1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/BasicBlock.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/ParameterAttributes.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ConstantRange.h"
23 #include "llvm/Support/MathExtras.h"
26 unsigned CallSite::getCallingConv() const {
27 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
28 return CI
->getCallingConv();
30 return cast
<InvokeInst
>(I
)->getCallingConv();
32 void CallSite::setCallingConv(unsigned CC
) {
33 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
34 CI
->setCallingConv(CC
);
36 cast
<InvokeInst
>(I
)->setCallingConv(CC
);
42 //===----------------------------------------------------------------------===//
43 // TerminatorInst Class
44 //===----------------------------------------------------------------------===//
46 // Out of line virtual method, so the vtable, etc has a home.
47 TerminatorInst::~TerminatorInst() {
50 // Out of line virtual method, so the vtable, etc has a home.
51 UnaryInstruction::~UnaryInstruction() {
55 //===----------------------------------------------------------------------===//
57 //===----------------------------------------------------------------------===//
59 PHINode::PHINode(const PHINode
&PN
)
60 : Instruction(PN
.getType(), Instruction::PHI
,
61 new Use
[PN
.getNumOperands()], PN
.getNumOperands()),
62 ReservedSpace(PN
.getNumOperands()) {
63 Use
*OL
= OperandList
;
64 for (unsigned i
= 0, e
= PN
.getNumOperands(); i
!= e
; i
+=2) {
65 OL
[i
].init(PN
.getOperand(i
), this);
66 OL
[i
+1].init(PN
.getOperand(i
+1), this);
71 delete [] OperandList
;
74 // removeIncomingValue - Remove an incoming value. This is useful if a
75 // predecessor basic block is deleted.
76 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
77 unsigned NumOps
= getNumOperands();
78 Use
*OL
= OperandList
;
79 assert(Idx
*2 < NumOps
&& "BB not in PHI node!");
80 Value
*Removed
= OL
[Idx
*2];
82 // Move everything after this operand down.
84 // FIXME: we could just swap with the end of the list, then erase. However,
85 // client might not expect this to happen. The code as it is thrashes the
86 // use/def lists, which is kinda lame.
87 for (unsigned i
= (Idx
+1)*2; i
!= NumOps
; i
+= 2) {
92 // Nuke the last value.
94 OL
[NumOps
-2+1].set(0);
95 NumOperands
= NumOps
-2;
97 // If the PHI node is dead, because it has zero entries, nuke it now.
98 if (NumOps
== 2 && DeletePHIIfEmpty
) {
99 // If anyone is using this PHI, make them use a dummy value instead...
100 replaceAllUsesWith(UndefValue::get(getType()));
106 /// resizeOperands - resize operands - This adjusts the length of the operands
107 /// list according to the following behavior:
108 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
109 /// of operation. This grows the number of ops by 1.5 times.
110 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
111 /// 3. If NumOps == NumOperands, trim the reserved space.
113 void PHINode::resizeOperands(unsigned NumOps
) {
115 NumOps
= (getNumOperands())*3/2;
116 if (NumOps
< 4) NumOps
= 4; // 4 op PHI nodes are VERY common.
117 } else if (NumOps
*2 > NumOperands
) {
119 if (ReservedSpace
>= NumOps
) return;
120 } else if (NumOps
== NumOperands
) {
121 if (ReservedSpace
== NumOps
) return;
126 ReservedSpace
= NumOps
;
127 Use
*NewOps
= new Use
[NumOps
];
128 Use
*OldOps
= OperandList
;
129 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
130 NewOps
[i
].init(OldOps
[i
], this);
134 OperandList
= NewOps
;
137 /// hasConstantValue - If the specified PHI node always merges together the same
138 /// value, return the value, otherwise return null.
140 Value
*PHINode::hasConstantValue(bool AllowNonDominatingInstruction
) const {
141 // If the PHI node only has one incoming value, eliminate the PHI node...
142 if (getNumIncomingValues() == 1)
143 if (getIncomingValue(0) != this) // not X = phi X
144 return getIncomingValue(0);
146 return UndefValue::get(getType()); // Self cycle is dead.
148 // Otherwise if all of the incoming values are the same for the PHI, replace
149 // the PHI node with the incoming value.
152 bool HasUndefInput
= false;
153 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
)
154 if (isa
<UndefValue
>(getIncomingValue(i
)))
155 HasUndefInput
= true;
156 else if (getIncomingValue(i
) != this) // Not the PHI node itself...
157 if (InVal
&& getIncomingValue(i
) != InVal
)
158 return 0; // Not the same, bail out.
160 InVal
= getIncomingValue(i
);
162 // The only case that could cause InVal to be null is if we have a PHI node
163 // that only has entries for itself. In this case, there is no entry into the
164 // loop, so kill the PHI.
166 if (InVal
== 0) InVal
= UndefValue::get(getType());
168 // If we have a PHI node like phi(X, undef, X), where X is defined by some
169 // instruction, we cannot always return X as the result of the PHI node. Only
170 // do this if X is not an instruction (thus it must dominate the PHI block),
171 // or if the client is prepared to deal with this possibility.
172 if (HasUndefInput
&& !AllowNonDominatingInstruction
)
173 if (Instruction
*IV
= dyn_cast
<Instruction
>(InVal
))
174 // If it's in the entry block, it dominates everything.
175 if (IV
->getParent() != &IV
->getParent()->getParent()->getEntryBlock() ||
177 return 0; // Cannot guarantee that InVal dominates this PHINode.
179 // All of the incoming values are the same, return the value now.
184 //===----------------------------------------------------------------------===//
185 // CallInst Implementation
186 //===----------------------------------------------------------------------===//
188 CallInst::~CallInst() {
189 delete [] OperandList
;
191 ParamAttrs
->dropRef();
194 void CallInst::init(Value
*Func
, Value
* const *Params
, unsigned NumParams
) {
196 NumOperands
= NumParams
+1;
197 Use
*OL
= OperandList
= new Use
[NumParams
+1];
198 OL
[0].init(Func
, this);
200 const FunctionType
*FTy
=
201 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
202 FTy
= FTy
; // silence warning.
204 assert((NumParams
== FTy
->getNumParams() ||
205 (FTy
->isVarArg() && NumParams
> FTy
->getNumParams())) &&
206 "Calling a function with bad signature!");
207 for (unsigned i
= 0; i
!= NumParams
; ++i
) {
208 assert((i
>= FTy
->getNumParams() ||
209 FTy
->getParamType(i
) == Params
[i
]->getType()) &&
210 "Calling a function with a bad signature!");
211 OL
[i
+1].init(Params
[i
], this);
215 void CallInst::init(Value
*Func
, Value
*Actual1
, Value
*Actual2
) {
218 Use
*OL
= OperandList
= new Use
[3];
219 OL
[0].init(Func
, this);
220 OL
[1].init(Actual1
, this);
221 OL
[2].init(Actual2
, this);
223 const FunctionType
*FTy
=
224 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
225 FTy
= FTy
; // silence warning.
227 assert((FTy
->getNumParams() == 2 ||
228 (FTy
->isVarArg() && FTy
->getNumParams() < 2)) &&
229 "Calling a function with bad signature");
230 assert((0 >= FTy
->getNumParams() ||
231 FTy
->getParamType(0) == Actual1
->getType()) &&
232 "Calling a function with a bad signature!");
233 assert((1 >= FTy
->getNumParams() ||
234 FTy
->getParamType(1) == Actual2
->getType()) &&
235 "Calling a function with a bad signature!");
238 void CallInst::init(Value
*Func
, Value
*Actual
) {
241 Use
*OL
= OperandList
= new Use
[2];
242 OL
[0].init(Func
, this);
243 OL
[1].init(Actual
, this);
245 const FunctionType
*FTy
=
246 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
247 FTy
= FTy
; // silence warning.
249 assert((FTy
->getNumParams() == 1 ||
250 (FTy
->isVarArg() && FTy
->getNumParams() == 0)) &&
251 "Calling a function with bad signature");
252 assert((0 == FTy
->getNumParams() ||
253 FTy
->getParamType(0) == Actual
->getType()) &&
254 "Calling a function with a bad signature!");
257 void CallInst::init(Value
*Func
) {
260 Use
*OL
= OperandList
= new Use
[1];
261 OL
[0].init(Func
, this);
263 const FunctionType
*FTy
=
264 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
265 FTy
= FTy
; // silence warning.
267 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
271 // Leave for llvm-gcc
272 CallInst::CallInst(Value
*Func
, Value
* const *Args
, unsigned NumArgs
,
273 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
274 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
275 ->getElementType())->getReturnType(),
276 Instruction::Call
, 0, 0, InsertAtEnd
) {
277 init(Func
, Args
, NumArgs
);
280 CallInst::CallInst(Value
*Func
, Value
* const *Args
, unsigned NumArgs
,
281 const std::string
&Name
, Instruction
*InsertBefore
)
282 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
283 ->getElementType())->getReturnType(),
284 Instruction::Call
, 0, 0, InsertBefore
) {
285 init(Func
, Args
, NumArgs
);
289 CallInst::CallInst(Value
*Func
, Value
*Actual1
, Value
*Actual2
,
290 const std::string
&Name
, Instruction
*InsertBefore
)
291 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
292 ->getElementType())->getReturnType(),
293 Instruction::Call
, 0, 0, InsertBefore
) {
294 init(Func
, Actual1
, Actual2
);
298 CallInst::CallInst(Value
*Func
, Value
*Actual1
, Value
*Actual2
,
299 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
300 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
301 ->getElementType())->getReturnType(),
302 Instruction::Call
, 0, 0, InsertAtEnd
) {
303 init(Func
, Actual1
, Actual2
);
307 CallInst::CallInst(Value
*Func
, Value
* Actual
, const std::string
&Name
,
308 Instruction
*InsertBefore
)
309 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
310 ->getElementType())->getReturnType(),
311 Instruction::Call
, 0, 0, InsertBefore
) {
316 CallInst::CallInst(Value
*Func
, Value
* Actual
, const std::string
&Name
,
317 BasicBlock
*InsertAtEnd
)
318 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
319 ->getElementType())->getReturnType(),
320 Instruction::Call
, 0, 0, InsertAtEnd
) {
324 CallInst::CallInst(Value
*Func
, const std::string
&Name
,
325 Instruction
*InsertBefore
)
326 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
327 ->getElementType())->getReturnType(),
328 Instruction::Call
, 0, 0, InsertBefore
) {
333 CallInst::CallInst(Value
*Func
, const std::string
&Name
,
334 BasicBlock
*InsertAtEnd
)
335 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
336 ->getElementType())->getReturnType(),
337 Instruction::Call
, 0, 0, InsertAtEnd
) {
342 CallInst::CallInst(const CallInst
&CI
)
343 : Instruction(CI
.getType(), Instruction::Call
, new Use
[CI
.getNumOperands()],
344 CI
.getNumOperands()) {
346 SubclassData
= CI
.SubclassData
;
347 Use
*OL
= OperandList
;
348 Use
*InOL
= CI
.OperandList
;
349 for (unsigned i
= 0, e
= CI
.getNumOperands(); i
!= e
; ++i
)
350 OL
[i
].init(InOL
[i
], this);
353 void CallInst::setParamAttrs(ParamAttrsList
*newAttrs
) {
355 ParamAttrs
->dropRef();
360 ParamAttrs
= newAttrs
;
363 //===----------------------------------------------------------------------===//
364 // InvokeInst Implementation
365 //===----------------------------------------------------------------------===//
367 InvokeInst::~InvokeInst() {
368 delete [] OperandList
;
370 ParamAttrs
->dropRef();
373 void InvokeInst::init(Value
*Fn
, BasicBlock
*IfNormal
, BasicBlock
*IfException
,
374 Value
* const *Args
, unsigned NumArgs
) {
376 NumOperands
= 3+NumArgs
;
377 Use
*OL
= OperandList
= new Use
[3+NumArgs
];
378 OL
[0].init(Fn
, this);
379 OL
[1].init(IfNormal
, this);
380 OL
[2].init(IfException
, this);
381 const FunctionType
*FTy
=
382 cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())->getElementType());
383 FTy
= FTy
; // silence warning.
385 assert((NumArgs
== FTy
->getNumParams()) ||
386 (FTy
->isVarArg() && NumArgs
> FTy
->getNumParams()) &&
387 "Calling a function with bad signature");
389 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; i
++) {
390 assert((i
>= FTy
->getNumParams() ||
391 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
392 "Invoking a function with a bad signature!");
394 OL
[i
+3].init(Args
[i
], this);
398 InvokeInst::InvokeInst(const InvokeInst
&II
)
399 : TerminatorInst(II
.getType(), Instruction::Invoke
,
400 new Use
[II
.getNumOperands()], II
.getNumOperands()) {
402 SubclassData
= II
.SubclassData
;
403 Use
*OL
= OperandList
, *InOL
= II
.OperandList
;
404 for (unsigned i
= 0, e
= II
.getNumOperands(); i
!= e
; ++i
)
405 OL
[i
].init(InOL
[i
], this);
408 BasicBlock
*InvokeInst::getSuccessorV(unsigned idx
) const {
409 return getSuccessor(idx
);
411 unsigned InvokeInst::getNumSuccessorsV() const {
412 return getNumSuccessors();
414 void InvokeInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
415 return setSuccessor(idx
, B
);
418 void InvokeInst::setParamAttrs(ParamAttrsList
*newAttrs
) {
420 ParamAttrs
->dropRef();
425 ParamAttrs
= newAttrs
;
428 //===----------------------------------------------------------------------===//
429 // ReturnInst Implementation
430 //===----------------------------------------------------------------------===//
432 ReturnInst::ReturnInst(const ReturnInst
&RI
)
433 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
434 &RetVal
, RI
.getNumOperands()) {
435 if (RI
.getNumOperands())
436 RetVal
.init(RI
.RetVal
, this);
439 ReturnInst::ReturnInst(Value
*retVal
, Instruction
*InsertBefore
)
440 : TerminatorInst(Type::VoidTy
, Instruction::Ret
, &RetVal
, 0, InsertBefore
) {
443 ReturnInst::ReturnInst(Value
*retVal
, BasicBlock
*InsertAtEnd
)
444 : TerminatorInst(Type::VoidTy
, Instruction::Ret
, &RetVal
, 0, InsertAtEnd
) {
447 ReturnInst::ReturnInst(BasicBlock
*InsertAtEnd
)
448 : TerminatorInst(Type::VoidTy
, Instruction::Ret
, &RetVal
, 0, InsertAtEnd
) {
453 void ReturnInst::init(Value
*retVal
) {
454 if (retVal
&& retVal
->getType() != Type::VoidTy
) {
455 assert(!isa
<BasicBlock
>(retVal
) &&
456 "Cannot return basic block. Probably using the incorrect ctor");
458 RetVal
.init(retVal
, this);
462 unsigned ReturnInst::getNumSuccessorsV() const {
463 return getNumSuccessors();
466 // Out-of-line ReturnInst method, put here so the C++ compiler can choose to
467 // emit the vtable for the class in this translation unit.
468 void ReturnInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
469 assert(0 && "ReturnInst has no successors!");
472 BasicBlock
*ReturnInst::getSuccessorV(unsigned idx
) const {
473 assert(0 && "ReturnInst has no successors!");
479 //===----------------------------------------------------------------------===//
480 // UnwindInst Implementation
481 //===----------------------------------------------------------------------===//
483 UnwindInst::UnwindInst(Instruction
*InsertBefore
)
484 : TerminatorInst(Type::VoidTy
, Instruction::Unwind
, 0, 0, InsertBefore
) {
486 UnwindInst::UnwindInst(BasicBlock
*InsertAtEnd
)
487 : TerminatorInst(Type::VoidTy
, Instruction::Unwind
, 0, 0, InsertAtEnd
) {
491 unsigned UnwindInst::getNumSuccessorsV() const {
492 return getNumSuccessors();
495 void UnwindInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
496 assert(0 && "UnwindInst has no successors!");
499 BasicBlock
*UnwindInst::getSuccessorV(unsigned idx
) const {
500 assert(0 && "UnwindInst has no successors!");
505 //===----------------------------------------------------------------------===//
506 // UnreachableInst Implementation
507 //===----------------------------------------------------------------------===//
509 UnreachableInst::UnreachableInst(Instruction
*InsertBefore
)
510 : TerminatorInst(Type::VoidTy
, Instruction::Unreachable
, 0, 0, InsertBefore
) {
512 UnreachableInst::UnreachableInst(BasicBlock
*InsertAtEnd
)
513 : TerminatorInst(Type::VoidTy
, Instruction::Unreachable
, 0, 0, InsertAtEnd
) {
516 unsigned UnreachableInst::getNumSuccessorsV() const {
517 return getNumSuccessors();
520 void UnreachableInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
521 assert(0 && "UnwindInst has no successors!");
524 BasicBlock
*UnreachableInst::getSuccessorV(unsigned idx
) const {
525 assert(0 && "UnwindInst has no successors!");
530 //===----------------------------------------------------------------------===//
531 // BranchInst Implementation
532 //===----------------------------------------------------------------------===//
534 void BranchInst::AssertOK() {
536 assert(getCondition()->getType() == Type::Int1Ty
&&
537 "May only branch on boolean predicates!");
540 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
541 : TerminatorInst(Type::VoidTy
, Instruction::Br
, Ops
, 1, InsertBefore
) {
542 assert(IfTrue
!= 0 && "Branch destination may not be null!");
543 Ops
[0].init(reinterpret_cast<Value
*>(IfTrue
), this);
545 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
546 Instruction
*InsertBefore
)
547 : TerminatorInst(Type::VoidTy
, Instruction::Br
, Ops
, 3, InsertBefore
) {
548 Ops
[0].init(reinterpret_cast<Value
*>(IfTrue
), this);
549 Ops
[1].init(reinterpret_cast<Value
*>(IfFalse
), this);
550 Ops
[2].init(Cond
, this);
556 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
557 : TerminatorInst(Type::VoidTy
, Instruction::Br
, Ops
, 1, InsertAtEnd
) {
558 assert(IfTrue
!= 0 && "Branch destination may not be null!");
559 Ops
[0].init(reinterpret_cast<Value
*>(IfTrue
), this);
562 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
563 BasicBlock
*InsertAtEnd
)
564 : TerminatorInst(Type::VoidTy
, Instruction::Br
, Ops
, 3, InsertAtEnd
) {
565 Ops
[0].init(reinterpret_cast<Value
*>(IfTrue
), this);
566 Ops
[1].init(reinterpret_cast<Value
*>(IfFalse
), this);
567 Ops
[2].init(Cond
, this);
574 BranchInst::BranchInst(const BranchInst
&BI
) :
575 TerminatorInst(Type::VoidTy
, Instruction::Br
, Ops
, BI
.getNumOperands()) {
576 OperandList
[0].init(BI
.getOperand(0), this);
577 if (BI
.getNumOperands() != 1) {
578 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
579 OperandList
[1].init(BI
.getOperand(1), this);
580 OperandList
[2].init(BI
.getOperand(2), this);
584 BasicBlock
*BranchInst::getSuccessorV(unsigned idx
) const {
585 return getSuccessor(idx
);
587 unsigned BranchInst::getNumSuccessorsV() const {
588 return getNumSuccessors();
590 void BranchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
591 setSuccessor(idx
, B
);
595 //===----------------------------------------------------------------------===//
596 // AllocationInst Implementation
597 //===----------------------------------------------------------------------===//
599 static Value
*getAISize(Value
*Amt
) {
601 Amt
= ConstantInt::get(Type::Int32Ty
, 1);
603 assert(!isa
<BasicBlock
>(Amt
) &&
604 "Passed basic block into allocation size parameter! Ue other ctor");
605 assert(Amt
->getType() == Type::Int32Ty
&&
606 "Malloc/Allocation array size is not a 32-bit integer!");
611 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
612 unsigned Align
, const std::string
&Name
,
613 Instruction
*InsertBefore
)
614 : UnaryInstruction(PointerType::get(Ty
), iTy
, getAISize(ArraySize
),
615 InsertBefore
), Alignment(Align
) {
616 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
617 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
621 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
622 unsigned Align
, const std::string
&Name
,
623 BasicBlock
*InsertAtEnd
)
624 : UnaryInstruction(PointerType::get(Ty
), iTy
, getAISize(ArraySize
),
625 InsertAtEnd
), Alignment(Align
) {
626 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
627 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
631 // Out of line virtual method, so the vtable, etc has a home.
632 AllocationInst::~AllocationInst() {
635 bool AllocationInst::isArrayAllocation() const {
636 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
637 return CI
->getZExtValue() != 1;
641 const Type
*AllocationInst::getAllocatedType() const {
642 return getType()->getElementType();
645 AllocaInst::AllocaInst(const AllocaInst
&AI
)
646 : AllocationInst(AI
.getType()->getElementType(), (Value
*)AI
.getOperand(0),
647 Instruction::Alloca
, AI
.getAlignment()) {
650 MallocInst::MallocInst(const MallocInst
&MI
)
651 : AllocationInst(MI
.getType()->getElementType(), (Value
*)MI
.getOperand(0),
652 Instruction::Malloc
, MI
.getAlignment()) {
655 //===----------------------------------------------------------------------===//
656 // FreeInst Implementation
657 //===----------------------------------------------------------------------===//
659 void FreeInst::AssertOK() {
660 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
661 "Can not free something of nonpointer type!");
664 FreeInst::FreeInst(Value
*Ptr
, Instruction
*InsertBefore
)
665 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, InsertBefore
) {
669 FreeInst::FreeInst(Value
*Ptr
, BasicBlock
*InsertAtEnd
)
670 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, InsertAtEnd
) {
675 //===----------------------------------------------------------------------===//
676 // LoadInst Implementation
677 //===----------------------------------------------------------------------===//
679 void LoadInst::AssertOK() {
680 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
681 "Ptr must have pointer type.");
684 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, Instruction
*InsertBef
)
685 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
686 Load
, Ptr
, InsertBef
) {
693 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, BasicBlock
*InsertAE
)
694 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
695 Load
, Ptr
, InsertAE
) {
702 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
703 Instruction
*InsertBef
)
704 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
705 Load
, Ptr
, InsertBef
) {
706 setVolatile(isVolatile
);
712 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
713 unsigned Align
, Instruction
*InsertBef
)
714 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
715 Load
, Ptr
, InsertBef
) {
716 setVolatile(isVolatile
);
722 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
723 unsigned Align
, BasicBlock
*InsertAE
)
724 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
725 Load
, Ptr
, InsertAE
) {
726 setVolatile(isVolatile
);
732 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
733 BasicBlock
*InsertAE
)
734 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
735 Load
, Ptr
, InsertAE
) {
736 setVolatile(isVolatile
);
744 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, Instruction
*InsertBef
)
745 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
746 Load
, Ptr
, InsertBef
) {
750 if (Name
&& Name
[0]) setName(Name
);
753 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, BasicBlock
*InsertAE
)
754 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
755 Load
, Ptr
, InsertAE
) {
759 if (Name
&& Name
[0]) setName(Name
);
762 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
763 Instruction
*InsertBef
)
764 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
765 Load
, Ptr
, InsertBef
) {
766 setVolatile(isVolatile
);
769 if (Name
&& Name
[0]) setName(Name
);
772 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
773 BasicBlock
*InsertAE
)
774 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
775 Load
, Ptr
, InsertAE
) {
776 setVolatile(isVolatile
);
779 if (Name
&& Name
[0]) setName(Name
);
782 void LoadInst::setAlignment(unsigned Align
) {
783 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
784 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
787 //===----------------------------------------------------------------------===//
788 // StoreInst Implementation
789 //===----------------------------------------------------------------------===//
791 void StoreInst::AssertOK() {
792 assert(isa
<PointerType
>(getOperand(1)->getType()) &&
793 "Ptr must have pointer type!");
794 assert(getOperand(0)->getType() ==
795 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
796 && "Ptr must be a pointer to Val type!");
800 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
801 : Instruction(Type::VoidTy
, Store
, Ops
, 2, InsertBefore
) {
802 Ops
[0].init(val
, this);
803 Ops
[1].init(addr
, this);
809 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
810 : Instruction(Type::VoidTy
, Store
, Ops
, 2, InsertAtEnd
) {
811 Ops
[0].init(val
, this);
812 Ops
[1].init(addr
, this);
818 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
819 Instruction
*InsertBefore
)
820 : Instruction(Type::VoidTy
, Store
, Ops
, 2, InsertBefore
) {
821 Ops
[0].init(val
, this);
822 Ops
[1].init(addr
, this);
823 setVolatile(isVolatile
);
828 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
829 unsigned Align
, Instruction
*InsertBefore
)
830 : Instruction(Type::VoidTy
, Store
, Ops
, 2, InsertBefore
) {
831 Ops
[0].init(val
, this);
832 Ops
[1].init(addr
, this);
833 setVolatile(isVolatile
);
838 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
839 unsigned Align
, BasicBlock
*InsertAtEnd
)
840 : Instruction(Type::VoidTy
, Store
, Ops
, 2, InsertAtEnd
) {
841 Ops
[0].init(val
, this);
842 Ops
[1].init(addr
, this);
843 setVolatile(isVolatile
);
848 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
849 BasicBlock
*InsertAtEnd
)
850 : Instruction(Type::VoidTy
, Store
, Ops
, 2, InsertAtEnd
) {
851 Ops
[0].init(val
, this);
852 Ops
[1].init(addr
, this);
853 setVolatile(isVolatile
);
858 void StoreInst::setAlignment(unsigned Align
) {
859 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
860 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
863 //===----------------------------------------------------------------------===//
864 // GetElementPtrInst Implementation
865 //===----------------------------------------------------------------------===//
867 void GetElementPtrInst::init(Value
*Ptr
, Value
* const *Idx
, unsigned NumIdx
) {
868 NumOperands
= 1+NumIdx
;
869 Use
*OL
= OperandList
= new Use
[NumOperands
];
870 OL
[0].init(Ptr
, this);
872 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
873 OL
[i
+1].init(Idx
[i
], this);
876 void GetElementPtrInst::init(Value
*Ptr
, Value
*Idx
) {
878 Use
*OL
= OperandList
= new Use
[2];
879 OL
[0].init(Ptr
, this);
880 OL
[1].init(Idx
, this);
883 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
884 const std::string
&Name
, Instruction
*InBe
)
885 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),Idx
))),
886 GetElementPtr
, 0, 0, InBe
) {
891 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
892 const std::string
&Name
, BasicBlock
*IAE
)
893 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),Idx
))),
894 GetElementPtr
, 0, 0, IAE
) {
899 GetElementPtrInst::~GetElementPtrInst() {
900 delete[] OperandList
;
903 // getIndexedType - Returns the type of the element that would be loaded with
904 // a load instruction with the specified parameters.
906 // A null type is returned if the indices are invalid for the specified
909 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
912 bool AllowCompositeLeaf
) {
913 if (!isa
<PointerType
>(Ptr
)) return 0; // Type isn't a pointer type!
915 // Handle the special case of the empty set index set...
917 if (AllowCompositeLeaf
||
918 cast
<PointerType
>(Ptr
)->getElementType()->isFirstClassType())
919 return cast
<PointerType
>(Ptr
)->getElementType();
924 while (const CompositeType
*CT
= dyn_cast
<CompositeType
>(Ptr
)) {
925 if (NumIdx
== CurIdx
) {
926 if (AllowCompositeLeaf
|| CT
->isFirstClassType()) return Ptr
;
927 return 0; // Can't load a whole structure or array!?!?
930 Value
*Index
= Idxs
[CurIdx
++];
931 if (isa
<PointerType
>(CT
) && CurIdx
!= 1)
932 return 0; // Can only index into pointer types at the first index!
933 if (!CT
->indexValid(Index
)) return 0;
934 Ptr
= CT
->getTypeAtIndex(Index
);
936 // If the new type forwards to another type, then it is in the middle
937 // of being refined to another type (and hence, may have dropped all
938 // references to what it was using before). So, use the new forwarded
940 if (const Type
* Ty
= Ptr
->getForwardedType()) {
944 return CurIdx
== NumIdx
? Ptr
: 0;
947 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
, Value
*Idx
) {
948 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
949 if (!PTy
) return 0; // Type isn't a pointer type!
951 // Check the pointer index.
952 if (!PTy
->indexValid(Idx
)) return 0;
954 return PTy
->getElementType();
958 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
959 /// zeros. If so, the result pointer and the first operand have the same
960 /// value, just potentially different types.
961 bool GetElementPtrInst::hasAllZeroIndices() const {
962 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
963 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
964 if (!CI
->isZero()) return false;
972 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
973 /// constant integers. If so, the result pointer and the first operand have
974 /// a constant offset between them.
975 bool GetElementPtrInst::hasAllConstantIndices() const {
976 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
977 if (!isa
<ConstantInt
>(getOperand(i
)))
984 //===----------------------------------------------------------------------===//
985 // ExtractElementInst Implementation
986 //===----------------------------------------------------------------------===//
988 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
989 const std::string
&Name
,
990 Instruction
*InsertBef
)
991 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
992 ExtractElement
, Ops
, 2, InsertBef
) {
993 assert(isValidOperands(Val
, Index
) &&
994 "Invalid extractelement instruction operands!");
995 Ops
[0].init(Val
, this);
996 Ops
[1].init(Index
, this);
1000 ExtractElementInst::ExtractElementInst(Value
*Val
, unsigned IndexV
,
1001 const std::string
&Name
,
1002 Instruction
*InsertBef
)
1003 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1004 ExtractElement
, Ops
, 2, InsertBef
) {
1005 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1006 assert(isValidOperands(Val
, Index
) &&
1007 "Invalid extractelement instruction operands!");
1008 Ops
[0].init(Val
, this);
1009 Ops
[1].init(Index
, this);
1014 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1015 const std::string
&Name
,
1016 BasicBlock
*InsertAE
)
1017 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1018 ExtractElement
, Ops
, 2, InsertAE
) {
1019 assert(isValidOperands(Val
, Index
) &&
1020 "Invalid extractelement instruction operands!");
1022 Ops
[0].init(Val
, this);
1023 Ops
[1].init(Index
, this);
1027 ExtractElementInst::ExtractElementInst(Value
*Val
, unsigned IndexV
,
1028 const std::string
&Name
,
1029 BasicBlock
*InsertAE
)
1030 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1031 ExtractElement
, Ops
, 2, InsertAE
) {
1032 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1033 assert(isValidOperands(Val
, Index
) &&
1034 "Invalid extractelement instruction operands!");
1036 Ops
[0].init(Val
, this);
1037 Ops
[1].init(Index
, this);
1042 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1043 if (!isa
<VectorType
>(Val
->getType()) || Index
->getType() != Type::Int32Ty
)
1049 //===----------------------------------------------------------------------===//
1050 // InsertElementInst Implementation
1051 //===----------------------------------------------------------------------===//
1053 InsertElementInst::InsertElementInst(const InsertElementInst
&IE
)
1054 : Instruction(IE
.getType(), InsertElement
, Ops
, 3) {
1055 Ops
[0].init(IE
.Ops
[0], this);
1056 Ops
[1].init(IE
.Ops
[1], this);
1057 Ops
[2].init(IE
.Ops
[2], this);
1059 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1060 const std::string
&Name
,
1061 Instruction
*InsertBef
)
1062 : Instruction(Vec
->getType(), InsertElement
, Ops
, 3, InsertBef
) {
1063 assert(isValidOperands(Vec
, Elt
, Index
) &&
1064 "Invalid insertelement instruction operands!");
1065 Ops
[0].init(Vec
, this);
1066 Ops
[1].init(Elt
, this);
1067 Ops
[2].init(Index
, this);
1071 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, unsigned IndexV
,
1072 const std::string
&Name
,
1073 Instruction
*InsertBef
)
1074 : Instruction(Vec
->getType(), InsertElement
, Ops
, 3, InsertBef
) {
1075 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1076 assert(isValidOperands(Vec
, Elt
, Index
) &&
1077 "Invalid insertelement instruction operands!");
1078 Ops
[0].init(Vec
, this);
1079 Ops
[1].init(Elt
, this);
1080 Ops
[2].init(Index
, this);
1085 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1086 const std::string
&Name
,
1087 BasicBlock
*InsertAE
)
1088 : Instruction(Vec
->getType(), InsertElement
, Ops
, 3, InsertAE
) {
1089 assert(isValidOperands(Vec
, Elt
, Index
) &&
1090 "Invalid insertelement instruction operands!");
1092 Ops
[0].init(Vec
, this);
1093 Ops
[1].init(Elt
, this);
1094 Ops
[2].init(Index
, this);
1098 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, unsigned IndexV
,
1099 const std::string
&Name
,
1100 BasicBlock
*InsertAE
)
1101 : Instruction(Vec
->getType(), InsertElement
, Ops
, 3, InsertAE
) {
1102 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1103 assert(isValidOperands(Vec
, Elt
, Index
) &&
1104 "Invalid insertelement instruction operands!");
1106 Ops
[0].init(Vec
, this);
1107 Ops
[1].init(Elt
, this);
1108 Ops
[2].init(Index
, this);
1112 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1113 const Value
*Index
) {
1114 if (!isa
<VectorType
>(Vec
->getType()))
1115 return false; // First operand of insertelement must be vector type.
1117 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1118 return false;// Second operand of insertelement must be vector element type.
1120 if (Index
->getType() != Type::Int32Ty
)
1121 return false; // Third operand of insertelement must be uint.
1126 //===----------------------------------------------------------------------===//
1127 // ShuffleVectorInst Implementation
1128 //===----------------------------------------------------------------------===//
1130 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst
&SV
)
1131 : Instruction(SV
.getType(), ShuffleVector
, Ops
, 3) {
1132 Ops
[0].init(SV
.Ops
[0], this);
1133 Ops
[1].init(SV
.Ops
[1], this);
1134 Ops
[2].init(SV
.Ops
[2], this);
1137 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1138 const std::string
&Name
,
1139 Instruction
*InsertBefore
)
1140 : Instruction(V1
->getType(), ShuffleVector
, Ops
, 3, InsertBefore
) {
1141 assert(isValidOperands(V1
, V2
, Mask
) &&
1142 "Invalid shuffle vector instruction operands!");
1143 Ops
[0].init(V1
, this);
1144 Ops
[1].init(V2
, this);
1145 Ops
[2].init(Mask
, this);
1149 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1150 const std::string
&Name
,
1151 BasicBlock
*InsertAtEnd
)
1152 : Instruction(V1
->getType(), ShuffleVector
, Ops
, 3, InsertAtEnd
) {
1153 assert(isValidOperands(V1
, V2
, Mask
) &&
1154 "Invalid shuffle vector instruction operands!");
1156 Ops
[0].init(V1
, this);
1157 Ops
[1].init(V2
, this);
1158 Ops
[2].init(Mask
, this);
1162 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1163 const Value
*Mask
) {
1164 if (!isa
<VectorType
>(V1
->getType())) return false;
1165 if (V1
->getType() != V2
->getType()) return false;
1166 if (!isa
<VectorType
>(Mask
->getType()) ||
1167 cast
<VectorType
>(Mask
->getType())->getElementType() != Type::Int32Ty
||
1168 cast
<VectorType
>(Mask
->getType())->getNumElements() !=
1169 cast
<VectorType
>(V1
->getType())->getNumElements())
1175 //===----------------------------------------------------------------------===//
1176 // BinaryOperator Class
1177 //===----------------------------------------------------------------------===//
1179 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1180 const Type
*Ty
, const std::string
&Name
,
1181 Instruction
*InsertBefore
)
1182 : Instruction(Ty
, iType
, Ops
, 2, InsertBefore
) {
1183 Ops
[0].init(S1
, this);
1184 Ops
[1].init(S2
, this);
1189 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1190 const Type
*Ty
, const std::string
&Name
,
1191 BasicBlock
*InsertAtEnd
)
1192 : Instruction(Ty
, iType
, Ops
, 2, InsertAtEnd
) {
1193 Ops
[0].init(S1
, this);
1194 Ops
[1].init(S2
, this);
1200 void BinaryOperator::init(BinaryOps iType
) {
1201 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
1202 LHS
= LHS
; RHS
= RHS
; // Silence warnings.
1203 assert(LHS
->getType() == RHS
->getType() &&
1204 "Binary operator operand types must match!");
1209 assert(getType() == LHS
->getType() &&
1210 "Arithmetic operation should return same type as operands!");
1211 assert((getType()->isInteger() || getType()->isFloatingPoint() ||
1212 isa
<VectorType
>(getType())) &&
1213 "Tried to create an arithmetic operation on a non-arithmetic type!");
1217 assert(getType() == LHS
->getType() &&
1218 "Arithmetic operation should return same type as operands!");
1219 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1220 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1221 "Incorrect operand type (not integer) for S/UDIV");
1224 assert(getType() == LHS
->getType() &&
1225 "Arithmetic operation should return same type as operands!");
1226 assert((getType()->isFloatingPoint() || (isa
<VectorType
>(getType()) &&
1227 cast
<VectorType
>(getType())->getElementType()->isFloatingPoint()))
1228 && "Incorrect operand type (not floating point) for FDIV");
1232 assert(getType() == LHS
->getType() &&
1233 "Arithmetic operation should return same type as operands!");
1234 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1235 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1236 "Incorrect operand type (not integer) for S/UREM");
1239 assert(getType() == LHS
->getType() &&
1240 "Arithmetic operation should return same type as operands!");
1241 assert((getType()->isFloatingPoint() || (isa
<VectorType
>(getType()) &&
1242 cast
<VectorType
>(getType())->getElementType()->isFloatingPoint()))
1243 && "Incorrect operand type (not floating point) for FREM");
1248 assert(getType() == LHS
->getType() &&
1249 "Shift operation should return same type as operands!");
1250 assert(getType()->isInteger() &&
1251 "Shift operation requires integer operands");
1255 assert(getType() == LHS
->getType() &&
1256 "Logical operation should return same type as operands!");
1257 assert((getType()->isInteger() ||
1258 (isa
<VectorType
>(getType()) &&
1259 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1260 "Tried to create a logical operation on a non-integral type!");
1268 BinaryOperator
*BinaryOperator::create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1269 const std::string
&Name
,
1270 Instruction
*InsertBefore
) {
1271 assert(S1
->getType() == S2
->getType() &&
1272 "Cannot create binary operator with two operands of differing type!");
1273 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
1276 BinaryOperator
*BinaryOperator::create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1277 const std::string
&Name
,
1278 BasicBlock
*InsertAtEnd
) {
1279 BinaryOperator
*Res
= create(Op
, S1
, S2
, Name
);
1280 InsertAtEnd
->getInstList().push_back(Res
);
1284 BinaryOperator
*BinaryOperator::createNeg(Value
*Op
, const std::string
&Name
,
1285 Instruction
*InsertBefore
) {
1286 Value
*zero
= ConstantExpr::getZeroValueForNegationExpr(Op
->getType());
1287 return new BinaryOperator(Instruction::Sub
,
1289 Op
->getType(), Name
, InsertBefore
);
1292 BinaryOperator
*BinaryOperator::createNeg(Value
*Op
, const std::string
&Name
,
1293 BasicBlock
*InsertAtEnd
) {
1294 Value
*zero
= ConstantExpr::getZeroValueForNegationExpr(Op
->getType());
1295 return new BinaryOperator(Instruction::Sub
,
1297 Op
->getType(), Name
, InsertAtEnd
);
1300 BinaryOperator
*BinaryOperator::createNot(Value
*Op
, const std::string
&Name
,
1301 Instruction
*InsertBefore
) {
1303 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1304 C
= ConstantInt::getAllOnesValue(PTy
->getElementType());
1305 C
= ConstantVector::get(std::vector
<Constant
*>(PTy
->getNumElements(), C
));
1307 C
= ConstantInt::getAllOnesValue(Op
->getType());
1310 return new BinaryOperator(Instruction::Xor
, Op
, C
,
1311 Op
->getType(), Name
, InsertBefore
);
1314 BinaryOperator
*BinaryOperator::createNot(Value
*Op
, const std::string
&Name
,
1315 BasicBlock
*InsertAtEnd
) {
1317 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1318 // Create a vector of all ones values.
1319 Constant
*Elt
= ConstantInt::getAllOnesValue(PTy
->getElementType());
1321 ConstantVector::get(std::vector
<Constant
*>(PTy
->getNumElements(), Elt
));
1323 AllOnes
= ConstantInt::getAllOnesValue(Op
->getType());
1326 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
1327 Op
->getType(), Name
, InsertAtEnd
);
1331 // isConstantAllOnes - Helper function for several functions below
1332 static inline bool isConstantAllOnes(const Value
*V
) {
1333 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
1334 return CI
->isAllOnesValue();
1335 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
1336 return CV
->isAllOnesValue();
1340 bool BinaryOperator::isNeg(const Value
*V
) {
1341 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1342 if (Bop
->getOpcode() == Instruction::Sub
)
1343 return Bop
->getOperand(0) ==
1344 ConstantExpr::getZeroValueForNegationExpr(Bop
->getType());
1348 bool BinaryOperator::isNot(const Value
*V
) {
1349 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1350 return (Bop
->getOpcode() == Instruction::Xor
&&
1351 (isConstantAllOnes(Bop
->getOperand(1)) ||
1352 isConstantAllOnes(Bop
->getOperand(0))));
1356 Value
*BinaryOperator::getNegArgument(Value
*BinOp
) {
1357 assert(isNeg(BinOp
) && "getNegArgument from non-'neg' instruction!");
1358 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1361 const Value
*BinaryOperator::getNegArgument(const Value
*BinOp
) {
1362 return getNegArgument(const_cast<Value
*>(BinOp
));
1365 Value
*BinaryOperator::getNotArgument(Value
*BinOp
) {
1366 assert(isNot(BinOp
) && "getNotArgument on non-'not' instruction!");
1367 BinaryOperator
*BO
= cast
<BinaryOperator
>(BinOp
);
1368 Value
*Op0
= BO
->getOperand(0);
1369 Value
*Op1
= BO
->getOperand(1);
1370 if (isConstantAllOnes(Op0
)) return Op1
;
1372 assert(isConstantAllOnes(Op1
));
1376 const Value
*BinaryOperator::getNotArgument(const Value
*BinOp
) {
1377 return getNotArgument(const_cast<Value
*>(BinOp
));
1381 // swapOperands - Exchange the two operands to this instruction. This
1382 // instruction is safe to use on any binary instruction and does not
1383 // modify the semantics of the instruction. If the instruction is
1384 // order dependent (SetLT f.e.) the opcode is changed.
1386 bool BinaryOperator::swapOperands() {
1387 if (!isCommutative())
1388 return true; // Can't commute operands
1389 std::swap(Ops
[0], Ops
[1]);
1393 //===----------------------------------------------------------------------===//
1395 //===----------------------------------------------------------------------===//
1397 // Just determine if this cast only deals with integral->integral conversion.
1398 bool CastInst::isIntegerCast() const {
1399 switch (getOpcode()) {
1400 default: return false;
1401 case Instruction::ZExt
:
1402 case Instruction::SExt
:
1403 case Instruction::Trunc
:
1405 case Instruction::BitCast
:
1406 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1410 bool CastInst::isLosslessCast() const {
1411 // Only BitCast can be lossless, exit fast if we're not BitCast
1412 if (getOpcode() != Instruction::BitCast
)
1415 // Identity cast is always lossless
1416 const Type
* SrcTy
= getOperand(0)->getType();
1417 const Type
* DstTy
= getType();
1421 // Pointer to pointer is always lossless.
1422 if (isa
<PointerType
>(SrcTy
))
1423 return isa
<PointerType
>(DstTy
);
1424 return false; // Other types have no identity values
1427 /// This function determines if the CastInst does not require any bits to be
1428 /// changed in order to effect the cast. Essentially, it identifies cases where
1429 /// no code gen is necessary for the cast, hence the name no-op cast. For
1430 /// example, the following are all no-op casts:
1431 /// # bitcast uint %X, int
1432 /// # bitcast uint* %x, sbyte*
1433 /// # bitcast vector< 2 x int > %x, vector< 4 x short>
1434 /// # ptrtoint uint* %x, uint ; on 32-bit plaforms only
1435 /// @brief Determine if a cast is a no-op.
1436 bool CastInst::isNoopCast(const Type
*IntPtrTy
) const {
1437 switch (getOpcode()) {
1439 assert(!"Invalid CastOp");
1440 case Instruction::Trunc
:
1441 case Instruction::ZExt
:
1442 case Instruction::SExt
:
1443 case Instruction::FPTrunc
:
1444 case Instruction::FPExt
:
1445 case Instruction::UIToFP
:
1446 case Instruction::SIToFP
:
1447 case Instruction::FPToUI
:
1448 case Instruction::FPToSI
:
1449 return false; // These always modify bits
1450 case Instruction::BitCast
:
1451 return true; // BitCast never modifies bits.
1452 case Instruction::PtrToInt
:
1453 return IntPtrTy
->getPrimitiveSizeInBits() ==
1454 getType()->getPrimitiveSizeInBits();
1455 case Instruction::IntToPtr
:
1456 return IntPtrTy
->getPrimitiveSizeInBits() ==
1457 getOperand(0)->getType()->getPrimitiveSizeInBits();
1461 /// This function determines if a pair of casts can be eliminated and what
1462 /// opcode should be used in the elimination. This assumes that there are two
1463 /// instructions like this:
1464 /// * %F = firstOpcode SrcTy %x to MidTy
1465 /// * %S = secondOpcode MidTy %F to DstTy
1466 /// The function returns a resultOpcode so these two casts can be replaced with:
1467 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1468 /// If no such cast is permited, the function returns 0.
1469 unsigned CastInst::isEliminableCastPair(
1470 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
1471 const Type
*SrcTy
, const Type
*MidTy
, const Type
*DstTy
, const Type
*IntPtrTy
)
1473 // Define the 144 possibilities for these two cast instructions. The values
1474 // in this matrix determine what to do in a given situation and select the
1475 // case in the switch below. The rows correspond to firstOp, the columns
1476 // correspond to secondOp. In looking at the table below, keep in mind
1477 // the following cast properties:
1479 // Size Compare Source Destination
1480 // Operator Src ? Size Type Sign Type Sign
1481 // -------- ------------ ------------------- ---------------------
1482 // TRUNC > Integer Any Integral Any
1483 // ZEXT < Integral Unsigned Integer Any
1484 // SEXT < Integral Signed Integer Any
1485 // FPTOUI n/a FloatPt n/a Integral Unsigned
1486 // FPTOSI n/a FloatPt n/a Integral Signed
1487 // UITOFP n/a Integral Unsigned FloatPt n/a
1488 // SITOFP n/a Integral Signed FloatPt n/a
1489 // FPTRUNC > FloatPt n/a FloatPt n/a
1490 // FPEXT < FloatPt n/a FloatPt n/a
1491 // PTRTOINT n/a Pointer n/a Integral Unsigned
1492 // INTTOPTR n/a Integral Unsigned Pointer n/a
1493 // BITCONVERT = FirstClass n/a FirstClass n/a
1495 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1496 // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
1497 // into "fptoui double to ulong", but this loses information about the range
1498 // of the produced value (we no longer know the top-part is all zeros).
1499 // Further this conversion is often much more expensive for typical hardware,
1500 // and causes issues when building libgcc. We disallow fptosi+sext for the
1502 const unsigned numCastOps
=
1503 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
1504 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
1505 // T F F U S F F P I B -+
1506 // R Z S P P I I T P 2 N T |
1507 // U E E 2 2 2 2 R E I T C +- secondOp
1508 // N X X U S F F N X N 2 V |
1509 // C T T I I P P C T T P T -+
1510 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1511 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1512 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1513 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1514 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1515 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1516 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1517 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1518 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1519 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1520 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1521 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1524 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
1525 [secondOp
-Instruction::CastOpsBegin
];
1528 // categorically disallowed
1531 // allowed, use first cast's opcode
1534 // allowed, use second cast's opcode
1537 // no-op cast in second op implies firstOp as long as the DestTy
1539 if (DstTy
->isInteger())
1543 // no-op cast in second op implies firstOp as long as the DestTy
1544 // is floating point
1545 if (DstTy
->isFloatingPoint())
1549 // no-op cast in first op implies secondOp as long as the SrcTy
1551 if (SrcTy
->isInteger())
1555 // no-op cast in first op implies secondOp as long as the SrcTy
1556 // is a floating point
1557 if (SrcTy
->isFloatingPoint())
1561 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1562 unsigned PtrSize
= IntPtrTy
->getPrimitiveSizeInBits();
1563 unsigned MidSize
= MidTy
->getPrimitiveSizeInBits();
1564 if (MidSize
>= PtrSize
)
1565 return Instruction::BitCast
;
1569 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
1570 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
1571 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
1572 unsigned SrcSize
= SrcTy
->getPrimitiveSizeInBits();
1573 unsigned DstSize
= DstTy
->getPrimitiveSizeInBits();
1574 if (SrcSize
== DstSize
)
1575 return Instruction::BitCast
;
1576 else if (SrcSize
< DstSize
)
1580 case 9: // zext, sext -> zext, because sext can't sign extend after zext
1581 return Instruction::ZExt
;
1583 // fpext followed by ftrunc is allowed if the bit size returned to is
1584 // the same as the original, in which case its just a bitcast
1586 return Instruction::BitCast
;
1587 return 0; // If the types are not the same we can't eliminate it.
1589 // bitcast followed by ptrtoint is allowed as long as the bitcast
1590 // is a pointer to pointer cast.
1591 if (isa
<PointerType
>(SrcTy
) && isa
<PointerType
>(MidTy
))
1595 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
1596 if (isa
<PointerType
>(MidTy
) && isa
<PointerType
>(DstTy
))
1600 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1601 unsigned PtrSize
= IntPtrTy
->getPrimitiveSizeInBits();
1602 unsigned SrcSize
= SrcTy
->getPrimitiveSizeInBits();
1603 unsigned DstSize
= DstTy
->getPrimitiveSizeInBits();
1604 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
1605 return Instruction::BitCast
;
1609 // cast combination can't happen (error in input). This is for all cases
1610 // where the MidTy is not the same for the two cast instructions.
1611 assert(!"Invalid Cast Combination");
1614 assert(!"Error in CastResults table!!!");
1620 CastInst
*CastInst::create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
1621 const std::string
&Name
, Instruction
*InsertBefore
) {
1622 // Construct and return the appropriate CastInst subclass
1624 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
1625 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
1626 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
1627 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
1628 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
1629 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
1630 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
1631 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
1632 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
1633 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
1634 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
1635 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
1637 assert(!"Invalid opcode provided");
1642 CastInst
*CastInst::create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
1643 const std::string
&Name
, BasicBlock
*InsertAtEnd
) {
1644 // Construct and return the appropriate CastInst subclass
1646 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
1647 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
1648 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
1649 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
1650 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
1651 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
1652 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
1653 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
1654 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
1655 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
1656 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
1657 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
1659 assert(!"Invalid opcode provided");
1664 CastInst
*CastInst::createZExtOrBitCast(Value
*S
, const Type
*Ty
,
1665 const std::string
&Name
,
1666 Instruction
*InsertBefore
) {
1667 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1668 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
1669 return create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
1672 CastInst
*CastInst::createZExtOrBitCast(Value
*S
, const Type
*Ty
,
1673 const std::string
&Name
,
1674 BasicBlock
*InsertAtEnd
) {
1675 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1676 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
1677 return create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
1680 CastInst
*CastInst::createSExtOrBitCast(Value
*S
, const Type
*Ty
,
1681 const std::string
&Name
,
1682 Instruction
*InsertBefore
) {
1683 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1684 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
1685 return create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
1688 CastInst
*CastInst::createSExtOrBitCast(Value
*S
, const Type
*Ty
,
1689 const std::string
&Name
,
1690 BasicBlock
*InsertAtEnd
) {
1691 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1692 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
1693 return create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
1696 CastInst
*CastInst::createTruncOrBitCast(Value
*S
, const Type
*Ty
,
1697 const std::string
&Name
,
1698 Instruction
*InsertBefore
) {
1699 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1700 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
1701 return create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
1704 CastInst
*CastInst::createTruncOrBitCast(Value
*S
, const Type
*Ty
,
1705 const std::string
&Name
,
1706 BasicBlock
*InsertAtEnd
) {
1707 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
1708 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
1709 return create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
1712 CastInst
*CastInst::createPointerCast(Value
*S
, const Type
*Ty
,
1713 const std::string
&Name
,
1714 BasicBlock
*InsertAtEnd
) {
1715 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
1716 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
1719 if (Ty
->isInteger())
1720 return create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
1721 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
1724 /// @brief Create a BitCast or a PtrToInt cast instruction
1725 CastInst
*CastInst::createPointerCast(Value
*S
, const Type
*Ty
,
1726 const std::string
&Name
,
1727 Instruction
*InsertBefore
) {
1728 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
1729 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
1732 if (Ty
->isInteger())
1733 return create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
1734 return create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
1737 CastInst
*CastInst::createIntegerCast(Value
*C
, const Type
*Ty
,
1738 bool isSigned
, const std::string
&Name
,
1739 Instruction
*InsertBefore
) {
1740 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
1741 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
1742 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
1743 Instruction::CastOps opcode
=
1744 (SrcBits
== DstBits
? Instruction::BitCast
:
1745 (SrcBits
> DstBits
? Instruction::Trunc
:
1746 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1747 return create(opcode
, C
, Ty
, Name
, InsertBefore
);
1750 CastInst
*CastInst::createIntegerCast(Value
*C
, const Type
*Ty
,
1751 bool isSigned
, const std::string
&Name
,
1752 BasicBlock
*InsertAtEnd
) {
1753 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
1754 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
1755 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
1756 Instruction::CastOps opcode
=
1757 (SrcBits
== DstBits
? Instruction::BitCast
:
1758 (SrcBits
> DstBits
? Instruction::Trunc
:
1759 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1760 return create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
1763 CastInst
*CastInst::createFPCast(Value
*C
, const Type
*Ty
,
1764 const std::string
&Name
,
1765 Instruction
*InsertBefore
) {
1766 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
1768 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
1769 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
1770 Instruction::CastOps opcode
=
1771 (SrcBits
== DstBits
? Instruction::BitCast
:
1772 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
1773 return create(opcode
, C
, Ty
, Name
, InsertBefore
);
1776 CastInst
*CastInst::createFPCast(Value
*C
, const Type
*Ty
,
1777 const std::string
&Name
,
1778 BasicBlock
*InsertAtEnd
) {
1779 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
1781 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
1782 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
1783 Instruction::CastOps opcode
=
1784 (SrcBits
== DstBits
? Instruction::BitCast
:
1785 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
1786 return create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
1789 // Provide a way to get a "cast" where the cast opcode is inferred from the
1790 // types and size of the operand. This, basically, is a parallel of the
1791 // logic in the castIsValid function below. This axiom should hold:
1792 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
1793 // should not assert in castIsValid. In other words, this produces a "correct"
1794 // casting opcode for the arguments passed to it.
1795 Instruction::CastOps
1796 CastInst::getCastOpcode(
1797 const Value
*Src
, bool SrcIsSigned
, const Type
*DestTy
, bool DestIsSigned
) {
1798 // Get the bit sizes, we'll need these
1799 const Type
*SrcTy
= Src
->getType();
1800 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr/vector
1801 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr/vector
1803 // Run through the possibilities ...
1804 if (DestTy
->isInteger()) { // Casting to integral
1805 if (SrcTy
->isInteger()) { // Casting from integral
1806 if (DestBits
< SrcBits
)
1807 return Trunc
; // int -> smaller int
1808 else if (DestBits
> SrcBits
) { // its an extension
1810 return SExt
; // signed -> SEXT
1812 return ZExt
; // unsigned -> ZEXT
1814 return BitCast
; // Same size, No-op cast
1816 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
1818 return FPToSI
; // FP -> sint
1820 return FPToUI
; // FP -> uint
1821 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
1822 assert(DestBits
== PTy
->getBitWidth() &&
1823 "Casting vector to integer of different width");
1824 return BitCast
; // Same size, no-op cast
1826 assert(isa
<PointerType
>(SrcTy
) &&
1827 "Casting from a value that is not first-class type");
1828 return PtrToInt
; // ptr -> int
1830 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
1831 if (SrcTy
->isInteger()) { // Casting from integral
1833 return SIToFP
; // sint -> FP
1835 return UIToFP
; // uint -> FP
1836 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
1837 if (DestBits
< SrcBits
) {
1838 return FPTrunc
; // FP -> smaller FP
1839 } else if (DestBits
> SrcBits
) {
1840 return FPExt
; // FP -> larger FP
1842 return BitCast
; // same size, no-op cast
1844 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
1845 assert(DestBits
== PTy
->getBitWidth() &&
1846 "Casting vector to floating point of different width");
1847 return BitCast
; // same size, no-op cast
1849 assert(0 && "Casting pointer or non-first class to float");
1851 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
1852 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
1853 assert(DestPTy
->getBitWidth() == SrcPTy
->getBitWidth() &&
1854 "Casting vector to vector of different widths");
1855 return BitCast
; // vector -> vector
1856 } else if (DestPTy
->getBitWidth() == SrcBits
) {
1857 return BitCast
; // float/int -> vector
1859 assert(!"Illegal cast to vector (wrong type or size)");
1861 } else if (isa
<PointerType
>(DestTy
)) {
1862 if (isa
<PointerType
>(SrcTy
)) {
1863 return BitCast
; // ptr -> ptr
1864 } else if (SrcTy
->isInteger()) {
1865 return IntToPtr
; // int -> ptr
1867 assert(!"Casting pointer to other than pointer or int");
1870 assert(!"Casting to type that is not first-class");
1873 // If we fall through to here we probably hit an assertion cast above
1874 // and assertions are not turned on. Anything we return is an error, so
1875 // BitCast is as good a choice as any.
1879 //===----------------------------------------------------------------------===//
1880 // CastInst SubClass Constructors
1881 //===----------------------------------------------------------------------===//
1883 /// Check that the construction parameters for a CastInst are correct. This
1884 /// could be broken out into the separate constructors but it is useful to have
1885 /// it in one place and to eliminate the redundant code for getting the sizes
1886 /// of the types involved.
1888 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, const Type
*DstTy
) {
1890 // Check for type sanity on the arguments
1891 const Type
*SrcTy
= S
->getType();
1892 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType())
1895 // Get the size of the types in bits, we'll need this later
1896 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1897 unsigned DstBitSize
= DstTy
->getPrimitiveSizeInBits();
1899 // Switch on the opcode provided
1901 default: return false; // This is an input error
1902 case Instruction::Trunc
:
1903 return SrcTy
->isInteger() && DstTy
->isInteger()&& SrcBitSize
> DstBitSize
;
1904 case Instruction::ZExt
:
1905 return SrcTy
->isInteger() && DstTy
->isInteger()&& SrcBitSize
< DstBitSize
;
1906 case Instruction::SExt
:
1907 return SrcTy
->isInteger() && DstTy
->isInteger()&& SrcBitSize
< DstBitSize
;
1908 case Instruction::FPTrunc
:
1909 return SrcTy
->isFloatingPoint() && DstTy
->isFloatingPoint() &&
1910 SrcBitSize
> DstBitSize
;
1911 case Instruction::FPExt
:
1912 return SrcTy
->isFloatingPoint() && DstTy
->isFloatingPoint() &&
1913 SrcBitSize
< DstBitSize
;
1914 case Instruction::UIToFP
:
1915 return SrcTy
->isInteger() && DstTy
->isFloatingPoint();
1916 case Instruction::SIToFP
:
1917 return SrcTy
->isInteger() && DstTy
->isFloatingPoint();
1918 case Instruction::FPToUI
:
1919 return SrcTy
->isFloatingPoint() && DstTy
->isInteger();
1920 case Instruction::FPToSI
:
1921 return SrcTy
->isFloatingPoint() && DstTy
->isInteger();
1922 case Instruction::PtrToInt
:
1923 return isa
<PointerType
>(SrcTy
) && DstTy
->isInteger();
1924 case Instruction::IntToPtr
:
1925 return SrcTy
->isInteger() && isa
<PointerType
>(DstTy
);
1926 case Instruction::BitCast
:
1927 // BitCast implies a no-op cast of type only. No bits change.
1928 // However, you can't cast pointers to anything but pointers.
1929 if (isa
<PointerType
>(SrcTy
) != isa
<PointerType
>(DstTy
))
1932 // Now we know we're not dealing with a pointer/non-poiner mismatch. In all
1933 // these cases, the cast is okay if the source and destination bit widths
1935 return SrcBitSize
== DstBitSize
;
1939 TruncInst::TruncInst(
1940 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
1941 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
1942 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
1945 TruncInst::TruncInst(
1946 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
1947 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
1948 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
1952 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
1953 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
1954 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
1958 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
1959 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
1960 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
1963 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
1964 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
1965 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
1969 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
1970 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
1971 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
1974 FPTruncInst::FPTruncInst(
1975 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
1976 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
1977 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
1980 FPTruncInst::FPTruncInst(
1981 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
1982 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
1983 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
1986 FPExtInst::FPExtInst(
1987 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
1988 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
1989 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
1992 FPExtInst::FPExtInst(
1993 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
1994 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
1995 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
1998 UIToFPInst::UIToFPInst(
1999 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2000 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
2001 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2004 UIToFPInst::UIToFPInst(
2005 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2006 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
2007 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2010 SIToFPInst::SIToFPInst(
2011 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2012 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
2013 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2016 SIToFPInst::SIToFPInst(
2017 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2018 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
2019 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2022 FPToUIInst::FPToUIInst(
2023 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2024 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
2025 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2028 FPToUIInst::FPToUIInst(
2029 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2030 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
2031 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2034 FPToSIInst::FPToSIInst(
2035 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2036 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
2037 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2040 FPToSIInst::FPToSIInst(
2041 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2042 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
2043 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2046 PtrToIntInst::PtrToIntInst(
2047 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2048 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
2049 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2052 PtrToIntInst::PtrToIntInst(
2053 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2054 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
2055 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2058 IntToPtrInst::IntToPtrInst(
2059 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2060 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
2061 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2064 IntToPtrInst::IntToPtrInst(
2065 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2066 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
2067 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2070 BitCastInst::BitCastInst(
2071 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2072 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
2073 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2076 BitCastInst::BitCastInst(
2077 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2078 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
2079 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2082 //===----------------------------------------------------------------------===//
2084 //===----------------------------------------------------------------------===//
2086 CmpInst::CmpInst(OtherOps op
, unsigned short predicate
, Value
*LHS
, Value
*RHS
,
2087 const std::string
&Name
, Instruction
*InsertBefore
)
2088 : Instruction(Type::Int1Ty
, op
, Ops
, 2, InsertBefore
) {
2089 Ops
[0].init(LHS
, this);
2090 Ops
[1].init(RHS
, this);
2091 SubclassData
= predicate
;
2093 if (op
== Instruction::ICmp
) {
2094 assert(predicate
>= ICmpInst::FIRST_ICMP_PREDICATE
&&
2095 predicate
<= ICmpInst::LAST_ICMP_PREDICATE
&&
2096 "Invalid ICmp predicate value");
2097 const Type
* Op0Ty
= getOperand(0)->getType();
2098 const Type
* Op1Ty
= getOperand(1)->getType();
2099 assert(Op0Ty
== Op1Ty
&&
2100 "Both operands to ICmp instruction are not of the same type!");
2101 // Check that the operands are the right type
2102 assert((Op0Ty
->isInteger() || isa
<PointerType
>(Op0Ty
)) &&
2103 "Invalid operand types for ICmp instruction");
2106 assert(op
== Instruction::FCmp
&& "Invalid CmpInst opcode");
2107 assert(predicate
<= FCmpInst::LAST_FCMP_PREDICATE
&&
2108 "Invalid FCmp predicate value");
2109 const Type
* Op0Ty
= getOperand(0)->getType();
2110 const Type
* Op1Ty
= getOperand(1)->getType();
2111 assert(Op0Ty
== Op1Ty
&&
2112 "Both operands to FCmp instruction are not of the same type!");
2113 // Check that the operands are the right type
2114 assert(Op0Ty
->isFloatingPoint() &&
2115 "Invalid operand types for FCmp instruction");
2118 CmpInst::CmpInst(OtherOps op
, unsigned short predicate
, Value
*LHS
, Value
*RHS
,
2119 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
2120 : Instruction(Type::Int1Ty
, op
, Ops
, 2, InsertAtEnd
) {
2121 Ops
[0].init(LHS
, this);
2122 Ops
[1].init(RHS
, this);
2123 SubclassData
= predicate
;
2125 if (op
== Instruction::ICmp
) {
2126 assert(predicate
>= ICmpInst::FIRST_ICMP_PREDICATE
&&
2127 predicate
<= ICmpInst::LAST_ICMP_PREDICATE
&&
2128 "Invalid ICmp predicate value");
2130 const Type
* Op0Ty
= getOperand(0)->getType();
2131 const Type
* Op1Ty
= getOperand(1)->getType();
2132 assert(Op0Ty
== Op1Ty
&&
2133 "Both operands to ICmp instruction are not of the same type!");
2134 // Check that the operands are the right type
2135 assert(Op0Ty
->isInteger() || isa
<PointerType
>(Op0Ty
) &&
2136 "Invalid operand types for ICmp instruction");
2139 assert(op
== Instruction::FCmp
&& "Invalid CmpInst opcode");
2140 assert(predicate
<= FCmpInst::LAST_FCMP_PREDICATE
&&
2141 "Invalid FCmp predicate value");
2142 const Type
* Op0Ty
= getOperand(0)->getType();
2143 const Type
* Op1Ty
= getOperand(1)->getType();
2144 assert(Op0Ty
== Op1Ty
&&
2145 "Both operands to FCmp instruction are not of the same type!");
2146 // Check that the operands are the right type
2147 assert(Op0Ty
->isFloatingPoint() &&
2148 "Invalid operand types for FCmp instruction");
2152 CmpInst::create(OtherOps Op
, unsigned short predicate
, Value
*S1
, Value
*S2
,
2153 const std::string
&Name
, Instruction
*InsertBefore
) {
2154 if (Op
== Instruction::ICmp
) {
2155 return new ICmpInst(ICmpInst::Predicate(predicate
), S1
, S2
, Name
,
2158 return new FCmpInst(FCmpInst::Predicate(predicate
), S1
, S2
, Name
,
2163 CmpInst::create(OtherOps Op
, unsigned short predicate
, Value
*S1
, Value
*S2
,
2164 const std::string
&Name
, BasicBlock
*InsertAtEnd
) {
2165 if (Op
== Instruction::ICmp
) {
2166 return new ICmpInst(ICmpInst::Predicate(predicate
), S1
, S2
, Name
,
2169 return new FCmpInst(FCmpInst::Predicate(predicate
), S1
, S2
, Name
,
2173 void CmpInst::swapOperands() {
2174 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2177 cast
<FCmpInst
>(this)->swapOperands();
2180 bool CmpInst::isCommutative() {
2181 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2182 return IC
->isCommutative();
2183 return cast
<FCmpInst
>(this)->isCommutative();
2186 bool CmpInst::isEquality() {
2187 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2188 return IC
->isEquality();
2189 return cast
<FCmpInst
>(this)->isEquality();
2193 ICmpInst::Predicate
ICmpInst::getInversePredicate(Predicate pred
) {
2196 assert(!"Unknown icmp predicate!");
2197 case ICMP_EQ
: return ICMP_NE
;
2198 case ICMP_NE
: return ICMP_EQ
;
2199 case ICMP_UGT
: return ICMP_ULE
;
2200 case ICMP_ULT
: return ICMP_UGE
;
2201 case ICMP_UGE
: return ICMP_ULT
;
2202 case ICMP_ULE
: return ICMP_UGT
;
2203 case ICMP_SGT
: return ICMP_SLE
;
2204 case ICMP_SLT
: return ICMP_SGE
;
2205 case ICMP_SGE
: return ICMP_SLT
;
2206 case ICMP_SLE
: return ICMP_SGT
;
2210 ICmpInst::Predicate
ICmpInst::getSwappedPredicate(Predicate pred
) {
2212 default: assert(! "Unknown icmp predicate!");
2213 case ICMP_EQ
: case ICMP_NE
:
2215 case ICMP_SGT
: return ICMP_SLT
;
2216 case ICMP_SLT
: return ICMP_SGT
;
2217 case ICMP_SGE
: return ICMP_SLE
;
2218 case ICMP_SLE
: return ICMP_SGE
;
2219 case ICMP_UGT
: return ICMP_ULT
;
2220 case ICMP_ULT
: return ICMP_UGT
;
2221 case ICMP_UGE
: return ICMP_ULE
;
2222 case ICMP_ULE
: return ICMP_UGE
;
2226 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
2228 default: assert(! "Unknown icmp predicate!");
2229 case ICMP_EQ
: case ICMP_NE
:
2230 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2232 case ICMP_UGT
: return ICMP_SGT
;
2233 case ICMP_ULT
: return ICMP_SLT
;
2234 case ICMP_UGE
: return ICMP_SGE
;
2235 case ICMP_ULE
: return ICMP_SLE
;
2239 bool ICmpInst::isSignedPredicate(Predicate pred
) {
2241 default: assert(! "Unknown icmp predicate!");
2242 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2244 case ICMP_EQ
: case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
:
2245 case ICMP_UGE
: case ICMP_ULE
:
2250 /// Initialize a set of values that all satisfy the condition with C.
2253 ICmpInst::makeConstantRange(Predicate pred
, const APInt
&C
) {
2256 uint32_t BitWidth
= C
.getBitWidth();
2258 default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
2259 case ICmpInst::ICMP_EQ
: Upper
++; break;
2260 case ICmpInst::ICMP_NE
: Lower
++; break;
2261 case ICmpInst::ICMP_ULT
: Lower
= APInt::getMinValue(BitWidth
); break;
2262 case ICmpInst::ICMP_SLT
: Lower
= APInt::getSignedMinValue(BitWidth
); break;
2263 case ICmpInst::ICMP_UGT
:
2264 Lower
++; Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2266 case ICmpInst::ICMP_SGT
:
2267 Lower
++; Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2269 case ICmpInst::ICMP_ULE
:
2270 Lower
= APInt::getMinValue(BitWidth
); Upper
++;
2272 case ICmpInst::ICMP_SLE
:
2273 Lower
= APInt::getSignedMinValue(BitWidth
); Upper
++;
2275 case ICmpInst::ICMP_UGE
:
2276 Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2278 case ICmpInst::ICMP_SGE
:
2279 Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2282 return ConstantRange(Lower
, Upper
);
2285 FCmpInst::Predicate
FCmpInst::getInversePredicate(Predicate pred
) {
2288 assert(!"Unknown icmp predicate!");
2289 case FCMP_OEQ
: return FCMP_UNE
;
2290 case FCMP_ONE
: return FCMP_UEQ
;
2291 case FCMP_OGT
: return FCMP_ULE
;
2292 case FCMP_OLT
: return FCMP_UGE
;
2293 case FCMP_OGE
: return FCMP_ULT
;
2294 case FCMP_OLE
: return FCMP_UGT
;
2295 case FCMP_UEQ
: return FCMP_ONE
;
2296 case FCMP_UNE
: return FCMP_OEQ
;
2297 case FCMP_UGT
: return FCMP_OLE
;
2298 case FCMP_ULT
: return FCMP_OGE
;
2299 case FCMP_UGE
: return FCMP_OLT
;
2300 case FCMP_ULE
: return FCMP_OGT
;
2301 case FCMP_ORD
: return FCMP_UNO
;
2302 case FCMP_UNO
: return FCMP_ORD
;
2303 case FCMP_TRUE
: return FCMP_FALSE
;
2304 case FCMP_FALSE
: return FCMP_TRUE
;
2308 FCmpInst::Predicate
FCmpInst::getSwappedPredicate(Predicate pred
) {
2310 default: assert(!"Unknown fcmp predicate!");
2311 case FCMP_FALSE
: case FCMP_TRUE
:
2312 case FCMP_OEQ
: case FCMP_ONE
:
2313 case FCMP_UEQ
: case FCMP_UNE
:
2314 case FCMP_ORD
: case FCMP_UNO
:
2316 case FCMP_OGT
: return FCMP_OLT
;
2317 case FCMP_OLT
: return FCMP_OGT
;
2318 case FCMP_OGE
: return FCMP_OLE
;
2319 case FCMP_OLE
: return FCMP_OGE
;
2320 case FCMP_UGT
: return FCMP_ULT
;
2321 case FCMP_ULT
: return FCMP_UGT
;
2322 case FCMP_UGE
: return FCMP_ULE
;
2323 case FCMP_ULE
: return FCMP_UGE
;
2327 bool CmpInst::isUnsigned(unsigned short predicate
) {
2328 switch (predicate
) {
2329 default: return false;
2330 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
2331 case ICmpInst::ICMP_UGE
: return true;
2335 bool CmpInst::isSigned(unsigned short predicate
){
2336 switch (predicate
) {
2337 default: return false;
2338 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
2339 case ICmpInst::ICMP_SGE
: return true;
2343 bool CmpInst::isOrdered(unsigned short predicate
) {
2344 switch (predicate
) {
2345 default: return false;
2346 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
2347 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
2348 case FCmpInst::FCMP_ORD
: return true;
2352 bool CmpInst::isUnordered(unsigned short predicate
) {
2353 switch (predicate
) {
2354 default: return false;
2355 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
2356 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
2357 case FCmpInst::FCMP_UNO
: return true;
2361 //===----------------------------------------------------------------------===//
2362 // SwitchInst Implementation
2363 //===----------------------------------------------------------------------===//
2365 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
) {
2366 assert(Value
&& Default
);
2367 ReservedSpace
= 2+NumCases
*2;
2369 OperandList
= new Use
[ReservedSpace
];
2371 OperandList
[0].init(Value
, this);
2372 OperandList
[1].init(Default
, this);
2375 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2376 /// switch on and a default destination. The number of additional cases can
2377 /// be specified here to make memory allocation more efficient. This
2378 /// constructor can also autoinsert before another instruction.
2379 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2380 Instruction
*InsertBefore
)
2381 : TerminatorInst(Type::VoidTy
, Instruction::Switch
, 0, 0, InsertBefore
) {
2382 init(Value
, Default
, NumCases
);
2385 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2386 /// switch on and a default destination. The number of additional cases can
2387 /// be specified here to make memory allocation more efficient. This
2388 /// constructor also autoinserts at the end of the specified BasicBlock.
2389 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2390 BasicBlock
*InsertAtEnd
)
2391 : TerminatorInst(Type::VoidTy
, Instruction::Switch
, 0, 0, InsertAtEnd
) {
2392 init(Value
, Default
, NumCases
);
2395 SwitchInst::SwitchInst(const SwitchInst
&SI
)
2396 : TerminatorInst(Type::VoidTy
, Instruction::Switch
,
2397 new Use
[SI
.getNumOperands()], SI
.getNumOperands()) {
2398 Use
*OL
= OperandList
, *InOL
= SI
.OperandList
;
2399 for (unsigned i
= 0, E
= SI
.getNumOperands(); i
!= E
; i
+=2) {
2400 OL
[i
].init(InOL
[i
], this);
2401 OL
[i
+1].init(InOL
[i
+1], this);
2405 SwitchInst::~SwitchInst() {
2406 delete [] OperandList
;
2410 /// addCase - Add an entry to the switch instruction...
2412 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
2413 unsigned OpNo
= NumOperands
;
2414 if (OpNo
+2 > ReservedSpace
)
2415 resizeOperands(0); // Get more space!
2416 // Initialize some new operands.
2417 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
2418 NumOperands
= OpNo
+2;
2419 OperandList
[OpNo
].init(OnVal
, this);
2420 OperandList
[OpNo
+1].init(Dest
, this);
2423 /// removeCase - This method removes the specified successor from the switch
2424 /// instruction. Note that this cannot be used to remove the default
2425 /// destination (successor #0).
2427 void SwitchInst::removeCase(unsigned idx
) {
2428 assert(idx
!= 0 && "Cannot remove the default case!");
2429 assert(idx
*2 < getNumOperands() && "Successor index out of range!!!");
2431 unsigned NumOps
= getNumOperands();
2432 Use
*OL
= OperandList
;
2434 // Move everything after this operand down.
2436 // FIXME: we could just swap with the end of the list, then erase. However,
2437 // client might not expect this to happen. The code as it is thrashes the
2438 // use/def lists, which is kinda lame.
2439 for (unsigned i
= (idx
+1)*2; i
!= NumOps
; i
+= 2) {
2441 OL
[i
-2+1] = OL
[i
+1];
2444 // Nuke the last value.
2445 OL
[NumOps
-2].set(0);
2446 OL
[NumOps
-2+1].set(0);
2447 NumOperands
= NumOps
-2;
2450 /// resizeOperands - resize operands - This adjusts the length of the operands
2451 /// list according to the following behavior:
2452 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2453 /// of operation. This grows the number of ops by 1.5 times.
2454 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2455 /// 3. If NumOps == NumOperands, trim the reserved space.
2457 void SwitchInst::resizeOperands(unsigned NumOps
) {
2459 NumOps
= getNumOperands()/2*6;
2460 } else if (NumOps
*2 > NumOperands
) {
2461 // No resize needed.
2462 if (ReservedSpace
>= NumOps
) return;
2463 } else if (NumOps
== NumOperands
) {
2464 if (ReservedSpace
== NumOps
) return;
2469 ReservedSpace
= NumOps
;
2470 Use
*NewOps
= new Use
[NumOps
];
2471 Use
*OldOps
= OperandList
;
2472 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2473 NewOps
[i
].init(OldOps
[i
], this);
2477 OperandList
= NewOps
;
2481 BasicBlock
*SwitchInst::getSuccessorV(unsigned idx
) const {
2482 return getSuccessor(idx
);
2484 unsigned SwitchInst::getNumSuccessorsV() const {
2485 return getNumSuccessors();
2487 void SwitchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
2488 setSuccessor(idx
, B
);
2492 // Define these methods here so vtables don't get emitted into every translation
2493 // unit that uses these classes.
2495 GetElementPtrInst
*GetElementPtrInst::clone() const {
2496 return new GetElementPtrInst(*this);
2499 BinaryOperator
*BinaryOperator::clone() const {
2500 return create(getOpcode(), Ops
[0], Ops
[1]);
2503 FCmpInst
* FCmpInst::clone() const {
2504 return new FCmpInst(getPredicate(), Ops
[0], Ops
[1]);
2506 ICmpInst
* ICmpInst::clone() const {
2507 return new ICmpInst(getPredicate(), Ops
[0], Ops
[1]);
2510 MallocInst
*MallocInst::clone() const { return new MallocInst(*this); }
2511 AllocaInst
*AllocaInst::clone() const { return new AllocaInst(*this); }
2512 FreeInst
*FreeInst::clone() const { return new FreeInst(getOperand(0)); }
2513 LoadInst
*LoadInst::clone() const { return new LoadInst(*this); }
2514 StoreInst
*StoreInst::clone() const { return new StoreInst(*this); }
2515 CastInst
*TruncInst::clone() const { return new TruncInst(*this); }
2516 CastInst
*ZExtInst::clone() const { return new ZExtInst(*this); }
2517 CastInst
*SExtInst::clone() const { return new SExtInst(*this); }
2518 CastInst
*FPTruncInst::clone() const { return new FPTruncInst(*this); }
2519 CastInst
*FPExtInst::clone() const { return new FPExtInst(*this); }
2520 CastInst
*UIToFPInst::clone() const { return new UIToFPInst(*this); }
2521 CastInst
*SIToFPInst::clone() const { return new SIToFPInst(*this); }
2522 CastInst
*FPToUIInst::clone() const { return new FPToUIInst(*this); }
2523 CastInst
*FPToSIInst::clone() const { return new FPToSIInst(*this); }
2524 CastInst
*PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
2525 CastInst
*IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
2526 CastInst
*BitCastInst::clone() const { return new BitCastInst(*this); }
2527 CallInst
*CallInst::clone() const { return new CallInst(*this); }
2528 SelectInst
*SelectInst::clone() const { return new SelectInst(*this); }
2529 VAArgInst
*VAArgInst::clone() const { return new VAArgInst(*this); }
2531 ExtractElementInst
*ExtractElementInst::clone() const {
2532 return new ExtractElementInst(*this);
2534 InsertElementInst
*InsertElementInst::clone() const {
2535 return new InsertElementInst(*this);
2537 ShuffleVectorInst
*ShuffleVectorInst::clone() const {
2538 return new ShuffleVectorInst(*this);
2540 PHINode
*PHINode::clone() const { return new PHINode(*this); }
2541 ReturnInst
*ReturnInst::clone() const { return new ReturnInst(*this); }
2542 BranchInst
*BranchInst::clone() const { return new BranchInst(*this); }
2543 SwitchInst
*SwitchInst::clone() const { return new SwitchInst(*this); }
2544 InvokeInst
*InvokeInst::clone() const { return new InvokeInst(*this); }
2545 UnwindInst
*UnwindInst::clone() const { return new UnwindInst(); }
2546 UnreachableInst
*UnreachableInst::clone() const { return new UnreachableInst();}