Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / VMCore / Instructions.cpp
blob369e98afe3739e0694f1e02a4490e1c46d0f83b0
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/BasicBlock.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/ParameterAttributes.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ConstantRange.h"
23 #include "llvm/Support/MathExtras.h"
24 using namespace llvm;
26 unsigned CallSite::getCallingConv() const {
27 if (CallInst *CI = dyn_cast<CallInst>(I))
28 return CI->getCallingConv();
29 else
30 return cast<InvokeInst>(I)->getCallingConv();
32 void CallSite::setCallingConv(unsigned CC) {
33 if (CallInst *CI = dyn_cast<CallInst>(I))
34 CI->setCallingConv(CC);
35 else
36 cast<InvokeInst>(I)->setCallingConv(CC);
42 //===----------------------------------------------------------------------===//
43 // TerminatorInst Class
44 //===----------------------------------------------------------------------===//
46 // Out of line virtual method, so the vtable, etc has a home.
47 TerminatorInst::~TerminatorInst() {
50 // Out of line virtual method, so the vtable, etc has a home.
51 UnaryInstruction::~UnaryInstruction() {
55 //===----------------------------------------------------------------------===//
56 // PHINode Class
57 //===----------------------------------------------------------------------===//
59 PHINode::PHINode(const PHINode &PN)
60 : Instruction(PN.getType(), Instruction::PHI,
61 new Use[PN.getNumOperands()], PN.getNumOperands()),
62 ReservedSpace(PN.getNumOperands()) {
63 Use *OL = OperandList;
64 for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
65 OL[i].init(PN.getOperand(i), this);
66 OL[i+1].init(PN.getOperand(i+1), this);
70 PHINode::~PHINode() {
71 delete [] OperandList;
74 // removeIncomingValue - Remove an incoming value. This is useful if a
75 // predecessor basic block is deleted.
76 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
77 unsigned NumOps = getNumOperands();
78 Use *OL = OperandList;
79 assert(Idx*2 < NumOps && "BB not in PHI node!");
80 Value *Removed = OL[Idx*2];
82 // Move everything after this operand down.
84 // FIXME: we could just swap with the end of the list, then erase. However,
85 // client might not expect this to happen. The code as it is thrashes the
86 // use/def lists, which is kinda lame.
87 for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
88 OL[i-2] = OL[i];
89 OL[i-2+1] = OL[i+1];
92 // Nuke the last value.
93 OL[NumOps-2].set(0);
94 OL[NumOps-2+1].set(0);
95 NumOperands = NumOps-2;
97 // If the PHI node is dead, because it has zero entries, nuke it now.
98 if (NumOps == 2 && DeletePHIIfEmpty) {
99 // If anyone is using this PHI, make them use a dummy value instead...
100 replaceAllUsesWith(UndefValue::get(getType()));
101 eraseFromParent();
103 return Removed;
106 /// resizeOperands - resize operands - This adjusts the length of the operands
107 /// list according to the following behavior:
108 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
109 /// of operation. This grows the number of ops by 1.5 times.
110 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
111 /// 3. If NumOps == NumOperands, trim the reserved space.
113 void PHINode::resizeOperands(unsigned NumOps) {
114 if (NumOps == 0) {
115 NumOps = (getNumOperands())*3/2;
116 if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
117 } else if (NumOps*2 > NumOperands) {
118 // No resize needed.
119 if (ReservedSpace >= NumOps) return;
120 } else if (NumOps == NumOperands) {
121 if (ReservedSpace == NumOps) return;
122 } else {
123 return;
126 ReservedSpace = NumOps;
127 Use *NewOps = new Use[NumOps];
128 Use *OldOps = OperandList;
129 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
130 NewOps[i].init(OldOps[i], this);
131 OldOps[i].set(0);
133 delete [] OldOps;
134 OperandList = NewOps;
137 /// hasConstantValue - If the specified PHI node always merges together the same
138 /// value, return the value, otherwise return null.
140 Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
141 // If the PHI node only has one incoming value, eliminate the PHI node...
142 if (getNumIncomingValues() == 1)
143 if (getIncomingValue(0) != this) // not X = phi X
144 return getIncomingValue(0);
145 else
146 return UndefValue::get(getType()); // Self cycle is dead.
148 // Otherwise if all of the incoming values are the same for the PHI, replace
149 // the PHI node with the incoming value.
151 Value *InVal = 0;
152 bool HasUndefInput = false;
153 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
154 if (isa<UndefValue>(getIncomingValue(i)))
155 HasUndefInput = true;
156 else if (getIncomingValue(i) != this) // Not the PHI node itself...
157 if (InVal && getIncomingValue(i) != InVal)
158 return 0; // Not the same, bail out.
159 else
160 InVal = getIncomingValue(i);
162 // The only case that could cause InVal to be null is if we have a PHI node
163 // that only has entries for itself. In this case, there is no entry into the
164 // loop, so kill the PHI.
166 if (InVal == 0) InVal = UndefValue::get(getType());
168 // If we have a PHI node like phi(X, undef, X), where X is defined by some
169 // instruction, we cannot always return X as the result of the PHI node. Only
170 // do this if X is not an instruction (thus it must dominate the PHI block),
171 // or if the client is prepared to deal with this possibility.
172 if (HasUndefInput && !AllowNonDominatingInstruction)
173 if (Instruction *IV = dyn_cast<Instruction>(InVal))
174 // If it's in the entry block, it dominates everything.
175 if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
176 isa<InvokeInst>(IV))
177 return 0; // Cannot guarantee that InVal dominates this PHINode.
179 // All of the incoming values are the same, return the value now.
180 return InVal;
184 //===----------------------------------------------------------------------===//
185 // CallInst Implementation
186 //===----------------------------------------------------------------------===//
188 CallInst::~CallInst() {
189 delete [] OperandList;
190 if (ParamAttrs)
191 ParamAttrs->dropRef();
194 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
195 ParamAttrs = 0;
196 NumOperands = NumParams+1;
197 Use *OL = OperandList = new Use[NumParams+1];
198 OL[0].init(Func, this);
200 const FunctionType *FTy =
201 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
202 FTy = FTy; // silence warning.
204 assert((NumParams == FTy->getNumParams() ||
205 (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
206 "Calling a function with bad signature!");
207 for (unsigned i = 0; i != NumParams; ++i) {
208 assert((i >= FTy->getNumParams() ||
209 FTy->getParamType(i) == Params[i]->getType()) &&
210 "Calling a function with a bad signature!");
211 OL[i+1].init(Params[i], this);
215 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
216 ParamAttrs = 0;
217 NumOperands = 3;
218 Use *OL = OperandList = new Use[3];
219 OL[0].init(Func, this);
220 OL[1].init(Actual1, this);
221 OL[2].init(Actual2, this);
223 const FunctionType *FTy =
224 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
225 FTy = FTy; // silence warning.
227 assert((FTy->getNumParams() == 2 ||
228 (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
229 "Calling a function with bad signature");
230 assert((0 >= FTy->getNumParams() ||
231 FTy->getParamType(0) == Actual1->getType()) &&
232 "Calling a function with a bad signature!");
233 assert((1 >= FTy->getNumParams() ||
234 FTy->getParamType(1) == Actual2->getType()) &&
235 "Calling a function with a bad signature!");
238 void CallInst::init(Value *Func, Value *Actual) {
239 ParamAttrs = 0;
240 NumOperands = 2;
241 Use *OL = OperandList = new Use[2];
242 OL[0].init(Func, this);
243 OL[1].init(Actual, this);
245 const FunctionType *FTy =
246 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
247 FTy = FTy; // silence warning.
249 assert((FTy->getNumParams() == 1 ||
250 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
251 "Calling a function with bad signature");
252 assert((0 == FTy->getNumParams() ||
253 FTy->getParamType(0) == Actual->getType()) &&
254 "Calling a function with a bad signature!");
257 void CallInst::init(Value *Func) {
258 ParamAttrs = 0;
259 NumOperands = 1;
260 Use *OL = OperandList = new Use[1];
261 OL[0].init(Func, this);
263 const FunctionType *FTy =
264 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
265 FTy = FTy; // silence warning.
267 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
270 #if 0
271 // Leave for llvm-gcc
272 CallInst::CallInst(Value *Func, Value* const *Args, unsigned NumArgs,
273 const std::string &Name, BasicBlock *InsertAtEnd)
274 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
275 ->getElementType())->getReturnType(),
276 Instruction::Call, 0, 0, InsertAtEnd) {
277 init(Func, Args, NumArgs);
278 setName(Name);
280 CallInst::CallInst(Value *Func, Value* const *Args, unsigned NumArgs,
281 const std::string &Name, Instruction *InsertBefore)
282 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
283 ->getElementType())->getReturnType(),
284 Instruction::Call, 0, 0, InsertBefore) {
285 init(Func, Args, NumArgs);
286 setName(Name);
289 CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
290 const std::string &Name, Instruction *InsertBefore)
291 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
292 ->getElementType())->getReturnType(),
293 Instruction::Call, 0, 0, InsertBefore) {
294 init(Func, Actual1, Actual2);
295 setName(Name);
298 CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
299 const std::string &Name, BasicBlock *InsertAtEnd)
300 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
301 ->getElementType())->getReturnType(),
302 Instruction::Call, 0, 0, InsertAtEnd) {
303 init(Func, Actual1, Actual2);
304 setName(Name);
306 #endif
307 CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
308 Instruction *InsertBefore)
309 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
310 ->getElementType())->getReturnType(),
311 Instruction::Call, 0, 0, InsertBefore) {
312 init(Func, Actual);
313 setName(Name);
316 CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
317 BasicBlock *InsertAtEnd)
318 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
319 ->getElementType())->getReturnType(),
320 Instruction::Call, 0, 0, InsertAtEnd) {
321 init(Func, Actual);
322 setName(Name);
324 CallInst::CallInst(Value *Func, const std::string &Name,
325 Instruction *InsertBefore)
326 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
327 ->getElementType())->getReturnType(),
328 Instruction::Call, 0, 0, InsertBefore) {
329 init(Func);
330 setName(Name);
333 CallInst::CallInst(Value *Func, const std::string &Name,
334 BasicBlock *InsertAtEnd)
335 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
336 ->getElementType())->getReturnType(),
337 Instruction::Call, 0, 0, InsertAtEnd) {
338 init(Func);
339 setName(Name);
342 CallInst::CallInst(const CallInst &CI)
343 : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
344 CI.getNumOperands()) {
345 ParamAttrs = 0;
346 SubclassData = CI.SubclassData;
347 Use *OL = OperandList;
348 Use *InOL = CI.OperandList;
349 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
350 OL[i].init(InOL[i], this);
353 void CallInst::setParamAttrs(ParamAttrsList *newAttrs) {
354 if (ParamAttrs)
355 ParamAttrs->dropRef();
357 if (newAttrs)
358 newAttrs->addRef();
360 ParamAttrs = newAttrs;
363 //===----------------------------------------------------------------------===//
364 // InvokeInst Implementation
365 //===----------------------------------------------------------------------===//
367 InvokeInst::~InvokeInst() {
368 delete [] OperandList;
369 if (ParamAttrs)
370 ParamAttrs->dropRef();
373 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
374 Value* const *Args, unsigned NumArgs) {
375 ParamAttrs = 0;
376 NumOperands = 3+NumArgs;
377 Use *OL = OperandList = new Use[3+NumArgs];
378 OL[0].init(Fn, this);
379 OL[1].init(IfNormal, this);
380 OL[2].init(IfException, this);
381 const FunctionType *FTy =
382 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
383 FTy = FTy; // silence warning.
385 assert((NumArgs == FTy->getNumParams()) ||
386 (FTy->isVarArg() && NumArgs > FTy->getNumParams()) &&
387 "Calling a function with bad signature");
389 for (unsigned i = 0, e = NumArgs; i != e; i++) {
390 assert((i >= FTy->getNumParams() ||
391 FTy->getParamType(i) == Args[i]->getType()) &&
392 "Invoking a function with a bad signature!");
394 OL[i+3].init(Args[i], this);
398 InvokeInst::InvokeInst(const InvokeInst &II)
399 : TerminatorInst(II.getType(), Instruction::Invoke,
400 new Use[II.getNumOperands()], II.getNumOperands()) {
401 ParamAttrs = 0;
402 SubclassData = II.SubclassData;
403 Use *OL = OperandList, *InOL = II.OperandList;
404 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
405 OL[i].init(InOL[i], this);
408 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
409 return getSuccessor(idx);
411 unsigned InvokeInst::getNumSuccessorsV() const {
412 return getNumSuccessors();
414 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
415 return setSuccessor(idx, B);
418 void InvokeInst::setParamAttrs(ParamAttrsList *newAttrs) {
419 if (ParamAttrs)
420 ParamAttrs->dropRef();
422 if (newAttrs)
423 newAttrs->addRef();
425 ParamAttrs = newAttrs;
428 //===----------------------------------------------------------------------===//
429 // ReturnInst Implementation
430 //===----------------------------------------------------------------------===//
432 ReturnInst::ReturnInst(const ReturnInst &RI)
433 : TerminatorInst(Type::VoidTy, Instruction::Ret,
434 &RetVal, RI.getNumOperands()) {
435 if (RI.getNumOperands())
436 RetVal.init(RI.RetVal, this);
439 ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
440 : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertBefore) {
441 init(retVal);
443 ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
444 : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
445 init(retVal);
447 ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
448 : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
453 void ReturnInst::init(Value *retVal) {
454 if (retVal && retVal->getType() != Type::VoidTy) {
455 assert(!isa<BasicBlock>(retVal) &&
456 "Cannot return basic block. Probably using the incorrect ctor");
457 NumOperands = 1;
458 RetVal.init(retVal, this);
462 unsigned ReturnInst::getNumSuccessorsV() const {
463 return getNumSuccessors();
466 // Out-of-line ReturnInst method, put here so the C++ compiler can choose to
467 // emit the vtable for the class in this translation unit.
468 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
469 assert(0 && "ReturnInst has no successors!");
472 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
473 assert(0 && "ReturnInst has no successors!");
474 abort();
475 return 0;
479 //===----------------------------------------------------------------------===//
480 // UnwindInst Implementation
481 //===----------------------------------------------------------------------===//
483 UnwindInst::UnwindInst(Instruction *InsertBefore)
484 : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
486 UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
487 : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
491 unsigned UnwindInst::getNumSuccessorsV() const {
492 return getNumSuccessors();
495 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
496 assert(0 && "UnwindInst has no successors!");
499 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
500 assert(0 && "UnwindInst has no successors!");
501 abort();
502 return 0;
505 //===----------------------------------------------------------------------===//
506 // UnreachableInst Implementation
507 //===----------------------------------------------------------------------===//
509 UnreachableInst::UnreachableInst(Instruction *InsertBefore)
510 : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
512 UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
513 : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
516 unsigned UnreachableInst::getNumSuccessorsV() const {
517 return getNumSuccessors();
520 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
521 assert(0 && "UnwindInst has no successors!");
524 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
525 assert(0 && "UnwindInst has no successors!");
526 abort();
527 return 0;
530 //===----------------------------------------------------------------------===//
531 // BranchInst Implementation
532 //===----------------------------------------------------------------------===//
534 void BranchInst::AssertOK() {
535 if (isConditional())
536 assert(getCondition()->getType() == Type::Int1Ty &&
537 "May only branch on boolean predicates!");
540 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
541 : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertBefore) {
542 assert(IfTrue != 0 && "Branch destination may not be null!");
543 Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
545 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
546 Instruction *InsertBefore)
547 : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertBefore) {
548 Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
549 Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
550 Ops[2].init(Cond, this);
551 #ifndef NDEBUG
552 AssertOK();
553 #endif
556 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
557 : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertAtEnd) {
558 assert(IfTrue != 0 && "Branch destination may not be null!");
559 Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
562 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
563 BasicBlock *InsertAtEnd)
564 : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertAtEnd) {
565 Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
566 Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
567 Ops[2].init(Cond, this);
568 #ifndef NDEBUG
569 AssertOK();
570 #endif
574 BranchInst::BranchInst(const BranchInst &BI) :
575 TerminatorInst(Type::VoidTy, Instruction::Br, Ops, BI.getNumOperands()) {
576 OperandList[0].init(BI.getOperand(0), this);
577 if (BI.getNumOperands() != 1) {
578 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
579 OperandList[1].init(BI.getOperand(1), this);
580 OperandList[2].init(BI.getOperand(2), this);
584 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
585 return getSuccessor(idx);
587 unsigned BranchInst::getNumSuccessorsV() const {
588 return getNumSuccessors();
590 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
591 setSuccessor(idx, B);
595 //===----------------------------------------------------------------------===//
596 // AllocationInst Implementation
597 //===----------------------------------------------------------------------===//
599 static Value *getAISize(Value *Amt) {
600 if (!Amt)
601 Amt = ConstantInt::get(Type::Int32Ty, 1);
602 else {
603 assert(!isa<BasicBlock>(Amt) &&
604 "Passed basic block into allocation size parameter! Ue other ctor");
605 assert(Amt->getType() == Type::Int32Ty &&
606 "Malloc/Allocation array size is not a 32-bit integer!");
608 return Amt;
611 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
612 unsigned Align, const std::string &Name,
613 Instruction *InsertBefore)
614 : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
615 InsertBefore), Alignment(Align) {
616 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
617 assert(Ty != Type::VoidTy && "Cannot allocate void!");
618 setName(Name);
621 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
622 unsigned Align, const std::string &Name,
623 BasicBlock *InsertAtEnd)
624 : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
625 InsertAtEnd), Alignment(Align) {
626 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
627 assert(Ty != Type::VoidTy && "Cannot allocate void!");
628 setName(Name);
631 // Out of line virtual method, so the vtable, etc has a home.
632 AllocationInst::~AllocationInst() {
635 bool AllocationInst::isArrayAllocation() const {
636 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
637 return CI->getZExtValue() != 1;
638 return true;
641 const Type *AllocationInst::getAllocatedType() const {
642 return getType()->getElementType();
645 AllocaInst::AllocaInst(const AllocaInst &AI)
646 : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
647 Instruction::Alloca, AI.getAlignment()) {
650 MallocInst::MallocInst(const MallocInst &MI)
651 : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
652 Instruction::Malloc, MI.getAlignment()) {
655 //===----------------------------------------------------------------------===//
656 // FreeInst Implementation
657 //===----------------------------------------------------------------------===//
659 void FreeInst::AssertOK() {
660 assert(isa<PointerType>(getOperand(0)->getType()) &&
661 "Can not free something of nonpointer type!");
664 FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
665 : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
666 AssertOK();
669 FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
670 : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
671 AssertOK();
675 //===----------------------------------------------------------------------===//
676 // LoadInst Implementation
677 //===----------------------------------------------------------------------===//
679 void LoadInst::AssertOK() {
680 assert(isa<PointerType>(getOperand(0)->getType()) &&
681 "Ptr must have pointer type.");
684 LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
685 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
686 Load, Ptr, InsertBef) {
687 setVolatile(false);
688 setAlignment(0);
689 AssertOK();
690 setName(Name);
693 LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
694 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
695 Load, Ptr, InsertAE) {
696 setVolatile(false);
697 setAlignment(0);
698 AssertOK();
699 setName(Name);
702 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
703 Instruction *InsertBef)
704 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
705 Load, Ptr, InsertBef) {
706 setVolatile(isVolatile);
707 setAlignment(0);
708 AssertOK();
709 setName(Name);
712 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
713 unsigned Align, Instruction *InsertBef)
714 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
715 Load, Ptr, InsertBef) {
716 setVolatile(isVolatile);
717 setAlignment(Align);
718 AssertOK();
719 setName(Name);
722 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
723 unsigned Align, BasicBlock *InsertAE)
724 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
725 Load, Ptr, InsertAE) {
726 setVolatile(isVolatile);
727 setAlignment(Align);
728 AssertOK();
729 setName(Name);
732 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
733 BasicBlock *InsertAE)
734 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
735 Load, Ptr, InsertAE) {
736 setVolatile(isVolatile);
737 setAlignment(0);
738 AssertOK();
739 setName(Name);
744 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
745 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
746 Load, Ptr, InsertBef) {
747 setVolatile(false);
748 setAlignment(0);
749 AssertOK();
750 if (Name && Name[0]) setName(Name);
753 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
754 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
755 Load, Ptr, InsertAE) {
756 setVolatile(false);
757 setAlignment(0);
758 AssertOK();
759 if (Name && Name[0]) setName(Name);
762 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
763 Instruction *InsertBef)
764 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
765 Load, Ptr, InsertBef) {
766 setVolatile(isVolatile);
767 setAlignment(0);
768 AssertOK();
769 if (Name && Name[0]) setName(Name);
772 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
773 BasicBlock *InsertAE)
774 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
775 Load, Ptr, InsertAE) {
776 setVolatile(isVolatile);
777 setAlignment(0);
778 AssertOK();
779 if (Name && Name[0]) setName(Name);
782 void LoadInst::setAlignment(unsigned Align) {
783 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
784 SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
787 //===----------------------------------------------------------------------===//
788 // StoreInst Implementation
789 //===----------------------------------------------------------------------===//
791 void StoreInst::AssertOK() {
792 assert(isa<PointerType>(getOperand(1)->getType()) &&
793 "Ptr must have pointer type!");
794 assert(getOperand(0)->getType() ==
795 cast<PointerType>(getOperand(1)->getType())->getElementType()
796 && "Ptr must be a pointer to Val type!");
800 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
801 : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
802 Ops[0].init(val, this);
803 Ops[1].init(addr, this);
804 setVolatile(false);
805 setAlignment(0);
806 AssertOK();
809 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
810 : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
811 Ops[0].init(val, this);
812 Ops[1].init(addr, this);
813 setVolatile(false);
814 setAlignment(0);
815 AssertOK();
818 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
819 Instruction *InsertBefore)
820 : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
821 Ops[0].init(val, this);
822 Ops[1].init(addr, this);
823 setVolatile(isVolatile);
824 setAlignment(0);
825 AssertOK();
828 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
829 unsigned Align, Instruction *InsertBefore)
830 : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
831 Ops[0].init(val, this);
832 Ops[1].init(addr, this);
833 setVolatile(isVolatile);
834 setAlignment(Align);
835 AssertOK();
838 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
839 unsigned Align, BasicBlock *InsertAtEnd)
840 : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
841 Ops[0].init(val, this);
842 Ops[1].init(addr, this);
843 setVolatile(isVolatile);
844 setAlignment(Align);
845 AssertOK();
848 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
849 BasicBlock *InsertAtEnd)
850 : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
851 Ops[0].init(val, this);
852 Ops[1].init(addr, this);
853 setVolatile(isVolatile);
854 setAlignment(0);
855 AssertOK();
858 void StoreInst::setAlignment(unsigned Align) {
859 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
860 SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
863 //===----------------------------------------------------------------------===//
864 // GetElementPtrInst Implementation
865 //===----------------------------------------------------------------------===//
867 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx) {
868 NumOperands = 1+NumIdx;
869 Use *OL = OperandList = new Use[NumOperands];
870 OL[0].init(Ptr, this);
872 for (unsigned i = 0; i != NumIdx; ++i)
873 OL[i+1].init(Idx[i], this);
876 void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
877 NumOperands = 2;
878 Use *OL = OperandList = new Use[2];
879 OL[0].init(Ptr, this);
880 OL[1].init(Idx, this);
883 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
884 const std::string &Name, Instruction *InBe)
885 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
886 GetElementPtr, 0, 0, InBe) {
887 init(Ptr, Idx);
888 setName(Name);
891 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
892 const std::string &Name, BasicBlock *IAE)
893 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
894 GetElementPtr, 0, 0, IAE) {
895 init(Ptr, Idx);
896 setName(Name);
899 GetElementPtrInst::~GetElementPtrInst() {
900 delete[] OperandList;
903 // getIndexedType - Returns the type of the element that would be loaded with
904 // a load instruction with the specified parameters.
906 // A null type is returned if the indices are invalid for the specified
907 // pointer type.
909 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
910 Value* const *Idxs,
911 unsigned NumIdx,
912 bool AllowCompositeLeaf) {
913 if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
915 // Handle the special case of the empty set index set...
916 if (NumIdx == 0)
917 if (AllowCompositeLeaf ||
918 cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
919 return cast<PointerType>(Ptr)->getElementType();
920 else
921 return 0;
923 unsigned CurIdx = 0;
924 while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
925 if (NumIdx == CurIdx) {
926 if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
927 return 0; // Can't load a whole structure or array!?!?
930 Value *Index = Idxs[CurIdx++];
931 if (isa<PointerType>(CT) && CurIdx != 1)
932 return 0; // Can only index into pointer types at the first index!
933 if (!CT->indexValid(Index)) return 0;
934 Ptr = CT->getTypeAtIndex(Index);
936 // If the new type forwards to another type, then it is in the middle
937 // of being refined to another type (and hence, may have dropped all
938 // references to what it was using before). So, use the new forwarded
939 // type.
940 if (const Type * Ty = Ptr->getForwardedType()) {
941 Ptr = Ty;
944 return CurIdx == NumIdx ? Ptr : 0;
947 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
948 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
949 if (!PTy) return 0; // Type isn't a pointer type!
951 // Check the pointer index.
952 if (!PTy->indexValid(Idx)) return 0;
954 return PTy->getElementType();
958 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
959 /// zeros. If so, the result pointer and the first operand have the same
960 /// value, just potentially different types.
961 bool GetElementPtrInst::hasAllZeroIndices() const {
962 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
963 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
964 if (!CI->isZero()) return false;
965 } else {
966 return false;
969 return true;
972 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
973 /// constant integers. If so, the result pointer and the first operand have
974 /// a constant offset between them.
975 bool GetElementPtrInst::hasAllConstantIndices() const {
976 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
977 if (!isa<ConstantInt>(getOperand(i)))
978 return false;
980 return true;
984 //===----------------------------------------------------------------------===//
985 // ExtractElementInst Implementation
986 //===----------------------------------------------------------------------===//
988 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
989 const std::string &Name,
990 Instruction *InsertBef)
991 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
992 ExtractElement, Ops, 2, InsertBef) {
993 assert(isValidOperands(Val, Index) &&
994 "Invalid extractelement instruction operands!");
995 Ops[0].init(Val, this);
996 Ops[1].init(Index, this);
997 setName(Name);
1000 ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1001 const std::string &Name,
1002 Instruction *InsertBef)
1003 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1004 ExtractElement, Ops, 2, InsertBef) {
1005 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1006 assert(isValidOperands(Val, Index) &&
1007 "Invalid extractelement instruction operands!");
1008 Ops[0].init(Val, this);
1009 Ops[1].init(Index, this);
1010 setName(Name);
1014 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1015 const std::string &Name,
1016 BasicBlock *InsertAE)
1017 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1018 ExtractElement, Ops, 2, InsertAE) {
1019 assert(isValidOperands(Val, Index) &&
1020 "Invalid extractelement instruction operands!");
1022 Ops[0].init(Val, this);
1023 Ops[1].init(Index, this);
1024 setName(Name);
1027 ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1028 const std::string &Name,
1029 BasicBlock *InsertAE)
1030 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1031 ExtractElement, Ops, 2, InsertAE) {
1032 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1033 assert(isValidOperands(Val, Index) &&
1034 "Invalid extractelement instruction operands!");
1036 Ops[0].init(Val, this);
1037 Ops[1].init(Index, this);
1038 setName(Name);
1042 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1043 if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
1044 return false;
1045 return true;
1049 //===----------------------------------------------------------------------===//
1050 // InsertElementInst Implementation
1051 //===----------------------------------------------------------------------===//
1053 InsertElementInst::InsertElementInst(const InsertElementInst &IE)
1054 : Instruction(IE.getType(), InsertElement, Ops, 3) {
1055 Ops[0].init(IE.Ops[0], this);
1056 Ops[1].init(IE.Ops[1], this);
1057 Ops[2].init(IE.Ops[2], this);
1059 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1060 const std::string &Name,
1061 Instruction *InsertBef)
1062 : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
1063 assert(isValidOperands(Vec, Elt, Index) &&
1064 "Invalid insertelement instruction operands!");
1065 Ops[0].init(Vec, this);
1066 Ops[1].init(Elt, this);
1067 Ops[2].init(Index, this);
1068 setName(Name);
1071 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1072 const std::string &Name,
1073 Instruction *InsertBef)
1074 : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
1075 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1076 assert(isValidOperands(Vec, Elt, Index) &&
1077 "Invalid insertelement instruction operands!");
1078 Ops[0].init(Vec, this);
1079 Ops[1].init(Elt, this);
1080 Ops[2].init(Index, this);
1081 setName(Name);
1085 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1086 const std::string &Name,
1087 BasicBlock *InsertAE)
1088 : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
1089 assert(isValidOperands(Vec, Elt, Index) &&
1090 "Invalid insertelement instruction operands!");
1092 Ops[0].init(Vec, this);
1093 Ops[1].init(Elt, this);
1094 Ops[2].init(Index, this);
1095 setName(Name);
1098 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1099 const std::string &Name,
1100 BasicBlock *InsertAE)
1101 : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
1102 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1103 assert(isValidOperands(Vec, Elt, Index) &&
1104 "Invalid insertelement instruction operands!");
1106 Ops[0].init(Vec, this);
1107 Ops[1].init(Elt, this);
1108 Ops[2].init(Index, this);
1109 setName(Name);
1112 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1113 const Value *Index) {
1114 if (!isa<VectorType>(Vec->getType()))
1115 return false; // First operand of insertelement must be vector type.
1117 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1118 return false;// Second operand of insertelement must be vector element type.
1120 if (Index->getType() != Type::Int32Ty)
1121 return false; // Third operand of insertelement must be uint.
1122 return true;
1126 //===----------------------------------------------------------------------===//
1127 // ShuffleVectorInst Implementation
1128 //===----------------------------------------------------------------------===//
1130 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
1131 : Instruction(SV.getType(), ShuffleVector, Ops, 3) {
1132 Ops[0].init(SV.Ops[0], this);
1133 Ops[1].init(SV.Ops[1], this);
1134 Ops[2].init(SV.Ops[2], this);
1137 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1138 const std::string &Name,
1139 Instruction *InsertBefore)
1140 : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertBefore) {
1141 assert(isValidOperands(V1, V2, Mask) &&
1142 "Invalid shuffle vector instruction operands!");
1143 Ops[0].init(V1, this);
1144 Ops[1].init(V2, this);
1145 Ops[2].init(Mask, this);
1146 setName(Name);
1149 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1150 const std::string &Name,
1151 BasicBlock *InsertAtEnd)
1152 : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertAtEnd) {
1153 assert(isValidOperands(V1, V2, Mask) &&
1154 "Invalid shuffle vector instruction operands!");
1156 Ops[0].init(V1, this);
1157 Ops[1].init(V2, this);
1158 Ops[2].init(Mask, this);
1159 setName(Name);
1162 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1163 const Value *Mask) {
1164 if (!isa<VectorType>(V1->getType())) return false;
1165 if (V1->getType() != V2->getType()) return false;
1166 if (!isa<VectorType>(Mask->getType()) ||
1167 cast<VectorType>(Mask->getType())->getElementType() != Type::Int32Ty ||
1168 cast<VectorType>(Mask->getType())->getNumElements() !=
1169 cast<VectorType>(V1->getType())->getNumElements())
1170 return false;
1171 return true;
1175 //===----------------------------------------------------------------------===//
1176 // BinaryOperator Class
1177 //===----------------------------------------------------------------------===//
1179 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1180 const Type *Ty, const std::string &Name,
1181 Instruction *InsertBefore)
1182 : Instruction(Ty, iType, Ops, 2, InsertBefore) {
1183 Ops[0].init(S1, this);
1184 Ops[1].init(S2, this);
1185 init(iType);
1186 setName(Name);
1189 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1190 const Type *Ty, const std::string &Name,
1191 BasicBlock *InsertAtEnd)
1192 : Instruction(Ty, iType, Ops, 2, InsertAtEnd) {
1193 Ops[0].init(S1, this);
1194 Ops[1].init(S2, this);
1195 init(iType);
1196 setName(Name);
1200 void BinaryOperator::init(BinaryOps iType) {
1201 Value *LHS = getOperand(0), *RHS = getOperand(1);
1202 LHS = LHS; RHS = RHS; // Silence warnings.
1203 assert(LHS->getType() == RHS->getType() &&
1204 "Binary operator operand types must match!");
1205 #ifndef NDEBUG
1206 switch (iType) {
1207 case Add: case Sub:
1208 case Mul:
1209 assert(getType() == LHS->getType() &&
1210 "Arithmetic operation should return same type as operands!");
1211 assert((getType()->isInteger() || getType()->isFloatingPoint() ||
1212 isa<VectorType>(getType())) &&
1213 "Tried to create an arithmetic operation on a non-arithmetic type!");
1214 break;
1215 case UDiv:
1216 case SDiv:
1217 assert(getType() == LHS->getType() &&
1218 "Arithmetic operation should return same type as operands!");
1219 assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1220 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1221 "Incorrect operand type (not integer) for S/UDIV");
1222 break;
1223 case FDiv:
1224 assert(getType() == LHS->getType() &&
1225 "Arithmetic operation should return same type as operands!");
1226 assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
1227 cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
1228 && "Incorrect operand type (not floating point) for FDIV");
1229 break;
1230 case URem:
1231 case SRem:
1232 assert(getType() == LHS->getType() &&
1233 "Arithmetic operation should return same type as operands!");
1234 assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1235 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1236 "Incorrect operand type (not integer) for S/UREM");
1237 break;
1238 case FRem:
1239 assert(getType() == LHS->getType() &&
1240 "Arithmetic operation should return same type as operands!");
1241 assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
1242 cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
1243 && "Incorrect operand type (not floating point) for FREM");
1244 break;
1245 case Shl:
1246 case LShr:
1247 case AShr:
1248 assert(getType() == LHS->getType() &&
1249 "Shift operation should return same type as operands!");
1250 assert(getType()->isInteger() &&
1251 "Shift operation requires integer operands");
1252 break;
1253 case And: case Or:
1254 case Xor:
1255 assert(getType() == LHS->getType() &&
1256 "Logical operation should return same type as operands!");
1257 assert((getType()->isInteger() ||
1258 (isa<VectorType>(getType()) &&
1259 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1260 "Tried to create a logical operation on a non-integral type!");
1261 break;
1262 default:
1263 break;
1265 #endif
1268 BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
1269 const std::string &Name,
1270 Instruction *InsertBefore) {
1271 assert(S1->getType() == S2->getType() &&
1272 "Cannot create binary operator with two operands of differing type!");
1273 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1276 BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
1277 const std::string &Name,
1278 BasicBlock *InsertAtEnd) {
1279 BinaryOperator *Res = create(Op, S1, S2, Name);
1280 InsertAtEnd->getInstList().push_back(Res);
1281 return Res;
1284 BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
1285 Instruction *InsertBefore) {
1286 Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
1287 return new BinaryOperator(Instruction::Sub,
1288 zero, Op,
1289 Op->getType(), Name, InsertBefore);
1292 BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
1293 BasicBlock *InsertAtEnd) {
1294 Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
1295 return new BinaryOperator(Instruction::Sub,
1296 zero, Op,
1297 Op->getType(), Name, InsertAtEnd);
1300 BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
1301 Instruction *InsertBefore) {
1302 Constant *C;
1303 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1304 C = ConstantInt::getAllOnesValue(PTy->getElementType());
1305 C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
1306 } else {
1307 C = ConstantInt::getAllOnesValue(Op->getType());
1310 return new BinaryOperator(Instruction::Xor, Op, C,
1311 Op->getType(), Name, InsertBefore);
1314 BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
1315 BasicBlock *InsertAtEnd) {
1316 Constant *AllOnes;
1317 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1318 // Create a vector of all ones values.
1319 Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
1320 AllOnes =
1321 ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
1322 } else {
1323 AllOnes = ConstantInt::getAllOnesValue(Op->getType());
1326 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1327 Op->getType(), Name, InsertAtEnd);
1331 // isConstantAllOnes - Helper function for several functions below
1332 static inline bool isConstantAllOnes(const Value *V) {
1333 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1334 return CI->isAllOnesValue();
1335 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1336 return CV->isAllOnesValue();
1337 return false;
1340 bool BinaryOperator::isNeg(const Value *V) {
1341 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1342 if (Bop->getOpcode() == Instruction::Sub)
1343 return Bop->getOperand(0) ==
1344 ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
1345 return false;
1348 bool BinaryOperator::isNot(const Value *V) {
1349 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1350 return (Bop->getOpcode() == Instruction::Xor &&
1351 (isConstantAllOnes(Bop->getOperand(1)) ||
1352 isConstantAllOnes(Bop->getOperand(0))));
1353 return false;
1356 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1357 assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
1358 return cast<BinaryOperator>(BinOp)->getOperand(1);
1361 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1362 return getNegArgument(const_cast<Value*>(BinOp));
1365 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1366 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1367 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1368 Value *Op0 = BO->getOperand(0);
1369 Value *Op1 = BO->getOperand(1);
1370 if (isConstantAllOnes(Op0)) return Op1;
1372 assert(isConstantAllOnes(Op1));
1373 return Op0;
1376 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1377 return getNotArgument(const_cast<Value*>(BinOp));
1381 // swapOperands - Exchange the two operands to this instruction. This
1382 // instruction is safe to use on any binary instruction and does not
1383 // modify the semantics of the instruction. If the instruction is
1384 // order dependent (SetLT f.e.) the opcode is changed.
1386 bool BinaryOperator::swapOperands() {
1387 if (!isCommutative())
1388 return true; // Can't commute operands
1389 std::swap(Ops[0], Ops[1]);
1390 return false;
1393 //===----------------------------------------------------------------------===//
1394 // CastInst Class
1395 //===----------------------------------------------------------------------===//
1397 // Just determine if this cast only deals with integral->integral conversion.
1398 bool CastInst::isIntegerCast() const {
1399 switch (getOpcode()) {
1400 default: return false;
1401 case Instruction::ZExt:
1402 case Instruction::SExt:
1403 case Instruction::Trunc:
1404 return true;
1405 case Instruction::BitCast:
1406 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1410 bool CastInst::isLosslessCast() const {
1411 // Only BitCast can be lossless, exit fast if we're not BitCast
1412 if (getOpcode() != Instruction::BitCast)
1413 return false;
1415 // Identity cast is always lossless
1416 const Type* SrcTy = getOperand(0)->getType();
1417 const Type* DstTy = getType();
1418 if (SrcTy == DstTy)
1419 return true;
1421 // Pointer to pointer is always lossless.
1422 if (isa<PointerType>(SrcTy))
1423 return isa<PointerType>(DstTy);
1424 return false; // Other types have no identity values
1427 /// This function determines if the CastInst does not require any bits to be
1428 /// changed in order to effect the cast. Essentially, it identifies cases where
1429 /// no code gen is necessary for the cast, hence the name no-op cast. For
1430 /// example, the following are all no-op casts:
1431 /// # bitcast uint %X, int
1432 /// # bitcast uint* %x, sbyte*
1433 /// # bitcast vector< 2 x int > %x, vector< 4 x short>
1434 /// # ptrtoint uint* %x, uint ; on 32-bit plaforms only
1435 /// @brief Determine if a cast is a no-op.
1436 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1437 switch (getOpcode()) {
1438 default:
1439 assert(!"Invalid CastOp");
1440 case Instruction::Trunc:
1441 case Instruction::ZExt:
1442 case Instruction::SExt:
1443 case Instruction::FPTrunc:
1444 case Instruction::FPExt:
1445 case Instruction::UIToFP:
1446 case Instruction::SIToFP:
1447 case Instruction::FPToUI:
1448 case Instruction::FPToSI:
1449 return false; // These always modify bits
1450 case Instruction::BitCast:
1451 return true; // BitCast never modifies bits.
1452 case Instruction::PtrToInt:
1453 return IntPtrTy->getPrimitiveSizeInBits() ==
1454 getType()->getPrimitiveSizeInBits();
1455 case Instruction::IntToPtr:
1456 return IntPtrTy->getPrimitiveSizeInBits() ==
1457 getOperand(0)->getType()->getPrimitiveSizeInBits();
1461 /// This function determines if a pair of casts can be eliminated and what
1462 /// opcode should be used in the elimination. This assumes that there are two
1463 /// instructions like this:
1464 /// * %F = firstOpcode SrcTy %x to MidTy
1465 /// * %S = secondOpcode MidTy %F to DstTy
1466 /// The function returns a resultOpcode so these two casts can be replaced with:
1467 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1468 /// If no such cast is permited, the function returns 0.
1469 unsigned CastInst::isEliminableCastPair(
1470 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1471 const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1473 // Define the 144 possibilities for these two cast instructions. The values
1474 // in this matrix determine what to do in a given situation and select the
1475 // case in the switch below. The rows correspond to firstOp, the columns
1476 // correspond to secondOp. In looking at the table below, keep in mind
1477 // the following cast properties:
1479 // Size Compare Source Destination
1480 // Operator Src ? Size Type Sign Type Sign
1481 // -------- ------------ ------------------- ---------------------
1482 // TRUNC > Integer Any Integral Any
1483 // ZEXT < Integral Unsigned Integer Any
1484 // SEXT < Integral Signed Integer Any
1485 // FPTOUI n/a FloatPt n/a Integral Unsigned
1486 // FPTOSI n/a FloatPt n/a Integral Signed
1487 // UITOFP n/a Integral Unsigned FloatPt n/a
1488 // SITOFP n/a Integral Signed FloatPt n/a
1489 // FPTRUNC > FloatPt n/a FloatPt n/a
1490 // FPEXT < FloatPt n/a FloatPt n/a
1491 // PTRTOINT n/a Pointer n/a Integral Unsigned
1492 // INTTOPTR n/a Integral Unsigned Pointer n/a
1493 // BITCONVERT = FirstClass n/a FirstClass n/a
1495 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1496 // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
1497 // into "fptoui double to ulong", but this loses information about the range
1498 // of the produced value (we no longer know the top-part is all zeros).
1499 // Further this conversion is often much more expensive for typical hardware,
1500 // and causes issues when building libgcc. We disallow fptosi+sext for the
1501 // same reason.
1502 const unsigned numCastOps =
1503 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1504 static const uint8_t CastResults[numCastOps][numCastOps] = {
1505 // T F F U S F F P I B -+
1506 // R Z S P P I I T P 2 N T |
1507 // U E E 2 2 2 2 R E I T C +- secondOp
1508 // N X X U S F F N X N 2 V |
1509 // C T T I I P P C T T P T -+
1510 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1511 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1512 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1513 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1514 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1515 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1516 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1517 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1518 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1519 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1520 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1521 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1524 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1525 [secondOp-Instruction::CastOpsBegin];
1526 switch (ElimCase) {
1527 case 0:
1528 // categorically disallowed
1529 return 0;
1530 case 1:
1531 // allowed, use first cast's opcode
1532 return firstOp;
1533 case 2:
1534 // allowed, use second cast's opcode
1535 return secondOp;
1536 case 3:
1537 // no-op cast in second op implies firstOp as long as the DestTy
1538 // is integer
1539 if (DstTy->isInteger())
1540 return firstOp;
1541 return 0;
1542 case 4:
1543 // no-op cast in second op implies firstOp as long as the DestTy
1544 // is floating point
1545 if (DstTy->isFloatingPoint())
1546 return firstOp;
1547 return 0;
1548 case 5:
1549 // no-op cast in first op implies secondOp as long as the SrcTy
1550 // is an integer
1551 if (SrcTy->isInteger())
1552 return secondOp;
1553 return 0;
1554 case 6:
1555 // no-op cast in first op implies secondOp as long as the SrcTy
1556 // is a floating point
1557 if (SrcTy->isFloatingPoint())
1558 return secondOp;
1559 return 0;
1560 case 7: {
1561 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1562 unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
1563 unsigned MidSize = MidTy->getPrimitiveSizeInBits();
1564 if (MidSize >= PtrSize)
1565 return Instruction::BitCast;
1566 return 0;
1568 case 8: {
1569 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
1570 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
1571 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
1572 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1573 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1574 if (SrcSize == DstSize)
1575 return Instruction::BitCast;
1576 else if (SrcSize < DstSize)
1577 return firstOp;
1578 return secondOp;
1580 case 9: // zext, sext -> zext, because sext can't sign extend after zext
1581 return Instruction::ZExt;
1582 case 10:
1583 // fpext followed by ftrunc is allowed if the bit size returned to is
1584 // the same as the original, in which case its just a bitcast
1585 if (SrcTy == DstTy)
1586 return Instruction::BitCast;
1587 return 0; // If the types are not the same we can't eliminate it.
1588 case 11:
1589 // bitcast followed by ptrtoint is allowed as long as the bitcast
1590 // is a pointer to pointer cast.
1591 if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
1592 return secondOp;
1593 return 0;
1594 case 12:
1595 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
1596 if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
1597 return firstOp;
1598 return 0;
1599 case 13: {
1600 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1601 unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
1602 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1603 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1604 if (SrcSize <= PtrSize && SrcSize == DstSize)
1605 return Instruction::BitCast;
1606 return 0;
1608 case 99:
1609 // cast combination can't happen (error in input). This is for all cases
1610 // where the MidTy is not the same for the two cast instructions.
1611 assert(!"Invalid Cast Combination");
1612 return 0;
1613 default:
1614 assert(!"Error in CastResults table!!!");
1615 return 0;
1617 return 0;
1620 CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
1621 const std::string &Name, Instruction *InsertBefore) {
1622 // Construct and return the appropriate CastInst subclass
1623 switch (op) {
1624 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
1625 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
1626 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
1627 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
1628 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
1629 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
1630 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
1631 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
1632 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
1633 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
1634 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
1635 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
1636 default:
1637 assert(!"Invalid opcode provided");
1639 return 0;
1642 CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
1643 const std::string &Name, BasicBlock *InsertAtEnd) {
1644 // Construct and return the appropriate CastInst subclass
1645 switch (op) {
1646 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
1647 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
1648 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
1649 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
1650 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
1651 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
1652 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
1653 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
1654 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
1655 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
1656 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
1657 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
1658 default:
1659 assert(!"Invalid opcode provided");
1661 return 0;
1664 CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty,
1665 const std::string &Name,
1666 Instruction *InsertBefore) {
1667 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1668 return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1669 return create(Instruction::ZExt, S, Ty, Name, InsertBefore);
1672 CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty,
1673 const std::string &Name,
1674 BasicBlock *InsertAtEnd) {
1675 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1676 return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1677 return create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
1680 CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty,
1681 const std::string &Name,
1682 Instruction *InsertBefore) {
1683 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1684 return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1685 return create(Instruction::SExt, S, Ty, Name, InsertBefore);
1688 CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty,
1689 const std::string &Name,
1690 BasicBlock *InsertAtEnd) {
1691 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1692 return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1693 return create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
1696 CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
1697 const std::string &Name,
1698 Instruction *InsertBefore) {
1699 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1700 return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1701 return create(Instruction::Trunc, S, Ty, Name, InsertBefore);
1704 CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
1705 const std::string &Name,
1706 BasicBlock *InsertAtEnd) {
1707 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1708 return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1709 return create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
1712 CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
1713 const std::string &Name,
1714 BasicBlock *InsertAtEnd) {
1715 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1716 assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
1717 "Invalid cast");
1719 if (Ty->isInteger())
1720 return create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
1721 return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1724 /// @brief Create a BitCast or a PtrToInt cast instruction
1725 CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
1726 const std::string &Name,
1727 Instruction *InsertBefore) {
1728 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1729 assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
1730 "Invalid cast");
1732 if (Ty->isInteger())
1733 return create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
1734 return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1737 CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty,
1738 bool isSigned, const std::string &Name,
1739 Instruction *InsertBefore) {
1740 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
1741 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1742 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1743 Instruction::CastOps opcode =
1744 (SrcBits == DstBits ? Instruction::BitCast :
1745 (SrcBits > DstBits ? Instruction::Trunc :
1746 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1747 return create(opcode, C, Ty, Name, InsertBefore);
1750 CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty,
1751 bool isSigned, const std::string &Name,
1752 BasicBlock *InsertAtEnd) {
1753 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
1754 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1755 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1756 Instruction::CastOps opcode =
1757 (SrcBits == DstBits ? Instruction::BitCast :
1758 (SrcBits > DstBits ? Instruction::Trunc :
1759 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1760 return create(opcode, C, Ty, Name, InsertAtEnd);
1763 CastInst *CastInst::createFPCast(Value *C, const Type *Ty,
1764 const std::string &Name,
1765 Instruction *InsertBefore) {
1766 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1767 "Invalid cast");
1768 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1769 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1770 Instruction::CastOps opcode =
1771 (SrcBits == DstBits ? Instruction::BitCast :
1772 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
1773 return create(opcode, C, Ty, Name, InsertBefore);
1776 CastInst *CastInst::createFPCast(Value *C, const Type *Ty,
1777 const std::string &Name,
1778 BasicBlock *InsertAtEnd) {
1779 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1780 "Invalid cast");
1781 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1782 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1783 Instruction::CastOps opcode =
1784 (SrcBits == DstBits ? Instruction::BitCast :
1785 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
1786 return create(opcode, C, Ty, Name, InsertAtEnd);
1789 // Provide a way to get a "cast" where the cast opcode is inferred from the
1790 // types and size of the operand. This, basically, is a parallel of the
1791 // logic in the castIsValid function below. This axiom should hold:
1792 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
1793 // should not assert in castIsValid. In other words, this produces a "correct"
1794 // casting opcode for the arguments passed to it.
1795 Instruction::CastOps
1796 CastInst::getCastOpcode(
1797 const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
1798 // Get the bit sizes, we'll need these
1799 const Type *SrcTy = Src->getType();
1800 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
1801 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
1803 // Run through the possibilities ...
1804 if (DestTy->isInteger()) { // Casting to integral
1805 if (SrcTy->isInteger()) { // Casting from integral
1806 if (DestBits < SrcBits)
1807 return Trunc; // int -> smaller int
1808 else if (DestBits > SrcBits) { // its an extension
1809 if (SrcIsSigned)
1810 return SExt; // signed -> SEXT
1811 else
1812 return ZExt; // unsigned -> ZEXT
1813 } else {
1814 return BitCast; // Same size, No-op cast
1816 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
1817 if (DestIsSigned)
1818 return FPToSI; // FP -> sint
1819 else
1820 return FPToUI; // FP -> uint
1821 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
1822 assert(DestBits == PTy->getBitWidth() &&
1823 "Casting vector to integer of different width");
1824 return BitCast; // Same size, no-op cast
1825 } else {
1826 assert(isa<PointerType>(SrcTy) &&
1827 "Casting from a value that is not first-class type");
1828 return PtrToInt; // ptr -> int
1830 } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
1831 if (SrcTy->isInteger()) { // Casting from integral
1832 if (SrcIsSigned)
1833 return SIToFP; // sint -> FP
1834 else
1835 return UIToFP; // uint -> FP
1836 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
1837 if (DestBits < SrcBits) {
1838 return FPTrunc; // FP -> smaller FP
1839 } else if (DestBits > SrcBits) {
1840 return FPExt; // FP -> larger FP
1841 } else {
1842 return BitCast; // same size, no-op cast
1844 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
1845 assert(DestBits == PTy->getBitWidth() &&
1846 "Casting vector to floating point of different width");
1847 return BitCast; // same size, no-op cast
1848 } else {
1849 assert(0 && "Casting pointer or non-first class to float");
1851 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
1852 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
1853 assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
1854 "Casting vector to vector of different widths");
1855 return BitCast; // vector -> vector
1856 } else if (DestPTy->getBitWidth() == SrcBits) {
1857 return BitCast; // float/int -> vector
1858 } else {
1859 assert(!"Illegal cast to vector (wrong type or size)");
1861 } else if (isa<PointerType>(DestTy)) {
1862 if (isa<PointerType>(SrcTy)) {
1863 return BitCast; // ptr -> ptr
1864 } else if (SrcTy->isInteger()) {
1865 return IntToPtr; // int -> ptr
1866 } else {
1867 assert(!"Casting pointer to other than pointer or int");
1869 } else {
1870 assert(!"Casting to type that is not first-class");
1873 // If we fall through to here we probably hit an assertion cast above
1874 // and assertions are not turned on. Anything we return is an error, so
1875 // BitCast is as good a choice as any.
1876 return BitCast;
1879 //===----------------------------------------------------------------------===//
1880 // CastInst SubClass Constructors
1881 //===----------------------------------------------------------------------===//
1883 /// Check that the construction parameters for a CastInst are correct. This
1884 /// could be broken out into the separate constructors but it is useful to have
1885 /// it in one place and to eliminate the redundant code for getting the sizes
1886 /// of the types involved.
1887 bool
1888 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
1890 // Check for type sanity on the arguments
1891 const Type *SrcTy = S->getType();
1892 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
1893 return false;
1895 // Get the size of the types in bits, we'll need this later
1896 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1897 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
1899 // Switch on the opcode provided
1900 switch (op) {
1901 default: return false; // This is an input error
1902 case Instruction::Trunc:
1903 return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize > DstBitSize;
1904 case Instruction::ZExt:
1905 return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
1906 case Instruction::SExt:
1907 return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
1908 case Instruction::FPTrunc:
1909 return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
1910 SrcBitSize > DstBitSize;
1911 case Instruction::FPExt:
1912 return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
1913 SrcBitSize < DstBitSize;
1914 case Instruction::UIToFP:
1915 return SrcTy->isInteger() && DstTy->isFloatingPoint();
1916 case Instruction::SIToFP:
1917 return SrcTy->isInteger() && DstTy->isFloatingPoint();
1918 case Instruction::FPToUI:
1919 return SrcTy->isFloatingPoint() && DstTy->isInteger();
1920 case Instruction::FPToSI:
1921 return SrcTy->isFloatingPoint() && DstTy->isInteger();
1922 case Instruction::PtrToInt:
1923 return isa<PointerType>(SrcTy) && DstTy->isInteger();
1924 case Instruction::IntToPtr:
1925 return SrcTy->isInteger() && isa<PointerType>(DstTy);
1926 case Instruction::BitCast:
1927 // BitCast implies a no-op cast of type only. No bits change.
1928 // However, you can't cast pointers to anything but pointers.
1929 if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
1930 return false;
1932 // Now we know we're not dealing with a pointer/non-poiner mismatch. In all
1933 // these cases, the cast is okay if the source and destination bit widths
1934 // are identical.
1935 return SrcBitSize == DstBitSize;
1939 TruncInst::TruncInst(
1940 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
1941 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
1942 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
1945 TruncInst::TruncInst(
1946 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
1947 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
1948 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
1951 ZExtInst::ZExtInst(
1952 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
1953 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
1954 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
1957 ZExtInst::ZExtInst(
1958 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
1959 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
1960 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
1962 SExtInst::SExtInst(
1963 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
1964 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
1965 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
1968 SExtInst::SExtInst(
1969 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
1970 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
1971 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
1974 FPTruncInst::FPTruncInst(
1975 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
1976 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
1977 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
1980 FPTruncInst::FPTruncInst(
1981 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
1982 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
1983 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
1986 FPExtInst::FPExtInst(
1987 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
1988 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
1989 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
1992 FPExtInst::FPExtInst(
1993 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
1994 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
1995 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
1998 UIToFPInst::UIToFPInst(
1999 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2000 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2001 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2004 UIToFPInst::UIToFPInst(
2005 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2006 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2007 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2010 SIToFPInst::SIToFPInst(
2011 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2012 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2013 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2016 SIToFPInst::SIToFPInst(
2017 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2018 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2019 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2022 FPToUIInst::FPToUIInst(
2023 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2024 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2025 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2028 FPToUIInst::FPToUIInst(
2029 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2030 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2031 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2034 FPToSIInst::FPToSIInst(
2035 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2036 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2037 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2040 FPToSIInst::FPToSIInst(
2041 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2042 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2043 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2046 PtrToIntInst::PtrToIntInst(
2047 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2048 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2049 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2052 PtrToIntInst::PtrToIntInst(
2053 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2054 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2055 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2058 IntToPtrInst::IntToPtrInst(
2059 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2060 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2061 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2064 IntToPtrInst::IntToPtrInst(
2065 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2066 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2067 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2070 BitCastInst::BitCastInst(
2071 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2072 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2073 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2076 BitCastInst::BitCastInst(
2077 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2078 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2079 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2082 //===----------------------------------------------------------------------===//
2083 // CmpInst Classes
2084 //===----------------------------------------------------------------------===//
2086 CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
2087 const std::string &Name, Instruction *InsertBefore)
2088 : Instruction(Type::Int1Ty, op, Ops, 2, InsertBefore) {
2089 Ops[0].init(LHS, this);
2090 Ops[1].init(RHS, this);
2091 SubclassData = predicate;
2092 setName(Name);
2093 if (op == Instruction::ICmp) {
2094 assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
2095 predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
2096 "Invalid ICmp predicate value");
2097 const Type* Op0Ty = getOperand(0)->getType();
2098 const Type* Op1Ty = getOperand(1)->getType();
2099 assert(Op0Ty == Op1Ty &&
2100 "Both operands to ICmp instruction are not of the same type!");
2101 // Check that the operands are the right type
2102 assert((Op0Ty->isInteger() || isa<PointerType>(Op0Ty)) &&
2103 "Invalid operand types for ICmp instruction");
2104 return;
2106 assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
2107 assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
2108 "Invalid FCmp predicate value");
2109 const Type* Op0Ty = getOperand(0)->getType();
2110 const Type* Op1Ty = getOperand(1)->getType();
2111 assert(Op0Ty == Op1Ty &&
2112 "Both operands to FCmp instruction are not of the same type!");
2113 // Check that the operands are the right type
2114 assert(Op0Ty->isFloatingPoint() &&
2115 "Invalid operand types for FCmp instruction");
2118 CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
2119 const std::string &Name, BasicBlock *InsertAtEnd)
2120 : Instruction(Type::Int1Ty, op, Ops, 2, InsertAtEnd) {
2121 Ops[0].init(LHS, this);
2122 Ops[1].init(RHS, this);
2123 SubclassData = predicate;
2124 setName(Name);
2125 if (op == Instruction::ICmp) {
2126 assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
2127 predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
2128 "Invalid ICmp predicate value");
2130 const Type* Op0Ty = getOperand(0)->getType();
2131 const Type* Op1Ty = getOperand(1)->getType();
2132 assert(Op0Ty == Op1Ty &&
2133 "Both operands to ICmp instruction are not of the same type!");
2134 // Check that the operands are the right type
2135 assert(Op0Ty->isInteger() || isa<PointerType>(Op0Ty) &&
2136 "Invalid operand types for ICmp instruction");
2137 return;
2139 assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
2140 assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
2141 "Invalid FCmp predicate value");
2142 const Type* Op0Ty = getOperand(0)->getType();
2143 const Type* Op1Ty = getOperand(1)->getType();
2144 assert(Op0Ty == Op1Ty &&
2145 "Both operands to FCmp instruction are not of the same type!");
2146 // Check that the operands are the right type
2147 assert(Op0Ty->isFloatingPoint() &&
2148 "Invalid operand types for FCmp instruction");
2151 CmpInst *
2152 CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2153 const std::string &Name, Instruction *InsertBefore) {
2154 if (Op == Instruction::ICmp) {
2155 return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name,
2156 InsertBefore);
2158 return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name,
2159 InsertBefore);
2162 CmpInst *
2163 CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2164 const std::string &Name, BasicBlock *InsertAtEnd) {
2165 if (Op == Instruction::ICmp) {
2166 return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name,
2167 InsertAtEnd);
2169 return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name,
2170 InsertAtEnd);
2173 void CmpInst::swapOperands() {
2174 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2175 IC->swapOperands();
2176 else
2177 cast<FCmpInst>(this)->swapOperands();
2180 bool CmpInst::isCommutative() {
2181 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2182 return IC->isCommutative();
2183 return cast<FCmpInst>(this)->isCommutative();
2186 bool CmpInst::isEquality() {
2187 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2188 return IC->isEquality();
2189 return cast<FCmpInst>(this)->isEquality();
2193 ICmpInst::Predicate ICmpInst::getInversePredicate(Predicate pred) {
2194 switch (pred) {
2195 default:
2196 assert(!"Unknown icmp predicate!");
2197 case ICMP_EQ: return ICMP_NE;
2198 case ICMP_NE: return ICMP_EQ;
2199 case ICMP_UGT: return ICMP_ULE;
2200 case ICMP_ULT: return ICMP_UGE;
2201 case ICMP_UGE: return ICMP_ULT;
2202 case ICMP_ULE: return ICMP_UGT;
2203 case ICMP_SGT: return ICMP_SLE;
2204 case ICMP_SLT: return ICMP_SGE;
2205 case ICMP_SGE: return ICMP_SLT;
2206 case ICMP_SLE: return ICMP_SGT;
2210 ICmpInst::Predicate ICmpInst::getSwappedPredicate(Predicate pred) {
2211 switch (pred) {
2212 default: assert(! "Unknown icmp predicate!");
2213 case ICMP_EQ: case ICMP_NE:
2214 return pred;
2215 case ICMP_SGT: return ICMP_SLT;
2216 case ICMP_SLT: return ICMP_SGT;
2217 case ICMP_SGE: return ICMP_SLE;
2218 case ICMP_SLE: return ICMP_SGE;
2219 case ICMP_UGT: return ICMP_ULT;
2220 case ICMP_ULT: return ICMP_UGT;
2221 case ICMP_UGE: return ICMP_ULE;
2222 case ICMP_ULE: return ICMP_UGE;
2226 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2227 switch (pred) {
2228 default: assert(! "Unknown icmp predicate!");
2229 case ICMP_EQ: case ICMP_NE:
2230 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2231 return pred;
2232 case ICMP_UGT: return ICMP_SGT;
2233 case ICMP_ULT: return ICMP_SLT;
2234 case ICMP_UGE: return ICMP_SGE;
2235 case ICMP_ULE: return ICMP_SLE;
2239 bool ICmpInst::isSignedPredicate(Predicate pred) {
2240 switch (pred) {
2241 default: assert(! "Unknown icmp predicate!");
2242 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2243 return true;
2244 case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
2245 case ICMP_UGE: case ICMP_ULE:
2246 return false;
2250 /// Initialize a set of values that all satisfy the condition with C.
2252 ConstantRange
2253 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2254 APInt Lower(C);
2255 APInt Upper(C);
2256 uint32_t BitWidth = C.getBitWidth();
2257 switch (pred) {
2258 default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
2259 case ICmpInst::ICMP_EQ: Upper++; break;
2260 case ICmpInst::ICMP_NE: Lower++; break;
2261 case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
2262 case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
2263 case ICmpInst::ICMP_UGT:
2264 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2265 break;
2266 case ICmpInst::ICMP_SGT:
2267 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2268 break;
2269 case ICmpInst::ICMP_ULE:
2270 Lower = APInt::getMinValue(BitWidth); Upper++;
2271 break;
2272 case ICmpInst::ICMP_SLE:
2273 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2274 break;
2275 case ICmpInst::ICMP_UGE:
2276 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2277 break;
2278 case ICmpInst::ICMP_SGE:
2279 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2280 break;
2282 return ConstantRange(Lower, Upper);
2285 FCmpInst::Predicate FCmpInst::getInversePredicate(Predicate pred) {
2286 switch (pred) {
2287 default:
2288 assert(!"Unknown icmp predicate!");
2289 case FCMP_OEQ: return FCMP_UNE;
2290 case FCMP_ONE: return FCMP_UEQ;
2291 case FCMP_OGT: return FCMP_ULE;
2292 case FCMP_OLT: return FCMP_UGE;
2293 case FCMP_OGE: return FCMP_ULT;
2294 case FCMP_OLE: return FCMP_UGT;
2295 case FCMP_UEQ: return FCMP_ONE;
2296 case FCMP_UNE: return FCMP_OEQ;
2297 case FCMP_UGT: return FCMP_OLE;
2298 case FCMP_ULT: return FCMP_OGE;
2299 case FCMP_UGE: return FCMP_OLT;
2300 case FCMP_ULE: return FCMP_OGT;
2301 case FCMP_ORD: return FCMP_UNO;
2302 case FCMP_UNO: return FCMP_ORD;
2303 case FCMP_TRUE: return FCMP_FALSE;
2304 case FCMP_FALSE: return FCMP_TRUE;
2308 FCmpInst::Predicate FCmpInst::getSwappedPredicate(Predicate pred) {
2309 switch (pred) {
2310 default: assert(!"Unknown fcmp predicate!");
2311 case FCMP_FALSE: case FCMP_TRUE:
2312 case FCMP_OEQ: case FCMP_ONE:
2313 case FCMP_UEQ: case FCMP_UNE:
2314 case FCMP_ORD: case FCMP_UNO:
2315 return pred;
2316 case FCMP_OGT: return FCMP_OLT;
2317 case FCMP_OLT: return FCMP_OGT;
2318 case FCMP_OGE: return FCMP_OLE;
2319 case FCMP_OLE: return FCMP_OGE;
2320 case FCMP_UGT: return FCMP_ULT;
2321 case FCMP_ULT: return FCMP_UGT;
2322 case FCMP_UGE: return FCMP_ULE;
2323 case FCMP_ULE: return FCMP_UGE;
2327 bool CmpInst::isUnsigned(unsigned short predicate) {
2328 switch (predicate) {
2329 default: return false;
2330 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2331 case ICmpInst::ICMP_UGE: return true;
2335 bool CmpInst::isSigned(unsigned short predicate){
2336 switch (predicate) {
2337 default: return false;
2338 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2339 case ICmpInst::ICMP_SGE: return true;
2343 bool CmpInst::isOrdered(unsigned short predicate) {
2344 switch (predicate) {
2345 default: return false;
2346 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2347 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2348 case FCmpInst::FCMP_ORD: return true;
2352 bool CmpInst::isUnordered(unsigned short predicate) {
2353 switch (predicate) {
2354 default: return false;
2355 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2356 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2357 case FCmpInst::FCMP_UNO: return true;
2361 //===----------------------------------------------------------------------===//
2362 // SwitchInst Implementation
2363 //===----------------------------------------------------------------------===//
2365 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2366 assert(Value && Default);
2367 ReservedSpace = 2+NumCases*2;
2368 NumOperands = 2;
2369 OperandList = new Use[ReservedSpace];
2371 OperandList[0].init(Value, this);
2372 OperandList[1].init(Default, this);
2375 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2376 /// switch on and a default destination. The number of additional cases can
2377 /// be specified here to make memory allocation more efficient. This
2378 /// constructor can also autoinsert before another instruction.
2379 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2380 Instruction *InsertBefore)
2381 : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
2382 init(Value, Default, NumCases);
2385 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2386 /// switch on and a default destination. The number of additional cases can
2387 /// be specified here to make memory allocation more efficient. This
2388 /// constructor also autoinserts at the end of the specified BasicBlock.
2389 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2390 BasicBlock *InsertAtEnd)
2391 : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
2392 init(Value, Default, NumCases);
2395 SwitchInst::SwitchInst(const SwitchInst &SI)
2396 : TerminatorInst(Type::VoidTy, Instruction::Switch,
2397 new Use[SI.getNumOperands()], SI.getNumOperands()) {
2398 Use *OL = OperandList, *InOL = SI.OperandList;
2399 for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2400 OL[i].init(InOL[i], this);
2401 OL[i+1].init(InOL[i+1], this);
2405 SwitchInst::~SwitchInst() {
2406 delete [] OperandList;
2410 /// addCase - Add an entry to the switch instruction...
2412 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2413 unsigned OpNo = NumOperands;
2414 if (OpNo+2 > ReservedSpace)
2415 resizeOperands(0); // Get more space!
2416 // Initialize some new operands.
2417 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2418 NumOperands = OpNo+2;
2419 OperandList[OpNo].init(OnVal, this);
2420 OperandList[OpNo+1].init(Dest, this);
2423 /// removeCase - This method removes the specified successor from the switch
2424 /// instruction. Note that this cannot be used to remove the default
2425 /// destination (successor #0).
2427 void SwitchInst::removeCase(unsigned idx) {
2428 assert(idx != 0 && "Cannot remove the default case!");
2429 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2431 unsigned NumOps = getNumOperands();
2432 Use *OL = OperandList;
2434 // Move everything after this operand down.
2436 // FIXME: we could just swap with the end of the list, then erase. However,
2437 // client might not expect this to happen. The code as it is thrashes the
2438 // use/def lists, which is kinda lame.
2439 for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
2440 OL[i-2] = OL[i];
2441 OL[i-2+1] = OL[i+1];
2444 // Nuke the last value.
2445 OL[NumOps-2].set(0);
2446 OL[NumOps-2+1].set(0);
2447 NumOperands = NumOps-2;
2450 /// resizeOperands - resize operands - This adjusts the length of the operands
2451 /// list according to the following behavior:
2452 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2453 /// of operation. This grows the number of ops by 1.5 times.
2454 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2455 /// 3. If NumOps == NumOperands, trim the reserved space.
2457 void SwitchInst::resizeOperands(unsigned NumOps) {
2458 if (NumOps == 0) {
2459 NumOps = getNumOperands()/2*6;
2460 } else if (NumOps*2 > NumOperands) {
2461 // No resize needed.
2462 if (ReservedSpace >= NumOps) return;
2463 } else if (NumOps == NumOperands) {
2464 if (ReservedSpace == NumOps) return;
2465 } else {
2466 return;
2469 ReservedSpace = NumOps;
2470 Use *NewOps = new Use[NumOps];
2471 Use *OldOps = OperandList;
2472 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2473 NewOps[i].init(OldOps[i], this);
2474 OldOps[i].set(0);
2476 delete [] OldOps;
2477 OperandList = NewOps;
2481 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
2482 return getSuccessor(idx);
2484 unsigned SwitchInst::getNumSuccessorsV() const {
2485 return getNumSuccessors();
2487 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
2488 setSuccessor(idx, B);
2492 // Define these methods here so vtables don't get emitted into every translation
2493 // unit that uses these classes.
2495 GetElementPtrInst *GetElementPtrInst::clone() const {
2496 return new GetElementPtrInst(*this);
2499 BinaryOperator *BinaryOperator::clone() const {
2500 return create(getOpcode(), Ops[0], Ops[1]);
2503 FCmpInst* FCmpInst::clone() const {
2504 return new FCmpInst(getPredicate(), Ops[0], Ops[1]);
2506 ICmpInst* ICmpInst::clone() const {
2507 return new ICmpInst(getPredicate(), Ops[0], Ops[1]);
2510 MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
2511 AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
2512 FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
2513 LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
2514 StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
2515 CastInst *TruncInst::clone() const { return new TruncInst(*this); }
2516 CastInst *ZExtInst::clone() const { return new ZExtInst(*this); }
2517 CastInst *SExtInst::clone() const { return new SExtInst(*this); }
2518 CastInst *FPTruncInst::clone() const { return new FPTruncInst(*this); }
2519 CastInst *FPExtInst::clone() const { return new FPExtInst(*this); }
2520 CastInst *UIToFPInst::clone() const { return new UIToFPInst(*this); }
2521 CastInst *SIToFPInst::clone() const { return new SIToFPInst(*this); }
2522 CastInst *FPToUIInst::clone() const { return new FPToUIInst(*this); }
2523 CastInst *FPToSIInst::clone() const { return new FPToSIInst(*this); }
2524 CastInst *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
2525 CastInst *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
2526 CastInst *BitCastInst::clone() const { return new BitCastInst(*this); }
2527 CallInst *CallInst::clone() const { return new CallInst(*this); }
2528 SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
2529 VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
2531 ExtractElementInst *ExtractElementInst::clone() const {
2532 return new ExtractElementInst(*this);
2534 InsertElementInst *InsertElementInst::clone() const {
2535 return new InsertElementInst(*this);
2537 ShuffleVectorInst *ShuffleVectorInst::clone() const {
2538 return new ShuffleVectorInst(*this);
2540 PHINode *PHINode::clone() const { return new PHINode(*this); }
2541 ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
2542 BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
2543 SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
2544 InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
2545 UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
2546 UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}