Couple of fixes to mention bunzip2 and make instructions more clear.
[llvm-complete.git] / lib / VMCore / Verifier.cpp
blob447b8846be26861abeb6b6e96d3163a83c5a2177
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/Assembly/Writer.h"
44 #include "llvm/CallingConv.h"
45 #include "llvm/Constants.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Module.h"
48 #include "llvm/ModuleProvider.h"
49 #include "llvm/ParameterAttributes.h"
50 #include "llvm/DerivedTypes.h"
51 #include "llvm/InlineAsm.h"
52 #include "llvm/IntrinsicInst.h"
53 #include "llvm/PassManager.h"
54 #include "llvm/Analysis/Dominators.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CFG.h"
57 #include "llvm/Support/InstVisitor.h"
58 #include "llvm/Support/Streams.h"
59 #include "llvm/ADT/SmallPtrSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/Support/Compiler.h"
64 #include <algorithm>
65 #include <sstream>
66 #include <cstdarg>
67 using namespace llvm;
69 namespace { // Anonymous namespace for class
71 struct VISIBILITY_HIDDEN
72 Verifier : public FunctionPass, InstVisitor<Verifier> {
73 static char ID; // Pass ID, replacement for typeid
74 bool Broken; // Is this module found to be broken?
75 bool RealPass; // Are we not being run by a PassManager?
76 VerifierFailureAction action;
77 // What to do if verification fails.
78 Module *Mod; // Module we are verifying right now
79 DominatorTree *DT; // Dominator Tree, caution can be null!
80 std::stringstream msgs; // A stringstream to collect messages
82 /// InstInThisBlock - when verifying a basic block, keep track of all of the
83 /// instructions we have seen so far. This allows us to do efficient
84 /// dominance checks for the case when an instruction has an operand that is
85 /// an instruction in the same block.
86 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
88 Verifier()
89 : FunctionPass((intptr_t)&ID),
90 Broken(false), RealPass(true), action(AbortProcessAction),
91 DT(0), msgs( std::ios::app | std::ios::out ) {}
92 Verifier( VerifierFailureAction ctn )
93 : FunctionPass((intptr_t)&ID),
94 Broken(false), RealPass(true), action(ctn), DT(0),
95 msgs( std::ios::app | std::ios::out ) {}
96 Verifier(bool AB )
97 : FunctionPass((intptr_t)&ID),
98 Broken(false), RealPass(true),
99 action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
100 msgs( std::ios::app | std::ios::out ) {}
101 Verifier(DominatorTree &dt)
102 : FunctionPass((intptr_t)&ID),
103 Broken(false), RealPass(false), action(PrintMessageAction),
104 DT(&dt), msgs( std::ios::app | std::ios::out ) {}
107 bool doInitialization(Module &M) {
108 Mod = &M;
109 verifyTypeSymbolTable(M.getTypeSymbolTable());
111 // If this is a real pass, in a pass manager, we must abort before
112 // returning back to the pass manager, or else the pass manager may try to
113 // run other passes on the broken module.
114 if (RealPass)
115 return abortIfBroken();
116 return false;
119 bool runOnFunction(Function &F) {
120 // Get dominator information if we are being run by PassManager
121 if (RealPass) DT = &getAnalysis<DominatorTree>();
123 Mod = F.getParent();
125 visit(F);
126 InstsInThisBlock.clear();
128 // If this is a real pass, in a pass manager, we must abort before
129 // returning back to the pass manager, or else the pass manager may try to
130 // run other passes on the broken module.
131 if (RealPass)
132 return abortIfBroken();
134 return false;
137 bool doFinalization(Module &M) {
138 // Scan through, checking all of the external function's linkage now...
139 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
140 visitGlobalValue(*I);
142 // Check to make sure function prototypes are okay.
143 if (I->isDeclaration()) visitFunction(*I);
146 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
147 I != E; ++I)
148 visitGlobalVariable(*I);
150 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
151 I != E; ++I)
152 visitGlobalAlias(*I);
154 // If the module is broken, abort at this time.
155 return abortIfBroken();
158 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
159 AU.setPreservesAll();
160 if (RealPass)
161 AU.addRequired<DominatorTree>();
164 /// abortIfBroken - If the module is broken and we are supposed to abort on
165 /// this condition, do so.
167 bool abortIfBroken() {
168 if (Broken) {
169 msgs << "Broken module found, ";
170 switch (action) {
171 case AbortProcessAction:
172 msgs << "compilation aborted!\n";
173 cerr << msgs.str();
174 abort();
175 case PrintMessageAction:
176 msgs << "verification continues.\n";
177 cerr << msgs.str();
178 return false;
179 case ReturnStatusAction:
180 msgs << "compilation terminated.\n";
181 return Broken;
184 return false;
188 // Verification methods...
189 void verifyTypeSymbolTable(TypeSymbolTable &ST);
190 void visitGlobalValue(GlobalValue &GV);
191 void visitGlobalVariable(GlobalVariable &GV);
192 void visitGlobalAlias(GlobalAlias &GA);
193 void visitFunction(Function &F);
194 void visitBasicBlock(BasicBlock &BB);
195 void visitTruncInst(TruncInst &I);
196 void visitZExtInst(ZExtInst &I);
197 void visitSExtInst(SExtInst &I);
198 void visitFPTruncInst(FPTruncInst &I);
199 void visitFPExtInst(FPExtInst &I);
200 void visitFPToUIInst(FPToUIInst &I);
201 void visitFPToSIInst(FPToSIInst &I);
202 void visitUIToFPInst(UIToFPInst &I);
203 void visitSIToFPInst(SIToFPInst &I);
204 void visitIntToPtrInst(IntToPtrInst &I);
205 void visitPtrToIntInst(PtrToIntInst &I);
206 void visitBitCastInst(BitCastInst &I);
207 void visitPHINode(PHINode &PN);
208 void visitBinaryOperator(BinaryOperator &B);
209 void visitICmpInst(ICmpInst &IC);
210 void visitFCmpInst(FCmpInst &FC);
211 void visitExtractElementInst(ExtractElementInst &EI);
212 void visitInsertElementInst(InsertElementInst &EI);
213 void visitShuffleVectorInst(ShuffleVectorInst &EI);
214 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
215 void visitCallInst(CallInst &CI);
216 void visitGetElementPtrInst(GetElementPtrInst &GEP);
217 void visitLoadInst(LoadInst &LI);
218 void visitStoreInst(StoreInst &SI);
219 void visitInstruction(Instruction &I);
220 void visitTerminatorInst(TerminatorInst &I);
221 void visitReturnInst(ReturnInst &RI);
222 void visitSwitchInst(SwitchInst &SI);
223 void visitSelectInst(SelectInst &SI);
224 void visitUserOp1(Instruction &I);
225 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
226 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
228 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
229 unsigned Count, ...);
231 void WriteValue(const Value *V) {
232 if (!V) return;
233 if (isa<Instruction>(V)) {
234 msgs << *V;
235 } else {
236 WriteAsOperand(msgs, V, true, Mod);
237 msgs << "\n";
241 void WriteType(const Type* T ) {
242 if ( !T ) return;
243 WriteTypeSymbolic(msgs, T, Mod );
247 // CheckFailed - A check failed, so print out the condition and the message
248 // that failed. This provides a nice place to put a breakpoint if you want
249 // to see why something is not correct.
250 void CheckFailed(const std::string &Message,
251 const Value *V1 = 0, const Value *V2 = 0,
252 const Value *V3 = 0, const Value *V4 = 0) {
253 msgs << Message << "\n";
254 WriteValue(V1);
255 WriteValue(V2);
256 WriteValue(V3);
257 WriteValue(V4);
258 Broken = true;
261 void CheckFailed( const std::string& Message, const Value* V1,
262 const Type* T2, const Value* V3 = 0 ) {
263 msgs << Message << "\n";
264 WriteValue(V1);
265 WriteType(T2);
266 WriteValue(V3);
267 Broken = true;
271 char Verifier::ID = 0;
272 RegisterPass<Verifier> X("verify", "Module Verifier");
273 } // End anonymous namespace
276 // Assert - We know that cond should be true, if not print an error message.
277 #define Assert(C, M) \
278 do { if (!(C)) { CheckFailed(M); return; } } while (0)
279 #define Assert1(C, M, V1) \
280 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
281 #define Assert2(C, M, V1, V2) \
282 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
283 #define Assert3(C, M, V1, V2, V3) \
284 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
285 #define Assert4(C, M, V1, V2, V3, V4) \
286 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
289 void Verifier::visitGlobalValue(GlobalValue &GV) {
290 Assert1(!GV.isDeclaration() ||
291 GV.hasExternalLinkage() ||
292 GV.hasDLLImportLinkage() ||
293 GV.hasExternalWeakLinkage() ||
294 (isa<GlobalAlias>(GV) &&
295 (GV.hasInternalLinkage() || GV.hasWeakLinkage())),
296 "Global is external, but doesn't have external or dllimport or weak linkage!",
297 &GV);
299 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
300 "Global is marked as dllimport, but not external", &GV);
302 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
303 "Only global variables can have appending linkage!", &GV);
305 if (GV.hasAppendingLinkage()) {
306 GlobalVariable &GVar = cast<GlobalVariable>(GV);
307 Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
308 "Only global arrays can have appending linkage!", &GV);
312 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
313 if (GV.hasInitializer()) {
314 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
315 "Global variable initializer type does not match global "
316 "variable type!", &GV);
317 } else {
318 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
319 GV.hasExternalWeakLinkage(),
320 "invalid linkage type for global declaration", &GV);
323 visitGlobalValue(GV);
326 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
327 Assert1(!GA.getName().empty(),
328 "Alias name cannot be empty!", &GA);
329 Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() ||
330 GA.hasWeakLinkage(),
331 "Alias should have external or external weak linkage!", &GA);
332 Assert1(GA.getType() == GA.getAliasee()->getType(),
333 "Alias and aliasee types should match!", &GA);
335 if (!isa<GlobalValue>(GA.getAliasee())) {
336 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
337 Assert1(CE && CE->getOpcode() == Instruction::BitCast &&
338 isa<GlobalValue>(CE->getOperand(0)),
339 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
340 &GA);
343 visitGlobalValue(GA);
346 void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
349 // visitFunction - Verify that a function is ok.
351 void Verifier::visitFunction(Function &F) {
352 // Check function arguments.
353 const FunctionType *FT = F.getFunctionType();
354 unsigned NumArgs = F.arg_size();
356 Assert2(FT->getNumParams() == NumArgs,
357 "# formal arguments must match # of arguments for function type!",
358 &F, FT);
359 Assert1(F.getReturnType()->isFirstClassType() ||
360 F.getReturnType() == Type::VoidTy,
361 "Functions cannot return aggregate values!", &F);
363 Assert1(!FT->isStructReturn() || FT->getReturnType() == Type::VoidTy,
364 "Invalid struct-return function!", &F);
366 const uint16_t ReturnIncompatible =
367 ParamAttr::ByVal | ParamAttr::InReg |
368 ParamAttr::Nest | ParamAttr::StructRet;
370 const uint16_t ParameterIncompatible =
371 ParamAttr::NoReturn | ParamAttr::NoUnwind;
373 const uint16_t MutuallyIncompatible =
374 ParamAttr::ByVal | ParamAttr::InReg |
375 ParamAttr::Nest | ParamAttr::StructRet;
377 const uint16_t MutuallyIncompatible2 =
378 ParamAttr::ZExt | ParamAttr::SExt;
380 const uint16_t IntegerTypeOnly =
381 ParamAttr::SExt | ParamAttr::ZExt;
383 const uint16_t PointerTypeOnly =
384 ParamAttr::ByVal | ParamAttr::Nest |
385 ParamAttr::NoAlias | ParamAttr::StructRet;
387 bool SawSRet = false;
389 if (const ParamAttrsList *Attrs = FT->getParamAttrs()) {
390 unsigned Idx = 1;
391 bool SawNest = false;
393 uint16_t RetI = Attrs->getParamAttrs(0) & ReturnIncompatible;
394 Assert1(!RetI, "Attribute " + Attrs->getParamAttrsText(RetI) +
395 "should not apply to functions!", &F);
396 uint16_t MutI = Attrs->getParamAttrs(0) & MutuallyIncompatible2;
397 Assert1(MutI != MutuallyIncompatible2, "Attributes" +
398 Attrs->getParamAttrsText(MutI) + "are incompatible!", &F);
400 for (FunctionType::param_iterator I = FT->param_begin(),
401 E = FT->param_end(); I != E; ++I, ++Idx) {
403 uint16_t Attr = Attrs->getParamAttrs(Idx);
405 uint16_t ParmI = Attr & ParameterIncompatible;
406 Assert1(!ParmI, "Attribute " + Attrs->getParamAttrsText(ParmI) +
407 "should only be applied to function!", &F);
409 uint16_t MutI = Attr & MutuallyIncompatible;
410 Assert1(!(MutI & (MutI - 1)), "Attributes " +
411 Attrs->getParamAttrsText(MutI) + "are incompatible!", &F);
413 uint16_t MutI2 = Attr & MutuallyIncompatible2;
414 Assert1(MutI2 != MutuallyIncompatible2, "Attributes" +
415 Attrs->getParamAttrsText(MutI2) + "are incompatible!", &F);
417 uint16_t IType = Attr & IntegerTypeOnly;
418 Assert1(!IType || FT->getParamType(Idx-1)->isInteger(),
419 "Attribute " + Attrs->getParamAttrsText(IType) +
420 "should only apply to Integer type!", &F);
422 uint16_t PType = Attr & PointerTypeOnly;
423 Assert1(!PType || isa<PointerType>(FT->getParamType(Idx-1)),
424 "Attribute " + Attrs->getParamAttrsText(PType) +
425 "should only apply to Pointer type!", &F);
427 if (Attrs->paramHasAttr(Idx, ParamAttr::ByVal)) {
428 const PointerType *Ty =
429 dyn_cast<PointerType>(FT->getParamType(Idx-1));
430 Assert1(!Ty || isa<StructType>(Ty->getElementType()),
431 "Attribute byval should only apply to pointer to structs!", &F);
434 if (Attrs->paramHasAttr(Idx, ParamAttr::Nest)) {
435 Assert1(!SawNest, "More than one parameter has attribute nest!", &F);
436 SawNest = true;
439 if (Attrs->paramHasAttr(Idx, ParamAttr::StructRet)) {
440 SawSRet = true;
441 Assert1(Idx == 1, "Attribute sret not on first parameter!", &F);
446 Assert1(SawSRet == FT->isStructReturn(),
447 "StructReturn function with no sret attribute!", &F);
449 // Check that this function meets the restrictions on this calling convention.
450 switch (F.getCallingConv()) {
451 default:
452 break;
453 case CallingConv::C:
454 break;
455 case CallingConv::Fast:
456 case CallingConv::Cold:
457 case CallingConv::X86_FastCall:
458 Assert1(!F.isVarArg(),
459 "Varargs functions must have C calling conventions!", &F);
460 break;
463 // Check that the argument values match the function type for this function...
464 unsigned i = 0;
465 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
466 I != E; ++I, ++i) {
467 Assert2(I->getType() == FT->getParamType(i),
468 "Argument value does not match function argument type!",
469 I, FT->getParamType(i));
470 // Make sure no aggregates are passed by value.
471 Assert1(I->getType()->isFirstClassType(),
472 "Functions cannot take aggregates as arguments by value!", I);
475 if (F.isDeclaration()) {
476 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
477 F.hasExternalWeakLinkage(),
478 "invalid linkage type for function declaration", &F);
479 } else {
480 // Verify that this function (which has a body) is not named "llvm.*". It
481 // is not legal to define intrinsics.
482 if (F.getName().size() >= 5)
483 Assert1(F.getName().substr(0, 5) != "llvm.",
484 "llvm intrinsics cannot be defined!", &F);
486 // Check the entry node
487 BasicBlock *Entry = &F.getEntryBlock();
488 Assert1(pred_begin(Entry) == pred_end(Entry),
489 "Entry block to function must not have predecessors!", Entry);
494 // verifyBasicBlock - Verify that a basic block is well formed...
496 void Verifier::visitBasicBlock(BasicBlock &BB) {
497 InstsInThisBlock.clear();
499 // Ensure that basic blocks have terminators!
500 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
502 // Check constraints that this basic block imposes on all of the PHI nodes in
503 // it.
504 if (isa<PHINode>(BB.front())) {
505 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
506 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
507 std::sort(Preds.begin(), Preds.end());
508 PHINode *PN;
509 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
511 // Ensure that PHI nodes have at least one entry!
512 Assert1(PN->getNumIncomingValues() != 0,
513 "PHI nodes must have at least one entry. If the block is dead, "
514 "the PHI should be removed!", PN);
515 Assert1(PN->getNumIncomingValues() == Preds.size(),
516 "PHINode should have one entry for each predecessor of its "
517 "parent basic block!", PN);
519 // Get and sort all incoming values in the PHI node...
520 Values.clear();
521 Values.reserve(PN->getNumIncomingValues());
522 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
523 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
524 PN->getIncomingValue(i)));
525 std::sort(Values.begin(), Values.end());
527 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
528 // Check to make sure that if there is more than one entry for a
529 // particular basic block in this PHI node, that the incoming values are
530 // all identical.
532 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
533 Values[i].second == Values[i-1].second,
534 "PHI node has multiple entries for the same basic block with "
535 "different incoming values!", PN, Values[i].first,
536 Values[i].second, Values[i-1].second);
538 // Check to make sure that the predecessors and PHI node entries are
539 // matched up.
540 Assert3(Values[i].first == Preds[i],
541 "PHI node entries do not match predecessors!", PN,
542 Values[i].first, Preds[i]);
548 void Verifier::visitTerminatorInst(TerminatorInst &I) {
549 // Ensure that terminators only exist at the end of the basic block.
550 Assert1(&I == I.getParent()->getTerminator(),
551 "Terminator found in the middle of a basic block!", I.getParent());
552 visitInstruction(I);
555 void Verifier::visitReturnInst(ReturnInst &RI) {
556 Function *F = RI.getParent()->getParent();
557 if (RI.getNumOperands() == 0)
558 Assert2(F->getReturnType() == Type::VoidTy,
559 "Found return instr that returns void in Function of non-void "
560 "return type!", &RI, F->getReturnType());
561 else
562 Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
563 "Function return type does not match operand "
564 "type of return inst!", &RI, F->getReturnType());
566 // Check to make sure that the return value has necessary properties for
567 // terminators...
568 visitTerminatorInst(RI);
571 void Verifier::visitSwitchInst(SwitchInst &SI) {
572 // Check to make sure that all of the constants in the switch instruction
573 // have the same type as the switched-on value.
574 const Type *SwitchTy = SI.getCondition()->getType();
575 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
576 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
577 "Switch constants must all be same type as switch value!", &SI);
579 visitTerminatorInst(SI);
582 void Verifier::visitSelectInst(SelectInst &SI) {
583 Assert1(SI.getCondition()->getType() == Type::Int1Ty,
584 "Select condition type must be bool!", &SI);
585 Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
586 "Select values must have identical types!", &SI);
587 Assert1(SI.getTrueValue()->getType() == SI.getType(),
588 "Select values must have same type as select instruction!", &SI);
589 visitInstruction(SI);
593 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
594 /// a pass, if any exist, it's an error.
596 void Verifier::visitUserOp1(Instruction &I) {
597 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
600 void Verifier::visitTruncInst(TruncInst &I) {
601 // Get the source and destination types
602 const Type *SrcTy = I.getOperand(0)->getType();
603 const Type *DestTy = I.getType();
605 // Get the size of the types in bits, we'll need this later
606 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
607 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
609 Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
610 Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
611 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
613 visitInstruction(I);
616 void Verifier::visitZExtInst(ZExtInst &I) {
617 // Get the source and destination types
618 const Type *SrcTy = I.getOperand(0)->getType();
619 const Type *DestTy = I.getType();
621 // Get the size of the types in bits, we'll need this later
622 Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
623 Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
624 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
625 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
627 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
629 visitInstruction(I);
632 void Verifier::visitSExtInst(SExtInst &I) {
633 // Get the source and destination types
634 const Type *SrcTy = I.getOperand(0)->getType();
635 const Type *DestTy = I.getType();
637 // Get the size of the types in bits, we'll need this later
638 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
639 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
641 Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
642 Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
643 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
645 visitInstruction(I);
648 void Verifier::visitFPTruncInst(FPTruncInst &I) {
649 // Get the source and destination types
650 const Type *SrcTy = I.getOperand(0)->getType();
651 const Type *DestTy = I.getType();
652 // Get the size of the types in bits, we'll need this later
653 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
654 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
656 Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
657 Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
658 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
660 visitInstruction(I);
663 void Verifier::visitFPExtInst(FPExtInst &I) {
664 // Get the source and destination types
665 const Type *SrcTy = I.getOperand(0)->getType();
666 const Type *DestTy = I.getType();
668 // Get the size of the types in bits, we'll need this later
669 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
670 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
672 Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
673 Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
674 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
676 visitInstruction(I);
679 void Verifier::visitUIToFPInst(UIToFPInst &I) {
680 // Get the source and destination types
681 const Type *SrcTy = I.getOperand(0)->getType();
682 const Type *DestTy = I.getType();
684 Assert1(SrcTy->isInteger(),"UInt2FP source must be integral", &I);
685 Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
687 visitInstruction(I);
690 void Verifier::visitSIToFPInst(SIToFPInst &I) {
691 // Get the source and destination types
692 const Type *SrcTy = I.getOperand(0)->getType();
693 const Type *DestTy = I.getType();
695 Assert1(SrcTy->isInteger(),"SInt2FP source must be integral", &I);
696 Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
698 visitInstruction(I);
701 void Verifier::visitFPToUIInst(FPToUIInst &I) {
702 // Get the source and destination types
703 const Type *SrcTy = I.getOperand(0)->getType();
704 const Type *DestTy = I.getType();
706 Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
707 Assert1(DestTy->isInteger(),"FP2UInt result must be integral", &I);
709 visitInstruction(I);
712 void Verifier::visitFPToSIInst(FPToSIInst &I) {
713 // Get the source and destination types
714 const Type *SrcTy = I.getOperand(0)->getType();
715 const Type *DestTy = I.getType();
717 Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
718 Assert1(DestTy->isInteger(),"FP2ToI result must be integral", &I);
720 visitInstruction(I);
723 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
724 // Get the source and destination types
725 const Type *SrcTy = I.getOperand(0)->getType();
726 const Type *DestTy = I.getType();
728 Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
729 Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
731 visitInstruction(I);
734 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
735 // Get the source and destination types
736 const Type *SrcTy = I.getOperand(0)->getType();
737 const Type *DestTy = I.getType();
739 Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
740 Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
742 visitInstruction(I);
745 void Verifier::visitBitCastInst(BitCastInst &I) {
746 // Get the source and destination types
747 const Type *SrcTy = I.getOperand(0)->getType();
748 const Type *DestTy = I.getType();
750 // Get the size of the types in bits, we'll need this later
751 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
752 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
754 // BitCast implies a no-op cast of type only. No bits change.
755 // However, you can't cast pointers to anything but pointers.
756 Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
757 "Bitcast requires both operands to be pointer or neither", &I);
758 Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
760 visitInstruction(I);
763 /// visitPHINode - Ensure that a PHI node is well formed.
765 void Verifier::visitPHINode(PHINode &PN) {
766 // Ensure that the PHI nodes are all grouped together at the top of the block.
767 // This can be tested by checking whether the instruction before this is
768 // either nonexistent (because this is begin()) or is a PHI node. If not,
769 // then there is some other instruction before a PHI.
770 Assert2(&PN == &PN.getParent()->front() ||
771 isa<PHINode>(--BasicBlock::iterator(&PN)),
772 "PHI nodes not grouped at top of basic block!",
773 &PN, PN.getParent());
775 // Check that all of the operands of the PHI node have the same type as the
776 // result.
777 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
778 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
779 "PHI node operands are not the same type as the result!", &PN);
781 // All other PHI node constraints are checked in the visitBasicBlock method.
783 visitInstruction(PN);
786 void Verifier::visitCallInst(CallInst &CI) {
787 Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
788 "Called function must be a pointer!", &CI);
789 const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
790 Assert1(isa<FunctionType>(FPTy->getElementType()),
791 "Called function is not pointer to function type!", &CI);
793 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
795 // Verify that the correct number of arguments are being passed
796 if (FTy->isVarArg())
797 Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
798 "Called function requires more parameters than were provided!",&CI);
799 else
800 Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
801 "Incorrect number of arguments passed to called function!", &CI);
803 // Verify that all arguments to the call match the function type...
804 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
805 Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
806 "Call parameter type does not match function signature!",
807 CI.getOperand(i+1), FTy->getParamType(i), &CI);
809 if (Function *F = CI.getCalledFunction())
810 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
811 visitIntrinsicFunctionCall(ID, CI);
813 visitInstruction(CI);
816 /// visitBinaryOperator - Check that both arguments to the binary operator are
817 /// of the same type!
819 void Verifier::visitBinaryOperator(BinaryOperator &B) {
820 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
821 "Both operands to a binary operator are not of the same type!", &B);
823 switch (B.getOpcode()) {
824 // Check that logical operators are only used with integral operands.
825 case Instruction::And:
826 case Instruction::Or:
827 case Instruction::Xor:
828 Assert1(B.getType()->isInteger() ||
829 (isa<VectorType>(B.getType()) &&
830 cast<VectorType>(B.getType())->getElementType()->isInteger()),
831 "Logical operators only work with integral types!", &B);
832 Assert1(B.getType() == B.getOperand(0)->getType(),
833 "Logical operators must have same type for operands and result!",
834 &B);
835 break;
836 case Instruction::Shl:
837 case Instruction::LShr:
838 case Instruction::AShr:
839 Assert1(B.getType()->isInteger(),
840 "Shift must return an integer result!", &B);
841 Assert1(B.getType() == B.getOperand(0)->getType(),
842 "Shift return type must be same as operands!", &B);
843 /* FALL THROUGH */
844 default:
845 // Arithmetic operators only work on integer or fp values
846 Assert1(B.getType() == B.getOperand(0)->getType(),
847 "Arithmetic operators must have same type for operands and result!",
848 &B);
849 Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
850 isa<VectorType>(B.getType()),
851 "Arithmetic operators must have integer, fp, or vector type!", &B);
852 break;
855 visitInstruction(B);
858 void Verifier::visitICmpInst(ICmpInst& IC) {
859 // Check that the operands are the same type
860 const Type* Op0Ty = IC.getOperand(0)->getType();
861 const Type* Op1Ty = IC.getOperand(1)->getType();
862 Assert1(Op0Ty == Op1Ty,
863 "Both operands to ICmp instruction are not of the same type!", &IC);
864 // Check that the operands are the right type
865 Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
866 "Invalid operand types for ICmp instruction", &IC);
867 visitInstruction(IC);
870 void Verifier::visitFCmpInst(FCmpInst& FC) {
871 // Check that the operands are the same type
872 const Type* Op0Ty = FC.getOperand(0)->getType();
873 const Type* Op1Ty = FC.getOperand(1)->getType();
874 Assert1(Op0Ty == Op1Ty,
875 "Both operands to FCmp instruction are not of the same type!", &FC);
876 // Check that the operands are the right type
877 Assert1(Op0Ty->isFloatingPoint(),
878 "Invalid operand types for FCmp instruction", &FC);
879 visitInstruction(FC);
882 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
883 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
884 EI.getOperand(1)),
885 "Invalid extractelement operands!", &EI);
886 visitInstruction(EI);
889 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
890 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
891 IE.getOperand(1),
892 IE.getOperand(2)),
893 "Invalid insertelement operands!", &IE);
894 visitInstruction(IE);
897 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
898 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
899 SV.getOperand(2)),
900 "Invalid shufflevector operands!", &SV);
901 Assert1(SV.getType() == SV.getOperand(0)->getType(),
902 "Result of shufflevector must match first operand type!", &SV);
904 // Check to see if Mask is valid.
905 if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
906 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
907 Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
908 isa<UndefValue>(MV->getOperand(i)),
909 "Invalid shufflevector shuffle mask!", &SV);
911 } else {
912 Assert1(isa<UndefValue>(SV.getOperand(2)) ||
913 isa<ConstantAggregateZero>(SV.getOperand(2)),
914 "Invalid shufflevector shuffle mask!", &SV);
917 visitInstruction(SV);
920 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
921 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
922 const Type *ElTy =
923 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
924 Idxs.begin(), Idxs.end(), true);
925 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
926 Assert2(isa<PointerType>(GEP.getType()) &&
927 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
928 "GEP is not of right type for indices!", &GEP, ElTy);
929 visitInstruction(GEP);
932 void Verifier::visitLoadInst(LoadInst &LI) {
933 const Type *ElTy =
934 cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
935 Assert2(ElTy == LI.getType(),
936 "Load result type does not match pointer operand type!", &LI, ElTy);
937 visitInstruction(LI);
940 void Verifier::visitStoreInst(StoreInst &SI) {
941 const Type *ElTy =
942 cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
943 Assert2(ElTy == SI.getOperand(0)->getType(),
944 "Stored value type does not match pointer operand type!", &SI, ElTy);
945 visitInstruction(SI);
949 /// verifyInstruction - Verify that an instruction is well formed.
951 void Verifier::visitInstruction(Instruction &I) {
952 BasicBlock *BB = I.getParent();
953 Assert1(BB, "Instruction not embedded in basic block!", &I);
955 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
956 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
957 UI != UE; ++UI)
958 Assert1(*UI != (User*)&I ||
959 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
960 "Only PHI nodes may reference their own value!", &I);
963 // Check that void typed values don't have names
964 Assert1(I.getType() != Type::VoidTy || !I.hasName(),
965 "Instruction has a name, but provides a void value!", &I);
967 // Check that the return value of the instruction is either void or a legal
968 // value type.
969 Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
970 "Instruction returns a non-scalar type!", &I);
972 // Check that all uses of the instruction, if they are instructions
973 // themselves, actually have parent basic blocks. If the use is not an
974 // instruction, it is an error!
975 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
976 UI != UE; ++UI) {
977 Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
978 *UI);
979 Instruction *Used = cast<Instruction>(*UI);
980 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
981 " embeded in a basic block!", &I, Used);
984 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
985 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
987 // Check to make sure that only first-class-values are operands to
988 // instructions.
989 Assert1(I.getOperand(i)->getType()->isFirstClassType(),
990 "Instruction operands must be first-class values!", &I);
992 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
993 // Check to make sure that the "address of" an intrinsic function is never
994 // taken.
995 Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
996 "Cannot take the address of an intrinsic!", &I);
997 Assert1(F->getParent() == Mod, "Referencing function in another module!",
998 &I);
999 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1000 Assert1(OpBB->getParent() == BB->getParent(),
1001 "Referring to a basic block in another function!", &I);
1002 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1003 Assert1(OpArg->getParent() == BB->getParent(),
1004 "Referring to an argument in another function!", &I);
1005 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1006 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1007 &I);
1008 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1009 BasicBlock *OpBlock = Op->getParent();
1011 // Check that a definition dominates all of its uses.
1012 if (!isa<PHINode>(I)) {
1013 // Invoke results are only usable in the normal destination, not in the
1014 // exceptional destination.
1015 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1016 OpBlock = II->getNormalDest();
1018 Assert2(OpBlock != II->getUnwindDest(),
1019 "No uses of invoke possible due to dominance structure!",
1020 Op, II);
1022 // If the normal successor of an invoke instruction has multiple
1023 // predecessors, then the normal edge from the invoke is critical, so
1024 // the invoke value can only be live if the destination block
1025 // dominates all of it's predecessors (other than the invoke) or if
1026 // the invoke value is only used by a phi in the successor.
1027 if (!OpBlock->getSinglePredecessor() &&
1028 DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
1029 // The first case we allow is if the use is a PHI operand in the
1030 // normal block, and if that PHI operand corresponds to the invoke's
1031 // block.
1032 bool Bad = true;
1033 if (PHINode *PN = dyn_cast<PHINode>(&I))
1034 if (PN->getParent() == OpBlock &&
1035 PN->getIncomingBlock(i/2) == Op->getParent())
1036 Bad = false;
1038 // If it is used by something non-phi, then the other case is that
1039 // 'OpBlock' dominates all of its predecessors other than the
1040 // invoke. In this case, the invoke value can still be used.
1041 if (Bad) {
1042 Bad = false;
1043 for (pred_iterator PI = pred_begin(OpBlock),
1044 E = pred_end(OpBlock); PI != E; ++PI) {
1045 if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
1046 Bad = true;
1047 break;
1051 Assert2(!Bad,
1052 "Invoke value defined on critical edge but not dead!", &I,
1053 Op);
1055 } else if (OpBlock == BB) {
1056 // If they are in the same basic block, make sure that the definition
1057 // comes before the use.
1058 Assert2(InstsInThisBlock.count(Op) ||
1059 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1060 "Instruction does not dominate all uses!", Op, &I);
1063 // Definition must dominate use unless use is unreachable!
1064 Assert2(DT->dominates(OpBlock, BB) ||
1065 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1066 "Instruction does not dominate all uses!", Op, &I);
1067 } else {
1068 // PHI nodes are more difficult than other nodes because they actually
1069 // "use" the value in the predecessor basic blocks they correspond to.
1070 BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
1071 Assert2(DT->dominates(OpBlock, PredBB) ||
1072 !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
1073 "Instruction does not dominate all uses!", Op, &I);
1075 } else if (isa<InlineAsm>(I.getOperand(i))) {
1076 Assert1(i == 0 && isa<CallInst>(I),
1077 "Cannot take the address of an inline asm!", &I);
1080 InstsInThisBlock.insert(&I);
1083 static bool HasPtrPtrType(Value *Val) {
1084 if (const PointerType *PtrTy = dyn_cast<PointerType>(Val->getType()))
1085 return isa<PointerType>(PtrTy->getElementType());
1086 return false;
1089 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1091 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1092 Function *IF = CI.getCalledFunction();
1093 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1094 IF);
1096 #define GET_INTRINSIC_VERIFIER
1097 #include "llvm/Intrinsics.gen"
1098 #undef GET_INTRINSIC_VERIFIER
1100 switch (ID) {
1101 default:
1102 break;
1103 case Intrinsic::gcroot:
1104 Assert1(HasPtrPtrType(CI.getOperand(1)),
1105 "llvm.gcroot parameter #1 must be a pointer to a pointer.", &CI);
1106 Assert1(isa<AllocaInst>(IntrinsicInst::StripPointerCasts(CI.getOperand(1))),
1107 "llvm.gcroot parameter #1 must be an alloca (or a bitcast of one).",
1108 &CI);
1109 Assert1(isa<Constant>(CI.getOperand(2)),
1110 "llvm.gcroot parameter #2 must be a constant.", &CI);
1111 break;
1112 case Intrinsic::gcwrite:
1113 Assert1(CI.getOperand(3)->getType()
1114 == PointerType::get(CI.getOperand(1)->getType()),
1115 "Call to llvm.gcwrite must be with type 'void (%ty*, %ty2*, %ty**)'.",
1116 &CI);
1117 break;
1118 case Intrinsic::gcread:
1119 Assert1(CI.getOperand(2)->getType() == PointerType::get(CI.getType()),
1120 "Call to llvm.gcread must be with type '%ty* (%ty2*, %ty**).'",
1121 &CI);
1122 break;
1126 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1127 /// Intrinsics.gen. This implements a little state machine that verifies the
1128 /// prototype of intrinsics.
1129 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID,
1130 Function *F,
1131 unsigned Count, ...) {
1132 va_list VA;
1133 va_start(VA, Count);
1135 const FunctionType *FTy = F->getFunctionType();
1137 // For overloaded intrinsics, the Suffix of the function name must match the
1138 // types of the arguments. This variable keeps track of the expected
1139 // suffix, to be checked at the end.
1140 std::string Suffix;
1142 if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) {
1143 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1144 return;
1147 // Note that "arg#0" is the return type.
1148 for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) {
1149 MVT::ValueType VT = va_arg(VA, MVT::ValueType);
1151 if (VT == MVT::isVoid && ArgNo > 0) {
1152 if (!FTy->isVarArg())
1153 CheckFailed("Intrinsic prototype has no '...'!", F);
1154 break;
1157 const Type *Ty;
1158 if (ArgNo == 0)
1159 Ty = FTy->getReturnType();
1160 else
1161 Ty = FTy->getParamType(ArgNo-1);
1163 unsigned NumElts = 0;
1164 const Type *EltTy = Ty;
1165 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1166 EltTy = VTy->getElementType();
1167 NumElts = VTy->getNumElements();
1170 if ((int)VT < 0) {
1171 int Match = ~VT;
1172 if (Match == 0) {
1173 if (Ty != FTy->getReturnType()) {
1174 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
1175 "match return type.", F);
1176 break;
1178 } else {
1179 if (Ty != FTy->getParamType(Match-1)) {
1180 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
1181 "match parameter %" + utostr(Match-1) + ".", F);
1182 break;
1185 } else if (VT == MVT::iAny) {
1186 if (!EltTy->isInteger()) {
1187 if (ArgNo == 0)
1188 CheckFailed("Intrinsic result type is not "
1189 "an integer type.", F);
1190 else
1191 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
1192 "an integer type.", F);
1193 break;
1195 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1196 Suffix += ".";
1197 if (EltTy != Ty)
1198 Suffix += "v" + utostr(NumElts);
1199 Suffix += "i" + utostr(GotBits);;
1200 // Check some constraints on various intrinsics.
1201 switch (ID) {
1202 default: break; // Not everything needs to be checked.
1203 case Intrinsic::bswap:
1204 if (GotBits < 16 || GotBits % 16 != 0)
1205 CheckFailed("Intrinsic requires even byte width argument", F);
1206 break;
1208 } else if (VT == MVT::fAny) {
1209 if (!EltTy->isFloatingPoint()) {
1210 if (ArgNo == 0)
1211 CheckFailed("Intrinsic result type is not "
1212 "a floating-point type.", F);
1213 else
1214 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
1215 "a floating-point type.", F);
1216 break;
1218 Suffix += ".";
1219 if (EltTy != Ty)
1220 Suffix += "v" + utostr(NumElts);
1221 Suffix += MVT::getValueTypeString(MVT::getValueType(EltTy));
1222 } else if (VT == MVT::iPTR) {
1223 if (!isa<PointerType>(Ty)) {
1224 if (ArgNo == 0)
1225 CheckFailed("Intrinsic result type is not a "
1226 "pointer and a pointer is required.", F);
1227 else
1228 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
1229 "pointer and a pointer is required.", F);
1230 break;
1232 } else if (MVT::isVector(VT)) {
1233 // If this is a vector argument, verify the number and type of elements.
1234 if (MVT::getVectorElementType(VT) != MVT::getValueType(EltTy)) {
1235 CheckFailed("Intrinsic prototype has incorrect vector element type!",
1237 break;
1239 if (MVT::getVectorNumElements(VT) != NumElts) {
1240 CheckFailed("Intrinsic prototype has incorrect number of "
1241 "vector elements!",F);
1242 break;
1244 } else if (MVT::getTypeForValueType(VT) != EltTy) {
1245 if (ArgNo == 0)
1246 CheckFailed("Intrinsic prototype has incorrect result type!", F);
1247 else
1248 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
1249 break;
1250 } else if (EltTy != Ty) {
1251 if (ArgNo == 0)
1252 CheckFailed("Intrinsic result type is vector "
1253 "and a scalar is required.", F);
1254 else
1255 CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector "
1256 "and a scalar is required.", F);
1260 va_end(VA);
1262 // If we computed a Suffix then the intrinsic is overloaded and we need to
1263 // make sure that the name of the function is correct. We add the suffix to
1264 // the name of the intrinsic and compare against the given function name. If
1265 // they are not the same, the function name is invalid. This ensures that
1266 // overloading of intrinsics uses a sane and consistent naming convention.
1267 if (!Suffix.empty()) {
1268 std::string Name(Intrinsic::getName(ID));
1269 if (Name + Suffix != F->getName())
1270 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1271 F->getName().substr(Name.length()) + "'. It should be '" +
1272 Suffix + "'", F);
1277 //===----------------------------------------------------------------------===//
1278 // Implement the public interfaces to this file...
1279 //===----------------------------------------------------------------------===//
1281 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1282 return new Verifier(action);
1286 // verifyFunction - Create
1287 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1288 Function &F = const_cast<Function&>(f);
1289 assert(!F.isDeclaration() && "Cannot verify external functions");
1291 FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
1292 Verifier *V = new Verifier(action);
1293 FPM.add(V);
1294 FPM.run(F);
1295 return V->Broken;
1298 /// verifyModule - Check a module for errors, printing messages on stderr.
1299 /// Return true if the module is corrupt.
1301 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1302 std::string *ErrorInfo) {
1303 PassManager PM;
1304 Verifier *V = new Verifier(action);
1305 PM.add(V);
1306 PM.run((Module&)M);
1308 if (ErrorInfo && V->Broken)
1309 *ErrorInfo = V->msgs.str();
1310 return V->Broken;
1313 // vim: sw=2