291 return KeyTy(APFloat(APFloat::Bogus,1));
293 static inline KeyTy getTombstoneKey() {
294 return KeyTy(APFloat(APFloat::Bogus,2));
296 static unsigned getHashValue(const KeyTy &Key) {
297 return Key.val.getHashValue();
299 static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
300 return LHS == RHS;
302 static bool isPod() { return false; }
306 //---- ConstantFP::get() implementation...
308 typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
309 DenseMapAPFloatKeyInfo> FPMapTy;
311 static ManagedStatic<FPMapTy> FPConstants;
313 ConstantFP *ConstantFP::get(const Type *Ty, const APFloat& V) {
314 // temporary
315 if (Ty==Type::FloatTy)
316 assert(&V.getSemantics()==&APFloat::IEEEsingle);
317 else if (Ty==Type::DoubleTy)
318 assert(&V.getSemantics()==&APFloat::IEEEdouble);
319 else if (Ty==Type::X86_FP80Ty)
320 assert(&V.getSemantics()==&APFloat::x87DoubleExtended);
321 else if (Ty==Type::FP128Ty)
322 assert(&V.getSemantics()==&APFloat::IEEEquad);
323 else
324 assert(0);
326 DenseMapAPFloatKeyInfo::KeyTy Key(V);
327 ConstantFP *&Slot = (*FPConstants)[Key];
328 if (Slot) return Slot;
329 return Slot = new ConstantFP(Ty, V);
332 //===----------------------------------------------------------------------===//
333 // ConstantXXX Classes
334 //===----------------------------------------------------------------------===//
337 ConstantArray::ConstantArray(const ArrayType *T,
338 const std::vector<Constant*> &V)
339 : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
340 assert(V.size() == T->getNumElements() &&
341 "Invalid initializer vector for constant array");
342 Use *OL = OperandList;
343 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
344 I != E; ++I, ++OL) {
345 Constant *C = *I;
346 assert((C->getType() == T->getElementType() ||
347 (T->isAbstract() &&
348 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
349 "Initializer for array element doesn't match array element type!");
350 OL->init(C, this);
354 ConstantArray::~ConstantArray() {
355 delete [] OperandList;
358 ConstantStruct::ConstantStruct(const StructType *T,
359 const std::vector<Constant*> &V)
360 : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
361 assert(V.size() == T->getNumElements() &&
362 "Invalid initializer vector for constant structure");
363 Use *OL = OperandList;
364 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
365 I != E; ++I, ++OL) {
366 Constant *C = *I;
367 assert((C->getType() == T->getElementType(I-V.begin()) ||
368 ((T->getElementType(I-V.begin())->isAbstract() ||
369 C->getType()->isAbstract()) &&
370 T->getElementType(I-V.begin())->getTypeID() ==
371 C->getType()->getTypeID())) &&
372 "Initializer for struct element doesn't match struct element type!");
373 OL->init(C, this);
377 ConstantStruct::~ConstantStruct() {
378 delete [] OperandList;
382 ConstantVector::ConstantVector(const VectorType *T,
383 const std::vector<Constant*> &V)
384 : Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) {
385 Use *OL = OperandList;
386 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
387 I != E; ++I, ++OL) {
388 Constant *C = *I;
389 assert((C->getType() == T->getElementType() ||
390 (T->isAbstract() &&
391 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
392 "Initializer for vector element doesn't match vector element type!");
393 OL->init(C, this);
397 ConstantVector::~ConstantVector() {
398 delete [] OperandList;
401 // We declare several classes private to this file, so use an anonymous
402 // namespace
403 namespace {
405 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
406 /// behind the scenes to implement unary constant exprs.
407 class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
408 Use Op;
409 public:
410 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
411 : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
414 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
415 /// behind the scenes to implement binary constant exprs.
416 class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
417 Use Ops[2];
418 public:
419 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
420 : ConstantExpr(C1->getType(), Opcode, Ops, 2) {
421 Ops[0].init(C1, this);
422 Ops[1].init(C2, this);
426 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
427 /// behind the scenes to implement select constant exprs.
428 class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
429 Use Ops[3];
430 public:
431 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
432 : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
433 Ops[0].init(C1, this);
434 Ops[1].init(C2, this);
435 Ops[2].init(C3, this);
439 /// ExtractElementConstantExpr - This class is private to
440 /// Constants.cpp, and is used behind the scenes to implement
441 /// extractelement constant exprs.
442 class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
443 Use Ops[2];
444 public:
445 ExtractElementConstantExpr(Constant *C1, Constant *C2)
446 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
447 Instruction::ExtractElement, Ops, 2) {
448 Ops[0].init(C1, this);
449 Ops[1].init(C2, this);
453 /// InsertElementConstantExpr - This class is private to
454 /// Constants.cpp, and is used behind the scenes to implement
455 /// insertelement constant exprs.
456 class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
457 Use Ops[3];
458 public:
459 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
460 : ConstantExpr(C1->getType(), Instruction::InsertElement,
461 Ops, 3) {
462 Ops[0].init(C1, this);
463 Ops[1].init(C2, this);
464 Ops[2].init(C3, this);
468 /// ShuffleVectorConstantExpr - This class is private to
469 /// Constants.cpp, and is used behind the scenes to implement
470 /// shufflevector constant exprs.
471 class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
472 Use Ops[3];
473 public:
474 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
475 : ConstantExpr(C1->getType(), Instruction::ShuffleVector,
476 Ops, 3) {
477 Ops[0].init(C1, this);
478 Ops[1].init(C2, this);
479 Ops[2].init(C3, this);
483 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
484 /// used behind the scenes to implement getelementpr constant exprs.
485 struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
486 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
487 const Type *DestTy)
488 : ConstantExpr(DestTy, Instruction::GetElementPtr,
489 new Use[IdxList.size()+1], IdxList.size()+1) {
490 OperandList[0].init(C, this);
491 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
492 OperandList[i+1].init(IdxList[i], this);
494 ~GetElementPtrConstantExpr() {
495 delete [] OperandList;
499 // CompareConstantExpr - This class is private to Constants.cpp, and is used
500 // behind the scenes to implement ICmp and FCmp constant expressions. This is
501 // needed in order to store the predicate value for these instructions.
502 struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
503 unsigned short predicate;
504 Use Ops[2];
505 CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred,
506 Constant* LHS, Constant* RHS)
507 : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) {
508 OperandList[0].init(LHS, this);
509 OperandList[1].init(RHS, this);
513 } // end anonymous namespace
516 // Utility function for determining if a ConstantExpr is a CastOp or not. This
517 // can't be inline because we don't want to #include Instruction.h into
518 // Constant.h
519 bool ConstantExpr::isCast() const {
520 return Instruction::isCast(getOpcode());
523 bool ConstantExpr::isCompare() const {
524 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
527 /// ConstantExpr::get* - Return some common constants without having to
528 /// specify the full Instruction::OPCODE identifier.
530 Constant *ConstantExpr::getNeg(Constant *C) {
531 return get(Instruction::Sub,
532 ConstantExpr::getZeroValueForNegationExpr(C->getType()),
535 Constant *ConstantExpr::getNot(Constant *C) {
536 assert(isa<ConstantInt>(C) && "Cannot NOT a nonintegral type!");
537 return get(Instruction::Xor, C,
538 ConstantInt::getAllOnesValue(C->getType()));
540 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
541 return get(Instruction::Add, C1, C2);
543 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
544 return get(Instruction::Sub, C1, C2);
546 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
547 return get(Instruction::Mul, C1, C2);
549 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
550 return get(Instruction::UDiv, C1, C2);
552 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
553 return get(Instruction::SDiv, C1, C2);
555 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
556 return get(Instruction::FDiv, C1, C2);
558 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
559 return get(Instruction::URem, C1, C2);
561 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
562 return get(Instruction::SRem, C1, C2);
564 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
565 return get(Instruction::FRem, C1, C2);
567 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
568 return get(Instruction::And, C1, C2);
570 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
571 return get(Instruction::Or, C1, C2);
573 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
574 return get(Instruction::Xor, C1, C2);
576 unsigned ConstantExpr::getPredicate() const {
577 assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp);
578 return dynamic_cast<const CompareConstantExpr*>(this)->predicate;
580 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
581 return get(Instruction::Shl, C1, C2);
583 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
584 return get(Instruction::LShr, C1, C2);
586 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
587 return get(Instruction::AShr, C1, C2);
590 /// getWithOperandReplaced - Return a constant expression identical to this
591 /// one, but with the specified operand set to the specified value.
592 Constant *
593 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
594 assert(OpNo < getNumOperands() && "Operand num is out of range!");
595 assert(Op->getType() == getOperand(OpNo)->getType() &&
596 "Replacing operand with value of different type!");
597 if (getOperand(OpNo) == Op)
598 return const_cast<ConstantExpr*>(this);
600 Constant *Op0, *Op1, *Op2;
601 switch (getOpcode()) {
602 case Instruction::Trunc:
603 case Instruction::ZExt:
604 case Instruction::SExt:
605 case Instruction::FPTrunc:
606 case Instruction::FPExt:
607 case Instruction::UIToFP:
608 case Instruction::SIToFP:
609 case Instruction::FPToUI:
610 case Instruction::FPToSI:
611 case Instruction::PtrToInt:
612 case Instruction::IntToPtr:
613 case Instruction::BitCast:
614 return ConstantExpr::getCast(getOpcode(), Op, getType());
615 case Instruction::Select:
616 Op0 = (OpNo == 0) ? Op : getOperand(0);
617 Op1 = (OpNo == 1) ? Op : getOperand(1);
618 Op2 = (OpNo == 2) ? Op : getOperand(2);
619 return ConstantExpr::getSelect(Op0, Op1, Op2);
620 case Instruction::InsertElement:
621 Op0 = (OpNo == 0) ? Op : getOperand(0);
622 Op1 = (OpNo == 1) ? Op : getOperand(1);
623 Op2 = (OpNo == 2) ? Op : getOperand(2);
624 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
625 case Instruction::ExtractElement:
626 Op0 = (OpNo == 0) ? Op : getOperand(0);
627 Op1 = (OpNo == 1) ? Op : getOperand(1);
628 return ConstantExpr::getExtractElement(Op0, Op1);
629 case Instruction::ShuffleVector:
630 Op0 = (OpNo == 0) ? Op : getOperand(0);
631 Op1 = (OpNo == 1) ? Op : getOperand(1);
632 Op2 = (OpNo == 2) ? Op : getOperand(2);
633 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
634 case Instruction::GetElementPtr: {
635 SmallVector<Constant*, 8> Ops;
636 Ops.resize(getNumOperands());
637 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
638 Ops[i] = getOperand(i);
639 if (OpNo == 0)
640 return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
641 Ops[OpNo-1] = Op;
642 return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
644 default:
645 assert(getNumOperands() == 2 && "Must be binary operator?");
646 Op0 = (OpNo == 0) ? Op : getOperand(0);
647 Op1 = (OpNo == 1) ? Op : getOperand(1);
648 return ConstantExpr::get(getOpcode(), Op0, Op1);
652 /// getWithOperands - This returns the current constant expression with the
653 /// operands replaced with the specified values. The specified operands must
654 /// match count and type with the existing ones.
655 Constant *ConstantExpr::
656 getWithOperands(const std::vector<Constant*> &Ops) const {
657 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
658 bool AnyChange = false;
659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
660 assert(Ops[i]->getType() == getOperand(i)->getType() &&
661 "Operand type mismatch!");
662 AnyChange |= Ops[i] != getOperand(i);
664 if (!AnyChange) // No operands changed, return self.
665 return const_cast<ConstantExpr*>(this);
667 switch (getOpcode()) {
668 case Instruction::Trunc:
669 case Instruction::ZExt:
670 case Instruction::SExt:
671 case Instruction::FPTrunc:
672 case Instruction::FPExt:
673 case Instruction::UIToFP:
674 case Instruction::SIToFP:
675 case Instruction::FPToUI:
676 case Instruction::FPToSI:
677 case Instruction::PtrToInt:
678 case Instruction::IntToPtr:
679 case Instruction::BitCast:
680 return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
681 case Instruction::Select:
682 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
683 case Instruction::InsertElement:
684 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
685 case Instruction::ExtractElement:
686 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
687 case Instruction::ShuffleVector:
688 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
689 case Instruction::GetElementPtr:
690 return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
691 case Instruction::ICmp:
692 case Instruction::FCmp:
693 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
694 default:
695 assert(getNumOperands() == 2 && "Must be binary operator?");
696 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
701 //===----------------------------------------------------------------------===//
702 // isValueValidForType implementations
704 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
705 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
706 if (Ty == Type::Int1Ty)
707 return Val == 0 || Val == 1;
708 if (NumBits >= 64)
709 return true; // always true, has to fit in largest type
710 uint64_t Max = (1ll << NumBits) - 1;
711 return Val <= Max;
714 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
715 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
716 if (Ty == Type::Int1Ty)
717 return Val == 0 || Val == 1 || Val == -1;
718 if (NumBits >= 64)
719 return true; // always true, has to fit in largest type
720 int64_t Min = -(1ll << (NumBits-1));
721 int64_t Max = (1ll << (NumBits-1)) - 1;
722 return (Val >= Min && Val <= Max);
725 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
726 // convert modifies in place, so make a copy.
727 APFloat Val2 = APFloat(Val);
728 switch (Ty->getTypeID()) {
729 default:
730 return false; // These can't be represented as floating point!
732 // FIXME rounding mode needs to be more flexible
733 case Type::FloatTyID:
734 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
735 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
736 APFloat::opOK;
737 case Type::DoubleTyID:
738 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
739 &Val2.getSemantics() == &APFloat::IEEEdouble ||
740 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
741 APFloat::opOK;
742 case Type::X86_FP80TyID:
743 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
744 &Val2.getSemantics() == &APFloat::IEEEdouble ||
745 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
746 case Type::FP128TyID:
747 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
748 &Val2.getSemantics() == &APFloat::IEEEdouble ||
749 &Val2.getSemantics() == &APFloat::IEEEquad;
753 //===----------------------------------------------------------------------===//
754 // Factory Function Implementation
756 // ConstantCreator - A class that is used to create constants by
757 // ValueMap*. This class should be partially specialized if there is
758 // something strange that needs to be done to interface to the ctor for the
759 // constant.
761 namespace llvm {
762 template<class ConstantClass, class TypeClass, class ValType>
763 struct VISIBILITY_HIDDEN ConstantCreator {
764 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
765 return new ConstantClass(Ty, V);
769 template<class ConstantClass, class TypeClass>
770 struct VISIBILITY_HIDDEN ConvertConstantType {
771 static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
772 assert(0 && "This type cannot be converted!\n");
773 abort();
777 template<class ValType, class TypeClass, class ConstantClass,
778 bool HasLargeKey = false /*true for arrays and structs*/ >
779 class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
780 public:
781 typedef std::pair<const Type*, ValType> MapKey;
782 typedef std::map<MapKey, Constant *> MapTy;
783 typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
784 typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
785 private:
786 /// Map - This is the main map from the element descriptor to the Constants.
787 /// This is the primary way we avoid creating two of the same shape
788 /// constant.
789 MapTy Map;
791 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
792 /// from the constants to their element in Map. This is important for
793 /// removal of constants from the array, which would otherwise have to scan
794 /// through the map with very large keys.
795 InverseMapTy InverseMap;
797 /// AbstractTypeMap - Map for abstract type constants.
799 AbstractTypeMapTy AbstractTypeMap;
801 public:
802 typename MapTy::iterator map_end() { return Map.end(); }
804 /// InsertOrGetItem - Return an iterator for the specified element.
805 /// If the element exists in the map, the returned iterator points to the
806 /// entry and Exists=true. If not, the iterator points to the newly
807 /// inserted entry and returns Exists=false. Newly inserted entries have
808 /// I->second == 0, and should be filled in.
809 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
810 &InsertVal,
811 bool &Exists) {
812 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
813 Exists = !IP.second;
814 return IP.first;
817 private:
818 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
819 if (HasLargeKey) {
820 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
821 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
822 IMI->second->second == CP &&
823 "InverseMap corrupt!");
824 return IMI->second;
827 typename MapTy::iterator I =
828 Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
829 if (I == Map.end() || I->second != CP) {
830 // FIXME: This should not use a linear scan. If this gets to be a
831 // performance problem, someone should look at this.
832 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
833 /* empty */;
835 return I;
837 public:
839 /// getOrCreate - Return the specified constant from the map, creating it if
840 /// necessary.
841 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
842 MapKey Lookup(Ty, V);
843 typename MapTy::iterator I = Map.lower_bound(Lookup);
844 // Is it in the map?
845 if (I != Map.end() && I->first == Lookup)
846 return static_cast<ConstantClass *>(I->second);
848 // If no preexisting value, create one now...
849 ConstantClass *Result =
850 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
852 /// FIXME: why does this assert fail when loading 176.gcc?
853 //assert(Result->getType() == Ty && "Type specified is not correct!");
854 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
856 if (HasLargeKey) // Remember the reverse mapping if needed.
857 InverseMap.insert(std::make_pair(Result, I));
859 // If the type of the constant is abstract, make sure that an entry exists
860 // for it in the AbstractTypeMap.
861 if (Ty->isAbstract()) {
862 typename AbstractTypeMapTy::iterator TI =
863 AbstractTypeMap.lower_bound(Ty);
865 if (TI == AbstractTypeMap.end() || TI->first != Ty) {
866 // Add ourselves to the ATU list of the type.
867 cast<DerivedType>(Ty)->addAbstractTypeUser(this);
869 AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
872 return Result;
875 void remove(ConstantClass *CP) {
876 typename MapTy::iterator I = FindExistingElement(CP);
877 assert(I != Map.end() && "Constant not found in constant table!");
878 assert(I->second == CP && "Didn't find correct element?");
880 if (HasLargeKey) // Remember the reverse mapping if needed.
881 InverseMap.erase(CP);
883 // Now that we found the entry, make sure this isn't the entry that
884 // the AbstractTypeMap points to.
885 const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
886 if (Ty->isAbstract()) {
887 assert(AbstractTypeMap.count(Ty) &&
888 "Abstract type not in AbstractTypeMap?");
889 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
890 if (ATMEntryIt == I) {
891 // Yes, we are removing the representative entry for this type.
892 // See if there are any other entries of the same type.
893 typename MapTy::iterator TmpIt = ATMEntryIt;
895 // First check the entry before this one...
896 if (TmpIt != Map.begin()) {
897 --TmpIt;
898 if (TmpIt->first.first != Ty) // Not the same type, move back...
899 ++TmpIt;
902 // If we didn't find the same type, try to move forward...
903 if (TmpIt == ATMEntryIt) {
904 ++TmpIt;
905 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
906 --TmpIt; // No entry afterwards with the same type
909 // If there is another entry in the map of the same abstract type,
910 // update the AbstractTypeMap entry now.
911 if (TmpIt != ATMEntryIt) {
912 ATMEntryIt = TmpIt;
913 } else {
914 // Otherwise, we are removing the last instance of this type
915 // from the table. Remove from the ATM, and from user list.
916 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
917 AbstractTypeMap.erase(Ty);
922 Map.erase(I);
926 /// MoveConstantToNewSlot - If we are about to change C to be the element
927 /// specified by I, update our internal data structures to reflect this
928 /// fact.
929 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
930 // First, remove the old location of the specified constant in the map.
931 typename MapTy::iterator OldI = FindExistingElement(C);
932 assert(OldI != Map.end() && "Constant not found in constant table!");
933 assert(OldI->second == C && "Didn't find correct element?");
935 // If this constant is the representative element for its abstract type,
936 // update the AbstractTypeMap so that the representative element is I.
937 if (C->getType()->isAbstract()) {
938 typename AbstractTypeMapTy::iterator ATI =
939 AbstractTypeMap.find(C->getType());
940 assert(ATI != AbstractTypeMap.end() &&
941 "Abstract type not in AbstractTypeMap?");
942 if (ATI->second == OldI)
943 ATI->second = I;
946 // Remove the old entry from the map.
947 Map.erase(OldI);
949 // Update the inverse map so that we know that this constant is now
950 // located at descriptor I.
951 if (HasLargeKey) {
952 assert(I->second == C && "Bad inversemap entry!");
953 InverseMap[C] = I;
957 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
958 typename AbstractTypeMapTy::iterator I =
959 AbstractTypeMap.find(cast<Type>(OldTy));
961 assert(I != AbstractTypeMap.end() &&
962 "Abstract type not in AbstractTypeMap?");
964 // Convert a constant at a time until the last one is gone. The last one
965 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
966 // eliminated eventually.
967 do {
968 ConvertConstantType<ConstantClass,
969 TypeClass>::convert(
970 static_cast<ConstantClass *>(I->second->second),
971 cast<TypeClass>(NewTy));
973 I = AbstractTypeMap.find(cast<Type>(OldTy));
974 } while (I != AbstractTypeMap.end());
977 // If the type became concrete without being refined to any other existing
978 // type, we just remove ourselves from the ATU list.
979 void typeBecameConcrete(const DerivedType *AbsTy) {
980 AbsTy->removeAbstractTypeUser(this);
983 void dump() const {
984 DOUT << "Constant.cpp: ValueMap\n";
991 //---- ConstantAggregateZero::get() implementation...
993 namespace llvm {
994 // ConstantAggregateZero does not take extra "value" argument...
995 template<class ValType>
996 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
997 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
998 return new ConstantAggregateZero(Ty);
1002 template<>
1003 struct ConvertConstantType<ConstantAggregateZero, Type> {
1004 static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
1005 // Make everyone now use a constant of the new type...
1006 Constant *New = ConstantAggregateZero::get(NewTy);
1007 assert(New != OldC && "Didn't replace constant??");
1008 OldC->uncheckedReplaceAllUsesWith(New);
1009 OldC->destroyConstant(); // This constant is now dead, destroy it.
1014 static ManagedStatic<ValueMap<char, Type,
1015 ConstantAggregateZero> > AggZeroConstants;
1017 static char getValType(ConstantAggregateZero *CPZ) { return 0; }
1019 Constant *ConstantAggregateZero::get(const Type *Ty) {
1020 assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
1021 "Cannot create an aggregate zero of non-aggregate type!");
1022 return AggZeroConstants->getOrCreate(Ty, 0);
1025 // destroyConstant - Remove the constant from the constant table...
1027 void ConstantAggregateZero::destroyConstant() {
1028 AggZeroConstants->remove(this);
1029 destroyConstantImpl();
1032 //---- ConstantArray::get() implementation...
1034 namespace llvm {
1035 template<>
1036 struct ConvertConstantType<ConstantArray, ArrayType> {
1037 static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
1038 // Make everyone now use a constant of the new type...
1039 std::vector<Constant*> C;
1040 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
1041 C.push_back(cast<Constant>(OldC->getOperand(i)));
1042 Constant *New = ConstantArray::get(NewTy, C);
1043 assert(New != OldC && "Didn't replace constant??");
1044 OldC->uncheckedReplaceAllUsesWith(New);
1045 OldC->destroyConstant(); // This constant is now dead, destroy it.
1050 static std::vector<Constant*> getValType(ConstantArray *CA) {
1051 std::vector<Constant*> Elements;
1052 Elements.reserve(CA->getNumOperands());
1053 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1054 Elements.push_back(cast<Constant>(CA->getOperand(i)));
1055 return Elements;
1058 typedef ValueMap<std::vector<Constant*>, ArrayType,
1059 ConstantArray, true /*largekey*/> ArrayConstantsTy;
1060 static ManagedStatic<ArrayConstantsTy> ArrayConstants;
1062 Constant *ConstantArray::get(const ArrayType *Ty,
1063 const std::vector<Constant*> &V) {
1064 // If this is an all-zero array, return a ConstantAggregateZero object
1065 if (!V.empty()) {
1066 Constant *C = V[0];
1067 if (!C->isNullValue())
1068 return ArrayConstants->getOrCreate(Ty, V);
1069 for (unsigned i = 1, e = V.size(); i != e; ++i)
1070 if (V[i] != C)
1071 return ArrayConstants->getOrCreate(Ty, V);
1073 return ConstantAggregateZero::get(Ty);
1076 // destroyConstant - Remove the constant from the constant table...
1078 void ConstantArray::destroyConstant() {
1079 ArrayConstants->remove(this);
1080 destroyConstantImpl();
1083 /// ConstantArray::get(const string&) - Return an array that is initialized to
1084 /// contain the specified string. If length is zero then a null terminator is
1085 /// added to the specified string so that it may be used in a natural way.
1086 /// Otherwise, the length parameter specifies how much of the string to use
1087 /// and it won't be null terminated.
1089 Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
1090 std::vector<Constant*> ElementVals;
1091 for (unsigned i = 0; i < Str.length(); ++i)
1092 ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
1094 // Add a null terminator to the string...
1095 if (AddNull) {
1096 ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
1099 ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
1100 return ConstantArray::get(ATy, ElementVals);
1103 /// isString - This method returns true if the array is an array of i8, and
1104 /// if the elements of the array are all ConstantInt's.
1105 bool ConstantArray::isString() const {
1106 // Check the element type for i8...
1107 if (getType()->getElementType() != Type::Int8Ty)
1108 return false;
1109 // Check the elements to make sure they are all integers, not constant
1110 // expressions.
1111 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1112 if (!isa<ConstantInt>(getOperand(i)))
1113 return false;
1114 return true;
1117 /// isCString - This method returns true if the array is a string (see
1118 /// isString) and it ends in a null byte \0 and does not contains any other
1119 /// null bytes except its terminator.
1120 bool ConstantArray::isCString() const {
1121 // Check the element type for i8...
1122 if (getType()->getElementType() != Type::Int8Ty)
1123 return false;
1124 Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
1125 // Last element must be a null.
1126 if (getOperand(getNumOperands()-1) != Zero)
1127 return false;
1128 // Other elements must be non-null integers.
1129 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
1130 if (!isa<ConstantInt>(getOperand(i)))
1131 return false;
1132 if (getOperand(i) == Zero)
1133 return false;
1135 return true;
1139 // getAsString - If the sub-element type of this array is i8
1140 // then this method converts the array to an std::string and returns it.
1141 // Otherwise, it asserts out.
1143 std::string ConstantArray::getAsString() const {
1144 assert(isString() && "Not a string!");
1145 std::string Result;
1146 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1147 Result += (char)cast<ConstantInt>(getOperand(i))->getZExtValue();
1148 return Result;
1152 //---- ConstantStruct::get() implementation...
1155 namespace llvm {
1156 template<>
1157 struct ConvertConstantType<ConstantStruct, StructType> {
1158 static void convert(ConstantStruct *OldC, const StructType *NewTy) {
1159 // Make everyone now use a constant of the new type...
1160 std::vector<Constant*> C;
1161 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
1162 C.push_back(cast<Constant>(OldC->getOperand(i)));
1163 Constant *New = ConstantStruct::get(NewTy, C);
1164 assert(New != OldC && "Didn't replace constant??");
1166 OldC->uncheckedReplaceAllUsesWith(New);
1167 OldC->destroyConstant(); // This constant is now dead, destroy it.
1172 typedef ValueMap<std::vector<Constant*>, StructType,
1173 ConstantStruct, true /*largekey*/> StructConstantsTy;
1174 static ManagedStatic<StructConstantsTy> StructConstants;
1176 static std::vector<Constant*> getValType(ConstantStruct *CS) {
1177 std::vector<Constant*> Elements;
1178 Elements.reserve(CS->getNumOperands());
1179 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1180 Elements.push_back(cast<Constant>(CS->getOperand(i)));
1181 return Elements;
1184 Constant *ConstantStruct::get(const StructType *Ty,
1185 const std::vector<Constant*> &V) {
1186 // Create a ConstantAggregateZero value if all elements are zeros...
1187 for (unsigned i = 0, e = V.size(); i != e; ++i)
1188 if (!V[i]->isNullValue())
1189 return StructConstants->getOrCreate(Ty, V);
1191 return ConstantAggregateZero::get(Ty);
1194 Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
1195 std::vector<const Type*> StructEls;
1196 StructEls.reserve(V.size());
1197 for (unsigned i = 0, e = V.size(); i != e; ++i)
1198 StructEls.push_back(V[i]->getType());
1199 return get(StructType::get(StructEls, packed), V);
1202 // destroyConstant - Remove the constant from the constant table...
1204 void ConstantStruct::destroyConstant() {
1205 StructConstants->remove(this);
1206 destroyConstantImpl();
1209 //---- ConstantVector::get() implementation...
1211 namespace llvm {
1212 template<>
1213 struct ConvertConstantType<ConstantVector, VectorType> {
1214 static void convert(ConstantVector *OldC, const VectorType *NewTy) {
1215 // Make everyone now use a constant of the new type...
1216 std::vector<Constant*> C;
1217 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
1218 C.push_back(cast<Constant>(OldC->getOperand(i)));
1219 Constant *New = ConstantVector::get(NewTy, C);
1220 assert(New != OldC && "Didn't replace constant??");
1221 OldC->uncheckedReplaceAllUsesWith(New);
1222 OldC->destroyConstant(); // This constant is now dead, destroy it.
1227 static std::vector<Constant*> getValType(ConstantVector *CP) {
1228 std::vector<Constant*> Elements;
1229 Elements.reserve(CP->getNumOperands());
1230 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1231 Elements.push_back(CP->getOperand(i));
1232 return Elements;
1235 static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
1236 ConstantVector> > VectorConstants;
1238 Constant *ConstantVector::get(const VectorType *Ty,
1239 const std::vector<Constant*> &V) {
1240 // If this is an all-zero vector, return a ConstantAggregateZero object
1241 if (!V.empty()) {
1242 Constant *C = V[0];
1243 if (!C->isNullValue())
1244 return VectorConstants->getOrCreate(Ty, V);
1245 for (unsigned i = 1, e = V.size(); i != e; ++i)
1246 if (V[i] != C)
1247 return VectorConstants->getOrCreate(Ty, V);
1249 return ConstantAggregateZero::get(Ty);
1252 Constant *ConstantVector::get(const std::vector<Constant*> &V) {
1253 assert(!V.empty() && "Cannot infer type if V is empty");
1254 return get(VectorType::get(V.front()->getType(),V.size()), V);
1257 // destroyConstant - Remove the constant from the constant table...
1259 void ConstantVector::destroyConstant() {
1260 VectorConstants->remove(this);
1261 destroyConstantImpl();
1264 /// This function will return true iff every element in this vector constant
1265 /// is set to all ones.
1266 /// @returns true iff this constant's emements are all set to all ones.
1267 /// @brief Determine if the value is all ones.
1268 bool ConstantVector::isAllOnesValue() const {
1269 // Check out first element.
1270 const Constant *Elt = getOperand(0);
1271 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1272 if (!CI || !CI->isAllOnesValue()) return false;
1273 // Then make sure all remaining elements point to the same value.
1274 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1275 if (getOperand(I) != Elt) return false;
1277 return true;
1280 //---- ConstantPointerNull::get() implementation...
1283 namespace llvm {
1284 // ConstantPointerNull does not take extra "value" argument...
1285 template<class ValType>
1286 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
1287 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
1288 return new ConstantPointerNull(Ty);
1292 template<>
1293 struct ConvertConstantType<ConstantPointerNull, PointerType> {
1294 static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
1295 // Make everyone now use a constant of the new type...
1296 Constant *New = ConstantPointerNull::get(NewTy);
1297 assert(New != OldC && "Didn't replace constant??");
1298 OldC->uncheckedReplaceAllUsesWith(New);
1299 OldC->destroyConstant(); // This constant is now dead, destroy it.
1304 static ManagedStatic<ValueMap<char, PointerType,
1305 ConstantPointerNull> > NullPtrConstants;
1307 static char getValType(ConstantPointerNull *) {
1308 return 0;
1312 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
1313 return NullPtrConstants->getOrCreate(Ty, 0);
1316 // destroyConstant - Remove the constant from the constant table...
1318 void ConstantPointerNull::destroyConstant() {
1319 NullPtrConstants->remove(this);
1320 destroyConstantImpl();
1324 //---- UndefValue::get() implementation...
1327 namespace llvm {
1328 // UndefValue does not take extra "value" argument...
1329 template<class ValType>
1330 struct ConstantCreator<UndefValue, Type, ValType> {
1331 static UndefValue *create(const Type *Ty, const ValType &V) {
1332 return new UndefValue(Ty);
1336 template<>
1337 struct ConvertConstantType<UndefValue, Type> {
1338 static void convert(UndefValue *OldC, const Type *NewTy) {
1339 // Make everyone now use a constant of the new type.
1340 Constant *New = UndefValue::get(NewTy);
1341 assert(New != OldC && "Didn't replace constant??");
1342 OldC->uncheckedReplaceAllUsesWith(New);
1343 OldC->destroyConstant(); // This constant is now dead, destroy it.
1348 static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
1350 static char getValType(UndefValue *) {
1351 return 0;
1355 UndefValue *UndefValue::get(const Type *Ty) {
1356 return UndefValueConstants->getOrCreate(Ty, 0);
1359 // destroyConstant - Remove the constant from the constant table.
1361 void UndefValue::destroyConstant() {
1362 UndefValueConstants->remove(this);
1363 destroyConstantImpl();
1367 //---- ConstantExpr::get() implementations...
1370 struct ExprMapKeyType {
1371 explicit ExprMapKeyType(unsigned opc, std::vector<Constant*> ops,
1372 unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { }
1373 uint16_t opcode;
1374 uint16_t predicate;
1375 std::vector<Constant*> operands;
1376 bool operator==(const ExprMapKeyType& that) const {
1377 return this->opcode == that.opcode &&
1378 this->predicate == that.predicate &&
1379 this->operands == that.operands;
1381 bool operator<(const ExprMapKeyType & that) const {
1382 return this->opcode < that.opcode ||
1383 (this->opcode == that.opcode && this->predicate < that.predicate) ||
1384 (this->opcode == that.opcode && this->predicate == that.predicate &&
1385 this->operands < that.operands);
1388 bool operator!=(const ExprMapKeyType& that) const {
1389 return !(*this == that);
1393 namespace llvm {
1394 template<>
1395 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
1396 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
1397 unsigned short pred = 0) {
1398 if (Instruction::isCast(V.opcode))
1399 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
1400 if ((V.opcode >= Instruction::BinaryOpsBegin &&
1401 V.opcode < Instruction::BinaryOpsEnd))
1402 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
1403 if (V.opcode == Instruction::Select)
1404 return new SelectConstantExpr(V.operands[0], V.operands[1],
1405 V.operands[2]);
1406 if (V.opcode == Instruction::ExtractElement)
1407 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
1408 if (V.opcode == Instruction::InsertElement)
1409 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
1410 V.operands[2]);
1411 if (V.opcode == Instruction::ShuffleVector)
1412 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
1413 V.operands[2]);
1414 if (V.opcode == Instruction::GetElementPtr) {
1415 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
1416 return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty);
1419 // The compare instructions are weird. We have to encode the predicate
1420 // value and it is combined with the instruction opcode by multiplying
1421 // the opcode by one hundred. We must decode this to get the predicate.
1422 if (V.opcode == Instruction::ICmp)
1423 return new CompareConstantExpr(Instruction::ICmp, V.predicate,
1424 V.operands[0], V.operands[1]);
1425 if (V.opcode == Instruction::FCmp)
1426 return new CompareConstantExpr(Instruction::FCmp, V.predicate,
1427 V.operands[0], V.operands[1]);
1428 assert(0 && "Invalid ConstantExpr!");
1429 return 0;
1433 template<>
1434 struct ConvertConstantType<ConstantExpr, Type> {
1435 static void convert(ConstantExpr *OldC, const Type *NewTy) {
1436 Constant *New;
1437 switch (OldC->getOpcode()) {
1438 case Instruction::Trunc:
1439 case Instruction::ZExt:
1440 case Instruction::SExt:
1441 case Instruction::FPTrunc:
1442 case Instruction::FPExt:
1443 case Instruction::UIToFP:
1444 case Instruction::SIToFP:
1445 case Instruction::FPToUI:
1446 case Instruction::FPToSI:
1447 case Instruction::PtrToInt:
1448 case Instruction::IntToPtr:
1449 case Instruction::BitCast:
1450 New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
1451 NewTy);
1452 break;
1453 case Instruction::Select:
1454 New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
1455 OldC->getOperand(1),
1456 OldC->getOperand(2));
1457 break;
1458 default:
1459 assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
1460 OldC->getOpcode() < Instruction::BinaryOpsEnd);
1461 New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
1462 OldC->getOperand(1));
1463 break;
1464 case Instruction::GetElementPtr:
1465 // Make everyone now use a constant of the new type...
1466 std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
1467 New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
1468 &Idx[0], Idx.size());
1469 break;
1472 assert(New != OldC && "Didn't replace constant??");
1473 OldC->uncheckedReplaceAllUsesWith(New);
1474 OldC->destroyConstant(); // This constant is now dead, destroy it.
1477 } // end namespace llvm
1480 static ExprMapKeyType getValType(ConstantExpr *CE) {
1481 std::vector<Constant*> Operands;
1482 Operands.reserve(CE->getNumOperands());
1483 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
1484 Operands.push_back(cast<Constant>(CE->getOperand(i)));
1485 return ExprMapKeyType(CE->getOpcode(), Operands,
1486 CE->isCompare() ? CE->getPredicate() : 0);
1489 static ManagedStatic<ValueMap<ExprMapKeyType, Type,
1490 ConstantExpr> > ExprConstants;
1492 /// This is a utility function to handle folding of casts and lookup of the
1493 /// cast in the ExprConstants map. It is usedby the various get* methods below.
1494 static inline Constant *getFoldedCast(
1495 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1496 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1497 // Fold a few common cases
1498 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1499 return FC;
1501 // Look up the constant in the table first to ensure uniqueness
1502 std::vector<Constant*> argVec(1, C);
1503 ExprMapKeyType Key(opc, argVec);
1504 return ExprConstants->getOrCreate(Ty, Key);
1507 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1508 Instruction::CastOps opc = Instruction::CastOps(oc);
1509 assert(Instruction::isCast(opc) && "opcode out of range");
1510 assert(C && Ty && "Null arguments to getCast");
1511 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1513 switch (opc) {
1514 default:
1515 assert(0 && "Invalid cast opcode");
1516 break;
1517 case Instruction::Trunc: return getTrunc(C, Ty);
1518 case Instruction::ZExt: return getZExt(C, Ty);
1519 case Instruction::SExt: return getSExt(C, Ty);
1520 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1521 case Instruction::FPExt: return getFPExtend(C, Ty);
1522 case Instruction::UIToFP: return getUIToFP(C, Ty);
1523 case Instruction::SIToFP: return getSIToFP(C, Ty);
1524 case Instruction::FPToUI: return getFPToUI(C, Ty);
1525 case Instruction::FPToSI: return getFPToSI(C, Ty);
1526 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1527 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1528 case Instruction::BitCast: return getBitCast(C, Ty);
1530 return 0;
1533 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1534 if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1535 return getCast(Instruction::BitCast, C, Ty);
1536 return getCast(Instruction::ZExt, C, Ty);
1539 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1540 if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1541 return getCast(Instruction::BitCast, C, Ty);
1542 return getCast(Instruction::SExt, C, Ty);
1545 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1546 if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1547 return getCast(Instruction::BitCast, C, Ty);
1548 return getCast(Instruction::Trunc, C, Ty);
1551 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1552 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1553 assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
1555 if (Ty->isInteger())
1556 return getCast(Instruction::PtrToInt, S, Ty);
1557 return getCast(Instruction::BitCast, S, Ty);
1560 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1561 bool isSigned) {
1562 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
1563 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1564 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1565 Instruction::CastOps opcode =
1566 (SrcBits == DstBits ? Instruction::BitCast :
1567 (SrcBits > DstBits ? Instruction::Trunc :
1568 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1569 return getCast(opcode, C, Ty);
1572 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1573 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1574 "Invalid cast");
1575 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1576 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1577 if (SrcBits == DstBits)
1578 return C; // Avoid a useless cast
1579 Instruction::CastOps opcode =
1580 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1581 return getCast(opcode, C, Ty);
1584 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1585 assert(C->getType()->isInteger() && "Trunc operand must be integer");
1586 assert(Ty->isInteger() && "Trunc produces only integral");
1587 assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
1588 "SrcTy must be larger than DestTy for Trunc!");
1590 return getFoldedCast(Instruction::Trunc, C, Ty);
1593 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1594 assert(C->getType()->isInteger() && "SEXt operand must be integral");
1595 assert(Ty->isInteger() && "SExt produces only integer");
1596 assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
1597 "SrcTy must be smaller than DestTy for SExt!");
1599 return getFoldedCast(Instruction::SExt, C, Ty);
1602 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1603 assert(C->getType()->isInteger() && "ZEXt operand must be integral");
1604 assert(Ty->isInteger() && "ZExt produces only integer");
1605 assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
1606 "SrcTy must be smaller than DestTy for ZExt!");
1608 return getFoldedCast(Instruction::ZExt, C, Ty);
1611 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1612 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1613 C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
1614 "This is an illegal floating point truncation!");
1615 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1618 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1619 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1620 C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
1621 "This is an illegal floating point extension!");
1622 return getFoldedCast(Instruction::FPExt, C, Ty);
1625 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
1626 assert(C->getType()->isInteger() && Ty->isFloatingPoint() &&
1627 "This is an illegal i32 to floating point cast!");
1628 return getFoldedCast(Instruction::UIToFP, C, Ty);
1631 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
1632 assert(C->getType()->isInteger() && Ty->isFloatingPoint() &&
1633 "This is an illegal sint to floating point cast!");
1634 return getFoldedCast(Instruction::SIToFP, C, Ty);
1637 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
1638 assert(C->getType()->isFloatingPoint() && Ty->isInteger() &&
1639 "This is an illegal floating point to i32 cast!");
1640 return getFoldedCast(Instruction::FPToUI, C, Ty);
1643 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
1644 assert(C->getType()->isFloatingPoint() && Ty->isInteger() &&
1645 "This is an illegal floating point to i32 cast!");
1646 return getFoldedCast(Instruction::FPToSI, C, Ty);
1649 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
1650 assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
1651 assert(DstTy->isInteger() && "PtrToInt destination must be integral");
1652 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1655 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
1656 assert(C->getType()->isInteger() && "IntToPtr source must be integral");
1657 assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
1658 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1661 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
1662 // BitCast implies a no-op cast of type only. No bits change. However, you
1663 // can't cast pointers to anything but pointers.
1664 const Type *SrcTy = C->getType();
1665 assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
1666 "BitCast cannot cast pointer to non-pointer and vice versa");
1668 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1669 // or nonptr->ptr). For all the other types, the cast is okay if source and
1670 // destination bit widths are identical.
1671 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1672 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
1673 assert(SrcBitSize == DstBitSize && "BitCast requies types of same width");
1674 return getFoldedCast(Instruction::BitCast, C, DstTy);
1677 Constant *ConstantExpr::getSizeOf(const Type *Ty) {
1678 // sizeof is implemented as: (ulong) gep (Ty*)null, 1
1679 Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
1680 Constant *GEP =
1681 getGetElementPtr(getNullValue(PointerType::get(Ty)), &GEPIdx, 1);
1682 return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
1685 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
1686 Constant *C1, Constant *C2) {
1687 // Check the operands for consistency first
1688 assert(Opcode >= Instruction::BinaryOpsBegin &&
1689 Opcode < Instruction::BinaryOpsEnd &&
1690 "Invalid opcode in binary constant expression");
1691 assert(C1->getType() == C2->getType() &&
1692 "Operand types in binary constant expression should match");
1694 if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
1695 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1696 return FC; // Fold a few common cases...
1698 std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
1699 ExprMapKeyType Key(Opcode, argVec);
1700 return ExprConstants->getOrCreate(ReqTy, Key);
1703 Constant *ConstantExpr::getCompareTy(unsigned short predicate,
1704 Constant *C1, Constant *C2) {
1705 switch (predicate) {
1706 default: assert(0 && "Invalid CmpInst predicate");
1707 case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT:
1708 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE:
1709 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO:
1710 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE:
1711 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE:
1712 case FCmpInst::FCMP_TRUE:
1713 return getFCmp(predicate, C1, C2);
1714 case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT:
1715 case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE:
1716 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT:
1717 case ICmpInst::ICMP_SLE:
1718 return getICmp(predicate, C1, C2);
1722 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
1723 #ifndef NDEBUG
1724 switch (Opcode) {
1725 case Instruction::Add:
1726 case Instruction::Sub:
1727 case Instruction::Mul:
1728 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1729 assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
1730 isa<VectorType>(C1->getType())) &&
1731 "Tried to create an arithmetic operation on a non-arithmetic type!");
1732 break;
1733 case Instruction::UDiv:
1734 case Instruction::SDiv:
1735 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1736 assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
1737 cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
1738 "Tried to create an arithmetic operation on a non-arithmetic type!");
1739 break;
1740 case Instruction::FDiv:
1741 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1742 assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
1743 && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
1744 && "Tried to create an arithmetic operation on a non-arithmetic type!");
1745 break;
1746 case Instruction::URem:
1747 case Instruction::SRem:
1748 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1749 assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
1750 cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
1751 "Tried to create an arithmetic operation on a non-arithmetic type!");
1752 break;
1753 case Instruction::FRem:
1754 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1755 assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
1756 && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
1757 && "Tried to create an arithmetic operation on a non-arithmetic type!");
1758 break;
1759 case Instruction::And:
1760 case Instruction::Or:
1761 case Instruction::Xor:
1762 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1763 assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) &&
1764 "Tried to create a logical operation on a non-integral type!");
1765 break;
1766 case Instruction::Shl:
1767 case Instruction::LShr:
1768 case Instruction::AShr:
1769 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1770 assert(C1->getType()->isInteger() &&
1771 "Tried to create a shift operation on a non-integer type!");
1772 break;
1773 default:
1774 break;
1776 #endif
1778 return getTy(C1->getType(), Opcode, C1, C2);
1781 Constant *ConstantExpr::getCompare(unsigned short pred,
1782 Constant *C1, Constant *C2) {
1783 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1784 return getCompareTy(pred, C1, C2);
1787 Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
1788 Constant *V1, Constant *V2) {
1789 assert(C->getType() == Type::Int1Ty && "Select condition must be i1!");
1790 assert(V1->getType() == V2->getType() && "Select value types must match!");
1791 assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");
1793 if (ReqTy == V1->getType())
1794 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1795 return SC; // Fold common cases
1797 std::vector<Constant*> argVec(3, C);
1798 argVec[1] = V1;
1799 argVec[2] = V2;
1800 ExprMapKeyType Key(Instruction::Select, argVec);
1801 return ExprConstants->getOrCreate(ReqTy, Key);
1804 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
1805 Value* const *Idxs,
1806 unsigned NumIdx) {
1807 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true) &&
1808 "GEP indices invalid!");
1810 if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
1811 return FC; // Fold a few common cases...
1813 assert(isa<PointerType>(C->getType()) &&
1814 "Non-pointer type for constant GetElementPtr expression");
1815 // Look up the constant in the table first to ensure uniqueness
1816 std::vector<Constant*> ArgVec;
1817 ArgVec.reserve(NumIdx+1);
1818 ArgVec.push_back(C);
1819 for (unsigned i = 0; i != NumIdx; ++i)
1820 ArgVec.push_back(cast<Constant>(Idxs[i]));
1821 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
1822 return ExprConstants->getOrCreate(ReqTy, Key);
1825 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1826 unsigned NumIdx) {
1827 // Get the result type of the getelementptr!
1828 const Type *Ty =
1829 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true);
1830 assert(Ty && "GEP indices invalid!");
1831 return getGetElementPtrTy(PointerType::get(Ty), C, Idxs, NumIdx);
1834 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
1835 unsigned NumIdx) {
1836 return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
1840 Constant *
1841 ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1842 assert(LHS->getType() == RHS->getType());
1843 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1844 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1846 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1847 return FC; // Fold a few common cases...
1849 // Look up the constant in the table first to ensure uniqueness
1850 std::vector<Constant*> ArgVec;
1851 ArgVec.push_back(LHS);
1852 ArgVec.push_back(RHS);
1853 // Get the key type with both the opcode and predicate
1854 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1855 return ExprConstants->getOrCreate(Type::Int1Ty, Key);
1858 Constant *
1859 ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1860 assert(LHS->getType() == RHS->getType());
1861 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1863 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1864 return FC; // Fold a few common cases...
1866 // Look up the constant in the table first to ensure uniqueness
1867 std::vector<Constant*> ArgVec;
1868 ArgVec.push_back(LHS);
1869 ArgVec.push_back(RHS);
1870 // Get the key type with both the opcode and predicate
1871 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1872 return ExprConstants->getOrCreate(Type::Int1Ty, Key);
1875 Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
1876 Constant *Idx) {
1877 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1878 return FC; // Fold a few common cases...
1879 // Look up the constant in the table first to ensure uniqueness
1880 std::vector<Constant*> ArgVec(1, Val);
1881 ArgVec.push_back(Idx);
1882 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1883 return ExprConstants->getOrCreate(ReqTy, Key);
1886 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1887 assert(isa<VectorType>(Val->getType()) &&
1888 "Tried to create extractelement operation on non-vector type!");
1889 assert(Idx->getType() == Type::Int32Ty &&
1890 "Extractelement index must be i32 type!");
1891 return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
1892 Val, Idx);
1895 Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
1896 Constant *Elt, Constant *Idx) {
1897 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1898 return FC; // Fold a few common cases...
1899 // Look up the constant in the table first to ensure uniqueness
1900 std::vector<Constant*> ArgVec(1, Val);
1901 ArgVec.push_back(Elt);
1902 ArgVec.push_back(Idx);
1903 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1904 return ExprConstants->getOrCreate(ReqTy, Key);
1907 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1908 Constant *Idx) {
1909 assert(isa<VectorType>(Val->getType()) &&
1910 "Tried to create insertelement operation on non-vector type!");
1911 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1912 && "Insertelement types must match!");
1913 assert(Idx->getType() == Type::Int32Ty &&
1914 "Insertelement index must be i32 type!");
1915 return getInsertElementTy(cast<VectorType>(Val->getType())->getElementType(),
1916 Val, Elt, Idx);
1919 Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
1920 Constant *V2, Constant *Mask) {
1921 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1922 return FC; // Fold a few common cases...
1923 // Look up the constant in the table first to ensure uniqueness
1924 std::vector<Constant*> ArgVec(1, V1);
1925 ArgVec.push_back(V2);
1926 ArgVec.push_back(Mask);
1927 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1928 return ExprConstants->getOrCreate(ReqTy, Key);
1931 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1932 Constant *Mask) {
1933 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1934 "Invalid shuffle vector constant expr operands!");
1935 return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
1938 Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
1939 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
1940 if (PTy->getElementType()->isFloatingPoint()) {
1941 std::vector<Constant*> zeros(PTy->getNumElements(),
1942 ConstantFP::getNegativeZero(PTy->getElementType()));
1943 return ConstantVector::get(PTy, zeros);
1946 if (Ty->isFloatingPoint())
1947 return ConstantFP::getNegativeZero(Ty);
1949 return Constant::getNullValue(Ty);
1952 // destroyConstant - Remove the constant from the constant table...
1954 void ConstantExpr::destroyConstant() {
1955 ExprConstants->remove(this);
1956 destroyConstantImpl();
1959 const char *ConstantExpr::getOpcodeName() const {
1960 return Instruction::getOpcodeName(getOpcode());
1963 //===----------------------------------------------------------------------===//
1964 // replaceUsesOfWithOnConstant implementations
1966 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1967 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1968 /// etc.
1970 /// Note that we intentionally replace all uses of From with To here. Consider
1971 /// a large array that uses 'From' 1000 times. By handling this case all here,
1972 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1973 /// single invocation handles all 1000 uses. Handling them one at a time would
1974 /// work, but would be really slow because it would have to unique each updated
1975 /// array instance.
1976 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1977 Use *U) {
1978 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1979 Constant *ToC = cast<Constant>(To);
1981 std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
1982 Lookup.first.first = getType();
1983 Lookup.second = this;
1985 std::vector<Constant*> &Values = Lookup.first.second;
1986 Values.reserve(getNumOperands()); // Build replacement array.
1988 // Fill values with the modified operands of the constant array. Also,
1989 // compute whether this turns into an all-zeros array.
1990 bool isAllZeros = false;
1991 unsigned NumUpdated = 0;
1992 if (!ToC->isNullValue()) {
1993 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1994 Constant *Val = cast<Constant>(O->get());
1995 if (Val == From) {
1996 Val = ToC;
1997 ++NumUpdated;
1999 Values.push_back(Val);
2001 } else {
2002 isAllZeros = true;
2003 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2004 Constant *Val = cast<Constant>(O->get());
2005 if (Val == From) {
2006 Val = ToC;
2007 ++NumUpdated;
2009 Values.push_back(Val);
2010 if (isAllZeros) isAllZeros = Val->isNullValue();
2014 Constant *Replacement = 0;
2015 if (isAllZeros) {
2016 Replacement = ConstantAggregateZero::get(getType());
2017 } else {
2018 // Check to see if we have this array type already.
2019 bool Exists;
2020 ArrayConstantsTy::MapTy::iterator I =
2021 ArrayConstants->InsertOrGetItem(Lookup, Exists);
2023 if (Exists) {
2024 Replacement = I->second;
2025 } else {
2026 // Okay, the new shape doesn't exist in the system yet. Instead of
2027 // creating a new constant array, inserting it, replaceallusesof'ing the
2028 // old with the new, then deleting the old... just update the current one
2029 // in place!
2030 ArrayConstants->MoveConstantToNewSlot(this, I);
2032 // Update to the new value. Optimize for the case when we have a single
2033 // operand that we're changing, but handle bulk updates efficiently.
2034 if (NumUpdated == 1) {
2035 unsigned OperandToUpdate = U-OperandList;
2036 assert(getOperand(OperandToUpdate) == From &&
2037 "ReplaceAllUsesWith broken!");
2038 setOperand(OperandToUpdate, ToC);
2039 } else {
2040 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2041 if (getOperand(i) == From)
2042 setOperand(i, ToC);
2044 return;
2048 // Otherwise, I do need to replace this with an existing value.
2049 assert(Replacement != this && "I didn't contain From!");
2051 // Everyone using this now uses the replacement.
2052 uncheckedReplaceAllUsesWith(Replacement);
2054 // Delete the old constant!
2055 destroyConstant();
2058 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2059 Use *U) {
2060 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2061 Constant *ToC = cast<Constant>(To);
2063 unsigned OperandToUpdate = U-OperandList;
2064 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2066 std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
2067 Lookup.first.first = getType();
2068 Lookup.second = this;
2069 std::vector<Constant*> &Values = Lookup.first.second;
2070 Values.reserve(getNumOperands()); // Build replacement struct.
2073 // Fill values with the modified operands of the constant struct. Also,
2074 // compute whether this turns into an all-zeros struct.
2075 bool isAllZeros = false;
2076 if (!ToC->isNullValue()) {
2077 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
2078 Values.push_back(cast<Constant>(O->get()));
2079 } else {
2080 isAllZeros = true;
2081 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2082 Constant *Val = cast<Constant>(O->get());
2083 Values.push_back(Val);
2084 if (isAllZeros) isAllZeros = Val->isNullValue();
2087 Values[OperandToUpdate] = ToC;
2089 Constant *Replacement = 0;
2090 if (isAllZeros) {
2091 Replacement = ConstantAggregateZero::get(getType());
2092 } else {
2093 // Check to see if we have this array type already.
2094 bool Exists;
2095 StructConstantsTy::MapTy::iterator I =
2096 StructConstants->InsertOrGetItem(Lookup, Exists);
2098 if (Exists) {
2099 Replacement = I->second;
2100 } else {
2101 // Okay, the new shape doesn't exist in the system yet. Instead of
2102 // creating a new constant struct, inserting it, replaceallusesof'ing the
2103 // old with the new, then deleting the old... just update the current one
2104 // in place!
2105 StructConstants->MoveConstantToNewSlot(this, I);
2107 // Update to the new value.
2108 setOperand(OperandToUpdate, ToC);
2109 return;
2113 assert(Replacement != this && "I didn't contain From!");
2115 // Everyone using this now uses the replacement.
2116 uncheckedReplaceAllUsesWith(Replacement);
2118 // Delete the old constant!
2119 destroyConstant();
2122 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2123 Use *U) {
2124 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2126 std::vector<Constant*> Values;
2127 Values.reserve(getNumOperands()); // Build replacement array...
2128 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2129 Constant *Val = getOperand(i);
2130 if (Val == From) Val = cast<Constant>(To);
2131 Values.push_back(Val);
2134 Constant *Replacement = ConstantVector::get(getType(), Values);
2135 assert(Replacement != this && "I didn't contain From!");
2137 // Everyone using this now uses the replacement.
2138 uncheckedReplaceAllUsesWith(Replacement);
2140 // Delete the old constant!
2141 destroyConstant();
2144 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2145 Use *U) {
2146 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2147 Constant *To = cast<Constant>(ToV);
2149 Constant *Replacement = 0;
2150 if (getOpcode() == Instruction::GetElementPtr) {
2151 SmallVector<Constant*, 8> Indices;
2152 Constant *Pointer = getOperand(0);
2153 Indices.reserve(getNumOperands()-1);
2154 if (Pointer == From) Pointer = To;
2156 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2157 Constant *Val = getOperand(i);
2158 if (Val == From) Val = To;
2159 Indices.push_back(Val);
2161 Replacement = ConstantExpr::getGetElementPtr(Pointer,
2162 &Indices[0], Indices.size());
2163 } else if (isCast()) {
2164 assert(getOperand(0) == From && "Cast only has one use!");
2165 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2166 } else if (getOpcode() == Instruction::Select) {
2167 Constant *C1 = getOperand(0);
2168 Constant *C2 = getOperand(1);
2169 Constant *C3 = getOperand(2);
2170 if (C1 == From) C1 = To;
2171 if (C2 == From) C2 = To;
2172 if (C3 == From) C3 = To;
2173 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2174 } else if (getOpcode() == Instruction::ExtractElement) {
2175 Constant *C1 = getOperand(0);
2176 Constant *C2 = getOperand(1);
2177 if (C1 == From) C1 = To;
2178 if (C2 == From) C2 = To;
2179 Replacement = ConstantExpr::getExtractElement(C1, C2);
2180 } else if (getOpcode() == Instruction::InsertElement) {
2181 Constant *C1 = getOperand(0);
2182 Constant *C2 = getOperand(1);
2183 Constant *C3 = getOperand(1);
2184 if (C1 == From) C1 = To;
2185 if (C2 == From) C2 = To;
2186 if (C3 == From) C3 = To;
2187 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2188 } else if (getOpcode() == Instruction::ShuffleVector) {
2189 Constant *C1 = getOperand(0);
2190 Constant *C2 = getOperand(1);
2191 Constant *C3 = getOperand(2);
2192 if (C1 == From) C1 = To;
2193 if (C2 == From) C2 = To;
2194 if (C3 == From) C3 = To;
2195 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2196 } else if (isCompare()) {
2197 Constant *C1 = getOperand(0);
2198 Constant *C2 = getOperand(1);
2199 if (C1 == From) C1 = To;
2200 if (C2 == From) C2 = To;
2201 if (getOpcode() == Instruction::ICmp)
2202 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2203 else
2204 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2205 } else if (getNumOperands() == 2) {
2206 Constant *C1 = getOperand(0);
2207 Constant *C2 = getOperand(1);
2208 if (C1 == From) C1 = To;
2209 if (C2 == From) C2 = To;
2210 Replacement = ConstantExpr::get(getOpcode(), C1, C2);
2211 } else {
2212 assert(0 && "Unknown ConstantExpr type!");
2213 return;
2216 assert(Replacement != this && "I didn't contain From!");
2218 // Everyone using this now uses the replacement.
2219 uncheckedReplaceAllUsesWith(Replacement);
2221 // Delete the old constant!
2222 destroyConstant();
2226 /// getStringValue - Turn an LLVM constant pointer that eventually points to a
2227 /// global into a string value. Return an empty string if we can't do it.
2228 /// Parameter Chop determines if the result is chopped at the first null
2229 /// terminator.
2231 std::string Constant::getStringValue(bool Chop, unsigned Offset) {
2232 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) {
2233 if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
2234 ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
2235 if (Init->isString()) {
2236 std::string Result = Init->getAsString();
2237 if (Offset < Result.size()) {
2238 // If we are pointing INTO The string, erase the beginning...
2239 Result.erase(Result.begin(), Result.begin()+Offset);
2241 // Take off the null terminator, and any string fragments after it.
2242 if (Chop) {
2243 std::string::size_type NullPos = Result.find_first_of((char)0);
2244 if (NullPos != std::string::npos)
2245 Result.erase(Result.begin()+NullPos, Result.end());
2247 return Result;
2251 } else if (Constant *C = dyn_cast<Constant>(this)) {
2252 if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
2253 return GV->getStringValue(Chop, Offset);
2254 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2255 if (CE->getOpcode() == Instruction::GetElementPtr) {
2256 // Turn a gep into the specified offset.
2257 if (CE->getNumOperands() == 3 &&
2258 cast<Constant>(CE->getOperand(1))->isNullValue() &&
2259 isa<ConstantInt>(CE->getOperand(2))) {
2260 Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue();
2261 return CE->getOperand(0)->getStringValue(Chop, Offset);
2266 return "";