1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "ConstantFold.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/GlobalValue.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ManagedStatic.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
31 //===----------------------------------------------------------------------===//
33 //===----------------------------------------------------------------------===//
35 void Constant::destroyConstantImpl() {
36 // When a Constant is destroyed, there may be lingering
37 // references to the constant by other constants in the constant pool. These
38 // constants are implicitly dependent on the module that is being deleted,
39 // but they don't know that. Because we only find out when the CPV is
40 // deleted, we must now notify all of our users (that should only be
41 // Constants) that they are, in fact, invalid now and should be deleted.
43 while (!use_empty()) {
44 Value
*V
= use_back();
45 #ifndef NDEBUG // Only in -g mode...
46 if (!isa
<Constant
>(V
))
47 DOUT
<< "While deleting: " << *this
48 << "\n\nUse still stuck around after Def is destroyed: "
51 assert(isa
<Constant
>(V
) && "References remain to Constant being destroyed");
52 Constant
*CV
= cast
<Constant
>(V
);
53 CV
->destroyConstant();
55 // The constant should remove itself from our use list...
56 assert((use_empty() || use_back() != V
) && "Constant not removed!");
59 // Value has no outstanding references it is safe to delete it now...
63 /// canTrap - Return true if evaluation of this constant could trap. This is
64 /// true for things like constant expressions that could divide by zero.
65 bool Constant::canTrap() const {
66 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
67 // The only thing that could possibly trap are constant exprs.
68 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(this);
69 if (!CE
) return false;
71 // ConstantExpr traps if any operands can trap.
72 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
73 if (getOperand(i
)->canTrap())
76 // Otherwise, only specific operations can trap.
77 switch (CE
->getOpcode()) {
80 case Instruction::UDiv
:
81 case Instruction::SDiv
:
82 case Instruction::FDiv
:
83 case Instruction::URem
:
84 case Instruction::SRem
:
85 case Instruction::FRem
:
86 // Div and rem can trap if the RHS is not known to be non-zero.
87 if (!isa
<ConstantInt
>(getOperand(1)) || getOperand(1)->isNullValue())
93 /// ContaintsRelocations - Return true if the constant value contains
94 /// relocations which cannot be resolved at compile time.
95 bool Constant::ContainsRelocations() const {
96 if (isa
<GlobalValue
>(this))
98 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
99 if (getOperand(i
)->ContainsRelocations())
104 // Static constructor to create a '0' constant of arbitrary type...
105 Constant
*Constant::getNullValue(const Type
*Ty
) {
106 static uint64_t zero
[2] = {0, 0};
107 switch (Ty
->getTypeID()) {
108 case Type::IntegerTyID
:
109 return ConstantInt::get(Ty
, 0);
110 case Type::FloatTyID
:
111 return ConstantFP::get(Ty
, APFloat(APInt(32, 0)));
112 case Type::DoubleTyID
:
113 return ConstantFP::get(Ty
, APFloat(APInt(64, 0)));
114 case Type::X86_FP80TyID
:
115 return ConstantFP::get(Ty
, APFloat(APInt(80, 2, zero
)));
116 case Type::FP128TyID
:
117 case Type::PPC_FP128TyID
:
118 return ConstantFP::get(Ty
, APFloat(APInt(128, 2, zero
)));
119 case Type::PointerTyID
:
120 return ConstantPointerNull::get(cast
<PointerType
>(Ty
));
121 case Type::StructTyID
:
122 case Type::ArrayTyID
:
123 case Type::VectorTyID
:
124 return ConstantAggregateZero::get(Ty
);
126 // Function, Label, or Opaque type?
127 assert(!"Cannot create a null constant of that type!");
132 Constant
*Constant::getAllOnesValue(const Type
*Ty
) {
133 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
))
134 return ConstantInt::get(APInt::getAllOnesValue(ITy
->getBitWidth()));
135 return ConstantVector::getAllOnesValue(cast
<VectorType
>(Ty
));
138 // Static constructor to create an integral constant with all bits set
139 ConstantInt
*ConstantInt::getAllOnesValue(const Type
*Ty
) {
140 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
))
141 return ConstantInt::get(APInt::getAllOnesValue(ITy
->getBitWidth()));
145 /// @returns the value for a vector integer constant of the given type that
146 /// has all its bits set to true.
147 /// @brief Get the all ones value
148 ConstantVector
*ConstantVector::getAllOnesValue(const VectorType
*Ty
) {
149 std::vector
<Constant
*> Elts
;
150 Elts
.resize(Ty
->getNumElements(),
151 ConstantInt::getAllOnesValue(Ty
->getElementType()));
152 assert(Elts
[0] && "Not a vector integer type!");
153 return cast
<ConstantVector
>(ConstantVector::get(Elts
));
157 //===----------------------------------------------------------------------===//
159 //===----------------------------------------------------------------------===//
161 ConstantInt::ConstantInt(const IntegerType
*Ty
, const APInt
& V
)
162 : Constant(Ty
, ConstantIntVal
, 0, 0), Val(V
) {
163 assert(V
.getBitWidth() == Ty
->getBitWidth() && "Invalid constant for type");
166 ConstantInt
*ConstantInt::TheTrueVal
= 0;
167 ConstantInt
*ConstantInt::TheFalseVal
= 0;
170 void CleanupTrueFalse(void *) {
171 ConstantInt::ResetTrueFalse();
175 static ManagedCleanup
<llvm::CleanupTrueFalse
> TrueFalseCleanup
;
177 ConstantInt
*ConstantInt::CreateTrueFalseVals(bool WhichOne
) {
178 assert(TheTrueVal
== 0 && TheFalseVal
== 0);
179 TheTrueVal
= get(Type::Int1Ty
, 1);
180 TheFalseVal
= get(Type::Int1Ty
, 0);
182 // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
183 TrueFalseCleanup
.Register();
185 return WhichOne
? TheTrueVal
: TheFalseVal
;
190 struct DenseMapAPIntKeyInfo
{
194 KeyTy(const APInt
& V
, const Type
* Ty
) : val(V
), type(Ty
) {}
195 KeyTy(const KeyTy
& that
) : val(that
.val
), type(that
.type
) {}
196 bool operator==(const KeyTy
& that
) const {
197 return type
== that
.type
&& this->val
== that
.val
;
199 bool operator!=(const KeyTy
& that
) const {
200 return !this->operator==(that
);
203 static inline KeyTy
getEmptyKey() { return KeyTy(APInt(1,0), 0); }
204 static inline KeyTy
getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
205 static unsigned getHashValue(const KeyTy
&Key
) {
206 return DenseMapInfo
<void*>::getHashValue(Key
.type
) ^
207 Key
.val
.getHashValue();
209 static bool isEqual(const KeyTy
&LHS
, const KeyTy
&RHS
) {
212 static bool isPod() { return false; }
217 typedef DenseMap
<DenseMapAPIntKeyInfo::KeyTy
, ConstantInt
*,
218 DenseMapAPIntKeyInfo
> IntMapTy
;
219 static ManagedStatic
<IntMapTy
> IntConstants
;
221 ConstantInt
*ConstantInt::get(const Type
*Ty
, uint64_t V
, bool isSigned
) {
222 const IntegerType
*ITy
= cast
<IntegerType
>(Ty
);
223 return get(APInt(ITy
->getBitWidth(), V
, isSigned
));
226 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
227 // as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the
228 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
229 // compare APInt's of different widths, which would violate an APInt class
230 // invariant which generates an assertion.
231 ConstantInt
*ConstantInt::get(const APInt
& V
) {
232 // Get the corresponding integer type for the bit width of the value.
233 const IntegerType
*ITy
= IntegerType::get(V
.getBitWidth());
234 // get an existing value or the insertion position
235 DenseMapAPIntKeyInfo::KeyTy
Key(V
, ITy
);
236 ConstantInt
*&Slot
= (*IntConstants
)[Key
];
237 // if it exists, return it.
240 // otherwise create a new one, insert it, and return it.
241 return Slot
= new ConstantInt(ITy
, V
);
244 //===----------------------------------------------------------------------===//
246 //===----------------------------------------------------------------------===//
248 ConstantFP::ConstantFP(const Type
*Ty
, const APFloat
& V
)
249 : Constant(Ty
, ConstantFPVal
, 0, 0), Val(V
) {
251 if (Ty
==Type::FloatTy
)
252 assert(&V
.getSemantics()==&APFloat::IEEEsingle
);
253 else if (Ty
==Type::DoubleTy
)
254 assert(&V
.getSemantics()==&APFloat::IEEEdouble
);
255 else if (Ty
==Type::X86_FP80Ty
)
256 assert(&V
.getSemantics()==&APFloat::x87DoubleExtended
);
257 else if (Ty
==Type::FP128Ty
)
258 assert(&V
.getSemantics()==&APFloat::IEEEquad
);
263 bool ConstantFP::isNullValue() const {
264 return Val
.isZero() && !Val
.isNegative();
267 ConstantFP
*ConstantFP::getNegativeZero(const Type
*Ty
) {
268 APFloat apf
= cast
<ConstantFP
>(Constant::getNullValue(Ty
))->getValueAPF();
270 return ConstantFP::get(Ty
, apf
);
273 bool ConstantFP::isExactlyValue(const APFloat
& V
) const {
274 return Val
.bitwiseIsEqual(V
);
278 struct DenseMapAPFloatKeyInfo
{
281 KeyTy(const APFloat
& V
) : val(V
){}
282 KeyTy(const KeyTy
& that
) : val(that
.val
) {}
283 bool operator==(const KeyTy
& that
) const {
284 return this->val
.bitwiseIsEqual(that
.val
);
286 bool operator!=(const KeyTy
& that
) const {
287 return !this->operator==(that
);
290 static inline KeyTy
getEmptyKey() {
291 return KeyTy(APFloat(APFloat::Bogus
,1));
293 static inline KeyTy
getTombstoneKey() {
294 return KeyTy(APFloat(APFloat::Bogus
,2));
296 static unsigned getHashValue(const KeyTy
&Key
) {
297 return Key
.val
.getHashValue();
299 static bool isEqual(const KeyTy
&LHS
, const KeyTy
&RHS
) {
302 static bool isPod() { return false; }
306 //---- ConstantFP::get() implementation...
308 typedef DenseMap
<DenseMapAPFloatKeyInfo::KeyTy
, ConstantFP
*,
309 DenseMapAPFloatKeyInfo
> FPMapTy
;
311 static ManagedStatic
<FPMapTy
> FPConstants
;
313 ConstantFP
*ConstantFP::get(const Type
*Ty
, const APFloat
& V
) {
315 if (Ty
==Type::FloatTy
)
316 assert(&V
.getSemantics()==&APFloat::IEEEsingle
);
317 else if (Ty
==Type::DoubleTy
)
318 assert(&V
.getSemantics()==&APFloat::IEEEdouble
);
319 else if (Ty
==Type::X86_FP80Ty
)
320 assert(&V
.getSemantics()==&APFloat::x87DoubleExtended
);
321 else if (Ty
==Type::FP128Ty
)
322 assert(&V
.getSemantics()==&APFloat::IEEEquad
);
326 DenseMapAPFloatKeyInfo::KeyTy
Key(V
);
327 ConstantFP
*&Slot
= (*FPConstants
)[Key
];
328 if (Slot
) return Slot
;
329 return Slot
= new ConstantFP(Ty
, V
);
332 //===----------------------------------------------------------------------===//
333 // ConstantXXX Classes
334 //===----------------------------------------------------------------------===//
337 ConstantArray::ConstantArray(const ArrayType
*T
,
338 const std::vector
<Constant
*> &V
)
339 : Constant(T
, ConstantArrayVal
, new Use
[V
.size()], V
.size()) {
340 assert(V
.size() == T
->getNumElements() &&
341 "Invalid initializer vector for constant array");
342 Use
*OL
= OperandList
;
343 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
346 assert((C
->getType() == T
->getElementType() ||
348 C
->getType()->getTypeID() == T
->getElementType()->getTypeID())) &&
349 "Initializer for array element doesn't match array element type!");
354 ConstantArray::~ConstantArray() {
355 delete [] OperandList
;
358 ConstantStruct::ConstantStruct(const StructType
*T
,
359 const std::vector
<Constant
*> &V
)
360 : Constant(T
, ConstantStructVal
, new Use
[V
.size()], V
.size()) {
361 assert(V
.size() == T
->getNumElements() &&
362 "Invalid initializer vector for constant structure");
363 Use
*OL
= OperandList
;
364 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
367 assert((C
->getType() == T
->getElementType(I
-V
.begin()) ||
368 ((T
->getElementType(I
-V
.begin())->isAbstract() ||
369 C
->getType()->isAbstract()) &&
370 T
->getElementType(I
-V
.begin())->getTypeID() ==
371 C
->getType()->getTypeID())) &&
372 "Initializer for struct element doesn't match struct element type!");
377 ConstantStruct::~ConstantStruct() {
378 delete [] OperandList
;
382 ConstantVector::ConstantVector(const VectorType
*T
,
383 const std::vector
<Constant
*> &V
)
384 : Constant(T
, ConstantVectorVal
, new Use
[V
.size()], V
.size()) {
385 Use
*OL
= OperandList
;
386 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
389 assert((C
->getType() == T
->getElementType() ||
391 C
->getType()->getTypeID() == T
->getElementType()->getTypeID())) &&
392 "Initializer for vector element doesn't match vector element type!");
397 ConstantVector::~ConstantVector() {
398 delete [] OperandList
;
401 // We declare several classes private to this file, so use an anonymous
405 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
406 /// behind the scenes to implement unary constant exprs.
407 class VISIBILITY_HIDDEN UnaryConstantExpr
: public ConstantExpr
{
410 UnaryConstantExpr(unsigned Opcode
, Constant
*C
, const Type
*Ty
)
411 : ConstantExpr(Ty
, Opcode
, &Op
, 1), Op(C
, this) {}
414 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
415 /// behind the scenes to implement binary constant exprs.
416 class VISIBILITY_HIDDEN BinaryConstantExpr
: public ConstantExpr
{
419 BinaryConstantExpr(unsigned Opcode
, Constant
*C1
, Constant
*C2
)
420 : ConstantExpr(C1
->getType(), Opcode
, Ops
, 2) {
421 Ops
[0].init(C1
, this);
422 Ops
[1].init(C2
, this);
426 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
427 /// behind the scenes to implement select constant exprs.
428 class VISIBILITY_HIDDEN SelectConstantExpr
: public ConstantExpr
{
431 SelectConstantExpr(Constant
*C1
, Constant
*C2
, Constant
*C3
)
432 : ConstantExpr(C2
->getType(), Instruction::Select
, Ops
, 3) {
433 Ops
[0].init(C1
, this);
434 Ops
[1].init(C2
, this);
435 Ops
[2].init(C3
, this);
439 /// ExtractElementConstantExpr - This class is private to
440 /// Constants.cpp, and is used behind the scenes to implement
441 /// extractelement constant exprs.
442 class VISIBILITY_HIDDEN ExtractElementConstantExpr
: public ConstantExpr
{
445 ExtractElementConstantExpr(Constant
*C1
, Constant
*C2
)
446 : ConstantExpr(cast
<VectorType
>(C1
->getType())->getElementType(),
447 Instruction::ExtractElement
, Ops
, 2) {
448 Ops
[0].init(C1
, this);
449 Ops
[1].init(C2
, this);
453 /// InsertElementConstantExpr - This class is private to
454 /// Constants.cpp, and is used behind the scenes to implement
455 /// insertelement constant exprs.
456 class VISIBILITY_HIDDEN InsertElementConstantExpr
: public ConstantExpr
{
459 InsertElementConstantExpr(Constant
*C1
, Constant
*C2
, Constant
*C3
)
460 : ConstantExpr(C1
->getType(), Instruction::InsertElement
,
462 Ops
[0].init(C1
, this);
463 Ops
[1].init(C2
, this);
464 Ops
[2].init(C3
, this);
468 /// ShuffleVectorConstantExpr - This class is private to
469 /// Constants.cpp, and is used behind the scenes to implement
470 /// shufflevector constant exprs.
471 class VISIBILITY_HIDDEN ShuffleVectorConstantExpr
: public ConstantExpr
{
474 ShuffleVectorConstantExpr(Constant
*C1
, Constant
*C2
, Constant
*C3
)
475 : ConstantExpr(C1
->getType(), Instruction::ShuffleVector
,
477 Ops
[0].init(C1
, this);
478 Ops
[1].init(C2
, this);
479 Ops
[2].init(C3
, this);
483 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
484 /// used behind the scenes to implement getelementpr constant exprs.
485 struct VISIBILITY_HIDDEN GetElementPtrConstantExpr
: public ConstantExpr
{
486 GetElementPtrConstantExpr(Constant
*C
, const std::vector
<Constant
*> &IdxList
,
488 : ConstantExpr(DestTy
, Instruction::GetElementPtr
,
489 new Use
[IdxList
.size()+1], IdxList
.size()+1) {
490 OperandList
[0].init(C
, this);
491 for (unsigned i
= 0, E
= IdxList
.size(); i
!= E
; ++i
)
492 OperandList
[i
+1].init(IdxList
[i
], this);
494 ~GetElementPtrConstantExpr() {
495 delete [] OperandList
;
499 // CompareConstantExpr - This class is private to Constants.cpp, and is used
500 // behind the scenes to implement ICmp and FCmp constant expressions. This is
501 // needed in order to store the predicate value for these instructions.
502 struct VISIBILITY_HIDDEN CompareConstantExpr
: public ConstantExpr
{
503 unsigned short predicate
;
505 CompareConstantExpr(Instruction::OtherOps opc
, unsigned short pred
,
506 Constant
* LHS
, Constant
* RHS
)
507 : ConstantExpr(Type::Int1Ty
, opc
, Ops
, 2), predicate(pred
) {
508 OperandList
[0].init(LHS
, this);
509 OperandList
[1].init(RHS
, this);
513 } // end anonymous namespace
516 // Utility function for determining if a ConstantExpr is a CastOp or not. This
517 // can't be inline because we don't want to #include Instruction.h into
519 bool ConstantExpr::isCast() const {
520 return Instruction::isCast(getOpcode());
523 bool ConstantExpr::isCompare() const {
524 return getOpcode() == Instruction::ICmp
|| getOpcode() == Instruction::FCmp
;
527 /// ConstantExpr::get* - Return some common constants without having to
528 /// specify the full Instruction::OPCODE identifier.
530 Constant
*ConstantExpr::getNeg(Constant
*C
) {
531 return get(Instruction::Sub
,
532 ConstantExpr::getZeroValueForNegationExpr(C
->getType()),
535 Constant
*ConstantExpr::getNot(Constant
*C
) {
536 assert(isa
<ConstantInt
>(C
) && "Cannot NOT a nonintegral type!");
537 return get(Instruction::Xor
, C
,
538 ConstantInt::getAllOnesValue(C
->getType()));
540 Constant
*ConstantExpr::getAdd(Constant
*C1
, Constant
*C2
) {
541 return get(Instruction::Add
, C1
, C2
);
543 Constant
*ConstantExpr::getSub(Constant
*C1
, Constant
*C2
) {
544 return get(Instruction::Sub
, C1
, C2
);
546 Constant
*ConstantExpr::getMul(Constant
*C1
, Constant
*C2
) {
547 return get(Instruction::Mul
, C1
, C2
);
549 Constant
*ConstantExpr::getUDiv(Constant
*C1
, Constant
*C2
) {
550 return get(Instruction::UDiv
, C1
, C2
);
552 Constant
*ConstantExpr::getSDiv(Constant
*C1
, Constant
*C2
) {
553 return get(Instruction::SDiv
, C1
, C2
);
555 Constant
*ConstantExpr::getFDiv(Constant
*C1
, Constant
*C2
) {
556 return get(Instruction::FDiv
, C1
, C2
);
558 Constant
*ConstantExpr::getURem(Constant
*C1
, Constant
*C2
) {
559 return get(Instruction::URem
, C1
, C2
);
561 Constant
*ConstantExpr::getSRem(Constant
*C1
, Constant
*C2
) {
562 return get(Instruction::SRem
, C1
, C2
);
564 Constant
*ConstantExpr::getFRem(Constant
*C1
, Constant
*C2
) {
565 return get(Instruction::FRem
, C1
, C2
);
567 Constant
*ConstantExpr::getAnd(Constant
*C1
, Constant
*C2
) {
568 return get(Instruction::And
, C1
, C2
);
570 Constant
*ConstantExpr::getOr(Constant
*C1
, Constant
*C2
) {
571 return get(Instruction::Or
, C1
, C2
);
573 Constant
*ConstantExpr::getXor(Constant
*C1
, Constant
*C2
) {
574 return get(Instruction::Xor
, C1
, C2
);
576 unsigned ConstantExpr::getPredicate() const {
577 assert(getOpcode() == Instruction::FCmp
|| getOpcode() == Instruction::ICmp
);
578 return dynamic_cast<const CompareConstantExpr
*>(this)->predicate
;
580 Constant
*ConstantExpr::getShl(Constant
*C1
, Constant
*C2
) {
581 return get(Instruction::Shl
, C1
, C2
);
583 Constant
*ConstantExpr::getLShr(Constant
*C1
, Constant
*C2
) {
584 return get(Instruction::LShr
, C1
, C2
);
586 Constant
*ConstantExpr::getAShr(Constant
*C1
, Constant
*C2
) {
587 return get(Instruction::AShr
, C1
, C2
);
590 /// getWithOperandReplaced - Return a constant expression identical to this
591 /// one, but with the specified operand set to the specified value.
593 ConstantExpr::getWithOperandReplaced(unsigned OpNo
, Constant
*Op
) const {
594 assert(OpNo
< getNumOperands() && "Operand num is out of range!");
595 assert(Op
->getType() == getOperand(OpNo
)->getType() &&
596 "Replacing operand with value of different type!");
597 if (getOperand(OpNo
) == Op
)
598 return const_cast<ConstantExpr
*>(this);
600 Constant
*Op0
, *Op1
, *Op2
;
601 switch (getOpcode()) {
602 case Instruction::Trunc
:
603 case Instruction::ZExt
:
604 case Instruction::SExt
:
605 case Instruction::FPTrunc
:
606 case Instruction::FPExt
:
607 case Instruction::UIToFP
:
608 case Instruction::SIToFP
:
609 case Instruction::FPToUI
:
610 case Instruction::FPToSI
:
611 case Instruction::PtrToInt
:
612 case Instruction::IntToPtr
:
613 case Instruction::BitCast
:
614 return ConstantExpr::getCast(getOpcode(), Op
, getType());
615 case Instruction::Select
:
616 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
617 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
618 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
619 return ConstantExpr::getSelect(Op0
, Op1
, Op2
);
620 case Instruction::InsertElement
:
621 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
622 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
623 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
624 return ConstantExpr::getInsertElement(Op0
, Op1
, Op2
);
625 case Instruction::ExtractElement
:
626 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
627 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
628 return ConstantExpr::getExtractElement(Op0
, Op1
);
629 case Instruction::ShuffleVector
:
630 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
631 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
632 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
633 return ConstantExpr::getShuffleVector(Op0
, Op1
, Op2
);
634 case Instruction::GetElementPtr
: {
635 SmallVector
<Constant
*, 8> Ops
;
636 Ops
.resize(getNumOperands());
637 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
)
638 Ops
[i
] = getOperand(i
);
640 return ConstantExpr::getGetElementPtr(Op
, &Ops
[0], Ops
.size());
642 return ConstantExpr::getGetElementPtr(getOperand(0), &Ops
[0], Ops
.size());
645 assert(getNumOperands() == 2 && "Must be binary operator?");
646 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
647 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
648 return ConstantExpr::get(getOpcode(), Op0
, Op1
);
652 /// getWithOperands - This returns the current constant expression with the
653 /// operands replaced with the specified values. The specified operands must
654 /// match count and type with the existing ones.
655 Constant
*ConstantExpr::
656 getWithOperands(const std::vector
<Constant
*> &Ops
) const {
657 assert(Ops
.size() == getNumOperands() && "Operand count mismatch!");
658 bool AnyChange
= false;
659 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
660 assert(Ops
[i
]->getType() == getOperand(i
)->getType() &&
661 "Operand type mismatch!");
662 AnyChange
|= Ops
[i
] != getOperand(i
);
664 if (!AnyChange
) // No operands changed, return self.
665 return const_cast<ConstantExpr
*>(this);
667 switch (getOpcode()) {
668 case Instruction::Trunc
:
669 case Instruction::ZExt
:
670 case Instruction::SExt
:
671 case Instruction::FPTrunc
:
672 case Instruction::FPExt
:
673 case Instruction::UIToFP
:
674 case Instruction::SIToFP
:
675 case Instruction::FPToUI
:
676 case Instruction::FPToSI
:
677 case Instruction::PtrToInt
:
678 case Instruction::IntToPtr
:
679 case Instruction::BitCast
:
680 return ConstantExpr::getCast(getOpcode(), Ops
[0], getType());
681 case Instruction::Select
:
682 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
683 case Instruction::InsertElement
:
684 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
685 case Instruction::ExtractElement
:
686 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
687 case Instruction::ShuffleVector
:
688 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
689 case Instruction::GetElementPtr
:
690 return ConstantExpr::getGetElementPtr(Ops
[0], &Ops
[1], Ops
.size()-1);
691 case Instruction::ICmp
:
692 case Instruction::FCmp
:
693 return ConstantExpr::getCompare(getPredicate(), Ops
[0], Ops
[1]);
695 assert(getNumOperands() == 2 && "Must be binary operator?");
696 return ConstantExpr::get(getOpcode(), Ops
[0], Ops
[1]);
701 //===----------------------------------------------------------------------===//
702 // isValueValidForType implementations
704 bool ConstantInt::isValueValidForType(const Type
*Ty
, uint64_t Val
) {
705 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth(); // assert okay
706 if (Ty
== Type::Int1Ty
)
707 return Val
== 0 || Val
== 1;
709 return true; // always true, has to fit in largest type
710 uint64_t Max
= (1ll << NumBits
) - 1;
714 bool ConstantInt::isValueValidForType(const Type
*Ty
, int64_t Val
) {
715 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth(); // assert okay
716 if (Ty
== Type::Int1Ty
)
717 return Val
== 0 || Val
== 1 || Val
== -1;
719 return true; // always true, has to fit in largest type
720 int64_t Min
= -(1ll << (NumBits
-1));
721 int64_t Max
= (1ll << (NumBits
-1)) - 1;
722 return (Val
>= Min
&& Val
<= Max
);
725 bool ConstantFP::isValueValidForType(const Type
*Ty
, const APFloat
& Val
) {
726 // convert modifies in place, so make a copy.
727 APFloat Val2
= APFloat(Val
);
728 switch (Ty
->getTypeID()) {
730 return false; // These can't be represented as floating point!
732 // FIXME rounding mode needs to be more flexible
733 case Type::FloatTyID
:
734 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
735 Val2
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
) ==
737 case Type::DoubleTyID
:
738 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
739 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
740 Val2
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
) ==
742 case Type::X86_FP80TyID
:
743 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
744 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
745 &Val2
.getSemantics() == &APFloat::x87DoubleExtended
;
746 case Type::FP128TyID
:
747 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
748 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
749 &Val2
.getSemantics() == &APFloat::IEEEquad
;
753 //===----------------------------------------------------------------------===//
754 // Factory Function Implementation
756 // ConstantCreator - A class that is used to create constants by
757 // ValueMap*. This class should be partially specialized if there is
758 // something strange that needs to be done to interface to the ctor for the
762 template<class ConstantClass
, class TypeClass
, class ValType
>
763 struct VISIBILITY_HIDDEN ConstantCreator
{
764 static ConstantClass
*create(const TypeClass
*Ty
, const ValType
&V
) {
765 return new ConstantClass(Ty
, V
);
769 template<class ConstantClass
, class TypeClass
>
770 struct VISIBILITY_HIDDEN ConvertConstantType
{
771 static void convert(ConstantClass
*OldC
, const TypeClass
*NewTy
) {
772 assert(0 && "This type cannot be converted!\n");
777 template<class ValType
, class TypeClass
, class ConstantClass
,
778 bool HasLargeKey
= false /*true for arrays and structs*/ >
779 class VISIBILITY_HIDDEN ValueMap
: public AbstractTypeUser
{
781 typedef std::pair
<const Type
*, ValType
> MapKey
;
782 typedef std::map
<MapKey
, Constant
*> MapTy
;
783 typedef std::map
<Constant
*, typename
MapTy::iterator
> InverseMapTy
;
784 typedef std::map
<const Type
*, typename
MapTy::iterator
> AbstractTypeMapTy
;
786 /// Map - This is the main map from the element descriptor to the Constants.
787 /// This is the primary way we avoid creating two of the same shape
791 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
792 /// from the constants to their element in Map. This is important for
793 /// removal of constants from the array, which would otherwise have to scan
794 /// through the map with very large keys.
795 InverseMapTy InverseMap
;
797 /// AbstractTypeMap - Map for abstract type constants.
799 AbstractTypeMapTy AbstractTypeMap
;
802 typename
MapTy::iterator
map_end() { return Map
.end(); }
804 /// InsertOrGetItem - Return an iterator for the specified element.
805 /// If the element exists in the map, the returned iterator points to the
806 /// entry and Exists=true. If not, the iterator points to the newly
807 /// inserted entry and returns Exists=false. Newly inserted entries have
808 /// I->second == 0, and should be filled in.
809 typename
MapTy::iterator
InsertOrGetItem(std::pair
<MapKey
, Constant
*>
812 std::pair
<typename
MapTy::iterator
, bool> IP
= Map
.insert(InsertVal
);
818 typename
MapTy::iterator
FindExistingElement(ConstantClass
*CP
) {
820 typename
InverseMapTy::iterator IMI
= InverseMap
.find(CP
);
821 assert(IMI
!= InverseMap
.end() && IMI
->second
!= Map
.end() &&
822 IMI
->second
->second
== CP
&&
823 "InverseMap corrupt!");
827 typename
MapTy::iterator I
=
828 Map
.find(MapKey((TypeClass
*)CP
->getRawType(), getValType(CP
)));
829 if (I
== Map
.end() || I
->second
!= CP
) {
830 // FIXME: This should not use a linear scan. If this gets to be a
831 // performance problem, someone should look at this.
832 for (I
= Map
.begin(); I
!= Map
.end() && I
->second
!= CP
; ++I
)
839 /// getOrCreate - Return the specified constant from the map, creating it if
841 ConstantClass
*getOrCreate(const TypeClass
*Ty
, const ValType
&V
) {
842 MapKey
Lookup(Ty
, V
);
843 typename
MapTy::iterator I
= Map
.lower_bound(Lookup
);
845 if (I
!= Map
.end() && I
->first
== Lookup
)
846 return static_cast<ConstantClass
*>(I
->second
);
848 // If no preexisting value, create one now...
849 ConstantClass
*Result
=
850 ConstantCreator
<ConstantClass
,TypeClass
,ValType
>::create(Ty
, V
);
852 /// FIXME: why does this assert fail when loading 176.gcc?
853 //assert(Result->getType() == Ty && "Type specified is not correct!");
854 I
= Map
.insert(I
, std::make_pair(MapKey(Ty
, V
), Result
));
856 if (HasLargeKey
) // Remember the reverse mapping if needed.
857 InverseMap
.insert(std::make_pair(Result
, I
));
859 // If the type of the constant is abstract, make sure that an entry exists
860 // for it in the AbstractTypeMap.
861 if (Ty
->isAbstract()) {
862 typename
AbstractTypeMapTy::iterator TI
=
863 AbstractTypeMap
.lower_bound(Ty
);
865 if (TI
== AbstractTypeMap
.end() || TI
->first
!= Ty
) {
866 // Add ourselves to the ATU list of the type.
867 cast
<DerivedType
>(Ty
)->addAbstractTypeUser(this);
869 AbstractTypeMap
.insert(TI
, std::make_pair(Ty
, I
));
875 void remove(ConstantClass
*CP
) {
876 typename
MapTy::iterator I
= FindExistingElement(CP
);
877 assert(I
!= Map
.end() && "Constant not found in constant table!");
878 assert(I
->second
== CP
&& "Didn't find correct element?");
880 if (HasLargeKey
) // Remember the reverse mapping if needed.
881 InverseMap
.erase(CP
);
883 // Now that we found the entry, make sure this isn't the entry that
884 // the AbstractTypeMap points to.
885 const TypeClass
*Ty
= static_cast<const TypeClass
*>(I
->first
.first
);
886 if (Ty
->isAbstract()) {
887 assert(AbstractTypeMap
.count(Ty
) &&
888 "Abstract type not in AbstractTypeMap?");
889 typename
MapTy::iterator
&ATMEntryIt
= AbstractTypeMap
[Ty
];
890 if (ATMEntryIt
== I
) {
891 // Yes, we are removing the representative entry for this type.
892 // See if there are any other entries of the same type.
893 typename
MapTy::iterator TmpIt
= ATMEntryIt
;
895 // First check the entry before this one...
896 if (TmpIt
!= Map
.begin()) {
898 if (TmpIt
->first
.first
!= Ty
) // Not the same type, move back...
902 // If we didn't find the same type, try to move forward...
903 if (TmpIt
== ATMEntryIt
) {
905 if (TmpIt
== Map
.end() || TmpIt
->first
.first
!= Ty
)
906 --TmpIt
; // No entry afterwards with the same type
909 // If there is another entry in the map of the same abstract type,
910 // update the AbstractTypeMap entry now.
911 if (TmpIt
!= ATMEntryIt
) {
914 // Otherwise, we are removing the last instance of this type
915 // from the table. Remove from the ATM, and from user list.
916 cast
<DerivedType
>(Ty
)->removeAbstractTypeUser(this);
917 AbstractTypeMap
.erase(Ty
);
926 /// MoveConstantToNewSlot - If we are about to change C to be the element
927 /// specified by I, update our internal data structures to reflect this
929 void MoveConstantToNewSlot(ConstantClass
*C
, typename
MapTy::iterator I
) {
930 // First, remove the old location of the specified constant in the map.
931 typename
MapTy::iterator OldI
= FindExistingElement(C
);
932 assert(OldI
!= Map
.end() && "Constant not found in constant table!");
933 assert(OldI
->second
== C
&& "Didn't find correct element?");
935 // If this constant is the representative element for its abstract type,
936 // update the AbstractTypeMap so that the representative element is I.
937 if (C
->getType()->isAbstract()) {
938 typename
AbstractTypeMapTy::iterator ATI
=
939 AbstractTypeMap
.find(C
->getType());
940 assert(ATI
!= AbstractTypeMap
.end() &&
941 "Abstract type not in AbstractTypeMap?");
942 if (ATI
->second
== OldI
)
946 // Remove the old entry from the map.
949 // Update the inverse map so that we know that this constant is now
950 // located at descriptor I.
952 assert(I
->second
== C
&& "Bad inversemap entry!");
957 void refineAbstractType(const DerivedType
*OldTy
, const Type
*NewTy
) {
958 typename
AbstractTypeMapTy::iterator I
=
959 AbstractTypeMap
.find(cast
<Type
>(OldTy
));
961 assert(I
!= AbstractTypeMap
.end() &&
962 "Abstract type not in AbstractTypeMap?");
964 // Convert a constant at a time until the last one is gone. The last one
965 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
966 // eliminated eventually.
968 ConvertConstantType
<ConstantClass
,
970 static_cast<ConstantClass
*>(I
->second
->second
),
971 cast
<TypeClass
>(NewTy
));
973 I
= AbstractTypeMap
.find(cast
<Type
>(OldTy
));
974 } while (I
!= AbstractTypeMap
.end());
977 // If the type became concrete without being refined to any other existing
978 // type, we just remove ourselves from the ATU list.
979 void typeBecameConcrete(const DerivedType
*AbsTy
) {
980 AbsTy
->removeAbstractTypeUser(this);
984 DOUT
<< "Constant.cpp: ValueMap\n";
991 //---- ConstantAggregateZero::get() implementation...
994 // ConstantAggregateZero does not take extra "value" argument...
995 template<class ValType
>
996 struct ConstantCreator
<ConstantAggregateZero
, Type
, ValType
> {
997 static ConstantAggregateZero
*create(const Type
*Ty
, const ValType
&V
){
998 return new ConstantAggregateZero(Ty
);
1003 struct ConvertConstantType
<ConstantAggregateZero
, Type
> {
1004 static void convert(ConstantAggregateZero
*OldC
, const Type
*NewTy
) {
1005 // Make everyone now use a constant of the new type...
1006 Constant
*New
= ConstantAggregateZero::get(NewTy
);
1007 assert(New
!= OldC
&& "Didn't replace constant??");
1008 OldC
->uncheckedReplaceAllUsesWith(New
);
1009 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1014 static ManagedStatic
<ValueMap
<char, Type
,
1015 ConstantAggregateZero
> > AggZeroConstants
;
1017 static char getValType(ConstantAggregateZero
*CPZ
) { return 0; }
1019 Constant
*ConstantAggregateZero::get(const Type
*Ty
) {
1020 assert((isa
<StructType
>(Ty
) || isa
<ArrayType
>(Ty
) || isa
<VectorType
>(Ty
)) &&
1021 "Cannot create an aggregate zero of non-aggregate type!");
1022 return AggZeroConstants
->getOrCreate(Ty
, 0);
1025 // destroyConstant - Remove the constant from the constant table...
1027 void ConstantAggregateZero::destroyConstant() {
1028 AggZeroConstants
->remove(this);
1029 destroyConstantImpl();
1032 //---- ConstantArray::get() implementation...
1036 struct ConvertConstantType
<ConstantArray
, ArrayType
> {
1037 static void convert(ConstantArray
*OldC
, const ArrayType
*NewTy
) {
1038 // Make everyone now use a constant of the new type...
1039 std::vector
<Constant
*> C
;
1040 for (unsigned i
= 0, e
= OldC
->getNumOperands(); i
!= e
; ++i
)
1041 C
.push_back(cast
<Constant
>(OldC
->getOperand(i
)));
1042 Constant
*New
= ConstantArray::get(NewTy
, C
);
1043 assert(New
!= OldC
&& "Didn't replace constant??");
1044 OldC
->uncheckedReplaceAllUsesWith(New
);
1045 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1050 static std::vector
<Constant
*> getValType(ConstantArray
*CA
) {
1051 std::vector
<Constant
*> Elements
;
1052 Elements
.reserve(CA
->getNumOperands());
1053 for (unsigned i
= 0, e
= CA
->getNumOperands(); i
!= e
; ++i
)
1054 Elements
.push_back(cast
<Constant
>(CA
->getOperand(i
)));
1058 typedef ValueMap
<std::vector
<Constant
*>, ArrayType
,
1059 ConstantArray
, true /*largekey*/> ArrayConstantsTy
;
1060 static ManagedStatic
<ArrayConstantsTy
> ArrayConstants
;
1062 Constant
*ConstantArray::get(const ArrayType
*Ty
,
1063 const std::vector
<Constant
*> &V
) {
1064 // If this is an all-zero array, return a ConstantAggregateZero object
1067 if (!C
->isNullValue())
1068 return ArrayConstants
->getOrCreate(Ty
, V
);
1069 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
1071 return ArrayConstants
->getOrCreate(Ty
, V
);
1073 return ConstantAggregateZero::get(Ty
);
1076 // destroyConstant - Remove the constant from the constant table...
1078 void ConstantArray::destroyConstant() {
1079 ArrayConstants
->remove(this);
1080 destroyConstantImpl();
1083 /// ConstantArray::get(const string&) - Return an array that is initialized to
1084 /// contain the specified string. If length is zero then a null terminator is
1085 /// added to the specified string so that it may be used in a natural way.
1086 /// Otherwise, the length parameter specifies how much of the string to use
1087 /// and it won't be null terminated.
1089 Constant
*ConstantArray::get(const std::string
&Str
, bool AddNull
) {
1090 std::vector
<Constant
*> ElementVals
;
1091 for (unsigned i
= 0; i
< Str
.length(); ++i
)
1092 ElementVals
.push_back(ConstantInt::get(Type::Int8Ty
, Str
[i
]));
1094 // Add a null terminator to the string...
1096 ElementVals
.push_back(ConstantInt::get(Type::Int8Ty
, 0));
1099 ArrayType
*ATy
= ArrayType::get(Type::Int8Ty
, ElementVals
.size());
1100 return ConstantArray::get(ATy
, ElementVals
);
1103 /// isString - This method returns true if the array is an array of i8, and
1104 /// if the elements of the array are all ConstantInt's.
1105 bool ConstantArray::isString() const {
1106 // Check the element type for i8...
1107 if (getType()->getElementType() != Type::Int8Ty
)
1109 // Check the elements to make sure they are all integers, not constant
1111 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1112 if (!isa
<ConstantInt
>(getOperand(i
)))
1117 /// isCString - This method returns true if the array is a string (see
1118 /// isString) and it ends in a null byte \0 and does not contains any other
1119 /// null bytes except its terminator.
1120 bool ConstantArray::isCString() const {
1121 // Check the element type for i8...
1122 if (getType()->getElementType() != Type::Int8Ty
)
1124 Constant
*Zero
= Constant::getNullValue(getOperand(0)->getType());
1125 // Last element must be a null.
1126 if (getOperand(getNumOperands()-1) != Zero
)
1128 // Other elements must be non-null integers.
1129 for (unsigned i
= 0, e
= getNumOperands()-1; i
!= e
; ++i
) {
1130 if (!isa
<ConstantInt
>(getOperand(i
)))
1132 if (getOperand(i
) == Zero
)
1139 // getAsString - If the sub-element type of this array is i8
1140 // then this method converts the array to an std::string and returns it.
1141 // Otherwise, it asserts out.
1143 std::string
ConstantArray::getAsString() const {
1144 assert(isString() && "Not a string!");
1146 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1147 Result
+= (char)cast
<ConstantInt
>(getOperand(i
))->getZExtValue();
1152 //---- ConstantStruct::get() implementation...
1157 struct ConvertConstantType
<ConstantStruct
, StructType
> {
1158 static void convert(ConstantStruct
*OldC
, const StructType
*NewTy
) {
1159 // Make everyone now use a constant of the new type...
1160 std::vector
<Constant
*> C
;
1161 for (unsigned i
= 0, e
= OldC
->getNumOperands(); i
!= e
; ++i
)
1162 C
.push_back(cast
<Constant
>(OldC
->getOperand(i
)));
1163 Constant
*New
= ConstantStruct::get(NewTy
, C
);
1164 assert(New
!= OldC
&& "Didn't replace constant??");
1166 OldC
->uncheckedReplaceAllUsesWith(New
);
1167 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1172 typedef ValueMap
<std::vector
<Constant
*>, StructType
,
1173 ConstantStruct
, true /*largekey*/> StructConstantsTy
;
1174 static ManagedStatic
<StructConstantsTy
> StructConstants
;
1176 static std::vector
<Constant
*> getValType(ConstantStruct
*CS
) {
1177 std::vector
<Constant
*> Elements
;
1178 Elements
.reserve(CS
->getNumOperands());
1179 for (unsigned i
= 0, e
= CS
->getNumOperands(); i
!= e
; ++i
)
1180 Elements
.push_back(cast
<Constant
>(CS
->getOperand(i
)));
1184 Constant
*ConstantStruct::get(const StructType
*Ty
,
1185 const std::vector
<Constant
*> &V
) {
1186 // Create a ConstantAggregateZero value if all elements are zeros...
1187 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
)
1188 if (!V
[i
]->isNullValue())
1189 return StructConstants
->getOrCreate(Ty
, V
);
1191 return ConstantAggregateZero::get(Ty
);
1194 Constant
*ConstantStruct::get(const std::vector
<Constant
*> &V
, bool packed
) {
1195 std::vector
<const Type
*> StructEls
;
1196 StructEls
.reserve(V
.size());
1197 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
)
1198 StructEls
.push_back(V
[i
]->getType());
1199 return get(StructType::get(StructEls
, packed
), V
);
1202 // destroyConstant - Remove the constant from the constant table...
1204 void ConstantStruct::destroyConstant() {
1205 StructConstants
->remove(this);
1206 destroyConstantImpl();
1209 //---- ConstantVector::get() implementation...
1213 struct ConvertConstantType
<ConstantVector
, VectorType
> {
1214 static void convert(ConstantVector
*OldC
, const VectorType
*NewTy
) {
1215 // Make everyone now use a constant of the new type...
1216 std::vector
<Constant
*> C
;
1217 for (unsigned i
= 0, e
= OldC
->getNumOperands(); i
!= e
; ++i
)
1218 C
.push_back(cast
<Constant
>(OldC
->getOperand(i
)));
1219 Constant
*New
= ConstantVector::get(NewTy
, C
);
1220 assert(New
!= OldC
&& "Didn't replace constant??");
1221 OldC
->uncheckedReplaceAllUsesWith(New
);
1222 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1227 static std::vector
<Constant
*> getValType(ConstantVector
*CP
) {
1228 std::vector
<Constant
*> Elements
;
1229 Elements
.reserve(CP
->getNumOperands());
1230 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
1231 Elements
.push_back(CP
->getOperand(i
));
1235 static ManagedStatic
<ValueMap
<std::vector
<Constant
*>, VectorType
,
1236 ConstantVector
> > VectorConstants
;
1238 Constant
*ConstantVector::get(const VectorType
*Ty
,
1239 const std::vector
<Constant
*> &V
) {
1240 // If this is an all-zero vector, return a ConstantAggregateZero object
1243 if (!C
->isNullValue())
1244 return VectorConstants
->getOrCreate(Ty
, V
);
1245 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
1247 return VectorConstants
->getOrCreate(Ty
, V
);
1249 return ConstantAggregateZero::get(Ty
);
1252 Constant
*ConstantVector::get(const std::vector
<Constant
*> &V
) {
1253 assert(!V
.empty() && "Cannot infer type if V is empty");
1254 return get(VectorType::get(V
.front()->getType(),V
.size()), V
);
1257 // destroyConstant - Remove the constant from the constant table...
1259 void ConstantVector::destroyConstant() {
1260 VectorConstants
->remove(this);
1261 destroyConstantImpl();
1264 /// This function will return true iff every element in this vector constant
1265 /// is set to all ones.
1266 /// @returns true iff this constant's emements are all set to all ones.
1267 /// @brief Determine if the value is all ones.
1268 bool ConstantVector::isAllOnesValue() const {
1269 // Check out first element.
1270 const Constant
*Elt
= getOperand(0);
1271 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1272 if (!CI
|| !CI
->isAllOnesValue()) return false;
1273 // Then make sure all remaining elements point to the same value.
1274 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
) {
1275 if (getOperand(I
) != Elt
) return false;
1280 //---- ConstantPointerNull::get() implementation...
1284 // ConstantPointerNull does not take extra "value" argument...
1285 template<class ValType
>
1286 struct ConstantCreator
<ConstantPointerNull
, PointerType
, ValType
> {
1287 static ConstantPointerNull
*create(const PointerType
*Ty
, const ValType
&V
){
1288 return new ConstantPointerNull(Ty
);
1293 struct ConvertConstantType
<ConstantPointerNull
, PointerType
> {
1294 static void convert(ConstantPointerNull
*OldC
, const PointerType
*NewTy
) {
1295 // Make everyone now use a constant of the new type...
1296 Constant
*New
= ConstantPointerNull::get(NewTy
);
1297 assert(New
!= OldC
&& "Didn't replace constant??");
1298 OldC
->uncheckedReplaceAllUsesWith(New
);
1299 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1304 static ManagedStatic
<ValueMap
<char, PointerType
,
1305 ConstantPointerNull
> > NullPtrConstants
;
1307 static char getValType(ConstantPointerNull
*) {
1312 ConstantPointerNull
*ConstantPointerNull::get(const PointerType
*Ty
) {
1313 return NullPtrConstants
->getOrCreate(Ty
, 0);
1316 // destroyConstant - Remove the constant from the constant table...
1318 void ConstantPointerNull::destroyConstant() {
1319 NullPtrConstants
->remove(this);
1320 destroyConstantImpl();
1324 //---- UndefValue::get() implementation...
1328 // UndefValue does not take extra "value" argument...
1329 template<class ValType
>
1330 struct ConstantCreator
<UndefValue
, Type
, ValType
> {
1331 static UndefValue
*create(const Type
*Ty
, const ValType
&V
) {
1332 return new UndefValue(Ty
);
1337 struct ConvertConstantType
<UndefValue
, Type
> {
1338 static void convert(UndefValue
*OldC
, const Type
*NewTy
) {
1339 // Make everyone now use a constant of the new type.
1340 Constant
*New
= UndefValue::get(NewTy
);
1341 assert(New
!= OldC
&& "Didn't replace constant??");
1342 OldC
->uncheckedReplaceAllUsesWith(New
);
1343 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1348 static ManagedStatic
<ValueMap
<char, Type
, UndefValue
> > UndefValueConstants
;
1350 static char getValType(UndefValue
*) {
1355 UndefValue
*UndefValue::get(const Type
*Ty
) {
1356 return UndefValueConstants
->getOrCreate(Ty
, 0);
1359 // destroyConstant - Remove the constant from the constant table.
1361 void UndefValue::destroyConstant() {
1362 UndefValueConstants
->remove(this);
1363 destroyConstantImpl();
1367 //---- ConstantExpr::get() implementations...
1370 struct ExprMapKeyType
{
1371 explicit ExprMapKeyType(unsigned opc
, std::vector
<Constant
*> ops
,
1372 unsigned short pred
= 0) : opcode(opc
), predicate(pred
), operands(ops
) { }
1375 std::vector
<Constant
*> operands
;
1376 bool operator==(const ExprMapKeyType
& that
) const {
1377 return this->opcode
== that
.opcode
&&
1378 this->predicate
== that
.predicate
&&
1379 this->operands
== that
.operands
;
1381 bool operator<(const ExprMapKeyType
& that
) const {
1382 return this->opcode
< that
.opcode
||
1383 (this->opcode
== that
.opcode
&& this->predicate
< that
.predicate
) ||
1384 (this->opcode
== that
.opcode
&& this->predicate
== that
.predicate
&&
1385 this->operands
< that
.operands
);
1388 bool operator!=(const ExprMapKeyType
& that
) const {
1389 return !(*this == that
);
1395 struct ConstantCreator
<ConstantExpr
, Type
, ExprMapKeyType
> {
1396 static ConstantExpr
*create(const Type
*Ty
, const ExprMapKeyType
&V
,
1397 unsigned short pred
= 0) {
1398 if (Instruction::isCast(V
.opcode
))
1399 return new UnaryConstantExpr(V
.opcode
, V
.operands
[0], Ty
);
1400 if ((V
.opcode
>= Instruction::BinaryOpsBegin
&&
1401 V
.opcode
< Instruction::BinaryOpsEnd
))
1402 return new BinaryConstantExpr(V
.opcode
, V
.operands
[0], V
.operands
[1]);
1403 if (V
.opcode
== Instruction::Select
)
1404 return new SelectConstantExpr(V
.operands
[0], V
.operands
[1],
1406 if (V
.opcode
== Instruction::ExtractElement
)
1407 return new ExtractElementConstantExpr(V
.operands
[0], V
.operands
[1]);
1408 if (V
.opcode
== Instruction::InsertElement
)
1409 return new InsertElementConstantExpr(V
.operands
[0], V
.operands
[1],
1411 if (V
.opcode
== Instruction::ShuffleVector
)
1412 return new ShuffleVectorConstantExpr(V
.operands
[0], V
.operands
[1],
1414 if (V
.opcode
== Instruction::GetElementPtr
) {
1415 std::vector
<Constant
*> IdxList(V
.operands
.begin()+1, V
.operands
.end());
1416 return new GetElementPtrConstantExpr(V
.operands
[0], IdxList
, Ty
);
1419 // The compare instructions are weird. We have to encode the predicate
1420 // value and it is combined with the instruction opcode by multiplying
1421 // the opcode by one hundred. We must decode this to get the predicate.
1422 if (V
.opcode
== Instruction::ICmp
)
1423 return new CompareConstantExpr(Instruction::ICmp
, V
.predicate
,
1424 V
.operands
[0], V
.operands
[1]);
1425 if (V
.opcode
== Instruction::FCmp
)
1426 return new CompareConstantExpr(Instruction::FCmp
, V
.predicate
,
1427 V
.operands
[0], V
.operands
[1]);
1428 assert(0 && "Invalid ConstantExpr!");
1434 struct ConvertConstantType
<ConstantExpr
, Type
> {
1435 static void convert(ConstantExpr
*OldC
, const Type
*NewTy
) {
1437 switch (OldC
->getOpcode()) {
1438 case Instruction::Trunc
:
1439 case Instruction::ZExt
:
1440 case Instruction::SExt
:
1441 case Instruction::FPTrunc
:
1442 case Instruction::FPExt
:
1443 case Instruction::UIToFP
:
1444 case Instruction::SIToFP
:
1445 case Instruction::FPToUI
:
1446 case Instruction::FPToSI
:
1447 case Instruction::PtrToInt
:
1448 case Instruction::IntToPtr
:
1449 case Instruction::BitCast
:
1450 New
= ConstantExpr::getCast(OldC
->getOpcode(), OldC
->getOperand(0),
1453 case Instruction::Select
:
1454 New
= ConstantExpr::getSelectTy(NewTy
, OldC
->getOperand(0),
1455 OldC
->getOperand(1),
1456 OldC
->getOperand(2));
1459 assert(OldC
->getOpcode() >= Instruction::BinaryOpsBegin
&&
1460 OldC
->getOpcode() < Instruction::BinaryOpsEnd
);
1461 New
= ConstantExpr::getTy(NewTy
, OldC
->getOpcode(), OldC
->getOperand(0),
1462 OldC
->getOperand(1));
1464 case Instruction::GetElementPtr
:
1465 // Make everyone now use a constant of the new type...
1466 std::vector
<Value
*> Idx(OldC
->op_begin()+1, OldC
->op_end());
1467 New
= ConstantExpr::getGetElementPtrTy(NewTy
, OldC
->getOperand(0),
1468 &Idx
[0], Idx
.size());
1472 assert(New
!= OldC
&& "Didn't replace constant??");
1473 OldC
->uncheckedReplaceAllUsesWith(New
);
1474 OldC
->destroyConstant(); // This constant is now dead, destroy it.
1477 } // end namespace llvm
1480 static ExprMapKeyType
getValType(ConstantExpr
*CE
) {
1481 std::vector
<Constant
*> Operands
;
1482 Operands
.reserve(CE
->getNumOperands());
1483 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
1484 Operands
.push_back(cast
<Constant
>(CE
->getOperand(i
)));
1485 return ExprMapKeyType(CE
->getOpcode(), Operands
,
1486 CE
->isCompare() ? CE
->getPredicate() : 0);
1489 static ManagedStatic
<ValueMap
<ExprMapKeyType
, Type
,
1490 ConstantExpr
> > ExprConstants
;
1492 /// This is a utility function to handle folding of casts and lookup of the
1493 /// cast in the ExprConstants map. It is usedby the various get* methods below.
1494 static inline Constant
*getFoldedCast(
1495 Instruction::CastOps opc
, Constant
*C
, const Type
*Ty
) {
1496 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1497 // Fold a few common cases
1498 if (Constant
*FC
= ConstantFoldCastInstruction(opc
, C
, Ty
))
1501 // Look up the constant in the table first to ensure uniqueness
1502 std::vector
<Constant
*> argVec(1, C
);
1503 ExprMapKeyType
Key(opc
, argVec
);
1504 return ExprConstants
->getOrCreate(Ty
, Key
);
1507 Constant
*ConstantExpr::getCast(unsigned oc
, Constant
*C
, const Type
*Ty
) {
1508 Instruction::CastOps opc
= Instruction::CastOps(oc
);
1509 assert(Instruction::isCast(opc
) && "opcode out of range");
1510 assert(C
&& Ty
&& "Null arguments to getCast");
1511 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1515 assert(0 && "Invalid cast opcode");
1517 case Instruction::Trunc
: return getTrunc(C
, Ty
);
1518 case Instruction::ZExt
: return getZExt(C
, Ty
);
1519 case Instruction::SExt
: return getSExt(C
, Ty
);
1520 case Instruction::FPTrunc
: return getFPTrunc(C
, Ty
);
1521 case Instruction::FPExt
: return getFPExtend(C
, Ty
);
1522 case Instruction::UIToFP
: return getUIToFP(C
, Ty
);
1523 case Instruction::SIToFP
: return getSIToFP(C
, Ty
);
1524 case Instruction::FPToUI
: return getFPToUI(C
, Ty
);
1525 case Instruction::FPToSI
: return getFPToSI(C
, Ty
);
1526 case Instruction::PtrToInt
: return getPtrToInt(C
, Ty
);
1527 case Instruction::IntToPtr
: return getIntToPtr(C
, Ty
);
1528 case Instruction::BitCast
: return getBitCast(C
, Ty
);
1533 Constant
*ConstantExpr::getZExtOrBitCast(Constant
*C
, const Type
*Ty
) {
1534 if (C
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1535 return getCast(Instruction::BitCast
, C
, Ty
);
1536 return getCast(Instruction::ZExt
, C
, Ty
);
1539 Constant
*ConstantExpr::getSExtOrBitCast(Constant
*C
, const Type
*Ty
) {
1540 if (C
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1541 return getCast(Instruction::BitCast
, C
, Ty
);
1542 return getCast(Instruction::SExt
, C
, Ty
);
1545 Constant
*ConstantExpr::getTruncOrBitCast(Constant
*C
, const Type
*Ty
) {
1546 if (C
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1547 return getCast(Instruction::BitCast
, C
, Ty
);
1548 return getCast(Instruction::Trunc
, C
, Ty
);
1551 Constant
*ConstantExpr::getPointerCast(Constant
*S
, const Type
*Ty
) {
1552 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
1553 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) && "Invalid cast");
1555 if (Ty
->isInteger())
1556 return getCast(Instruction::PtrToInt
, S
, Ty
);
1557 return getCast(Instruction::BitCast
, S
, Ty
);
1560 Constant
*ConstantExpr::getIntegerCast(Constant
*C
, const Type
*Ty
,
1562 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
1563 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
1564 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
1565 Instruction::CastOps opcode
=
1566 (SrcBits
== DstBits
? Instruction::BitCast
:
1567 (SrcBits
> DstBits
? Instruction::Trunc
:
1568 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1569 return getCast(opcode
, C
, Ty
);
1572 Constant
*ConstantExpr::getFPCast(Constant
*C
, const Type
*Ty
) {
1573 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
1575 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
1576 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
1577 if (SrcBits
== DstBits
)
1578 return C
; // Avoid a useless cast
1579 Instruction::CastOps opcode
=
1580 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
);
1581 return getCast(opcode
, C
, Ty
);
1584 Constant
*ConstantExpr::getTrunc(Constant
*C
, const Type
*Ty
) {
1585 assert(C
->getType()->isInteger() && "Trunc operand must be integer");
1586 assert(Ty
->isInteger() && "Trunc produces only integral");
1587 assert(C
->getType()->getPrimitiveSizeInBits() > Ty
->getPrimitiveSizeInBits()&&
1588 "SrcTy must be larger than DestTy for Trunc!");
1590 return getFoldedCast(Instruction::Trunc
, C
, Ty
);
1593 Constant
*ConstantExpr::getSExt(Constant
*C
, const Type
*Ty
) {
1594 assert(C
->getType()->isInteger() && "SEXt operand must be integral");
1595 assert(Ty
->isInteger() && "SExt produces only integer");
1596 assert(C
->getType()->getPrimitiveSizeInBits() < Ty
->getPrimitiveSizeInBits()&&
1597 "SrcTy must be smaller than DestTy for SExt!");
1599 return getFoldedCast(Instruction::SExt
, C
, Ty
);
1602 Constant
*ConstantExpr::getZExt(Constant
*C
, const Type
*Ty
) {
1603 assert(C
->getType()->isInteger() && "ZEXt operand must be integral");
1604 assert(Ty
->isInteger() && "ZExt produces only integer");
1605 assert(C
->getType()->getPrimitiveSizeInBits() < Ty
->getPrimitiveSizeInBits()&&
1606 "SrcTy must be smaller than DestTy for ZExt!");
1608 return getFoldedCast(Instruction::ZExt
, C
, Ty
);
1611 Constant
*ConstantExpr::getFPTrunc(Constant
*C
, const Type
*Ty
) {
1612 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
1613 C
->getType()->getPrimitiveSizeInBits() > Ty
->getPrimitiveSizeInBits()&&
1614 "This is an illegal floating point truncation!");
1615 return getFoldedCast(Instruction::FPTrunc
, C
, Ty
);
1618 Constant
*ConstantExpr::getFPExtend(Constant
*C
, const Type
*Ty
) {
1619 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
1620 C
->getType()->getPrimitiveSizeInBits() < Ty
->getPrimitiveSizeInBits()&&
1621 "This is an illegal floating point extension!");
1622 return getFoldedCast(Instruction::FPExt
, C
, Ty
);
1625 Constant
*ConstantExpr::getUIToFP(Constant
*C
, const Type
*Ty
) {
1626 assert(C
->getType()->isInteger() && Ty
->isFloatingPoint() &&
1627 "This is an illegal i32 to floating point cast!");
1628 return getFoldedCast(Instruction::UIToFP
, C
, Ty
);
1631 Constant
*ConstantExpr::getSIToFP(Constant
*C
, const Type
*Ty
) {
1632 assert(C
->getType()->isInteger() && Ty
->isFloatingPoint() &&
1633 "This is an illegal sint to floating point cast!");
1634 return getFoldedCast(Instruction::SIToFP
, C
, Ty
);
1637 Constant
*ConstantExpr::getFPToUI(Constant
*C
, const Type
*Ty
) {
1638 assert(C
->getType()->isFloatingPoint() && Ty
->isInteger() &&
1639 "This is an illegal floating point to i32 cast!");
1640 return getFoldedCast(Instruction::FPToUI
, C
, Ty
);
1643 Constant
*ConstantExpr::getFPToSI(Constant
*C
, const Type
*Ty
) {
1644 assert(C
->getType()->isFloatingPoint() && Ty
->isInteger() &&
1645 "This is an illegal floating point to i32 cast!");
1646 return getFoldedCast(Instruction::FPToSI
, C
, Ty
);
1649 Constant
*ConstantExpr::getPtrToInt(Constant
*C
, const Type
*DstTy
) {
1650 assert(isa
<PointerType
>(C
->getType()) && "PtrToInt source must be pointer");
1651 assert(DstTy
->isInteger() && "PtrToInt destination must be integral");
1652 return getFoldedCast(Instruction::PtrToInt
, C
, DstTy
);
1655 Constant
*ConstantExpr::getIntToPtr(Constant
*C
, const Type
*DstTy
) {
1656 assert(C
->getType()->isInteger() && "IntToPtr source must be integral");
1657 assert(isa
<PointerType
>(DstTy
) && "IntToPtr destination must be a pointer");
1658 return getFoldedCast(Instruction::IntToPtr
, C
, DstTy
);
1661 Constant
*ConstantExpr::getBitCast(Constant
*C
, const Type
*DstTy
) {
1662 // BitCast implies a no-op cast of type only. No bits change. However, you
1663 // can't cast pointers to anything but pointers.
1664 const Type
*SrcTy
= C
->getType();
1665 assert((isa
<PointerType
>(SrcTy
) == isa
<PointerType
>(DstTy
)) &&
1666 "BitCast cannot cast pointer to non-pointer and vice versa");
1668 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1669 // or nonptr->ptr). For all the other types, the cast is okay if source and
1670 // destination bit widths are identical.
1671 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1672 unsigned DstBitSize
= DstTy
->getPrimitiveSizeInBits();
1673 assert(SrcBitSize
== DstBitSize
&& "BitCast requies types of same width");
1674 return getFoldedCast(Instruction::BitCast
, C
, DstTy
);
1677 Constant
*ConstantExpr::getSizeOf(const Type
*Ty
) {
1678 // sizeof is implemented as: (ulong) gep (Ty*)null, 1
1679 Constant
*GEPIdx
= ConstantInt::get(Type::Int32Ty
, 1);
1681 getGetElementPtr(getNullValue(PointerType::get(Ty
)), &GEPIdx
, 1);
1682 return getCast(Instruction::PtrToInt
, GEP
, Type::Int64Ty
);
1685 Constant
*ConstantExpr::getTy(const Type
*ReqTy
, unsigned Opcode
,
1686 Constant
*C1
, Constant
*C2
) {
1687 // Check the operands for consistency first
1688 assert(Opcode
>= Instruction::BinaryOpsBegin
&&
1689 Opcode
< Instruction::BinaryOpsEnd
&&
1690 "Invalid opcode in binary constant expression");
1691 assert(C1
->getType() == C2
->getType() &&
1692 "Operand types in binary constant expression should match");
1694 if (ReqTy
== C1
->getType() || ReqTy
== Type::Int1Ty
)
1695 if (Constant
*FC
= ConstantFoldBinaryInstruction(Opcode
, C1
, C2
))
1696 return FC
; // Fold a few common cases...
1698 std::vector
<Constant
*> argVec(1, C1
); argVec
.push_back(C2
);
1699 ExprMapKeyType
Key(Opcode
, argVec
);
1700 return ExprConstants
->getOrCreate(ReqTy
, Key
);
1703 Constant
*ConstantExpr::getCompareTy(unsigned short predicate
,
1704 Constant
*C1
, Constant
*C2
) {
1705 switch (predicate
) {
1706 default: assert(0 && "Invalid CmpInst predicate");
1707 case FCmpInst::FCMP_FALSE
: case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_OGT
:
1708 case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OLE
:
1709 case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_ORD
: case FCmpInst::FCMP_UNO
:
1710 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UGT
: case FCmpInst::FCMP_UGE
:
1711 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_ULE
: case FCmpInst::FCMP_UNE
:
1712 case FCmpInst::FCMP_TRUE
:
1713 return getFCmp(predicate
, C1
, C2
);
1714 case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGT
:
1715 case ICmpInst::ICMP_UGE
: case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
:
1716 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_SGE
: case ICmpInst::ICMP_SLT
:
1717 case ICmpInst::ICMP_SLE
:
1718 return getICmp(predicate
, C1
, C2
);
1722 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C1
, Constant
*C2
) {
1725 case Instruction::Add
:
1726 case Instruction::Sub
:
1727 case Instruction::Mul
:
1728 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1729 assert((C1
->getType()->isInteger() || C1
->getType()->isFloatingPoint() ||
1730 isa
<VectorType
>(C1
->getType())) &&
1731 "Tried to create an arithmetic operation on a non-arithmetic type!");
1733 case Instruction::UDiv
:
1734 case Instruction::SDiv
:
1735 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1736 assert((C1
->getType()->isInteger() || (isa
<VectorType
>(C1
->getType()) &&
1737 cast
<VectorType
>(C1
->getType())->getElementType()->isInteger())) &&
1738 "Tried to create an arithmetic operation on a non-arithmetic type!");
1740 case Instruction::FDiv
:
1741 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1742 assert((C1
->getType()->isFloatingPoint() || (isa
<VectorType
>(C1
->getType())
1743 && cast
<VectorType
>(C1
->getType())->getElementType()->isFloatingPoint()))
1744 && "Tried to create an arithmetic operation on a non-arithmetic type!");
1746 case Instruction::URem
:
1747 case Instruction::SRem
:
1748 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1749 assert((C1
->getType()->isInteger() || (isa
<VectorType
>(C1
->getType()) &&
1750 cast
<VectorType
>(C1
->getType())->getElementType()->isInteger())) &&
1751 "Tried to create an arithmetic operation on a non-arithmetic type!");
1753 case Instruction::FRem
:
1754 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1755 assert((C1
->getType()->isFloatingPoint() || (isa
<VectorType
>(C1
->getType())
1756 && cast
<VectorType
>(C1
->getType())->getElementType()->isFloatingPoint()))
1757 && "Tried to create an arithmetic operation on a non-arithmetic type!");
1759 case Instruction::And
:
1760 case Instruction::Or
:
1761 case Instruction::Xor
:
1762 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1763 assert((C1
->getType()->isInteger() || isa
<VectorType
>(C1
->getType())) &&
1764 "Tried to create a logical operation on a non-integral type!");
1766 case Instruction::Shl
:
1767 case Instruction::LShr
:
1768 case Instruction::AShr
:
1769 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1770 assert(C1
->getType()->isInteger() &&
1771 "Tried to create a shift operation on a non-integer type!");
1778 return getTy(C1
->getType(), Opcode
, C1
, C2
);
1781 Constant
*ConstantExpr::getCompare(unsigned short pred
,
1782 Constant
*C1
, Constant
*C2
) {
1783 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1784 return getCompareTy(pred
, C1
, C2
);
1787 Constant
*ConstantExpr::getSelectTy(const Type
*ReqTy
, Constant
*C
,
1788 Constant
*V1
, Constant
*V2
) {
1789 assert(C
->getType() == Type::Int1Ty
&& "Select condition must be i1!");
1790 assert(V1
->getType() == V2
->getType() && "Select value types must match!");
1791 assert(V1
->getType()->isFirstClassType() && "Cannot select aggregate type!");
1793 if (ReqTy
== V1
->getType())
1794 if (Constant
*SC
= ConstantFoldSelectInstruction(C
, V1
, V2
))
1795 return SC
; // Fold common cases
1797 std::vector
<Constant
*> argVec(3, C
);
1800 ExprMapKeyType
Key(Instruction::Select
, argVec
);
1801 return ExprConstants
->getOrCreate(ReqTy
, Key
);
1804 Constant
*ConstantExpr::getGetElementPtrTy(const Type
*ReqTy
, Constant
*C
,
1807 assert(GetElementPtrInst::getIndexedType(C
->getType(), Idxs
, Idxs
+NumIdx
, true) &&
1808 "GEP indices invalid!");
1810 if (Constant
*FC
= ConstantFoldGetElementPtr(C
, (Constant
**)Idxs
, NumIdx
))
1811 return FC
; // Fold a few common cases...
1813 assert(isa
<PointerType
>(C
->getType()) &&
1814 "Non-pointer type for constant GetElementPtr expression");
1815 // Look up the constant in the table first to ensure uniqueness
1816 std::vector
<Constant
*> ArgVec
;
1817 ArgVec
.reserve(NumIdx
+1);
1818 ArgVec
.push_back(C
);
1819 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1820 ArgVec
.push_back(cast
<Constant
>(Idxs
[i
]));
1821 const ExprMapKeyType
Key(Instruction::GetElementPtr
, ArgVec
);
1822 return ExprConstants
->getOrCreate(ReqTy
, Key
);
1825 Constant
*ConstantExpr::getGetElementPtr(Constant
*C
, Value
* const *Idxs
,
1827 // Get the result type of the getelementptr!
1829 GetElementPtrInst::getIndexedType(C
->getType(), Idxs
, Idxs
+NumIdx
, true);
1830 assert(Ty
&& "GEP indices invalid!");
1831 return getGetElementPtrTy(PointerType::get(Ty
), C
, Idxs
, NumIdx
);
1834 Constant
*ConstantExpr::getGetElementPtr(Constant
*C
, Constant
* const *Idxs
,
1836 return getGetElementPtr(C
, (Value
* const *)Idxs
, NumIdx
);
1841 ConstantExpr::getICmp(unsigned short pred
, Constant
* LHS
, Constant
* RHS
) {
1842 assert(LHS
->getType() == RHS
->getType());
1843 assert(pred
>= ICmpInst::FIRST_ICMP_PREDICATE
&&
1844 pred
<= ICmpInst::LAST_ICMP_PREDICATE
&& "Invalid ICmp Predicate");
1846 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
1847 return FC
; // Fold a few common cases...
1849 // Look up the constant in the table first to ensure uniqueness
1850 std::vector
<Constant
*> ArgVec
;
1851 ArgVec
.push_back(LHS
);
1852 ArgVec
.push_back(RHS
);
1853 // Get the key type with both the opcode and predicate
1854 const ExprMapKeyType
Key(Instruction::ICmp
, ArgVec
, pred
);
1855 return ExprConstants
->getOrCreate(Type::Int1Ty
, Key
);
1859 ConstantExpr::getFCmp(unsigned short pred
, Constant
* LHS
, Constant
* RHS
) {
1860 assert(LHS
->getType() == RHS
->getType());
1861 assert(pred
<= FCmpInst::LAST_FCMP_PREDICATE
&& "Invalid FCmp Predicate");
1863 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
1864 return FC
; // Fold a few common cases...
1866 // Look up the constant in the table first to ensure uniqueness
1867 std::vector
<Constant
*> ArgVec
;
1868 ArgVec
.push_back(LHS
);
1869 ArgVec
.push_back(RHS
);
1870 // Get the key type with both the opcode and predicate
1871 const ExprMapKeyType
Key(Instruction::FCmp
, ArgVec
, pred
);
1872 return ExprConstants
->getOrCreate(Type::Int1Ty
, Key
);
1875 Constant
*ConstantExpr::getExtractElementTy(const Type
*ReqTy
, Constant
*Val
,
1877 if (Constant
*FC
= ConstantFoldExtractElementInstruction(Val
, Idx
))
1878 return FC
; // Fold a few common cases...
1879 // Look up the constant in the table first to ensure uniqueness
1880 std::vector
<Constant
*> ArgVec(1, Val
);
1881 ArgVec
.push_back(Idx
);
1882 const ExprMapKeyType
Key(Instruction::ExtractElement
,ArgVec
);
1883 return ExprConstants
->getOrCreate(ReqTy
, Key
);
1886 Constant
*ConstantExpr::getExtractElement(Constant
*Val
, Constant
*Idx
) {
1887 assert(isa
<VectorType
>(Val
->getType()) &&
1888 "Tried to create extractelement operation on non-vector type!");
1889 assert(Idx
->getType() == Type::Int32Ty
&&
1890 "Extractelement index must be i32 type!");
1891 return getExtractElementTy(cast
<VectorType
>(Val
->getType())->getElementType(),
1895 Constant
*ConstantExpr::getInsertElementTy(const Type
*ReqTy
, Constant
*Val
,
1896 Constant
*Elt
, Constant
*Idx
) {
1897 if (Constant
*FC
= ConstantFoldInsertElementInstruction(Val
, Elt
, Idx
))
1898 return FC
; // Fold a few common cases...
1899 // Look up the constant in the table first to ensure uniqueness
1900 std::vector
<Constant
*> ArgVec(1, Val
);
1901 ArgVec
.push_back(Elt
);
1902 ArgVec
.push_back(Idx
);
1903 const ExprMapKeyType
Key(Instruction::InsertElement
,ArgVec
);
1904 return ExprConstants
->getOrCreate(ReqTy
, Key
);
1907 Constant
*ConstantExpr::getInsertElement(Constant
*Val
, Constant
*Elt
,
1909 assert(isa
<VectorType
>(Val
->getType()) &&
1910 "Tried to create insertelement operation on non-vector type!");
1911 assert(Elt
->getType() == cast
<VectorType
>(Val
->getType())->getElementType()
1912 && "Insertelement types must match!");
1913 assert(Idx
->getType() == Type::Int32Ty
&&
1914 "Insertelement index must be i32 type!");
1915 return getInsertElementTy(cast
<VectorType
>(Val
->getType())->getElementType(),
1919 Constant
*ConstantExpr::getShuffleVectorTy(const Type
*ReqTy
, Constant
*V1
,
1920 Constant
*V2
, Constant
*Mask
) {
1921 if (Constant
*FC
= ConstantFoldShuffleVectorInstruction(V1
, V2
, Mask
))
1922 return FC
; // Fold a few common cases...
1923 // Look up the constant in the table first to ensure uniqueness
1924 std::vector
<Constant
*> ArgVec(1, V1
);
1925 ArgVec
.push_back(V2
);
1926 ArgVec
.push_back(Mask
);
1927 const ExprMapKeyType
Key(Instruction::ShuffleVector
,ArgVec
);
1928 return ExprConstants
->getOrCreate(ReqTy
, Key
);
1931 Constant
*ConstantExpr::getShuffleVector(Constant
*V1
, Constant
*V2
,
1933 assert(ShuffleVectorInst::isValidOperands(V1
, V2
, Mask
) &&
1934 "Invalid shuffle vector constant expr operands!");
1935 return getShuffleVectorTy(V1
->getType(), V1
, V2
, Mask
);
1938 Constant
*ConstantExpr::getZeroValueForNegationExpr(const Type
*Ty
) {
1939 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Ty
))
1940 if (PTy
->getElementType()->isFloatingPoint()) {
1941 std::vector
<Constant
*> zeros(PTy
->getNumElements(),
1942 ConstantFP::getNegativeZero(PTy
->getElementType()));
1943 return ConstantVector::get(PTy
, zeros
);
1946 if (Ty
->isFloatingPoint())
1947 return ConstantFP::getNegativeZero(Ty
);
1949 return Constant::getNullValue(Ty
);
1952 // destroyConstant - Remove the constant from the constant table...
1954 void ConstantExpr::destroyConstant() {
1955 ExprConstants
->remove(this);
1956 destroyConstantImpl();
1959 const char *ConstantExpr::getOpcodeName() const {
1960 return Instruction::getOpcodeName(getOpcode());
1963 //===----------------------------------------------------------------------===//
1964 // replaceUsesOfWithOnConstant implementations
1966 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1967 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1970 /// Note that we intentionally replace all uses of From with To here. Consider
1971 /// a large array that uses 'From' 1000 times. By handling this case all here,
1972 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1973 /// single invocation handles all 1000 uses. Handling them one at a time would
1974 /// work, but would be really slow because it would have to unique each updated
1976 void ConstantArray::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
1978 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
1979 Constant
*ToC
= cast
<Constant
>(To
);
1981 std::pair
<ArrayConstantsTy::MapKey
, Constant
*> Lookup
;
1982 Lookup
.first
.first
= getType();
1983 Lookup
.second
= this;
1985 std::vector
<Constant
*> &Values
= Lookup
.first
.second
;
1986 Values
.reserve(getNumOperands()); // Build replacement array.
1988 // Fill values with the modified operands of the constant array. Also,
1989 // compute whether this turns into an all-zeros array.
1990 bool isAllZeros
= false;
1991 unsigned NumUpdated
= 0;
1992 if (!ToC
->isNullValue()) {
1993 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
1994 Constant
*Val
= cast
<Constant
>(O
->get());
1999 Values
.push_back(Val
);
2003 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
2004 Constant
*Val
= cast
<Constant
>(O
->get());
2009 Values
.push_back(Val
);
2010 if (isAllZeros
) isAllZeros
= Val
->isNullValue();
2014 Constant
*Replacement
= 0;
2016 Replacement
= ConstantAggregateZero::get(getType());
2018 // Check to see if we have this array type already.
2020 ArrayConstantsTy::MapTy::iterator I
=
2021 ArrayConstants
->InsertOrGetItem(Lookup
, Exists
);
2024 Replacement
= I
->second
;
2026 // Okay, the new shape doesn't exist in the system yet. Instead of
2027 // creating a new constant array, inserting it, replaceallusesof'ing the
2028 // old with the new, then deleting the old... just update the current one
2030 ArrayConstants
->MoveConstantToNewSlot(this, I
);
2032 // Update to the new value. Optimize for the case when we have a single
2033 // operand that we're changing, but handle bulk updates efficiently.
2034 if (NumUpdated
== 1) {
2035 unsigned OperandToUpdate
= U
-OperandList
;
2036 assert(getOperand(OperandToUpdate
) == From
&&
2037 "ReplaceAllUsesWith broken!");
2038 setOperand(OperandToUpdate
, ToC
);
2040 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
2041 if (getOperand(i
) == From
)
2048 // Otherwise, I do need to replace this with an existing value.
2049 assert(Replacement
!= this && "I didn't contain From!");
2051 // Everyone using this now uses the replacement.
2052 uncheckedReplaceAllUsesWith(Replacement
);
2054 // Delete the old constant!
2058 void ConstantStruct::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
2060 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2061 Constant
*ToC
= cast
<Constant
>(To
);
2063 unsigned OperandToUpdate
= U
-OperandList
;
2064 assert(getOperand(OperandToUpdate
) == From
&& "ReplaceAllUsesWith broken!");
2066 std::pair
<StructConstantsTy::MapKey
, Constant
*> Lookup
;
2067 Lookup
.first
.first
= getType();
2068 Lookup
.second
= this;
2069 std::vector
<Constant
*> &Values
= Lookup
.first
.second
;
2070 Values
.reserve(getNumOperands()); // Build replacement struct.
2073 // Fill values with the modified operands of the constant struct. Also,
2074 // compute whether this turns into an all-zeros struct.
2075 bool isAllZeros
= false;
2076 if (!ToC
->isNullValue()) {
2077 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
)
2078 Values
.push_back(cast
<Constant
>(O
->get()));
2081 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
2082 Constant
*Val
= cast
<Constant
>(O
->get());
2083 Values
.push_back(Val
);
2084 if (isAllZeros
) isAllZeros
= Val
->isNullValue();
2087 Values
[OperandToUpdate
] = ToC
;
2089 Constant
*Replacement
= 0;
2091 Replacement
= ConstantAggregateZero::get(getType());
2093 // Check to see if we have this array type already.
2095 StructConstantsTy::MapTy::iterator I
=
2096 StructConstants
->InsertOrGetItem(Lookup
, Exists
);
2099 Replacement
= I
->second
;
2101 // Okay, the new shape doesn't exist in the system yet. Instead of
2102 // creating a new constant struct, inserting it, replaceallusesof'ing the
2103 // old with the new, then deleting the old... just update the current one
2105 StructConstants
->MoveConstantToNewSlot(this, I
);
2107 // Update to the new value.
2108 setOperand(OperandToUpdate
, ToC
);
2113 assert(Replacement
!= this && "I didn't contain From!");
2115 // Everyone using this now uses the replacement.
2116 uncheckedReplaceAllUsesWith(Replacement
);
2118 // Delete the old constant!
2122 void ConstantVector::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
2124 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2126 std::vector
<Constant
*> Values
;
2127 Values
.reserve(getNumOperands()); // Build replacement array...
2128 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2129 Constant
*Val
= getOperand(i
);
2130 if (Val
== From
) Val
= cast
<Constant
>(To
);
2131 Values
.push_back(Val
);
2134 Constant
*Replacement
= ConstantVector::get(getType(), Values
);
2135 assert(Replacement
!= this && "I didn't contain From!");
2137 // Everyone using this now uses the replacement.
2138 uncheckedReplaceAllUsesWith(Replacement
);
2140 // Delete the old constant!
2144 void ConstantExpr::replaceUsesOfWithOnConstant(Value
*From
, Value
*ToV
,
2146 assert(isa
<Constant
>(ToV
) && "Cannot make Constant refer to non-constant!");
2147 Constant
*To
= cast
<Constant
>(ToV
);
2149 Constant
*Replacement
= 0;
2150 if (getOpcode() == Instruction::GetElementPtr
) {
2151 SmallVector
<Constant
*, 8> Indices
;
2152 Constant
*Pointer
= getOperand(0);
2153 Indices
.reserve(getNumOperands()-1);
2154 if (Pointer
== From
) Pointer
= To
;
2156 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
2157 Constant
*Val
= getOperand(i
);
2158 if (Val
== From
) Val
= To
;
2159 Indices
.push_back(Val
);
2161 Replacement
= ConstantExpr::getGetElementPtr(Pointer
,
2162 &Indices
[0], Indices
.size());
2163 } else if (isCast()) {
2164 assert(getOperand(0) == From
&& "Cast only has one use!");
2165 Replacement
= ConstantExpr::getCast(getOpcode(), To
, getType());
2166 } else if (getOpcode() == Instruction::Select
) {
2167 Constant
*C1
= getOperand(0);
2168 Constant
*C2
= getOperand(1);
2169 Constant
*C3
= getOperand(2);
2170 if (C1
== From
) C1
= To
;
2171 if (C2
== From
) C2
= To
;
2172 if (C3
== From
) C3
= To
;
2173 Replacement
= ConstantExpr::getSelect(C1
, C2
, C3
);
2174 } else if (getOpcode() == Instruction::ExtractElement
) {
2175 Constant
*C1
= getOperand(0);
2176 Constant
*C2
= getOperand(1);
2177 if (C1
== From
) C1
= To
;
2178 if (C2
== From
) C2
= To
;
2179 Replacement
= ConstantExpr::getExtractElement(C1
, C2
);
2180 } else if (getOpcode() == Instruction::InsertElement
) {
2181 Constant
*C1
= getOperand(0);
2182 Constant
*C2
= getOperand(1);
2183 Constant
*C3
= getOperand(1);
2184 if (C1
== From
) C1
= To
;
2185 if (C2
== From
) C2
= To
;
2186 if (C3
== From
) C3
= To
;
2187 Replacement
= ConstantExpr::getInsertElement(C1
, C2
, C3
);
2188 } else if (getOpcode() == Instruction::ShuffleVector
) {
2189 Constant
*C1
= getOperand(0);
2190 Constant
*C2
= getOperand(1);
2191 Constant
*C3
= getOperand(2);
2192 if (C1
== From
) C1
= To
;
2193 if (C2
== From
) C2
= To
;
2194 if (C3
== From
) C3
= To
;
2195 Replacement
= ConstantExpr::getShuffleVector(C1
, C2
, C3
);
2196 } else if (isCompare()) {
2197 Constant
*C1
= getOperand(0);
2198 Constant
*C2
= getOperand(1);
2199 if (C1
== From
) C1
= To
;
2200 if (C2
== From
) C2
= To
;
2201 if (getOpcode() == Instruction::ICmp
)
2202 Replacement
= ConstantExpr::getICmp(getPredicate(), C1
, C2
);
2204 Replacement
= ConstantExpr::getFCmp(getPredicate(), C1
, C2
);
2205 } else if (getNumOperands() == 2) {
2206 Constant
*C1
= getOperand(0);
2207 Constant
*C2
= getOperand(1);
2208 if (C1
== From
) C1
= To
;
2209 if (C2
== From
) C2
= To
;
2210 Replacement
= ConstantExpr::get(getOpcode(), C1
, C2
);
2212 assert(0 && "Unknown ConstantExpr type!");
2216 assert(Replacement
!= this && "I didn't contain From!");
2218 // Everyone using this now uses the replacement.
2219 uncheckedReplaceAllUsesWith(Replacement
);
2221 // Delete the old constant!
2226 /// getStringValue - Turn an LLVM constant pointer that eventually points to a
2227 /// global into a string value. Return an empty string if we can't do it.
2228 /// Parameter Chop determines if the result is chopped at the first null
2231 std::string
Constant::getStringValue(bool Chop
, unsigned Offset
) {
2232 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(this)) {
2233 if (GV
->hasInitializer() && isa
<ConstantArray
>(GV
->getInitializer())) {
2234 ConstantArray
*Init
= cast
<ConstantArray
>(GV
->getInitializer());
2235 if (Init
->isString()) {
2236 std::string Result
= Init
->getAsString();
2237 if (Offset
< Result
.size()) {
2238 // If we are pointing INTO The string, erase the beginning...
2239 Result
.erase(Result
.begin(), Result
.begin()+Offset
);
2241 // Take off the null terminator, and any string fragments after it.
2243 std::string::size_type NullPos
= Result
.find_first_of((char)0);
2244 if (NullPos
!= std::string::npos
)
2245 Result
.erase(Result
.begin()+NullPos
, Result
.end());
2251 } else if (Constant
*C
= dyn_cast
<Constant
>(this)) {
2252 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
2253 return GV
->getStringValue(Chop
, Offset
);
2254 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2255 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2256 // Turn a gep into the specified offset.
2257 if (CE
->getNumOperands() == 3 &&
2258 cast
<Constant
>(CE
->getOperand(1))->isNullValue() &&
2259 isa
<ConstantInt
>(CE
->getOperand(2))) {
2260 Offset
+= cast
<ConstantInt
>(CE
->getOperand(2))->getZExtValue();
2261 return CE
->getOperand(0)->getStringValue(Chop
, Offset
);