1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/Assembly/Writer.h"
44 #include "llvm/CallingConv.h"
45 #include "llvm/Constants.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Module.h"
48 #include "llvm/ModuleProvider.h"
49 #include "llvm/ParameterAttributes.h"
50 #include "llvm/DerivedTypes.h"
51 #include "llvm/InlineAsm.h"
52 #include "llvm/IntrinsicInst.h"
53 #include "llvm/PassManager.h"
54 #include "llvm/Analysis/Dominators.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CFG.h"
57 #include "llvm/Support/InstVisitor.h"
58 #include "llvm/Support/Streams.h"
59 #include "llvm/ADT/SmallPtrSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/Support/Compiler.h"
69 namespace { // Anonymous namespace for class
71 struct VISIBILITY_HIDDEN
72 Verifier
: public FunctionPass
, InstVisitor
<Verifier
> {
73 static char ID
; // Pass ID, replacement for typeid
74 bool Broken
; // Is this module found to be broken?
75 bool RealPass
; // Are we not being run by a PassManager?
76 VerifierFailureAction action
;
77 // What to do if verification fails.
78 Module
*Mod
; // Module we are verifying right now
79 DominatorTree
*DT
; // Dominator Tree, caution can be null!
80 std::stringstream msgs
; // A stringstream to collect messages
82 /// InstInThisBlock - when verifying a basic block, keep track of all of the
83 /// instructions we have seen so far. This allows us to do efficient
84 /// dominance checks for the case when an instruction has an operand that is
85 /// an instruction in the same block.
86 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
89 : FunctionPass((intptr_t)&ID
),
90 Broken(false), RealPass(true), action(AbortProcessAction
),
91 DT(0), msgs( std::ios::app
| std::ios::out
) {}
92 Verifier( VerifierFailureAction ctn
)
93 : FunctionPass((intptr_t)&ID
),
94 Broken(false), RealPass(true), action(ctn
), DT(0),
95 msgs( std::ios::app
| std::ios::out
) {}
97 : FunctionPass((intptr_t)&ID
),
98 Broken(false), RealPass(true),
99 action( AB
? AbortProcessAction
: PrintMessageAction
), DT(0),
100 msgs( std::ios::app
| std::ios::out
) {}
101 Verifier(DominatorTree
&dt
)
102 : FunctionPass((intptr_t)&ID
),
103 Broken(false), RealPass(false), action(PrintMessageAction
),
104 DT(&dt
), msgs( std::ios::app
| std::ios::out
) {}
107 bool doInitialization(Module
&M
) {
109 verifyTypeSymbolTable(M
.getTypeSymbolTable());
111 // If this is a real pass, in a pass manager, we must abort before
112 // returning back to the pass manager, or else the pass manager may try to
113 // run other passes on the broken module.
115 return abortIfBroken();
119 bool runOnFunction(Function
&F
) {
120 // Get dominator information if we are being run by PassManager
121 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
126 InstsInThisBlock
.clear();
128 // If this is a real pass, in a pass manager, we must abort before
129 // returning back to the pass manager, or else the pass manager may try to
130 // run other passes on the broken module.
132 return abortIfBroken();
137 bool doFinalization(Module
&M
) {
138 // Scan through, checking all of the external function's linkage now...
139 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
140 visitGlobalValue(*I
);
142 // Check to make sure function prototypes are okay.
143 if (I
->isDeclaration()) visitFunction(*I
);
146 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
148 visitGlobalVariable(*I
);
150 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
152 visitGlobalAlias(*I
);
154 // If the module is broken, abort at this time.
155 return abortIfBroken();
158 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
159 AU
.setPreservesAll();
161 AU
.addRequired
<DominatorTree
>();
164 /// abortIfBroken - If the module is broken and we are supposed to abort on
165 /// this condition, do so.
167 bool abortIfBroken() {
169 msgs
<< "Broken module found, ";
171 case AbortProcessAction
:
172 msgs
<< "compilation aborted!\n";
175 case PrintMessageAction
:
176 msgs
<< "verification continues.\n";
179 case ReturnStatusAction
:
180 msgs
<< "compilation terminated.\n";
188 // Verification methods...
189 void verifyTypeSymbolTable(TypeSymbolTable
&ST
);
190 void visitGlobalValue(GlobalValue
&GV
);
191 void visitGlobalVariable(GlobalVariable
&GV
);
192 void visitGlobalAlias(GlobalAlias
&GA
);
193 void visitFunction(Function
&F
);
194 void visitBasicBlock(BasicBlock
&BB
);
195 void visitTruncInst(TruncInst
&I
);
196 void visitZExtInst(ZExtInst
&I
);
197 void visitSExtInst(SExtInst
&I
);
198 void visitFPTruncInst(FPTruncInst
&I
);
199 void visitFPExtInst(FPExtInst
&I
);
200 void visitFPToUIInst(FPToUIInst
&I
);
201 void visitFPToSIInst(FPToSIInst
&I
);
202 void visitUIToFPInst(UIToFPInst
&I
);
203 void visitSIToFPInst(SIToFPInst
&I
);
204 void visitIntToPtrInst(IntToPtrInst
&I
);
205 void visitPtrToIntInst(PtrToIntInst
&I
);
206 void visitBitCastInst(BitCastInst
&I
);
207 void visitPHINode(PHINode
&PN
);
208 void visitBinaryOperator(BinaryOperator
&B
);
209 void visitICmpInst(ICmpInst
&IC
);
210 void visitFCmpInst(FCmpInst
&FC
);
211 void visitExtractElementInst(ExtractElementInst
&EI
);
212 void visitInsertElementInst(InsertElementInst
&EI
);
213 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
214 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
215 void visitCallInst(CallInst
&CI
);
216 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
217 void visitLoadInst(LoadInst
&LI
);
218 void visitStoreInst(StoreInst
&SI
);
219 void visitInstruction(Instruction
&I
);
220 void visitTerminatorInst(TerminatorInst
&I
);
221 void visitReturnInst(ReturnInst
&RI
);
222 void visitSwitchInst(SwitchInst
&SI
);
223 void visitSelectInst(SelectInst
&SI
);
224 void visitUserOp1(Instruction
&I
);
225 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
226 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
228 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
229 unsigned Count
, ...);
231 void WriteValue(const Value
*V
) {
233 if (isa
<Instruction
>(V
)) {
236 WriteAsOperand(msgs
, V
, true, Mod
);
241 void WriteType(const Type
* T
) {
243 WriteTypeSymbolic(msgs
, T
, Mod
);
247 // CheckFailed - A check failed, so print out the condition and the message
248 // that failed. This provides a nice place to put a breakpoint if you want
249 // to see why something is not correct.
250 void CheckFailed(const std::string
&Message
,
251 const Value
*V1
= 0, const Value
*V2
= 0,
252 const Value
*V3
= 0, const Value
*V4
= 0) {
253 msgs
<< Message
<< "\n";
261 void CheckFailed( const std::string
& Message
, const Value
* V1
,
262 const Type
* T2
, const Value
* V3
= 0 ) {
263 msgs
<< Message
<< "\n";
271 char Verifier::ID
= 0;
272 RegisterPass
<Verifier
> X("verify", "Module Verifier");
273 } // End anonymous namespace
276 // Assert - We know that cond should be true, if not print an error message.
277 #define Assert(C, M) \
278 do { if (!(C)) { CheckFailed(M); return; } } while (0)
279 #define Assert1(C, M, V1) \
280 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
281 #define Assert2(C, M, V1, V2) \
282 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
283 #define Assert3(C, M, V1, V2, V3) \
284 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
285 #define Assert4(C, M, V1, V2, V3, V4) \
286 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
289 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
290 Assert1(!GV
.isDeclaration() ||
291 GV
.hasExternalLinkage() ||
292 GV
.hasDLLImportLinkage() ||
293 GV
.hasExternalWeakLinkage() ||
294 (isa
<GlobalAlias
>(GV
) &&
295 (GV
.hasInternalLinkage() || GV
.hasWeakLinkage())),
296 "Global is external, but doesn't have external or dllimport or weak linkage!",
299 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
300 "Global is marked as dllimport, but not external", &GV
);
302 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
303 "Only global variables can have appending linkage!", &GV
);
305 if (GV
.hasAppendingLinkage()) {
306 GlobalVariable
&GVar
= cast
<GlobalVariable
>(GV
);
307 Assert1(isa
<ArrayType
>(GVar
.getType()->getElementType()),
308 "Only global arrays can have appending linkage!", &GV
);
312 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
313 if (GV
.hasInitializer()) {
314 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
315 "Global variable initializer type does not match global "
316 "variable type!", &GV
);
318 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
319 GV
.hasExternalWeakLinkage(),
320 "invalid linkage type for global declaration", &GV
);
323 visitGlobalValue(GV
);
326 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
327 Assert1(!GA
.getName().empty(),
328 "Alias name cannot be empty!", &GA
);
329 Assert1(GA
.hasExternalLinkage() || GA
.hasInternalLinkage() ||
331 "Alias should have external or external weak linkage!", &GA
);
332 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
333 "Alias and aliasee types should match!", &GA
);
335 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
336 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
337 Assert1(CE
&& CE
->getOpcode() == Instruction::BitCast
&&
338 isa
<GlobalValue
>(CE
->getOperand(0)),
339 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
343 visitGlobalValue(GA
);
346 void Verifier::verifyTypeSymbolTable(TypeSymbolTable
&ST
) {
349 // visitFunction - Verify that a function is ok.
351 void Verifier::visitFunction(Function
&F
) {
352 // Check function arguments.
353 const FunctionType
*FT
= F
.getFunctionType();
354 unsigned NumArgs
= F
.arg_size();
356 Assert2(FT
->getNumParams() == NumArgs
,
357 "# formal arguments must match # of arguments for function type!",
359 Assert1(F
.getReturnType()->isFirstClassType() ||
360 F
.getReturnType() == Type::VoidTy
,
361 "Functions cannot return aggregate values!", &F
);
363 Assert1(!FT
->isStructReturn() || FT
->getReturnType() == Type::VoidTy
,
364 "Invalid struct-return function!", &F
);
366 const uint16_t ReturnIncompatible
=
367 ParamAttr::ByVal
| ParamAttr::InReg
|
368 ParamAttr::Nest
| ParamAttr::StructRet
;
370 const uint16_t ParameterIncompatible
=
371 ParamAttr::NoReturn
| ParamAttr::NoUnwind
;
373 const uint16_t MutuallyIncompatible
=
374 ParamAttr::ByVal
| ParamAttr::InReg
|
375 ParamAttr::Nest
| ParamAttr::StructRet
;
377 const uint16_t MutuallyIncompatible2
=
378 ParamAttr::ZExt
| ParamAttr::SExt
;
380 const uint16_t IntegerTypeOnly
=
381 ParamAttr::SExt
| ParamAttr::ZExt
;
383 const uint16_t PointerTypeOnly
=
384 ParamAttr::ByVal
| ParamAttr::Nest
|
385 ParamAttr::NoAlias
| ParamAttr::StructRet
;
387 bool SawSRet
= false;
389 if (const ParamAttrsList
*Attrs
= FT
->getParamAttrs()) {
391 bool SawNest
= false;
393 uint16_t RetI
= Attrs
->getParamAttrs(0) & ReturnIncompatible
;
394 Assert1(!RetI
, "Attribute " + Attrs
->getParamAttrsText(RetI
) +
395 "should not apply to functions!", &F
);
396 uint16_t MutI
= Attrs
->getParamAttrs(0) & MutuallyIncompatible2
;
397 Assert1(MutI
!= MutuallyIncompatible2
, "Attributes" +
398 Attrs
->getParamAttrsText(MutI
) + "are incompatible!", &F
);
400 for (FunctionType::param_iterator I
= FT
->param_begin(),
401 E
= FT
->param_end(); I
!= E
; ++I
, ++Idx
) {
403 uint16_t Attr
= Attrs
->getParamAttrs(Idx
);
405 uint16_t ParmI
= Attr
& ParameterIncompatible
;
406 Assert1(!ParmI
, "Attribute " + Attrs
->getParamAttrsText(ParmI
) +
407 "should only be applied to function!", &F
);
409 uint16_t MutI
= Attr
& MutuallyIncompatible
;
410 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
411 Attrs
->getParamAttrsText(MutI
) + "are incompatible!", &F
);
413 uint16_t MutI2
= Attr
& MutuallyIncompatible2
;
414 Assert1(MutI2
!= MutuallyIncompatible2
, "Attributes" +
415 Attrs
->getParamAttrsText(MutI2
) + "are incompatible!", &F
);
417 uint16_t IType
= Attr
& IntegerTypeOnly
;
418 Assert1(!IType
|| FT
->getParamType(Idx
-1)->isInteger(),
419 "Attribute " + Attrs
->getParamAttrsText(IType
) +
420 "should only apply to Integer type!", &F
);
422 uint16_t PType
= Attr
& PointerTypeOnly
;
423 Assert1(!PType
|| isa
<PointerType
>(FT
->getParamType(Idx
-1)),
424 "Attribute " + Attrs
->getParamAttrsText(PType
) +
425 "should only apply to Pointer type!", &F
);
427 if (Attrs
->paramHasAttr(Idx
, ParamAttr::ByVal
)) {
428 const PointerType
*Ty
=
429 dyn_cast
<PointerType
>(FT
->getParamType(Idx
-1));
430 Assert1(!Ty
|| isa
<StructType
>(Ty
->getElementType()),
431 "Attribute byval should only apply to pointer to structs!", &F
);
434 if (Attrs
->paramHasAttr(Idx
, ParamAttr::Nest
)) {
435 Assert1(!SawNest
, "More than one parameter has attribute nest!", &F
);
439 if (Attrs
->paramHasAttr(Idx
, ParamAttr::StructRet
)) {
441 Assert1(Idx
== 1, "Attribute sret not on first parameter!", &F
);
446 Assert1(SawSRet
== FT
->isStructReturn(),
447 "StructReturn function with no sret attribute!", &F
);
449 // Check that this function meets the restrictions on this calling convention.
450 switch (F
.getCallingConv()) {
455 case CallingConv::Fast
:
456 case CallingConv::Cold
:
457 case CallingConv::X86_FastCall
:
458 Assert1(!F
.isVarArg(),
459 "Varargs functions must have C calling conventions!", &F
);
463 // Check that the argument values match the function type for this function...
465 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
467 Assert2(I
->getType() == FT
->getParamType(i
),
468 "Argument value does not match function argument type!",
469 I
, FT
->getParamType(i
));
470 // Make sure no aggregates are passed by value.
471 Assert1(I
->getType()->isFirstClassType(),
472 "Functions cannot take aggregates as arguments by value!", I
);
475 if (F
.isDeclaration()) {
476 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
477 F
.hasExternalWeakLinkage(),
478 "invalid linkage type for function declaration", &F
);
480 // Verify that this function (which has a body) is not named "llvm.*". It
481 // is not legal to define intrinsics.
482 if (F
.getName().size() >= 5)
483 Assert1(F
.getName().substr(0, 5) != "llvm.",
484 "llvm intrinsics cannot be defined!", &F
);
486 // Check the entry node
487 BasicBlock
*Entry
= &F
.getEntryBlock();
488 Assert1(pred_begin(Entry
) == pred_end(Entry
),
489 "Entry block to function must not have predecessors!", Entry
);
494 // verifyBasicBlock - Verify that a basic block is well formed...
496 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
497 InstsInThisBlock
.clear();
499 // Ensure that basic blocks have terminators!
500 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
502 // Check constraints that this basic block imposes on all of the PHI nodes in
504 if (isa
<PHINode
>(BB
.front())) {
505 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
506 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
507 std::sort(Preds
.begin(), Preds
.end());
509 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
511 // Ensure that PHI nodes have at least one entry!
512 Assert1(PN
->getNumIncomingValues() != 0,
513 "PHI nodes must have at least one entry. If the block is dead, "
514 "the PHI should be removed!", PN
);
515 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
516 "PHINode should have one entry for each predecessor of its "
517 "parent basic block!", PN
);
519 // Get and sort all incoming values in the PHI node...
521 Values
.reserve(PN
->getNumIncomingValues());
522 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
523 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
524 PN
->getIncomingValue(i
)));
525 std::sort(Values
.begin(), Values
.end());
527 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
528 // Check to make sure that if there is more than one entry for a
529 // particular basic block in this PHI node, that the incoming values are
532 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
533 Values
[i
].second
== Values
[i
-1].second
,
534 "PHI node has multiple entries for the same basic block with "
535 "different incoming values!", PN
, Values
[i
].first
,
536 Values
[i
].second
, Values
[i
-1].second
);
538 // Check to make sure that the predecessors and PHI node entries are
540 Assert3(Values
[i
].first
== Preds
[i
],
541 "PHI node entries do not match predecessors!", PN
,
542 Values
[i
].first
, Preds
[i
]);
548 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
549 // Ensure that terminators only exist at the end of the basic block.
550 Assert1(&I
== I
.getParent()->getTerminator(),
551 "Terminator found in the middle of a basic block!", I
.getParent());
555 void Verifier::visitReturnInst(ReturnInst
&RI
) {
556 Function
*F
= RI
.getParent()->getParent();
557 if (RI
.getNumOperands() == 0)
558 Assert2(F
->getReturnType() == Type::VoidTy
,
559 "Found return instr that returns void in Function of non-void "
560 "return type!", &RI
, F
->getReturnType());
562 Assert2(F
->getReturnType() == RI
.getOperand(0)->getType(),
563 "Function return type does not match operand "
564 "type of return inst!", &RI
, F
->getReturnType());
566 // Check to make sure that the return value has necessary properties for
568 visitTerminatorInst(RI
);
571 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
572 // Check to make sure that all of the constants in the switch instruction
573 // have the same type as the switched-on value.
574 const Type
*SwitchTy
= SI
.getCondition()->getType();
575 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
)
576 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
577 "Switch constants must all be same type as switch value!", &SI
);
579 visitTerminatorInst(SI
);
582 void Verifier::visitSelectInst(SelectInst
&SI
) {
583 Assert1(SI
.getCondition()->getType() == Type::Int1Ty
,
584 "Select condition type must be bool!", &SI
);
585 Assert1(SI
.getTrueValue()->getType() == SI
.getFalseValue()->getType(),
586 "Select values must have identical types!", &SI
);
587 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
588 "Select values must have same type as select instruction!", &SI
);
589 visitInstruction(SI
);
593 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
594 /// a pass, if any exist, it's an error.
596 void Verifier::visitUserOp1(Instruction
&I
) {
597 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
600 void Verifier::visitTruncInst(TruncInst
&I
) {
601 // Get the source and destination types
602 const Type
*SrcTy
= I
.getOperand(0)->getType();
603 const Type
*DestTy
= I
.getType();
605 // Get the size of the types in bits, we'll need this later
606 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
607 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
609 Assert1(SrcTy
->isInteger(), "Trunc only operates on integer", &I
);
610 Assert1(DestTy
->isInteger(), "Trunc only produces integer", &I
);
611 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
616 void Verifier::visitZExtInst(ZExtInst
&I
) {
617 // Get the source and destination types
618 const Type
*SrcTy
= I
.getOperand(0)->getType();
619 const Type
*DestTy
= I
.getType();
621 // Get the size of the types in bits, we'll need this later
622 Assert1(SrcTy
->isInteger(), "ZExt only operates on integer", &I
);
623 Assert1(DestTy
->isInteger(), "ZExt only produces an integer", &I
);
624 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
625 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
627 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
632 void Verifier::visitSExtInst(SExtInst
&I
) {
633 // Get the source and destination types
634 const Type
*SrcTy
= I
.getOperand(0)->getType();
635 const Type
*DestTy
= I
.getType();
637 // Get the size of the types in bits, we'll need this later
638 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
639 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
641 Assert1(SrcTy
->isInteger(), "SExt only operates on integer", &I
);
642 Assert1(DestTy
->isInteger(), "SExt only produces an integer", &I
);
643 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
648 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
649 // Get the source and destination types
650 const Type
*SrcTy
= I
.getOperand(0)->getType();
651 const Type
*DestTy
= I
.getType();
652 // Get the size of the types in bits, we'll need this later
653 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
654 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
656 Assert1(SrcTy
->isFloatingPoint(),"FPTrunc only operates on FP", &I
);
657 Assert1(DestTy
->isFloatingPoint(),"FPTrunc only produces an FP", &I
);
658 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
663 void Verifier::visitFPExtInst(FPExtInst
&I
) {
664 // Get the source and destination types
665 const Type
*SrcTy
= I
.getOperand(0)->getType();
666 const Type
*DestTy
= I
.getType();
668 // Get the size of the types in bits, we'll need this later
669 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
670 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
672 Assert1(SrcTy
->isFloatingPoint(),"FPExt only operates on FP", &I
);
673 Assert1(DestTy
->isFloatingPoint(),"FPExt only produces an FP", &I
);
674 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
679 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
680 // Get the source and destination types
681 const Type
*SrcTy
= I
.getOperand(0)->getType();
682 const Type
*DestTy
= I
.getType();
684 Assert1(SrcTy
->isInteger(),"UInt2FP source must be integral", &I
);
685 Assert1(DestTy
->isFloatingPoint(),"UInt2FP result must be FP", &I
);
690 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
691 // Get the source and destination types
692 const Type
*SrcTy
= I
.getOperand(0)->getType();
693 const Type
*DestTy
= I
.getType();
695 Assert1(SrcTy
->isInteger(),"SInt2FP source must be integral", &I
);
696 Assert1(DestTy
->isFloatingPoint(),"SInt2FP result must be FP", &I
);
701 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
702 // Get the source and destination types
703 const Type
*SrcTy
= I
.getOperand(0)->getType();
704 const Type
*DestTy
= I
.getType();
706 Assert1(SrcTy
->isFloatingPoint(),"FP2UInt source must be FP", &I
);
707 Assert1(DestTy
->isInteger(),"FP2UInt result must be integral", &I
);
712 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
713 // Get the source and destination types
714 const Type
*SrcTy
= I
.getOperand(0)->getType();
715 const Type
*DestTy
= I
.getType();
717 Assert1(SrcTy
->isFloatingPoint(),"FPToSI source must be FP", &I
);
718 Assert1(DestTy
->isInteger(),"FP2ToI result must be integral", &I
);
723 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
724 // Get the source and destination types
725 const Type
*SrcTy
= I
.getOperand(0)->getType();
726 const Type
*DestTy
= I
.getType();
728 Assert1(isa
<PointerType
>(SrcTy
), "PtrToInt source must be pointer", &I
);
729 Assert1(DestTy
->isInteger(), "PtrToInt result must be integral", &I
);
734 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
735 // Get the source and destination types
736 const Type
*SrcTy
= I
.getOperand(0)->getType();
737 const Type
*DestTy
= I
.getType();
739 Assert1(SrcTy
->isInteger(), "IntToPtr source must be an integral", &I
);
740 Assert1(isa
<PointerType
>(DestTy
), "IntToPtr result must be a pointer",&I
);
745 void Verifier::visitBitCastInst(BitCastInst
&I
) {
746 // Get the source and destination types
747 const Type
*SrcTy
= I
.getOperand(0)->getType();
748 const Type
*DestTy
= I
.getType();
750 // Get the size of the types in bits, we'll need this later
751 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
752 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
754 // BitCast implies a no-op cast of type only. No bits change.
755 // However, you can't cast pointers to anything but pointers.
756 Assert1(isa
<PointerType
>(DestTy
) == isa
<PointerType
>(DestTy
),
757 "Bitcast requires both operands to be pointer or neither", &I
);
758 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requies types of same width", &I
);
763 /// visitPHINode - Ensure that a PHI node is well formed.
765 void Verifier::visitPHINode(PHINode
&PN
) {
766 // Ensure that the PHI nodes are all grouped together at the top of the block.
767 // This can be tested by checking whether the instruction before this is
768 // either nonexistent (because this is begin()) or is a PHI node. If not,
769 // then there is some other instruction before a PHI.
770 Assert2(&PN
== &PN
.getParent()->front() ||
771 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
772 "PHI nodes not grouped at top of basic block!",
773 &PN
, PN
.getParent());
775 // Check that all of the operands of the PHI node have the same type as the
777 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
778 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
779 "PHI node operands are not the same type as the result!", &PN
);
781 // All other PHI node constraints are checked in the visitBasicBlock method.
783 visitInstruction(PN
);
786 void Verifier::visitCallInst(CallInst
&CI
) {
787 Assert1(isa
<PointerType
>(CI
.getOperand(0)->getType()),
788 "Called function must be a pointer!", &CI
);
789 const PointerType
*FPTy
= cast
<PointerType
>(CI
.getOperand(0)->getType());
790 Assert1(isa
<FunctionType
>(FPTy
->getElementType()),
791 "Called function is not pointer to function type!", &CI
);
793 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
795 // Verify that the correct number of arguments are being passed
797 Assert1(CI
.getNumOperands()-1 >= FTy
->getNumParams(),
798 "Called function requires more parameters than were provided!",&CI
);
800 Assert1(CI
.getNumOperands()-1 == FTy
->getNumParams(),
801 "Incorrect number of arguments passed to called function!", &CI
);
803 // Verify that all arguments to the call match the function type...
804 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
805 Assert3(CI
.getOperand(i
+1)->getType() == FTy
->getParamType(i
),
806 "Call parameter type does not match function signature!",
807 CI
.getOperand(i
+1), FTy
->getParamType(i
), &CI
);
809 if (Function
*F
= CI
.getCalledFunction())
810 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
811 visitIntrinsicFunctionCall(ID
, CI
);
813 visitInstruction(CI
);
816 /// visitBinaryOperator - Check that both arguments to the binary operator are
817 /// of the same type!
819 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
820 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
821 "Both operands to a binary operator are not of the same type!", &B
);
823 switch (B
.getOpcode()) {
824 // Check that logical operators are only used with integral operands.
825 case Instruction::And
:
826 case Instruction::Or
:
827 case Instruction::Xor
:
828 Assert1(B
.getType()->isInteger() ||
829 (isa
<VectorType
>(B
.getType()) &&
830 cast
<VectorType
>(B
.getType())->getElementType()->isInteger()),
831 "Logical operators only work with integral types!", &B
);
832 Assert1(B
.getType() == B
.getOperand(0)->getType(),
833 "Logical operators must have same type for operands and result!",
836 case Instruction::Shl
:
837 case Instruction::LShr
:
838 case Instruction::AShr
:
839 Assert1(B
.getType()->isInteger(),
840 "Shift must return an integer result!", &B
);
841 Assert1(B
.getType() == B
.getOperand(0)->getType(),
842 "Shift return type must be same as operands!", &B
);
845 // Arithmetic operators only work on integer or fp values
846 Assert1(B
.getType() == B
.getOperand(0)->getType(),
847 "Arithmetic operators must have same type for operands and result!",
849 Assert1(B
.getType()->isInteger() || B
.getType()->isFloatingPoint() ||
850 isa
<VectorType
>(B
.getType()),
851 "Arithmetic operators must have integer, fp, or vector type!", &B
);
858 void Verifier::visitICmpInst(ICmpInst
& IC
) {
859 // Check that the operands are the same type
860 const Type
* Op0Ty
= IC
.getOperand(0)->getType();
861 const Type
* Op1Ty
= IC
.getOperand(1)->getType();
862 Assert1(Op0Ty
== Op1Ty
,
863 "Both operands to ICmp instruction are not of the same type!", &IC
);
864 // Check that the operands are the right type
865 Assert1(Op0Ty
->isInteger() || isa
<PointerType
>(Op0Ty
),
866 "Invalid operand types for ICmp instruction", &IC
);
867 visitInstruction(IC
);
870 void Verifier::visitFCmpInst(FCmpInst
& FC
) {
871 // Check that the operands are the same type
872 const Type
* Op0Ty
= FC
.getOperand(0)->getType();
873 const Type
* Op1Ty
= FC
.getOperand(1)->getType();
874 Assert1(Op0Ty
== Op1Ty
,
875 "Both operands to FCmp instruction are not of the same type!", &FC
);
876 // Check that the operands are the right type
877 Assert1(Op0Ty
->isFloatingPoint(),
878 "Invalid operand types for FCmp instruction", &FC
);
879 visitInstruction(FC
);
882 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
883 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
885 "Invalid extractelement operands!", &EI
);
886 visitInstruction(EI
);
889 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
890 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
893 "Invalid insertelement operands!", &IE
);
894 visitInstruction(IE
);
897 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
898 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
900 "Invalid shufflevector operands!", &SV
);
901 Assert1(SV
.getType() == SV
.getOperand(0)->getType(),
902 "Result of shufflevector must match first operand type!", &SV
);
904 // Check to see if Mask is valid.
905 if (const ConstantVector
*MV
= dyn_cast
<ConstantVector
>(SV
.getOperand(2))) {
906 for (unsigned i
= 0, e
= MV
->getNumOperands(); i
!= e
; ++i
) {
907 Assert1(isa
<ConstantInt
>(MV
->getOperand(i
)) ||
908 isa
<UndefValue
>(MV
->getOperand(i
)),
909 "Invalid shufflevector shuffle mask!", &SV
);
912 Assert1(isa
<UndefValue
>(SV
.getOperand(2)) ||
913 isa
<ConstantAggregateZero
>(SV
.getOperand(2)),
914 "Invalid shufflevector shuffle mask!", &SV
);
917 visitInstruction(SV
);
920 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
921 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
923 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
924 Idxs
.begin(), Idxs
.end(), true);
925 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
926 Assert2(isa
<PointerType
>(GEP
.getType()) &&
927 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
928 "GEP is not of right type for indices!", &GEP
, ElTy
);
929 visitInstruction(GEP
);
932 void Verifier::visitLoadInst(LoadInst
&LI
) {
934 cast
<PointerType
>(LI
.getOperand(0)->getType())->getElementType();
935 Assert2(ElTy
== LI
.getType(),
936 "Load result type does not match pointer operand type!", &LI
, ElTy
);
937 visitInstruction(LI
);
940 void Verifier::visitStoreInst(StoreInst
&SI
) {
942 cast
<PointerType
>(SI
.getOperand(1)->getType())->getElementType();
943 Assert2(ElTy
== SI
.getOperand(0)->getType(),
944 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
945 visitInstruction(SI
);
949 /// verifyInstruction - Verify that an instruction is well formed.
951 void Verifier::visitInstruction(Instruction
&I
) {
952 BasicBlock
*BB
= I
.getParent();
953 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
955 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
956 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
958 Assert1(*UI
!= (User
*)&I
||
959 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
960 "Only PHI nodes may reference their own value!", &I
);
963 // Check that void typed values don't have names
964 Assert1(I
.getType() != Type::VoidTy
|| !I
.hasName(),
965 "Instruction has a name, but provides a void value!", &I
);
967 // Check that the return value of the instruction is either void or a legal
969 Assert1(I
.getType() == Type::VoidTy
|| I
.getType()->isFirstClassType(),
970 "Instruction returns a non-scalar type!", &I
);
972 // Check that all uses of the instruction, if they are instructions
973 // themselves, actually have parent basic blocks. If the use is not an
974 // instruction, it is an error!
975 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
977 Assert1(isa
<Instruction
>(*UI
), "Use of instruction is not an instruction!",
979 Instruction
*Used
= cast
<Instruction
>(*UI
);
980 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
981 " embeded in a basic block!", &I
, Used
);
984 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
985 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
987 // Check to make sure that only first-class-values are operands to
989 Assert1(I
.getOperand(i
)->getType()->isFirstClassType(),
990 "Instruction operands must be first-class values!", &I
);
992 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
993 // Check to make sure that the "address of" an intrinsic function is never
995 Assert1(!F
->isIntrinsic() || (i
== 0 && isa
<CallInst
>(I
)),
996 "Cannot take the address of an intrinsic!", &I
);
997 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
999 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1000 Assert1(OpBB
->getParent() == BB
->getParent(),
1001 "Referring to a basic block in another function!", &I
);
1002 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1003 Assert1(OpArg
->getParent() == BB
->getParent(),
1004 "Referring to an argument in another function!", &I
);
1005 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1006 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1008 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1009 BasicBlock
*OpBlock
= Op
->getParent();
1011 // Check that a definition dominates all of its uses.
1012 if (!isa
<PHINode
>(I
)) {
1013 // Invoke results are only usable in the normal destination, not in the
1014 // exceptional destination.
1015 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1016 OpBlock
= II
->getNormalDest();
1018 Assert2(OpBlock
!= II
->getUnwindDest(),
1019 "No uses of invoke possible due to dominance structure!",
1022 // If the normal successor of an invoke instruction has multiple
1023 // predecessors, then the normal edge from the invoke is critical, so
1024 // the invoke value can only be live if the destination block
1025 // dominates all of it's predecessors (other than the invoke) or if
1026 // the invoke value is only used by a phi in the successor.
1027 if (!OpBlock
->getSinglePredecessor() &&
1028 DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
)) {
1029 // The first case we allow is if the use is a PHI operand in the
1030 // normal block, and if that PHI operand corresponds to the invoke's
1033 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
))
1034 if (PN
->getParent() == OpBlock
&&
1035 PN
->getIncomingBlock(i
/2) == Op
->getParent())
1038 // If it is used by something non-phi, then the other case is that
1039 // 'OpBlock' dominates all of its predecessors other than the
1040 // invoke. In this case, the invoke value can still be used.
1043 for (pred_iterator PI
= pred_begin(OpBlock
),
1044 E
= pred_end(OpBlock
); PI
!= E
; ++PI
) {
1045 if (*PI
!= II
->getParent() && !DT
->dominates(OpBlock
, *PI
)) {
1052 "Invoke value defined on critical edge but not dead!", &I
,
1055 } else if (OpBlock
== BB
) {
1056 // If they are in the same basic block, make sure that the definition
1057 // comes before the use.
1058 Assert2(InstsInThisBlock
.count(Op
) ||
1059 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1060 "Instruction does not dominate all uses!", Op
, &I
);
1063 // Definition must dominate use unless use is unreachable!
1064 Assert2(DT
->dominates(OpBlock
, BB
) ||
1065 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1066 "Instruction does not dominate all uses!", Op
, &I
);
1068 // PHI nodes are more difficult than other nodes because they actually
1069 // "use" the value in the predecessor basic blocks they correspond to.
1070 BasicBlock
*PredBB
= cast
<BasicBlock
>(I
.getOperand(i
+1));
1071 Assert2(DT
->dominates(OpBlock
, PredBB
) ||
1072 !DT
->dominates(&BB
->getParent()->getEntryBlock(), PredBB
),
1073 "Instruction does not dominate all uses!", Op
, &I
);
1075 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1076 Assert1(i
== 0 && isa
<CallInst
>(I
),
1077 "Cannot take the address of an inline asm!", &I
);
1080 InstsInThisBlock
.insert(&I
);
1083 static bool HasPtrPtrType(Value
*Val
) {
1084 if (const PointerType
*PtrTy
= dyn_cast
<PointerType
>(Val
->getType()))
1085 return isa
<PointerType
>(PtrTy
->getElementType());
1089 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1091 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1092 Function
*IF
= CI
.getCalledFunction();
1093 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1096 #define GET_INTRINSIC_VERIFIER
1097 #include "llvm/Intrinsics.gen"
1098 #undef GET_INTRINSIC_VERIFIER
1103 case Intrinsic::gcroot
:
1104 Assert1(HasPtrPtrType(CI
.getOperand(1)),
1105 "llvm.gcroot parameter #1 must be a pointer to a pointer.", &CI
);
1106 Assert1(isa
<AllocaInst
>(IntrinsicInst::StripPointerCasts(CI
.getOperand(1))),
1107 "llvm.gcroot parameter #1 must be an alloca (or a bitcast of one).",
1109 Assert1(isa
<Constant
>(CI
.getOperand(2)),
1110 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1112 case Intrinsic::gcwrite
:
1113 Assert1(CI
.getOperand(3)->getType()
1114 == PointerType::get(CI
.getOperand(1)->getType()),
1115 "Call to llvm.gcwrite must be with type 'void (%ty*, %ty2*, %ty**)'.",
1118 case Intrinsic::gcread
:
1119 Assert1(CI
.getOperand(2)->getType() == PointerType::get(CI
.getType()),
1120 "Call to llvm.gcread must be with type '%ty* (%ty2*, %ty**).'",
1126 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1127 /// Intrinsics.gen. This implements a little state machine that verifies the
1128 /// prototype of intrinsics.
1129 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
,
1131 unsigned Count
, ...) {
1133 va_start(VA
, Count
);
1135 const FunctionType
*FTy
= F
->getFunctionType();
1137 // For overloaded intrinsics, the Suffix of the function name must match the
1138 // types of the arguments. This variable keeps track of the expected
1139 // suffix, to be checked at the end.
1142 if (FTy
->getNumParams() + FTy
->isVarArg() != Count
- 1) {
1143 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1147 // Note that "arg#0" is the return type.
1148 for (unsigned ArgNo
= 0; ArgNo
< Count
; ++ArgNo
) {
1149 MVT::ValueType VT
= va_arg(VA
, MVT::ValueType
);
1151 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1152 if (!FTy
->isVarArg())
1153 CheckFailed("Intrinsic prototype has no '...'!", F
);
1159 Ty
= FTy
->getReturnType();
1161 Ty
= FTy
->getParamType(ArgNo
-1);
1163 unsigned NumElts
= 0;
1164 const Type
*EltTy
= Ty
;
1165 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
1166 EltTy
= VTy
->getElementType();
1167 NumElts
= VTy
->getNumElements();
1173 if (Ty
!= FTy
->getReturnType()) {
1174 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " does not "
1175 "match return type.", F
);
1179 if (Ty
!= FTy
->getParamType(Match
-1)) {
1180 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " does not "
1181 "match parameter %" + utostr(Match
-1) + ".", F
);
1185 } else if (VT
== MVT::iAny
) {
1186 if (!EltTy
->isInteger()) {
1188 CheckFailed("Intrinsic result type is not "
1189 "an integer type.", F
);
1191 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " is not "
1192 "an integer type.", F
);
1195 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1198 Suffix
+= "v" + utostr(NumElts
);
1199 Suffix
+= "i" + utostr(GotBits
);;
1200 // Check some constraints on various intrinsics.
1202 default: break; // Not everything needs to be checked.
1203 case Intrinsic::bswap
:
1204 if (GotBits
< 16 || GotBits
% 16 != 0)
1205 CheckFailed("Intrinsic requires even byte width argument", F
);
1208 } else if (VT
== MVT::fAny
) {
1209 if (!EltTy
->isFloatingPoint()) {
1211 CheckFailed("Intrinsic result type is not "
1212 "a floating-point type.", F
);
1214 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " is not "
1215 "a floating-point type.", F
);
1220 Suffix
+= "v" + utostr(NumElts
);
1221 Suffix
+= MVT::getValueTypeString(MVT::getValueType(EltTy
));
1222 } else if (VT
== MVT::iPTR
) {
1223 if (!isa
<PointerType
>(Ty
)) {
1225 CheckFailed("Intrinsic result type is not a "
1226 "pointer and a pointer is required.", F
);
1228 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " is not a "
1229 "pointer and a pointer is required.", F
);
1232 } else if (MVT::isVector(VT
)) {
1233 // If this is a vector argument, verify the number and type of elements.
1234 if (MVT::getVectorElementType(VT
) != MVT::getValueType(EltTy
)) {
1235 CheckFailed("Intrinsic prototype has incorrect vector element type!",
1239 if (MVT::getVectorNumElements(VT
) != NumElts
) {
1240 CheckFailed("Intrinsic prototype has incorrect number of "
1241 "vector elements!",F
);
1244 } else if (MVT::getTypeForValueType(VT
) != EltTy
) {
1246 CheckFailed("Intrinsic prototype has incorrect result type!", F
);
1248 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " is wrong!",F
);
1250 } else if (EltTy
!= Ty
) {
1252 CheckFailed("Intrinsic result type is vector "
1253 "and a scalar is required.", F
);
1255 CheckFailed("Intrinsic parameter #" + utostr(ArgNo
-1) + " is vector "
1256 "and a scalar is required.", F
);
1262 // If we computed a Suffix then the intrinsic is overloaded and we need to
1263 // make sure that the name of the function is correct. We add the suffix to
1264 // the name of the intrinsic and compare against the given function name. If
1265 // they are not the same, the function name is invalid. This ensures that
1266 // overloading of intrinsics uses a sane and consistent naming convention.
1267 if (!Suffix
.empty()) {
1268 std::string
Name(Intrinsic::getName(ID
));
1269 if (Name
+ Suffix
!= F
->getName())
1270 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1271 F
->getName().substr(Name
.length()) + "'. It should be '" +
1277 //===----------------------------------------------------------------------===//
1278 // Implement the public interfaces to this file...
1279 //===----------------------------------------------------------------------===//
1281 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1282 return new Verifier(action
);
1286 // verifyFunction - Create
1287 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1288 Function
&F
= const_cast<Function
&>(f
);
1289 assert(!F
.isDeclaration() && "Cannot verify external functions");
1291 FunctionPassManager
FPM(new ExistingModuleProvider(F
.getParent()));
1292 Verifier
*V
= new Verifier(action
);
1298 /// verifyModule - Check a module for errors, printing messages on stderr.
1299 /// Return true if the module is corrupt.
1301 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1302 std::string
*ErrorInfo
) {
1304 Verifier
*V
= new Verifier(action
);
1308 if (ErrorInfo
&& V
->Broken
)
1309 *ErrorInfo
= V
->msgs
.str();