[MIPS GlobalISel] NarrowScalar G_TRUNC
[llvm-complete.git] / lib / CodeGen / GlobalISel / LegalizerHelper.cpp
blob4622248102e2c5ef1865df0becfa82f5b51fd687
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
27 #define DEBUG_TYPE "legalizer"
29 using namespace llvm;
30 using namespace LegalizeActions;
32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
33 ///
34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
35 /// with any leftover piece as type \p LeftoverTy
36 ///
37 /// Returns -1 in the first element of the pair if the breakdown is not
38 /// satisfiable.
39 static std::pair<int, int>
40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
41 assert(!LeftoverTy.isValid() && "this is an out argument");
43 unsigned Size = OrigTy.getSizeInBits();
44 unsigned NarrowSize = NarrowTy.getSizeInBits();
45 unsigned NumParts = Size / NarrowSize;
46 unsigned LeftoverSize = Size - NumParts * NarrowSize;
47 assert(Size > NarrowSize);
49 if (LeftoverSize == 0)
50 return {NumParts, 0};
52 if (NarrowTy.isVector()) {
53 unsigned EltSize = OrigTy.getScalarSizeInBits();
54 if (LeftoverSize % EltSize != 0)
55 return {-1, -1};
56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
57 } else {
58 LeftoverTy = LLT::scalar(LeftoverSize);
61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
62 return std::make_pair(NumParts, NumLeftover);
65 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
66 GISelChangeObserver &Observer,
67 MachineIRBuilder &Builder)
68 : MIRBuilder(Builder), MRI(MF.getRegInfo()),
69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
70 MIRBuilder.setMF(MF);
71 MIRBuilder.setChangeObserver(Observer);
74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
75 GISelChangeObserver &Observer,
76 MachineIRBuilder &B)
77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
78 MIRBuilder.setMF(MF);
79 MIRBuilder.setChangeObserver(Observer);
81 LegalizerHelper::LegalizeResult
82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
85 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
86 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
87 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized
88 : UnableToLegalize;
89 auto Step = LI.getAction(MI, MRI);
90 switch (Step.Action) {
91 case Legal:
92 LLVM_DEBUG(dbgs() << ".. Already legal\n");
93 return AlreadyLegal;
94 case Libcall:
95 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
96 return libcall(MI);
97 case NarrowScalar:
98 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
99 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
100 case WidenScalar:
101 LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
102 return widenScalar(MI, Step.TypeIdx, Step.NewType);
103 case Lower:
104 LLVM_DEBUG(dbgs() << ".. Lower\n");
105 return lower(MI, Step.TypeIdx, Step.NewType);
106 case FewerElements:
107 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
108 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
109 case MoreElements:
110 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
111 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
112 case Custom:
113 LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
114 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
115 : UnableToLegalize;
116 default:
117 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
118 return UnableToLegalize;
122 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
123 SmallVectorImpl<Register> &VRegs) {
124 for (int i = 0; i < NumParts; ++i)
125 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
126 MIRBuilder.buildUnmerge(VRegs, Reg);
129 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
130 LLT MainTy, LLT &LeftoverTy,
131 SmallVectorImpl<Register> &VRegs,
132 SmallVectorImpl<Register> &LeftoverRegs) {
133 assert(!LeftoverTy.isValid() && "this is an out argument");
135 unsigned RegSize = RegTy.getSizeInBits();
136 unsigned MainSize = MainTy.getSizeInBits();
137 unsigned NumParts = RegSize / MainSize;
138 unsigned LeftoverSize = RegSize - NumParts * MainSize;
140 // Use an unmerge when possible.
141 if (LeftoverSize == 0) {
142 for (unsigned I = 0; I < NumParts; ++I)
143 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
144 MIRBuilder.buildUnmerge(VRegs, Reg);
145 return true;
148 if (MainTy.isVector()) {
149 unsigned EltSize = MainTy.getScalarSizeInBits();
150 if (LeftoverSize % EltSize != 0)
151 return false;
152 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
153 } else {
154 LeftoverTy = LLT::scalar(LeftoverSize);
157 // For irregular sizes, extract the individual parts.
158 for (unsigned I = 0; I != NumParts; ++I) {
159 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
160 VRegs.push_back(NewReg);
161 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
164 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
165 Offset += LeftoverSize) {
166 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
167 LeftoverRegs.push_back(NewReg);
168 MIRBuilder.buildExtract(NewReg, Reg, Offset);
171 return true;
174 static LLT getGCDType(LLT OrigTy, LLT TargetTy) {
175 if (OrigTy.isVector() && TargetTy.isVector()) {
176 assert(OrigTy.getElementType() == TargetTy.getElementType());
177 int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
178 TargetTy.getNumElements());
179 return LLT::scalarOrVector(GCD, OrigTy.getElementType());
182 if (OrigTy.isVector() && !TargetTy.isVector()) {
183 assert(OrigTy.getElementType() == TargetTy);
184 return TargetTy;
187 assert(!OrigTy.isVector() && !TargetTy.isVector());
189 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
190 TargetTy.getSizeInBits());
191 return LLT::scalar(GCD);
194 void LegalizerHelper::insertParts(Register DstReg,
195 LLT ResultTy, LLT PartTy,
196 ArrayRef<Register> PartRegs,
197 LLT LeftoverTy,
198 ArrayRef<Register> LeftoverRegs) {
199 if (!LeftoverTy.isValid()) {
200 assert(LeftoverRegs.empty());
202 if (!ResultTy.isVector()) {
203 MIRBuilder.buildMerge(DstReg, PartRegs);
204 return;
207 if (PartTy.isVector())
208 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
209 else
210 MIRBuilder.buildBuildVector(DstReg, PartRegs);
211 return;
214 unsigned PartSize = PartTy.getSizeInBits();
215 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
218 MIRBuilder.buildUndef(CurResultReg);
220 unsigned Offset = 0;
221 for (Register PartReg : PartRegs) {
222 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
223 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
224 CurResultReg = NewResultReg;
225 Offset += PartSize;
228 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
229 // Use the original output register for the final insert to avoid a copy.
230 Register NewResultReg = (I + 1 == E) ?
231 DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
234 CurResultReg = NewResultReg;
235 Offset += LeftoverPartSize;
239 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
240 switch (Opcode) {
241 case TargetOpcode::G_SDIV:
242 assert((Size == 32 || Size == 64) && "Unsupported size");
243 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32;
244 case TargetOpcode::G_UDIV:
245 assert((Size == 32 || Size == 64) && "Unsupported size");
246 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32;
247 case TargetOpcode::G_SREM:
248 assert((Size == 32 || Size == 64) && "Unsupported size");
249 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
250 case TargetOpcode::G_UREM:
251 assert((Size == 32 || Size == 64) && "Unsupported size");
252 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
253 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
254 assert(Size == 32 && "Unsupported size");
255 return RTLIB::CTLZ_I32;
256 case TargetOpcode::G_FADD:
257 assert((Size == 32 || Size == 64) && "Unsupported size");
258 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
259 case TargetOpcode::G_FSUB:
260 assert((Size == 32 || Size == 64) && "Unsupported size");
261 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
262 case TargetOpcode::G_FMUL:
263 assert((Size == 32 || Size == 64) && "Unsupported size");
264 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
265 case TargetOpcode::G_FDIV:
266 assert((Size == 32 || Size == 64) && "Unsupported size");
267 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
268 case TargetOpcode::G_FEXP:
269 assert((Size == 32 || Size == 64) && "Unsupported size");
270 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
271 case TargetOpcode::G_FEXP2:
272 assert((Size == 32 || Size == 64) && "Unsupported size");
273 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
274 case TargetOpcode::G_FREM:
275 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
276 case TargetOpcode::G_FPOW:
277 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
278 case TargetOpcode::G_FMA:
279 assert((Size == 32 || Size == 64) && "Unsupported size");
280 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
281 case TargetOpcode::G_FSIN:
282 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
283 return Size == 128 ? RTLIB::SIN_F128
284 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
285 case TargetOpcode::G_FCOS:
286 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
287 return Size == 128 ? RTLIB::COS_F128
288 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
289 case TargetOpcode::G_FLOG10:
290 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
291 return Size == 128 ? RTLIB::LOG10_F128
292 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
293 case TargetOpcode::G_FLOG:
294 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
295 return Size == 128 ? RTLIB::LOG_F128
296 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
297 case TargetOpcode::G_FLOG2:
298 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
299 return Size == 128 ? RTLIB::LOG2_F128
300 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
301 case TargetOpcode::G_FCEIL:
302 assert((Size == 32 || Size == 64) && "Unsupported size");
303 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
304 case TargetOpcode::G_FFLOOR:
305 assert((Size == 32 || Size == 64) && "Unsupported size");
306 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
308 llvm_unreachable("Unknown libcall function");
311 LegalizerHelper::LegalizeResult
312 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
313 const CallLowering::ArgInfo &Result,
314 ArrayRef<CallLowering::ArgInfo> Args) {
315 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
316 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
317 const char *Name = TLI.getLibcallName(Libcall);
319 MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
321 CallLowering::CallLoweringInfo Info;
322 Info.CallConv = TLI.getLibcallCallingConv(Libcall);
323 Info.Callee = MachineOperand::CreateES(Name);
324 Info.OrigRet = Result;
325 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
326 if (!CLI.lowerCall(MIRBuilder, Info))
327 return LegalizerHelper::UnableToLegalize;
329 return LegalizerHelper::Legalized;
332 // Useful for libcalls where all operands have the same type.
333 static LegalizerHelper::LegalizeResult
334 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
335 Type *OpType) {
336 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
338 SmallVector<CallLowering::ArgInfo, 3> Args;
339 for (unsigned i = 1; i < MI.getNumOperands(); i++)
340 Args.push_back({MI.getOperand(i).getReg(), OpType});
341 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
342 Args);
345 LegalizerHelper::LegalizeResult
346 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
347 MachineInstr &MI) {
348 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
349 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
351 SmallVector<CallLowering::ArgInfo, 3> Args;
352 for (unsigned i = 1; i < MI.getNumOperands(); i++) {
353 Register Reg = MI.getOperand(i).getReg();
355 // Need derive an IR type for call lowering.
356 LLT OpLLT = MRI.getType(Reg);
357 Type *OpTy = nullptr;
358 if (OpLLT.isPointer())
359 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
360 else
361 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
362 Args.push_back({Reg, OpTy});
365 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
366 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
367 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
368 RTLIB::Libcall RTLibcall;
369 switch (ID) {
370 case Intrinsic::memcpy:
371 RTLibcall = RTLIB::MEMCPY;
372 break;
373 case Intrinsic::memset:
374 RTLibcall = RTLIB::MEMSET;
375 break;
376 case Intrinsic::memmove:
377 RTLibcall = RTLIB::MEMMOVE;
378 break;
379 default:
380 return LegalizerHelper::UnableToLegalize;
382 const char *Name = TLI.getLibcallName(RTLibcall);
384 MIRBuilder.setInstr(MI);
385 MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
387 CallLowering::CallLoweringInfo Info;
388 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
389 Info.Callee = MachineOperand::CreateES(Name);
390 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
391 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
392 if (!CLI.lowerCall(MIRBuilder, Info))
393 return LegalizerHelper::UnableToLegalize;
395 return LegalizerHelper::Legalized;
398 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
399 Type *FromType) {
400 auto ToMVT = MVT::getVT(ToType);
401 auto FromMVT = MVT::getVT(FromType);
403 switch (Opcode) {
404 case TargetOpcode::G_FPEXT:
405 return RTLIB::getFPEXT(FromMVT, ToMVT);
406 case TargetOpcode::G_FPTRUNC:
407 return RTLIB::getFPROUND(FromMVT, ToMVT);
408 case TargetOpcode::G_FPTOSI:
409 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
410 case TargetOpcode::G_FPTOUI:
411 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
412 case TargetOpcode::G_SITOFP:
413 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
414 case TargetOpcode::G_UITOFP:
415 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
417 llvm_unreachable("Unsupported libcall function");
420 static LegalizerHelper::LegalizeResult
421 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
422 Type *FromType) {
423 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
424 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
425 {{MI.getOperand(1).getReg(), FromType}});
428 LegalizerHelper::LegalizeResult
429 LegalizerHelper::libcall(MachineInstr &MI) {
430 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
431 unsigned Size = LLTy.getSizeInBits();
432 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
434 MIRBuilder.setInstr(MI);
436 switch (MI.getOpcode()) {
437 default:
438 return UnableToLegalize;
439 case TargetOpcode::G_SDIV:
440 case TargetOpcode::G_UDIV:
441 case TargetOpcode::G_SREM:
442 case TargetOpcode::G_UREM:
443 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
444 Type *HLTy = IntegerType::get(Ctx, Size);
445 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
446 if (Status != Legalized)
447 return Status;
448 break;
450 case TargetOpcode::G_FADD:
451 case TargetOpcode::G_FSUB:
452 case TargetOpcode::G_FMUL:
453 case TargetOpcode::G_FDIV:
454 case TargetOpcode::G_FMA:
455 case TargetOpcode::G_FPOW:
456 case TargetOpcode::G_FREM:
457 case TargetOpcode::G_FCOS:
458 case TargetOpcode::G_FSIN:
459 case TargetOpcode::G_FLOG10:
460 case TargetOpcode::G_FLOG:
461 case TargetOpcode::G_FLOG2:
462 case TargetOpcode::G_FEXP:
463 case TargetOpcode::G_FEXP2:
464 case TargetOpcode::G_FCEIL:
465 case TargetOpcode::G_FFLOOR: {
466 if (Size > 64) {
467 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
468 return UnableToLegalize;
470 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
471 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
472 if (Status != Legalized)
473 return Status;
474 break;
476 case TargetOpcode::G_FPEXT: {
477 // FIXME: Support other floating point types (half, fp128 etc)
478 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
479 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
480 if (ToSize != 64 || FromSize != 32)
481 return UnableToLegalize;
482 LegalizeResult Status = conversionLibcall(
483 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
484 if (Status != Legalized)
485 return Status;
486 break;
488 case TargetOpcode::G_FPTRUNC: {
489 // FIXME: Support other floating point types (half, fp128 etc)
490 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
491 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
492 if (ToSize != 32 || FromSize != 64)
493 return UnableToLegalize;
494 LegalizeResult Status = conversionLibcall(
495 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
496 if (Status != Legalized)
497 return Status;
498 break;
500 case TargetOpcode::G_FPTOSI:
501 case TargetOpcode::G_FPTOUI: {
502 // FIXME: Support other types
503 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
504 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
505 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
506 return UnableToLegalize;
507 LegalizeResult Status = conversionLibcall(
508 MI, MIRBuilder,
509 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
510 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
511 if (Status != Legalized)
512 return Status;
513 break;
515 case TargetOpcode::G_SITOFP:
516 case TargetOpcode::G_UITOFP: {
517 // FIXME: Support other types
518 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
519 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
520 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
521 return UnableToLegalize;
522 LegalizeResult Status = conversionLibcall(
523 MI, MIRBuilder,
524 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
525 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
526 if (Status != Legalized)
527 return Status;
528 break;
532 MI.eraseFromParent();
533 return Legalized;
536 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
537 unsigned TypeIdx,
538 LLT NarrowTy) {
539 MIRBuilder.setInstr(MI);
541 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
542 uint64_t NarrowSize = NarrowTy.getSizeInBits();
544 switch (MI.getOpcode()) {
545 default:
546 return UnableToLegalize;
547 case TargetOpcode::G_IMPLICIT_DEF: {
548 // FIXME: add support for when SizeOp0 isn't an exact multiple of
549 // NarrowSize.
550 if (SizeOp0 % NarrowSize != 0)
551 return UnableToLegalize;
552 int NumParts = SizeOp0 / NarrowSize;
554 SmallVector<Register, 2> DstRegs;
555 for (int i = 0; i < NumParts; ++i)
556 DstRegs.push_back(
557 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
559 Register DstReg = MI.getOperand(0).getReg();
560 if(MRI.getType(DstReg).isVector())
561 MIRBuilder.buildBuildVector(DstReg, DstRegs);
562 else
563 MIRBuilder.buildMerge(DstReg, DstRegs);
564 MI.eraseFromParent();
565 return Legalized;
567 case TargetOpcode::G_CONSTANT: {
568 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
569 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
570 unsigned TotalSize = Ty.getSizeInBits();
571 unsigned NarrowSize = NarrowTy.getSizeInBits();
572 int NumParts = TotalSize / NarrowSize;
574 SmallVector<Register, 4> PartRegs;
575 for (int I = 0; I != NumParts; ++I) {
576 unsigned Offset = I * NarrowSize;
577 auto K = MIRBuilder.buildConstant(NarrowTy,
578 Val.lshr(Offset).trunc(NarrowSize));
579 PartRegs.push_back(K.getReg(0));
582 LLT LeftoverTy;
583 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
584 SmallVector<Register, 1> LeftoverRegs;
585 if (LeftoverBits != 0) {
586 LeftoverTy = LLT::scalar(LeftoverBits);
587 auto K = MIRBuilder.buildConstant(
588 LeftoverTy,
589 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
590 LeftoverRegs.push_back(K.getReg(0));
593 insertParts(MI.getOperand(0).getReg(),
594 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
596 MI.eraseFromParent();
597 return Legalized;
599 case TargetOpcode::G_SEXT: {
600 if (TypeIdx != 0)
601 return UnableToLegalize;
603 if (NarrowTy.getSizeInBits() != SizeOp0 / 2) {
604 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n");
605 return UnableToLegalize;
608 Register SrcReg = MI.getOperand(1).getReg();
610 // Shift the sign bit of the low register through the high register.
611 auto ShiftAmt =
612 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1);
613 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt);
614 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)});
615 MI.eraseFromParent();
616 return Legalized;
618 case TargetOpcode::G_ZEXT: {
619 if (TypeIdx != 0)
620 return UnableToLegalize;
622 if (SizeOp0 % NarrowTy.getSizeInBits() != 0)
623 return UnableToLegalize;
625 // Generate a merge where the bottom bits are taken from the source, and
626 // zero everything else.
627 Register ZeroReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
628 unsigned NumParts = SizeOp0 / NarrowTy.getSizeInBits();
629 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()};
630 for (unsigned Part = 1; Part < NumParts; ++Part)
631 Srcs.push_back(ZeroReg);
632 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs);
633 MI.eraseFromParent();
634 return Legalized;
636 case TargetOpcode::G_TRUNC: {
637 if (TypeIdx != 1)
638 return UnableToLegalize;
640 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
641 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
642 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
643 return UnableToLegalize;
646 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
647 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0));
648 MI.eraseFromParent();
649 return Legalized;
652 case TargetOpcode::G_ADD: {
653 // FIXME: add support for when SizeOp0 isn't an exact multiple of
654 // NarrowSize.
655 if (SizeOp0 % NarrowSize != 0)
656 return UnableToLegalize;
657 // Expand in terms of carry-setting/consuming G_ADDE instructions.
658 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
660 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
661 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
662 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
664 Register CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1));
665 MIRBuilder.buildConstant(CarryIn, 0);
667 for (int i = 0; i < NumParts; ++i) {
668 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
669 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
671 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
672 Src2Regs[i], CarryIn);
674 DstRegs.push_back(DstReg);
675 CarryIn = CarryOut;
677 Register DstReg = MI.getOperand(0).getReg();
678 if(MRI.getType(DstReg).isVector())
679 MIRBuilder.buildBuildVector(DstReg, DstRegs);
680 else
681 MIRBuilder.buildMerge(DstReg, DstRegs);
682 MI.eraseFromParent();
683 return Legalized;
685 case TargetOpcode::G_SUB: {
686 // FIXME: add support for when SizeOp0 isn't an exact multiple of
687 // NarrowSize.
688 if (SizeOp0 % NarrowSize != 0)
689 return UnableToLegalize;
691 int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
693 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
694 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
695 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
697 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
698 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
699 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
700 {Src1Regs[0], Src2Regs[0]});
701 DstRegs.push_back(DstReg);
702 Register BorrowIn = BorrowOut;
703 for (int i = 1; i < NumParts; ++i) {
704 DstReg = MRI.createGenericVirtualRegister(NarrowTy);
705 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
707 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
708 {Src1Regs[i], Src2Regs[i], BorrowIn});
710 DstRegs.push_back(DstReg);
711 BorrowIn = BorrowOut;
713 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
714 MI.eraseFromParent();
715 return Legalized;
717 case TargetOpcode::G_MUL:
718 case TargetOpcode::G_UMULH:
719 return narrowScalarMul(MI, NarrowTy);
720 case TargetOpcode::G_EXTRACT:
721 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
722 case TargetOpcode::G_INSERT:
723 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
724 case TargetOpcode::G_LOAD: {
725 const auto &MMO = **MI.memoperands_begin();
726 Register DstReg = MI.getOperand(0).getReg();
727 LLT DstTy = MRI.getType(DstReg);
728 if (DstTy.isVector())
729 return UnableToLegalize;
731 if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
732 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
733 auto &MMO = **MI.memoperands_begin();
734 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
735 MIRBuilder.buildAnyExt(DstReg, TmpReg);
736 MI.eraseFromParent();
737 return Legalized;
740 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
742 case TargetOpcode::G_ZEXTLOAD:
743 case TargetOpcode::G_SEXTLOAD: {
744 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
745 Register DstReg = MI.getOperand(0).getReg();
746 Register PtrReg = MI.getOperand(1).getReg();
748 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
749 auto &MMO = **MI.memoperands_begin();
750 if (MMO.getSizeInBits() == NarrowSize) {
751 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
752 } else {
753 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
754 : TargetOpcode::G_SEXTLOAD;
755 MIRBuilder.buildInstr(ExtLoad)
756 .addDef(TmpReg)
757 .addUse(PtrReg)
758 .addMemOperand(&MMO);
761 if (ZExt)
762 MIRBuilder.buildZExt(DstReg, TmpReg);
763 else
764 MIRBuilder.buildSExt(DstReg, TmpReg);
766 MI.eraseFromParent();
767 return Legalized;
769 case TargetOpcode::G_STORE: {
770 const auto &MMO = **MI.memoperands_begin();
772 Register SrcReg = MI.getOperand(0).getReg();
773 LLT SrcTy = MRI.getType(SrcReg);
774 if (SrcTy.isVector())
775 return UnableToLegalize;
777 int NumParts = SizeOp0 / NarrowSize;
778 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
779 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
780 if (SrcTy.isVector() && LeftoverBits != 0)
781 return UnableToLegalize;
783 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
784 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
785 auto &MMO = **MI.memoperands_begin();
786 MIRBuilder.buildTrunc(TmpReg, SrcReg);
787 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
788 MI.eraseFromParent();
789 return Legalized;
792 return reduceLoadStoreWidth(MI, 0, NarrowTy);
794 case TargetOpcode::G_SELECT:
795 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
796 case TargetOpcode::G_AND:
797 case TargetOpcode::G_OR:
798 case TargetOpcode::G_XOR: {
799 // Legalize bitwise operation:
800 // A = BinOp<Ty> B, C
801 // into:
802 // B1, ..., BN = G_UNMERGE_VALUES B
803 // C1, ..., CN = G_UNMERGE_VALUES C
804 // A1 = BinOp<Ty/N> B1, C2
805 // ...
806 // AN = BinOp<Ty/N> BN, CN
807 // A = G_MERGE_VALUES A1, ..., AN
808 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
810 case TargetOpcode::G_SHL:
811 case TargetOpcode::G_LSHR:
812 case TargetOpcode::G_ASHR:
813 return narrowScalarShift(MI, TypeIdx, NarrowTy);
814 case TargetOpcode::G_CTLZ:
815 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
816 case TargetOpcode::G_CTTZ:
817 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
818 case TargetOpcode::G_CTPOP:
819 if (TypeIdx != 0)
820 return UnableToLegalize; // TODO
822 Observer.changingInstr(MI);
823 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
824 Observer.changedInstr(MI);
825 return Legalized;
826 case TargetOpcode::G_INTTOPTR:
827 if (TypeIdx != 1)
828 return UnableToLegalize;
830 Observer.changingInstr(MI);
831 narrowScalarSrc(MI, NarrowTy, 1);
832 Observer.changedInstr(MI);
833 return Legalized;
834 case TargetOpcode::G_PTRTOINT:
835 if (TypeIdx != 0)
836 return UnableToLegalize;
838 Observer.changingInstr(MI);
839 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
840 Observer.changedInstr(MI);
841 return Legalized;
842 case TargetOpcode::G_PHI: {
843 unsigned NumParts = SizeOp0 / NarrowSize;
844 SmallVector<Register, 2> DstRegs;
845 SmallVector<SmallVector<Register, 2>, 2> SrcRegs;
846 DstRegs.resize(NumParts);
847 SrcRegs.resize(MI.getNumOperands() / 2);
848 Observer.changingInstr(MI);
849 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
850 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
851 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
852 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
853 SrcRegs[i / 2]);
855 MachineBasicBlock &MBB = *MI.getParent();
856 MIRBuilder.setInsertPt(MBB, MI);
857 for (unsigned i = 0; i < NumParts; ++i) {
858 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
859 MachineInstrBuilder MIB =
860 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
861 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
862 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
864 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
865 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
866 Observer.changedInstr(MI);
867 MI.eraseFromParent();
868 return Legalized;
870 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
871 case TargetOpcode::G_INSERT_VECTOR_ELT: {
872 if (TypeIdx != 2)
873 return UnableToLegalize;
875 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
876 Observer.changingInstr(MI);
877 narrowScalarSrc(MI, NarrowTy, OpIdx);
878 Observer.changedInstr(MI);
879 return Legalized;
881 case TargetOpcode::G_ICMP: {
882 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
883 if (NarrowSize * 2 != SrcSize)
884 return UnableToLegalize;
886 Observer.changingInstr(MI);
887 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
888 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
889 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg());
891 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
892 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
893 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg());
895 CmpInst::Predicate Pred =
896 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
897 LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
899 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
900 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
901 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
902 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
903 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
904 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero);
905 } else {
906 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
907 MachineInstrBuilder CmpHEQ =
908 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
909 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
910 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
911 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH);
913 Observer.changedInstr(MI);
914 MI.eraseFromParent();
915 return Legalized;
917 case TargetOpcode::G_SEXT_INREG: {
918 if (TypeIdx != 0)
919 return UnableToLegalize;
921 if (!MI.getOperand(2).isImm())
922 return UnableToLegalize;
923 int64_t SizeInBits = MI.getOperand(2).getImm();
925 // So long as the new type has more bits than the bits we're extending we
926 // don't need to break it apart.
927 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
928 Observer.changingInstr(MI);
929 // We don't lose any non-extension bits by truncating the src and
930 // sign-extending the dst.
931 MachineOperand &MO1 = MI.getOperand(1);
932 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg());
933 MO1.setReg(TruncMIB->getOperand(0).getReg());
935 MachineOperand &MO2 = MI.getOperand(0);
936 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
937 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
938 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt});
939 MO2.setReg(DstExt);
940 Observer.changedInstr(MI);
941 return Legalized;
944 // Break it apart. Components below the extension point are unmodified. The
945 // component containing the extension point becomes a narrower SEXT_INREG.
946 // Components above it are ashr'd from the component containing the
947 // extension point.
948 if (SizeOp0 % NarrowSize != 0)
949 return UnableToLegalize;
950 int NumParts = SizeOp0 / NarrowSize;
952 // List the registers where the destination will be scattered.
953 SmallVector<Register, 2> DstRegs;
954 // List the registers where the source will be split.
955 SmallVector<Register, 2> SrcRegs;
957 // Create all the temporary registers.
958 for (int i = 0; i < NumParts; ++i) {
959 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
961 SrcRegs.push_back(SrcReg);
964 // Explode the big arguments into smaller chunks.
965 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg());
967 Register AshrCstReg =
968 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
969 ->getOperand(0)
970 .getReg();
971 Register FullExtensionReg = 0;
972 Register PartialExtensionReg = 0;
974 // Do the operation on each small part.
975 for (int i = 0; i < NumParts; ++i) {
976 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
977 DstRegs.push_back(SrcRegs[i]);
978 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
979 assert(PartialExtensionReg &&
980 "Expected to visit partial extension before full");
981 if (FullExtensionReg) {
982 DstRegs.push_back(FullExtensionReg);
983 continue;
985 DstRegs.push_back(MIRBuilder
986 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy},
987 {PartialExtensionReg, AshrCstReg})
988 ->getOperand(0)
989 .getReg());
990 FullExtensionReg = DstRegs.back();
991 } else {
992 DstRegs.push_back(
993 MIRBuilder
994 .buildInstr(
995 TargetOpcode::G_SEXT_INREG, {NarrowTy},
996 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
997 ->getOperand(0)
998 .getReg());
999 PartialExtensionReg = DstRegs.back();
1003 // Gather the destination registers into the final destination.
1004 Register DstReg = MI.getOperand(0).getReg();
1005 MIRBuilder.buildMerge(DstReg, DstRegs);
1006 MI.eraseFromParent();
1007 return Legalized;
1012 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1013 unsigned OpIdx, unsigned ExtOpcode) {
1014 MachineOperand &MO = MI.getOperand(OpIdx);
1015 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
1016 MO.setReg(ExtB->getOperand(0).getReg());
1019 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1020 unsigned OpIdx) {
1021 MachineOperand &MO = MI.getOperand(OpIdx);
1022 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
1023 {MO.getReg()});
1024 MO.setReg(ExtB->getOperand(0).getReg());
1027 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1028 unsigned OpIdx, unsigned TruncOpcode) {
1029 MachineOperand &MO = MI.getOperand(OpIdx);
1030 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1031 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1032 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
1033 MO.setReg(DstExt);
1036 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1037 unsigned OpIdx, unsigned ExtOpcode) {
1038 MachineOperand &MO = MI.getOperand(OpIdx);
1039 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1040 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1041 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
1042 MO.setReg(DstTrunc);
1045 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1046 unsigned OpIdx) {
1047 MachineOperand &MO = MI.getOperand(OpIdx);
1048 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1049 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1050 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
1051 MO.setReg(DstExt);
1054 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1055 unsigned OpIdx) {
1056 MachineOperand &MO = MI.getOperand(OpIdx);
1058 LLT OldTy = MRI.getType(MO.getReg());
1059 unsigned OldElts = OldTy.getNumElements();
1060 unsigned NewElts = MoreTy.getNumElements();
1062 unsigned NumParts = NewElts / OldElts;
1064 // Use concat_vectors if the result is a multiple of the number of elements.
1065 if (NumParts * OldElts == NewElts) {
1066 SmallVector<Register, 8> Parts;
1067 Parts.push_back(MO.getReg());
1069 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1070 for (unsigned I = 1; I != NumParts; ++I)
1071 Parts.push_back(ImpDef);
1073 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1074 MO.setReg(Concat.getReg(0));
1075 return;
1078 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1079 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1080 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1081 MO.setReg(MoreReg);
1084 LegalizerHelper::LegalizeResult
1085 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1086 LLT WideTy) {
1087 if (TypeIdx != 1)
1088 return UnableToLegalize;
1090 Register DstReg = MI.getOperand(0).getReg();
1091 LLT DstTy = MRI.getType(DstReg);
1092 if (DstTy.isVector())
1093 return UnableToLegalize;
1095 Register Src1 = MI.getOperand(1).getReg();
1096 LLT SrcTy = MRI.getType(Src1);
1097 const int DstSize = DstTy.getSizeInBits();
1098 const int SrcSize = SrcTy.getSizeInBits();
1099 const int WideSize = WideTy.getSizeInBits();
1100 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1102 unsigned NumOps = MI.getNumOperands();
1103 unsigned NumSrc = MI.getNumOperands() - 1;
1104 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1106 if (WideSize >= DstSize) {
1107 // Directly pack the bits in the target type.
1108 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1110 for (unsigned I = 2; I != NumOps; ++I) {
1111 const unsigned Offset = (I - 1) * PartSize;
1113 Register SrcReg = MI.getOperand(I).getReg();
1114 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1116 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1118 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1119 MRI.createGenericVirtualRegister(WideTy);
1121 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1122 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1123 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1124 ResultReg = NextResult;
1127 if (WideSize > DstSize)
1128 MIRBuilder.buildTrunc(DstReg, ResultReg);
1129 else if (DstTy.isPointer())
1130 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1132 MI.eraseFromParent();
1133 return Legalized;
1136 // Unmerge the original values to the GCD type, and recombine to the next
1137 // multiple greater than the original type.
1139 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1140 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1141 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1142 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1143 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1144 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1145 // %12:_(s12) = G_MERGE_VALUES %10, %11
1147 // Padding with undef if necessary:
1149 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1150 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1151 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1152 // %7:_(s2) = G_IMPLICIT_DEF
1153 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1154 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1155 // %10:_(s12) = G_MERGE_VALUES %8, %9
1157 const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1158 LLT GCDTy = LLT::scalar(GCD);
1160 SmallVector<Register, 8> Parts;
1161 SmallVector<Register, 8> NewMergeRegs;
1162 SmallVector<Register, 8> Unmerges;
1163 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1165 // Decompose the original operands if they don't evenly divide.
1166 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1167 Register SrcReg = MI.getOperand(I).getReg();
1168 if (GCD == SrcSize) {
1169 Unmerges.push_back(SrcReg);
1170 } else {
1171 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1172 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1173 Unmerges.push_back(Unmerge.getReg(J));
1177 // Pad with undef to the next size that is a multiple of the requested size.
1178 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1179 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1180 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1181 Unmerges.push_back(UndefReg);
1184 const int PartsPerGCD = WideSize / GCD;
1186 // Build merges of each piece.
1187 ArrayRef<Register> Slicer(Unmerges);
1188 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1189 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1190 NewMergeRegs.push_back(Merge.getReg(0));
1193 // A truncate may be necessary if the requested type doesn't evenly divide the
1194 // original result type.
1195 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1196 MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1197 } else {
1198 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1199 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1202 MI.eraseFromParent();
1203 return Legalized;
1206 LegalizerHelper::LegalizeResult
1207 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1208 LLT WideTy) {
1209 if (TypeIdx != 0)
1210 return UnableToLegalize;
1212 unsigned NumDst = MI.getNumOperands() - 1;
1213 Register SrcReg = MI.getOperand(NumDst).getReg();
1214 LLT SrcTy = MRI.getType(SrcReg);
1215 if (!SrcTy.isScalar())
1216 return UnableToLegalize;
1218 Register Dst0Reg = MI.getOperand(0).getReg();
1219 LLT DstTy = MRI.getType(Dst0Reg);
1220 if (!DstTy.isScalar())
1221 return UnableToLegalize;
1223 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
1224 LLT NewSrcTy = LLT::scalar(NewSrcSize);
1225 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
1227 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
1229 for (unsigned I = 1; I != NumDst; ++I) {
1230 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
1231 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
1232 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
1235 Observer.changingInstr(MI);
1237 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
1238 for (unsigned I = 0; I != NumDst; ++I)
1239 widenScalarDst(MI, WideTy, I);
1241 Observer.changedInstr(MI);
1243 return Legalized;
1246 LegalizerHelper::LegalizeResult
1247 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1248 LLT WideTy) {
1249 Register DstReg = MI.getOperand(0).getReg();
1250 Register SrcReg = MI.getOperand(1).getReg();
1251 LLT SrcTy = MRI.getType(SrcReg);
1253 LLT DstTy = MRI.getType(DstReg);
1254 unsigned Offset = MI.getOperand(2).getImm();
1256 if (TypeIdx == 0) {
1257 if (SrcTy.isVector() || DstTy.isVector())
1258 return UnableToLegalize;
1260 SrcOp Src(SrcReg);
1261 if (SrcTy.isPointer()) {
1262 // Extracts from pointers can be handled only if they are really just
1263 // simple integers.
1264 const DataLayout &DL = MIRBuilder.getDataLayout();
1265 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1266 return UnableToLegalize;
1268 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1269 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1270 SrcTy = SrcAsIntTy;
1273 if (DstTy.isPointer())
1274 return UnableToLegalize;
1276 if (Offset == 0) {
1277 // Avoid a shift in the degenerate case.
1278 MIRBuilder.buildTrunc(DstReg,
1279 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1280 MI.eraseFromParent();
1281 return Legalized;
1284 // Do a shift in the source type.
1285 LLT ShiftTy = SrcTy;
1286 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1287 Src = MIRBuilder.buildAnyExt(WideTy, Src);
1288 ShiftTy = WideTy;
1289 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1290 return UnableToLegalize;
1292 auto LShr = MIRBuilder.buildLShr(
1293 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1294 MIRBuilder.buildTrunc(DstReg, LShr);
1295 MI.eraseFromParent();
1296 return Legalized;
1299 if (SrcTy.isScalar()) {
1300 Observer.changingInstr(MI);
1301 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1302 Observer.changedInstr(MI);
1303 return Legalized;
1306 if (!SrcTy.isVector())
1307 return UnableToLegalize;
1309 if (DstTy != SrcTy.getElementType())
1310 return UnableToLegalize;
1312 if (Offset % SrcTy.getScalarSizeInBits() != 0)
1313 return UnableToLegalize;
1315 Observer.changingInstr(MI);
1316 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1318 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1319 Offset);
1320 widenScalarDst(MI, WideTy.getScalarType(), 0);
1321 Observer.changedInstr(MI);
1322 return Legalized;
1325 LegalizerHelper::LegalizeResult
1326 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1327 LLT WideTy) {
1328 if (TypeIdx != 0)
1329 return UnableToLegalize;
1330 Observer.changingInstr(MI);
1331 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1332 widenScalarDst(MI, WideTy);
1333 Observer.changedInstr(MI);
1334 return Legalized;
1337 LegalizerHelper::LegalizeResult
1338 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1339 MIRBuilder.setInstr(MI);
1341 switch (MI.getOpcode()) {
1342 default:
1343 return UnableToLegalize;
1344 case TargetOpcode::G_EXTRACT:
1345 return widenScalarExtract(MI, TypeIdx, WideTy);
1346 case TargetOpcode::G_INSERT:
1347 return widenScalarInsert(MI, TypeIdx, WideTy);
1348 case TargetOpcode::G_MERGE_VALUES:
1349 return widenScalarMergeValues(MI, TypeIdx, WideTy);
1350 case TargetOpcode::G_UNMERGE_VALUES:
1351 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1352 case TargetOpcode::G_UADDO:
1353 case TargetOpcode::G_USUBO: {
1354 if (TypeIdx == 1)
1355 return UnableToLegalize; // TODO
1356 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1357 {MI.getOperand(2).getReg()});
1358 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1359 {MI.getOperand(3).getReg()});
1360 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1361 ? TargetOpcode::G_ADD
1362 : TargetOpcode::G_SUB;
1363 // Do the arithmetic in the larger type.
1364 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1365 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1366 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
1367 auto AndOp = MIRBuilder.buildInstr(
1368 TargetOpcode::G_AND, {WideTy},
1369 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
1370 // There is no overflow if the AndOp is the same as NewOp.
1371 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
1372 AndOp);
1373 // Now trunc the NewOp to the original result.
1374 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
1375 MI.eraseFromParent();
1376 return Legalized;
1378 case TargetOpcode::G_CTTZ:
1379 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1380 case TargetOpcode::G_CTLZ:
1381 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1382 case TargetOpcode::G_CTPOP: {
1383 if (TypeIdx == 0) {
1384 Observer.changingInstr(MI);
1385 widenScalarDst(MI, WideTy, 0);
1386 Observer.changedInstr(MI);
1387 return Legalized;
1390 Register SrcReg = MI.getOperand(1).getReg();
1392 // First ZEXT the input.
1393 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1394 LLT CurTy = MRI.getType(SrcReg);
1395 if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1396 // The count is the same in the larger type except if the original
1397 // value was zero. This can be handled by setting the bit just off
1398 // the top of the original type.
1399 auto TopBit =
1400 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1401 MIBSrc = MIRBuilder.buildOr(
1402 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1405 // Perform the operation at the larger size.
1406 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1407 // This is already the correct result for CTPOP and CTTZs
1408 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1409 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1410 // The correct result is NewOp - (Difference in widety and current ty).
1411 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1412 MIBNewOp = MIRBuilder.buildInstr(
1413 TargetOpcode::G_SUB, {WideTy},
1414 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
1417 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1418 MI.eraseFromParent();
1419 return Legalized;
1421 case TargetOpcode::G_BSWAP: {
1422 Observer.changingInstr(MI);
1423 Register DstReg = MI.getOperand(0).getReg();
1425 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1426 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1427 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1428 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1430 MI.getOperand(0).setReg(DstExt);
1432 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1434 LLT Ty = MRI.getType(DstReg);
1435 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1436 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1437 MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
1438 .addDef(ShrReg)
1439 .addUse(DstExt)
1440 .addUse(ShiftAmtReg);
1442 MIRBuilder.buildTrunc(DstReg, ShrReg);
1443 Observer.changedInstr(MI);
1444 return Legalized;
1446 case TargetOpcode::G_ADD:
1447 case TargetOpcode::G_AND:
1448 case TargetOpcode::G_MUL:
1449 case TargetOpcode::G_OR:
1450 case TargetOpcode::G_XOR:
1451 case TargetOpcode::G_SUB:
1452 // Perform operation at larger width (any extension is fines here, high bits
1453 // don't affect the result) and then truncate the result back to the
1454 // original type.
1455 Observer.changingInstr(MI);
1456 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1457 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1458 widenScalarDst(MI, WideTy);
1459 Observer.changedInstr(MI);
1460 return Legalized;
1462 case TargetOpcode::G_SHL:
1463 Observer.changingInstr(MI);
1465 if (TypeIdx == 0) {
1466 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1467 widenScalarDst(MI, WideTy);
1468 } else {
1469 assert(TypeIdx == 1);
1470 // The "number of bits to shift" operand must preserve its value as an
1471 // unsigned integer:
1472 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1475 Observer.changedInstr(MI);
1476 return Legalized;
1478 case TargetOpcode::G_SDIV:
1479 case TargetOpcode::G_SREM:
1480 case TargetOpcode::G_SMIN:
1481 case TargetOpcode::G_SMAX:
1482 Observer.changingInstr(MI);
1483 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1484 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1485 widenScalarDst(MI, WideTy);
1486 Observer.changedInstr(MI);
1487 return Legalized;
1489 case TargetOpcode::G_ASHR:
1490 case TargetOpcode::G_LSHR:
1491 Observer.changingInstr(MI);
1493 if (TypeIdx == 0) {
1494 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1495 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1497 widenScalarSrc(MI, WideTy, 1, CvtOp);
1498 widenScalarDst(MI, WideTy);
1499 } else {
1500 assert(TypeIdx == 1);
1501 // The "number of bits to shift" operand must preserve its value as an
1502 // unsigned integer:
1503 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1506 Observer.changedInstr(MI);
1507 return Legalized;
1508 case TargetOpcode::G_UDIV:
1509 case TargetOpcode::G_UREM:
1510 case TargetOpcode::G_UMIN:
1511 case TargetOpcode::G_UMAX:
1512 Observer.changingInstr(MI);
1513 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1514 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1515 widenScalarDst(MI, WideTy);
1516 Observer.changedInstr(MI);
1517 return Legalized;
1519 case TargetOpcode::G_SELECT:
1520 Observer.changingInstr(MI);
1521 if (TypeIdx == 0) {
1522 // Perform operation at larger width (any extension is fine here, high
1523 // bits don't affect the result) and then truncate the result back to the
1524 // original type.
1525 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1526 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1527 widenScalarDst(MI, WideTy);
1528 } else {
1529 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1530 // Explicit extension is required here since high bits affect the result.
1531 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1533 Observer.changedInstr(MI);
1534 return Legalized;
1536 case TargetOpcode::G_FPTOSI:
1537 case TargetOpcode::G_FPTOUI:
1538 if (TypeIdx != 0)
1539 return UnableToLegalize;
1540 Observer.changingInstr(MI);
1541 widenScalarDst(MI, WideTy);
1542 Observer.changedInstr(MI);
1543 return Legalized;
1545 case TargetOpcode::G_SITOFP:
1546 if (TypeIdx != 1)
1547 return UnableToLegalize;
1548 Observer.changingInstr(MI);
1549 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1550 Observer.changedInstr(MI);
1551 return Legalized;
1553 case TargetOpcode::G_UITOFP:
1554 if (TypeIdx != 1)
1555 return UnableToLegalize;
1556 Observer.changingInstr(MI);
1557 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1558 Observer.changedInstr(MI);
1559 return Legalized;
1561 case TargetOpcode::G_LOAD:
1562 case TargetOpcode::G_SEXTLOAD:
1563 case TargetOpcode::G_ZEXTLOAD:
1564 Observer.changingInstr(MI);
1565 widenScalarDst(MI, WideTy);
1566 Observer.changedInstr(MI);
1567 return Legalized;
1569 case TargetOpcode::G_STORE: {
1570 if (TypeIdx != 0)
1571 return UnableToLegalize;
1573 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1574 if (!isPowerOf2_32(Ty.getSizeInBits()))
1575 return UnableToLegalize;
1577 Observer.changingInstr(MI);
1579 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1580 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1581 widenScalarSrc(MI, WideTy, 0, ExtType);
1583 Observer.changedInstr(MI);
1584 return Legalized;
1586 case TargetOpcode::G_CONSTANT: {
1587 MachineOperand &SrcMO = MI.getOperand(1);
1588 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1589 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
1590 Observer.changingInstr(MI);
1591 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1593 widenScalarDst(MI, WideTy);
1594 Observer.changedInstr(MI);
1595 return Legalized;
1597 case TargetOpcode::G_FCONSTANT: {
1598 MachineOperand &SrcMO = MI.getOperand(1);
1599 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1600 APFloat Val = SrcMO.getFPImm()->getValueAPF();
1601 bool LosesInfo;
1602 switch (WideTy.getSizeInBits()) {
1603 case 32:
1604 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1605 &LosesInfo);
1606 break;
1607 case 64:
1608 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1609 &LosesInfo);
1610 break;
1611 default:
1612 return UnableToLegalize;
1615 assert(!LosesInfo && "extend should always be lossless");
1617 Observer.changingInstr(MI);
1618 SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1620 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1621 Observer.changedInstr(MI);
1622 return Legalized;
1624 case TargetOpcode::G_IMPLICIT_DEF: {
1625 Observer.changingInstr(MI);
1626 widenScalarDst(MI, WideTy);
1627 Observer.changedInstr(MI);
1628 return Legalized;
1630 case TargetOpcode::G_BRCOND:
1631 Observer.changingInstr(MI);
1632 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1633 Observer.changedInstr(MI);
1634 return Legalized;
1636 case TargetOpcode::G_FCMP:
1637 Observer.changingInstr(MI);
1638 if (TypeIdx == 0)
1639 widenScalarDst(MI, WideTy);
1640 else {
1641 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1642 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1644 Observer.changedInstr(MI);
1645 return Legalized;
1647 case TargetOpcode::G_ICMP:
1648 Observer.changingInstr(MI);
1649 if (TypeIdx == 0)
1650 widenScalarDst(MI, WideTy);
1651 else {
1652 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1653 MI.getOperand(1).getPredicate()))
1654 ? TargetOpcode::G_SEXT
1655 : TargetOpcode::G_ZEXT;
1656 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1657 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1659 Observer.changedInstr(MI);
1660 return Legalized;
1662 case TargetOpcode::G_GEP:
1663 assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
1664 Observer.changingInstr(MI);
1665 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1666 Observer.changedInstr(MI);
1667 return Legalized;
1669 case TargetOpcode::G_PHI: {
1670 assert(TypeIdx == 0 && "Expecting only Idx 0");
1672 Observer.changingInstr(MI);
1673 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1674 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1675 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1676 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1679 MachineBasicBlock &MBB = *MI.getParent();
1680 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1681 widenScalarDst(MI, WideTy);
1682 Observer.changedInstr(MI);
1683 return Legalized;
1685 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1686 if (TypeIdx == 0) {
1687 Register VecReg = MI.getOperand(1).getReg();
1688 LLT VecTy = MRI.getType(VecReg);
1689 Observer.changingInstr(MI);
1691 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1692 WideTy.getSizeInBits()),
1693 1, TargetOpcode::G_SEXT);
1695 widenScalarDst(MI, WideTy, 0);
1696 Observer.changedInstr(MI);
1697 return Legalized;
1700 if (TypeIdx != 2)
1701 return UnableToLegalize;
1702 Observer.changingInstr(MI);
1703 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1704 Observer.changedInstr(MI);
1705 return Legalized;
1707 case TargetOpcode::G_FADD:
1708 case TargetOpcode::G_FMUL:
1709 case TargetOpcode::G_FSUB:
1710 case TargetOpcode::G_FMA:
1711 case TargetOpcode::G_FNEG:
1712 case TargetOpcode::G_FABS:
1713 case TargetOpcode::G_FCANONICALIZE:
1714 case TargetOpcode::G_FMINNUM:
1715 case TargetOpcode::G_FMAXNUM:
1716 case TargetOpcode::G_FMINNUM_IEEE:
1717 case TargetOpcode::G_FMAXNUM_IEEE:
1718 case TargetOpcode::G_FMINIMUM:
1719 case TargetOpcode::G_FMAXIMUM:
1720 case TargetOpcode::G_FDIV:
1721 case TargetOpcode::G_FREM:
1722 case TargetOpcode::G_FCEIL:
1723 case TargetOpcode::G_FFLOOR:
1724 case TargetOpcode::G_FCOS:
1725 case TargetOpcode::G_FSIN:
1726 case TargetOpcode::G_FLOG10:
1727 case TargetOpcode::G_FLOG:
1728 case TargetOpcode::G_FLOG2:
1729 case TargetOpcode::G_FRINT:
1730 case TargetOpcode::G_FNEARBYINT:
1731 case TargetOpcode::G_FSQRT:
1732 case TargetOpcode::G_FEXP:
1733 case TargetOpcode::G_FEXP2:
1734 case TargetOpcode::G_FPOW:
1735 case TargetOpcode::G_INTRINSIC_TRUNC:
1736 case TargetOpcode::G_INTRINSIC_ROUND:
1737 assert(TypeIdx == 0);
1738 Observer.changingInstr(MI);
1740 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1741 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1743 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1744 Observer.changedInstr(MI);
1745 return Legalized;
1746 case TargetOpcode::G_INTTOPTR:
1747 if (TypeIdx != 1)
1748 return UnableToLegalize;
1750 Observer.changingInstr(MI);
1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1752 Observer.changedInstr(MI);
1753 return Legalized;
1754 case TargetOpcode::G_PTRTOINT:
1755 if (TypeIdx != 0)
1756 return UnableToLegalize;
1758 Observer.changingInstr(MI);
1759 widenScalarDst(MI, WideTy, 0);
1760 Observer.changedInstr(MI);
1761 return Legalized;
1762 case TargetOpcode::G_BUILD_VECTOR: {
1763 Observer.changingInstr(MI);
1765 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
1766 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
1767 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
1769 // Avoid changing the result vector type if the source element type was
1770 // requested.
1771 if (TypeIdx == 1) {
1772 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
1773 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
1774 } else {
1775 widenScalarDst(MI, WideTy, 0);
1778 Observer.changedInstr(MI);
1779 return Legalized;
1781 case TargetOpcode::G_SEXT_INREG:
1782 if (TypeIdx != 0)
1783 return UnableToLegalize;
1785 Observer.changingInstr(MI);
1786 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1787 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
1788 Observer.changedInstr(MI);
1789 return Legalized;
1793 LegalizerHelper::LegalizeResult
1794 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
1795 using namespace TargetOpcode;
1796 MIRBuilder.setInstr(MI);
1798 switch(MI.getOpcode()) {
1799 default:
1800 return UnableToLegalize;
1801 case TargetOpcode::G_SREM:
1802 case TargetOpcode::G_UREM: {
1803 Register QuotReg = MRI.createGenericVirtualRegister(Ty);
1804 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
1805 .addDef(QuotReg)
1806 .addUse(MI.getOperand(1).getReg())
1807 .addUse(MI.getOperand(2).getReg());
1809 Register ProdReg = MRI.createGenericVirtualRegister(Ty);
1810 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
1811 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
1812 ProdReg);
1813 MI.eraseFromParent();
1814 return Legalized;
1816 case TargetOpcode::G_SMULO:
1817 case TargetOpcode::G_UMULO: {
1818 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
1819 // result.
1820 Register Res = MI.getOperand(0).getReg();
1821 Register Overflow = MI.getOperand(1).getReg();
1822 Register LHS = MI.getOperand(2).getReg();
1823 Register RHS = MI.getOperand(3).getReg();
1825 MIRBuilder.buildMul(Res, LHS, RHS);
1827 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
1828 ? TargetOpcode::G_SMULH
1829 : TargetOpcode::G_UMULH;
1831 Register HiPart = MRI.createGenericVirtualRegister(Ty);
1832 MIRBuilder.buildInstr(Opcode)
1833 .addDef(HiPart)
1834 .addUse(LHS)
1835 .addUse(RHS);
1837 Register Zero = MRI.createGenericVirtualRegister(Ty);
1838 MIRBuilder.buildConstant(Zero, 0);
1840 // For *signed* multiply, overflow is detected by checking:
1841 // (hi != (lo >> bitwidth-1))
1842 if (Opcode == TargetOpcode::G_SMULH) {
1843 Register Shifted = MRI.createGenericVirtualRegister(Ty);
1844 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty);
1845 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
1846 MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
1847 .addDef(Shifted)
1848 .addUse(Res)
1849 .addUse(ShiftAmt);
1850 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
1851 } else {
1852 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
1854 MI.eraseFromParent();
1855 return Legalized;
1857 case TargetOpcode::G_FNEG: {
1858 // TODO: Handle vector types once we are able to
1859 // represent them.
1860 if (Ty.isVector())
1861 return UnableToLegalize;
1862 Register Res = MI.getOperand(0).getReg();
1863 Type *ZeroTy;
1864 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1865 switch (Ty.getSizeInBits()) {
1866 case 16:
1867 ZeroTy = Type::getHalfTy(Ctx);
1868 break;
1869 case 32:
1870 ZeroTy = Type::getFloatTy(Ctx);
1871 break;
1872 case 64:
1873 ZeroTy = Type::getDoubleTy(Ctx);
1874 break;
1875 case 128:
1876 ZeroTy = Type::getFP128Ty(Ctx);
1877 break;
1878 default:
1879 llvm_unreachable("unexpected floating-point type");
1881 ConstantFP &ZeroForNegation =
1882 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
1883 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
1884 Register SubByReg = MI.getOperand(1).getReg();
1885 Register ZeroReg = Zero->getOperand(0).getReg();
1886 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg},
1887 MI.getFlags());
1888 MI.eraseFromParent();
1889 return Legalized;
1891 case TargetOpcode::G_FSUB: {
1892 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
1893 // First, check if G_FNEG is marked as Lower. If so, we may
1894 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
1895 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
1896 return UnableToLegalize;
1897 Register Res = MI.getOperand(0).getReg();
1898 Register LHS = MI.getOperand(1).getReg();
1899 Register RHS = MI.getOperand(2).getReg();
1900 Register Neg = MRI.createGenericVirtualRegister(Ty);
1901 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
1902 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags());
1903 MI.eraseFromParent();
1904 return Legalized;
1906 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1907 Register OldValRes = MI.getOperand(0).getReg();
1908 Register SuccessRes = MI.getOperand(1).getReg();
1909 Register Addr = MI.getOperand(2).getReg();
1910 Register CmpVal = MI.getOperand(3).getReg();
1911 Register NewVal = MI.getOperand(4).getReg();
1912 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
1913 **MI.memoperands_begin());
1914 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
1915 MI.eraseFromParent();
1916 return Legalized;
1918 case TargetOpcode::G_LOAD:
1919 case TargetOpcode::G_SEXTLOAD:
1920 case TargetOpcode::G_ZEXTLOAD: {
1921 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
1922 Register DstReg = MI.getOperand(0).getReg();
1923 Register PtrReg = MI.getOperand(1).getReg();
1924 LLT DstTy = MRI.getType(DstReg);
1925 auto &MMO = **MI.memoperands_begin();
1927 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
1928 if (MI.getOpcode() == TargetOpcode::G_LOAD) {
1929 // This load needs splitting into power of 2 sized loads.
1930 if (DstTy.isVector())
1931 return UnableToLegalize;
1932 if (isPowerOf2_32(DstTy.getSizeInBits()))
1933 return UnableToLegalize; // Don't know what we're being asked to do.
1935 // Our strategy here is to generate anyextending loads for the smaller
1936 // types up to next power-2 result type, and then combine the two larger
1937 // result values together, before truncating back down to the non-pow-2
1938 // type.
1939 // E.g. v1 = i24 load =>
1940 // v2 = i32 load (2 byte)
1941 // v3 = i32 load (1 byte)
1942 // v4 = i32 shl v3, 16
1943 // v5 = i32 or v4, v2
1944 // v1 = i24 trunc v5
1945 // By doing this we generate the correct truncate which should get
1946 // combined away as an artifact with a matching extend.
1947 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
1948 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
1950 MachineFunction &MF = MIRBuilder.getMF();
1951 MachineMemOperand *LargeMMO =
1952 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
1953 MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
1954 &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
1956 LLT PtrTy = MRI.getType(PtrReg);
1957 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
1958 LLT AnyExtTy = LLT::scalar(AnyExtSize);
1959 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
1960 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
1961 auto LargeLoad =
1962 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO);
1964 auto OffsetCst =
1965 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
1966 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
1967 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
1968 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
1969 *SmallMMO);
1971 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
1972 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
1973 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
1974 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
1975 MI.eraseFromParent();
1976 return Legalized;
1978 MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
1979 MI.eraseFromParent();
1980 return Legalized;
1983 if (DstTy.isScalar()) {
1984 Register TmpReg =
1985 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
1986 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1987 switch (MI.getOpcode()) {
1988 default:
1989 llvm_unreachable("Unexpected opcode");
1990 case TargetOpcode::G_LOAD:
1991 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1992 break;
1993 case TargetOpcode::G_SEXTLOAD:
1994 MIRBuilder.buildSExt(DstReg, TmpReg);
1995 break;
1996 case TargetOpcode::G_ZEXTLOAD:
1997 MIRBuilder.buildZExt(DstReg, TmpReg);
1998 break;
2000 MI.eraseFromParent();
2001 return Legalized;
2004 return UnableToLegalize;
2006 case TargetOpcode::G_STORE: {
2007 // Lower a non-power of 2 store into multiple pow-2 stores.
2008 // E.g. split an i24 store into an i16 store + i8 store.
2009 // We do this by first extending the stored value to the next largest power
2010 // of 2 type, and then using truncating stores to store the components.
2011 // By doing this, likewise with G_LOAD, generate an extend that can be
2012 // artifact-combined away instead of leaving behind extracts.
2013 Register SrcReg = MI.getOperand(0).getReg();
2014 Register PtrReg = MI.getOperand(1).getReg();
2015 LLT SrcTy = MRI.getType(SrcReg);
2016 MachineMemOperand &MMO = **MI.memoperands_begin();
2017 if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2018 return UnableToLegalize;
2019 if (SrcTy.isVector())
2020 return UnableToLegalize;
2021 if (isPowerOf2_32(SrcTy.getSizeInBits()))
2022 return UnableToLegalize; // Don't know what we're being asked to do.
2024 // Extend to the next pow-2.
2025 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2026 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2028 // Obtain the smaller value by shifting away the larger value.
2029 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2030 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2031 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2032 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2034 // Generate the GEP and truncating stores.
2035 LLT PtrTy = MRI.getType(PtrReg);
2036 auto OffsetCst =
2037 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2038 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
2039 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
2041 MachineFunction &MF = MIRBuilder.getMF();
2042 MachineMemOperand *LargeMMO =
2043 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2044 MachineMemOperand *SmallMMO =
2045 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2046 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2047 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2048 MI.eraseFromParent();
2049 return Legalized;
2051 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2052 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2053 case TargetOpcode::G_CTLZ:
2054 case TargetOpcode::G_CTTZ:
2055 case TargetOpcode::G_CTPOP:
2056 return lowerBitCount(MI, TypeIdx, Ty);
2057 case G_UADDO: {
2058 Register Res = MI.getOperand(0).getReg();
2059 Register CarryOut = MI.getOperand(1).getReg();
2060 Register LHS = MI.getOperand(2).getReg();
2061 Register RHS = MI.getOperand(3).getReg();
2063 MIRBuilder.buildAdd(Res, LHS, RHS);
2064 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2066 MI.eraseFromParent();
2067 return Legalized;
2069 case G_UADDE: {
2070 Register Res = MI.getOperand(0).getReg();
2071 Register CarryOut = MI.getOperand(1).getReg();
2072 Register LHS = MI.getOperand(2).getReg();
2073 Register RHS = MI.getOperand(3).getReg();
2074 Register CarryIn = MI.getOperand(4).getReg();
2076 Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2077 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
2079 MIRBuilder.buildAdd(TmpRes, LHS, RHS);
2080 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
2081 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2082 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2084 MI.eraseFromParent();
2085 return Legalized;
2087 case G_USUBO: {
2088 Register Res = MI.getOperand(0).getReg();
2089 Register BorrowOut = MI.getOperand(1).getReg();
2090 Register LHS = MI.getOperand(2).getReg();
2091 Register RHS = MI.getOperand(3).getReg();
2093 MIRBuilder.buildSub(Res, LHS, RHS);
2094 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2096 MI.eraseFromParent();
2097 return Legalized;
2099 case G_USUBE: {
2100 Register Res = MI.getOperand(0).getReg();
2101 Register BorrowOut = MI.getOperand(1).getReg();
2102 Register LHS = MI.getOperand(2).getReg();
2103 Register RHS = MI.getOperand(3).getReg();
2104 Register BorrowIn = MI.getOperand(4).getReg();
2106 Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2107 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
2108 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2109 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2111 MIRBuilder.buildSub(TmpRes, LHS, RHS);
2112 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
2113 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2114 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
2115 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
2116 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2118 MI.eraseFromParent();
2119 return Legalized;
2121 case G_UITOFP:
2122 return lowerUITOFP(MI, TypeIdx, Ty);
2123 case G_SITOFP:
2124 return lowerSITOFP(MI, TypeIdx, Ty);
2125 case G_SMIN:
2126 case G_SMAX:
2127 case G_UMIN:
2128 case G_UMAX:
2129 return lowerMinMax(MI, TypeIdx, Ty);
2130 case G_FCOPYSIGN:
2131 return lowerFCopySign(MI, TypeIdx, Ty);
2132 case G_FMINNUM:
2133 case G_FMAXNUM:
2134 return lowerFMinNumMaxNum(MI);
2135 case G_UNMERGE_VALUES:
2136 return lowerUnmergeValues(MI);
2137 case TargetOpcode::G_SEXT_INREG: {
2138 assert(MI.getOperand(2).isImm() && "Expected immediate");
2139 int64_t SizeInBits = MI.getOperand(2).getImm();
2141 Register DstReg = MI.getOperand(0).getReg();
2142 Register SrcReg = MI.getOperand(1).getReg();
2143 LLT DstTy = MRI.getType(DstReg);
2144 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2146 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2147 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()});
2148 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()});
2149 MI.eraseFromParent();
2150 return Legalized;
2152 case G_SHUFFLE_VECTOR:
2153 return lowerShuffleVector(MI);
2157 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2158 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2159 SmallVector<Register, 2> DstRegs;
2161 unsigned NarrowSize = NarrowTy.getSizeInBits();
2162 Register DstReg = MI.getOperand(0).getReg();
2163 unsigned Size = MRI.getType(DstReg).getSizeInBits();
2164 int NumParts = Size / NarrowSize;
2165 // FIXME: Don't know how to handle the situation where the small vectors
2166 // aren't all the same size yet.
2167 if (Size % NarrowSize != 0)
2168 return UnableToLegalize;
2170 for (int i = 0; i < NumParts; ++i) {
2171 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2172 MIRBuilder.buildUndef(TmpReg);
2173 DstRegs.push_back(TmpReg);
2176 if (NarrowTy.isVector())
2177 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2178 else
2179 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2181 MI.eraseFromParent();
2182 return Legalized;
2185 LegalizerHelper::LegalizeResult
2186 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2187 LLT NarrowTy) {
2188 const unsigned Opc = MI.getOpcode();
2189 const unsigned NumOps = MI.getNumOperands() - 1;
2190 const unsigned NarrowSize = NarrowTy.getSizeInBits();
2191 const Register DstReg = MI.getOperand(0).getReg();
2192 const unsigned Flags = MI.getFlags();
2193 const LLT DstTy = MRI.getType(DstReg);
2194 const unsigned Size = DstTy.getSizeInBits();
2195 const int NumParts = Size / NarrowSize;
2196 const LLT EltTy = DstTy.getElementType();
2197 const unsigned EltSize = EltTy.getSizeInBits();
2198 const unsigned BitsForNumParts = NarrowSize * NumParts;
2200 // Check if we have any leftovers. If we do, then only handle the case where
2201 // the leftover is one element.
2202 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
2203 return UnableToLegalize;
2205 if (BitsForNumParts != Size) {
2206 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
2207 MIRBuilder.buildUndef(AccumDstReg);
2209 // Handle the pieces which evenly divide into the requested type with
2210 // extract/op/insert sequence.
2211 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
2212 SmallVector<SrcOp, 4> SrcOps;
2213 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2214 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
2215 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
2216 SrcOps.push_back(PartOpReg);
2219 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
2220 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2222 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
2223 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
2224 AccumDstReg = PartInsertReg;
2227 // Handle the remaining element sized leftover piece.
2228 SmallVector<SrcOp, 4> SrcOps;
2229 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2230 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy);
2231 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
2232 BitsForNumParts);
2233 SrcOps.push_back(PartOpReg);
2236 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy);
2237 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2238 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
2239 MI.eraseFromParent();
2241 return Legalized;
2244 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2246 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
2248 if (NumOps >= 2)
2249 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
2251 if (NumOps >= 3)
2252 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
2254 for (int i = 0; i < NumParts; ++i) {
2255 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2257 if (NumOps == 1)
2258 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
2259 else if (NumOps == 2) {
2260 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
2261 } else if (NumOps == 3) {
2262 MIRBuilder.buildInstr(Opc, {DstReg},
2263 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
2266 DstRegs.push_back(DstReg);
2269 if (NarrowTy.isVector())
2270 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2271 else
2272 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2274 MI.eraseFromParent();
2275 return Legalized;
2278 // Handle splitting vector operations which need to have the same number of
2279 // elements in each type index, but each type index may have a different element
2280 // type.
2282 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2283 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2284 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2286 // Also handles some irregular breakdown cases, e.g.
2287 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2288 // <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2289 // s64 = G_SHL s64, s32
2290 LegalizerHelper::LegalizeResult
2291 LegalizerHelper::fewerElementsVectorMultiEltType(
2292 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2293 if (TypeIdx != 0)
2294 return UnableToLegalize;
2296 const LLT NarrowTy0 = NarrowTyArg;
2297 const unsigned NewNumElts =
2298 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2300 const Register DstReg = MI.getOperand(0).getReg();
2301 LLT DstTy = MRI.getType(DstReg);
2302 LLT LeftoverTy0;
2304 // All of the operands need to have the same number of elements, so if we can
2305 // determine a type breakdown for the result type, we can for all of the
2306 // source types.
2307 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2308 if (NumParts < 0)
2309 return UnableToLegalize;
2311 SmallVector<MachineInstrBuilder, 4> NewInsts;
2313 SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2314 SmallVector<Register, 4> PartRegs, LeftoverRegs;
2316 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2317 LLT LeftoverTy;
2318 Register SrcReg = MI.getOperand(I).getReg();
2319 LLT SrcTyI = MRI.getType(SrcReg);
2320 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2321 LLT LeftoverTyI;
2323 // Split this operand into the requested typed registers, and any leftover
2324 // required to reproduce the original type.
2325 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2326 LeftoverRegs))
2327 return UnableToLegalize;
2329 if (I == 1) {
2330 // For the first operand, create an instruction for each part and setup
2331 // the result.
2332 for (Register PartReg : PartRegs) {
2333 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2334 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2335 .addDef(PartDstReg)
2336 .addUse(PartReg));
2337 DstRegs.push_back(PartDstReg);
2340 for (Register LeftoverReg : LeftoverRegs) {
2341 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2342 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2343 .addDef(PartDstReg)
2344 .addUse(LeftoverReg));
2345 LeftoverDstRegs.push_back(PartDstReg);
2347 } else {
2348 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2350 // Add the newly created operand splits to the existing instructions. The
2351 // odd-sized pieces are ordered after the requested NarrowTyArg sized
2352 // pieces.
2353 unsigned InstCount = 0;
2354 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2355 NewInsts[InstCount++].addUse(PartRegs[J]);
2356 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2357 NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2360 PartRegs.clear();
2361 LeftoverRegs.clear();
2364 // Insert the newly built operations and rebuild the result register.
2365 for (auto &MIB : NewInsts)
2366 MIRBuilder.insertInstr(MIB);
2368 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2370 MI.eraseFromParent();
2371 return Legalized;
2374 LegalizerHelper::LegalizeResult
2375 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2376 LLT NarrowTy) {
2377 if (TypeIdx != 0)
2378 return UnableToLegalize;
2380 Register DstReg = MI.getOperand(0).getReg();
2381 Register SrcReg = MI.getOperand(1).getReg();
2382 LLT DstTy = MRI.getType(DstReg);
2383 LLT SrcTy = MRI.getType(SrcReg);
2385 LLT NarrowTy0 = NarrowTy;
2386 LLT NarrowTy1;
2387 unsigned NumParts;
2389 if (NarrowTy.isVector()) {
2390 // Uneven breakdown not handled.
2391 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2392 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2393 return UnableToLegalize;
2395 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2396 } else {
2397 NumParts = DstTy.getNumElements();
2398 NarrowTy1 = SrcTy.getElementType();
2401 SmallVector<Register, 4> SrcRegs, DstRegs;
2402 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2404 for (unsigned I = 0; I < NumParts; ++I) {
2405 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2406 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
2407 .addDef(DstReg)
2408 .addUse(SrcRegs[I]);
2410 NewInst->setFlags(MI.getFlags());
2411 DstRegs.push_back(DstReg);
2414 if (NarrowTy.isVector())
2415 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2416 else
2417 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2419 MI.eraseFromParent();
2420 return Legalized;
2423 LegalizerHelper::LegalizeResult
2424 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2425 LLT NarrowTy) {
2426 Register DstReg = MI.getOperand(0).getReg();
2427 Register Src0Reg = MI.getOperand(2).getReg();
2428 LLT DstTy = MRI.getType(DstReg);
2429 LLT SrcTy = MRI.getType(Src0Reg);
2431 unsigned NumParts;
2432 LLT NarrowTy0, NarrowTy1;
2434 if (TypeIdx == 0) {
2435 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2436 unsigned OldElts = DstTy.getNumElements();
2438 NarrowTy0 = NarrowTy;
2439 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2440 NarrowTy1 = NarrowTy.isVector() ?
2441 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2442 SrcTy.getElementType();
2444 } else {
2445 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2446 unsigned OldElts = SrcTy.getNumElements();
2448 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2449 NarrowTy.getNumElements();
2450 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2451 DstTy.getScalarSizeInBits());
2452 NarrowTy1 = NarrowTy;
2455 // FIXME: Don't know how to handle the situation where the small vectors
2456 // aren't all the same size yet.
2457 if (NarrowTy1.isVector() &&
2458 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2459 return UnableToLegalize;
2461 CmpInst::Predicate Pred
2462 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2464 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2465 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2466 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2468 for (unsigned I = 0; I < NumParts; ++I) {
2469 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2470 DstRegs.push_back(DstReg);
2472 if (MI.getOpcode() == TargetOpcode::G_ICMP)
2473 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2474 else {
2475 MachineInstr *NewCmp
2476 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2477 NewCmp->setFlags(MI.getFlags());
2481 if (NarrowTy1.isVector())
2482 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2483 else
2484 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2486 MI.eraseFromParent();
2487 return Legalized;
2490 LegalizerHelper::LegalizeResult
2491 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2492 LLT NarrowTy) {
2493 Register DstReg = MI.getOperand(0).getReg();
2494 Register CondReg = MI.getOperand(1).getReg();
2496 unsigned NumParts = 0;
2497 LLT NarrowTy0, NarrowTy1;
2499 LLT DstTy = MRI.getType(DstReg);
2500 LLT CondTy = MRI.getType(CondReg);
2501 unsigned Size = DstTy.getSizeInBits();
2503 assert(TypeIdx == 0 || CondTy.isVector());
2505 if (TypeIdx == 0) {
2506 NarrowTy0 = NarrowTy;
2507 NarrowTy1 = CondTy;
2509 unsigned NarrowSize = NarrowTy0.getSizeInBits();
2510 // FIXME: Don't know how to handle the situation where the small vectors
2511 // aren't all the same size yet.
2512 if (Size % NarrowSize != 0)
2513 return UnableToLegalize;
2515 NumParts = Size / NarrowSize;
2517 // Need to break down the condition type
2518 if (CondTy.isVector()) {
2519 if (CondTy.getNumElements() == NumParts)
2520 NarrowTy1 = CondTy.getElementType();
2521 else
2522 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2523 CondTy.getScalarSizeInBits());
2525 } else {
2526 NumParts = CondTy.getNumElements();
2527 if (NarrowTy.isVector()) {
2528 // TODO: Handle uneven breakdown.
2529 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2530 return UnableToLegalize;
2532 return UnableToLegalize;
2533 } else {
2534 NarrowTy0 = DstTy.getElementType();
2535 NarrowTy1 = NarrowTy;
2539 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2540 if (CondTy.isVector())
2541 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2543 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2544 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2546 for (unsigned i = 0; i < NumParts; ++i) {
2547 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2548 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2549 Src1Regs[i], Src2Regs[i]);
2550 DstRegs.push_back(DstReg);
2553 if (NarrowTy0.isVector())
2554 MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2555 else
2556 MIRBuilder.buildBuildVector(DstReg, DstRegs);
2558 MI.eraseFromParent();
2559 return Legalized;
2562 LegalizerHelper::LegalizeResult
2563 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2564 LLT NarrowTy) {
2565 const Register DstReg = MI.getOperand(0).getReg();
2566 LLT PhiTy = MRI.getType(DstReg);
2567 LLT LeftoverTy;
2569 // All of the operands need to have the same number of elements, so if we can
2570 // determine a type breakdown for the result type, we can for all of the
2571 // source types.
2572 int NumParts, NumLeftover;
2573 std::tie(NumParts, NumLeftover)
2574 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2575 if (NumParts < 0)
2576 return UnableToLegalize;
2578 SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2579 SmallVector<MachineInstrBuilder, 4> NewInsts;
2581 const int TotalNumParts = NumParts + NumLeftover;
2583 // Insert the new phis in the result block first.
2584 for (int I = 0; I != TotalNumParts; ++I) {
2585 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2586 Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2587 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2588 .addDef(PartDstReg));
2589 if (I < NumParts)
2590 DstRegs.push_back(PartDstReg);
2591 else
2592 LeftoverDstRegs.push_back(PartDstReg);
2595 MachineBasicBlock *MBB = MI.getParent();
2596 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2597 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2599 SmallVector<Register, 4> PartRegs, LeftoverRegs;
2601 // Insert code to extract the incoming values in each predecessor block.
2602 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2603 PartRegs.clear();
2604 LeftoverRegs.clear();
2606 Register SrcReg = MI.getOperand(I).getReg();
2607 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2608 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2610 LLT Unused;
2611 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2612 LeftoverRegs))
2613 return UnableToLegalize;
2615 // Add the newly created operand splits to the existing instructions. The
2616 // odd-sized pieces are ordered after the requested NarrowTyArg sized
2617 // pieces.
2618 for (int J = 0; J != TotalNumParts; ++J) {
2619 MachineInstrBuilder MIB = NewInsts[J];
2620 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2621 MIB.addMBB(&OpMBB);
2625 MI.eraseFromParent();
2626 return Legalized;
2629 LegalizerHelper::LegalizeResult
2630 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2631 unsigned TypeIdx,
2632 LLT NarrowTy) {
2633 if (TypeIdx != 1)
2634 return UnableToLegalize;
2636 const int NumDst = MI.getNumOperands() - 1;
2637 const Register SrcReg = MI.getOperand(NumDst).getReg();
2638 LLT SrcTy = MRI.getType(SrcReg);
2640 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2642 // TODO: Create sequence of extracts.
2643 if (DstTy == NarrowTy)
2644 return UnableToLegalize;
2646 LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2647 if (DstTy == GCDTy) {
2648 // This would just be a copy of the same unmerge.
2649 // TODO: Create extracts, pad with undef and create intermediate merges.
2650 return UnableToLegalize;
2653 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2654 const int NumUnmerge = Unmerge->getNumOperands() - 1;
2655 const int PartsPerUnmerge = NumDst / NumUnmerge;
2657 for (int I = 0; I != NumUnmerge; ++I) {
2658 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2660 for (int J = 0; J != PartsPerUnmerge; ++J)
2661 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2662 MIB.addUse(Unmerge.getReg(I));
2665 MI.eraseFromParent();
2666 return Legalized;
2669 LegalizerHelper::LegalizeResult
2670 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
2671 LLT NarrowTy) {
2672 // FIXME: Don't know how to handle secondary types yet.
2673 if (TypeIdx != 0)
2674 return UnableToLegalize;
2676 MachineMemOperand *MMO = *MI.memoperands_begin();
2678 // This implementation doesn't work for atomics. Give up instead of doing
2679 // something invalid.
2680 if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
2681 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
2682 return UnableToLegalize;
2684 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
2685 Register ValReg = MI.getOperand(0).getReg();
2686 Register AddrReg = MI.getOperand(1).getReg();
2687 LLT ValTy = MRI.getType(ValReg);
2689 int NumParts = -1;
2690 int NumLeftover = -1;
2691 LLT LeftoverTy;
2692 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
2693 if (IsLoad) {
2694 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
2695 } else {
2696 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
2697 NarrowLeftoverRegs)) {
2698 NumParts = NarrowRegs.size();
2699 NumLeftover = NarrowLeftoverRegs.size();
2703 if (NumParts == -1)
2704 return UnableToLegalize;
2706 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
2708 unsigned TotalSize = ValTy.getSizeInBits();
2710 // Split the load/store into PartTy sized pieces starting at Offset. If this
2711 // is a load, return the new registers in ValRegs. For a store, each elements
2712 // of ValRegs should be PartTy. Returns the next offset that needs to be
2713 // handled.
2714 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
2715 unsigned Offset) -> unsigned {
2716 MachineFunction &MF = MIRBuilder.getMF();
2717 unsigned PartSize = PartTy.getSizeInBits();
2718 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
2719 Offset += PartSize, ++Idx) {
2720 unsigned ByteSize = PartSize / 8;
2721 unsigned ByteOffset = Offset / 8;
2722 Register NewAddrReg;
2724 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
2726 MachineMemOperand *NewMMO =
2727 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
2729 if (IsLoad) {
2730 Register Dst = MRI.createGenericVirtualRegister(PartTy);
2731 ValRegs.push_back(Dst);
2732 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
2733 } else {
2734 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
2738 return Offset;
2741 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
2743 // Handle the rest of the register if this isn't an even type breakdown.
2744 if (LeftoverTy.isValid())
2745 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
2747 if (IsLoad) {
2748 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
2749 LeftoverTy, NarrowLeftoverRegs);
2752 MI.eraseFromParent();
2753 return Legalized;
2756 LegalizerHelper::LegalizeResult
2757 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
2758 LLT NarrowTy) {
2759 using namespace TargetOpcode;
2761 MIRBuilder.setInstr(MI);
2762 switch (MI.getOpcode()) {
2763 case G_IMPLICIT_DEF:
2764 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
2765 case G_AND:
2766 case G_OR:
2767 case G_XOR:
2768 case G_ADD:
2769 case G_SUB:
2770 case G_MUL:
2771 case G_SMULH:
2772 case G_UMULH:
2773 case G_FADD:
2774 case G_FMUL:
2775 case G_FSUB:
2776 case G_FNEG:
2777 case G_FABS:
2778 case G_FCANONICALIZE:
2779 case G_FDIV:
2780 case G_FREM:
2781 case G_FMA:
2782 case G_FPOW:
2783 case G_FEXP:
2784 case G_FEXP2:
2785 case G_FLOG:
2786 case G_FLOG2:
2787 case G_FLOG10:
2788 case G_FNEARBYINT:
2789 case G_FCEIL:
2790 case G_FFLOOR:
2791 case G_FRINT:
2792 case G_INTRINSIC_ROUND:
2793 case G_INTRINSIC_TRUNC:
2794 case G_FCOS:
2795 case G_FSIN:
2796 case G_FSQRT:
2797 case G_BSWAP:
2798 case G_SDIV:
2799 case G_SMIN:
2800 case G_SMAX:
2801 case G_UMIN:
2802 case G_UMAX:
2803 case G_FMINNUM:
2804 case G_FMAXNUM:
2805 case G_FMINNUM_IEEE:
2806 case G_FMAXNUM_IEEE:
2807 case G_FMINIMUM:
2808 case G_FMAXIMUM:
2809 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
2810 case G_SHL:
2811 case G_LSHR:
2812 case G_ASHR:
2813 case G_CTLZ:
2814 case G_CTLZ_ZERO_UNDEF:
2815 case G_CTTZ:
2816 case G_CTTZ_ZERO_UNDEF:
2817 case G_CTPOP:
2818 case G_FCOPYSIGN:
2819 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
2820 case G_ZEXT:
2821 case G_SEXT:
2822 case G_ANYEXT:
2823 case G_FPEXT:
2824 case G_FPTRUNC:
2825 case G_SITOFP:
2826 case G_UITOFP:
2827 case G_FPTOSI:
2828 case G_FPTOUI:
2829 case G_INTTOPTR:
2830 case G_PTRTOINT:
2831 case G_ADDRSPACE_CAST:
2832 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
2833 case G_ICMP:
2834 case G_FCMP:
2835 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
2836 case G_SELECT:
2837 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
2838 case G_PHI:
2839 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
2840 case G_UNMERGE_VALUES:
2841 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
2842 case G_LOAD:
2843 case G_STORE:
2844 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
2845 default:
2846 return UnableToLegalize;
2850 LegalizerHelper::LegalizeResult
2851 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
2852 const LLT HalfTy, const LLT AmtTy) {
2854 Register InL = MRI.createGenericVirtualRegister(HalfTy);
2855 Register InH = MRI.createGenericVirtualRegister(HalfTy);
2856 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2858 if (Amt.isNullValue()) {
2859 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
2860 MI.eraseFromParent();
2861 return Legalized;
2864 LLT NVT = HalfTy;
2865 unsigned NVTBits = HalfTy.getSizeInBits();
2866 unsigned VTBits = 2 * NVTBits;
2868 SrcOp Lo(Register(0)), Hi(Register(0));
2869 if (MI.getOpcode() == TargetOpcode::G_SHL) {
2870 if (Amt.ugt(VTBits)) {
2871 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2872 } else if (Amt.ugt(NVTBits)) {
2873 Lo = MIRBuilder.buildConstant(NVT, 0);
2874 Hi = MIRBuilder.buildShl(NVT, InL,
2875 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2876 } else if (Amt == NVTBits) {
2877 Lo = MIRBuilder.buildConstant(NVT, 0);
2878 Hi = InL;
2879 } else {
2880 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
2881 auto OrLHS =
2882 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
2883 auto OrRHS = MIRBuilder.buildLShr(
2884 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2885 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2887 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2888 if (Amt.ugt(VTBits)) {
2889 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2890 } else if (Amt.ugt(NVTBits)) {
2891 Lo = MIRBuilder.buildLShr(NVT, InH,
2892 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2893 Hi = MIRBuilder.buildConstant(NVT, 0);
2894 } else if (Amt == NVTBits) {
2895 Lo = InH;
2896 Hi = MIRBuilder.buildConstant(NVT, 0);
2897 } else {
2898 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2900 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2901 auto OrRHS = MIRBuilder.buildShl(
2902 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2904 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2905 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
2907 } else {
2908 if (Amt.ugt(VTBits)) {
2909 Hi = Lo = MIRBuilder.buildAShr(
2910 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2911 } else if (Amt.ugt(NVTBits)) {
2912 Lo = MIRBuilder.buildAShr(NVT, InH,
2913 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2914 Hi = MIRBuilder.buildAShr(NVT, InH,
2915 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2916 } else if (Amt == NVTBits) {
2917 Lo = InH;
2918 Hi = MIRBuilder.buildAShr(NVT, InH,
2919 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2920 } else {
2921 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2923 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2924 auto OrRHS = MIRBuilder.buildShl(
2925 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2927 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2928 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
2932 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
2933 MI.eraseFromParent();
2935 return Legalized;
2938 // TODO: Optimize if constant shift amount.
2939 LegalizerHelper::LegalizeResult
2940 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
2941 LLT RequestedTy) {
2942 if (TypeIdx == 1) {
2943 Observer.changingInstr(MI);
2944 narrowScalarSrc(MI, RequestedTy, 2);
2945 Observer.changedInstr(MI);
2946 return Legalized;
2949 Register DstReg = MI.getOperand(0).getReg();
2950 LLT DstTy = MRI.getType(DstReg);
2951 if (DstTy.isVector())
2952 return UnableToLegalize;
2954 Register Amt = MI.getOperand(2).getReg();
2955 LLT ShiftAmtTy = MRI.getType(Amt);
2956 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
2957 if (DstEltSize % 2 != 0)
2958 return UnableToLegalize;
2960 // Ignore the input type. We can only go to exactly half the size of the
2961 // input. If that isn't small enough, the resulting pieces will be further
2962 // legalized.
2963 const unsigned NewBitSize = DstEltSize / 2;
2964 const LLT HalfTy = LLT::scalar(NewBitSize);
2965 const LLT CondTy = LLT::scalar(1);
2967 if (const MachineInstr *KShiftAmt =
2968 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
2969 return narrowScalarShiftByConstant(
2970 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
2973 // TODO: Expand with known bits.
2975 // Handle the fully general expansion by an unknown amount.
2976 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
2978 Register InL = MRI.createGenericVirtualRegister(HalfTy);
2979 Register InH = MRI.createGenericVirtualRegister(HalfTy);
2980 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2982 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
2983 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
2985 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
2986 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
2987 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
2989 Register ResultRegs[2];
2990 switch (MI.getOpcode()) {
2991 case TargetOpcode::G_SHL: {
2992 // Short: ShAmt < NewBitSize
2993 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2995 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2996 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
2997 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2999 // Long: ShAmt >= NewBitSize
3000 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
3001 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3003 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3004 auto Hi = MIRBuilder.buildSelect(
3005 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3007 ResultRegs[0] = Lo.getReg(0);
3008 ResultRegs[1] = Hi.getReg(0);
3009 break;
3011 case TargetOpcode::G_LSHR: {
3012 // Short: ShAmt < NewBitSize
3013 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt);
3015 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3016 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3017 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
3019 // Long: ShAmt >= NewBitSize
3020 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
3021 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
3023 auto Lo = MIRBuilder.buildSelect(
3024 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3025 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3027 ResultRegs[0] = Lo.getReg(0);
3028 ResultRegs[1] = Hi.getReg(0);
3029 break;
3031 case TargetOpcode::G_ASHR: {
3032 // Short: ShAmt < NewBitSize
3033 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt);
3035 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3036 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack);
3037 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
3039 // Long: ShAmt >= NewBitSize
3041 // Sign of Hi part.
3042 auto HiL = MIRBuilder.buildAShr(
3043 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1));
3045 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
3047 auto Lo = MIRBuilder.buildSelect(
3048 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3050 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3052 ResultRegs[0] = Lo.getReg(0);
3053 ResultRegs[1] = Hi.getReg(0);
3054 break;
3056 default:
3057 llvm_unreachable("not a shift");
3060 MIRBuilder.buildMerge(DstReg, ResultRegs);
3061 MI.eraseFromParent();
3062 return Legalized;
3065 LegalizerHelper::LegalizeResult
3066 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3067 LLT MoreTy) {
3068 assert(TypeIdx == 0 && "Expecting only Idx 0");
3070 Observer.changingInstr(MI);
3071 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3072 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3073 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3074 moreElementsVectorSrc(MI, MoreTy, I);
3077 MachineBasicBlock &MBB = *MI.getParent();
3078 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3079 moreElementsVectorDst(MI, MoreTy, 0);
3080 Observer.changedInstr(MI);
3081 return Legalized;
3084 LegalizerHelper::LegalizeResult
3085 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3086 LLT MoreTy) {
3087 MIRBuilder.setInstr(MI);
3088 unsigned Opc = MI.getOpcode();
3089 switch (Opc) {
3090 case TargetOpcode::G_IMPLICIT_DEF:
3091 case TargetOpcode::G_LOAD: {
3092 if (TypeIdx != 0)
3093 return UnableToLegalize;
3094 Observer.changingInstr(MI);
3095 moreElementsVectorDst(MI, MoreTy, 0);
3096 Observer.changedInstr(MI);
3097 return Legalized;
3099 case TargetOpcode::G_STORE:
3100 if (TypeIdx != 0)
3101 return UnableToLegalize;
3102 Observer.changingInstr(MI);
3103 moreElementsVectorSrc(MI, MoreTy, 0);
3104 Observer.changedInstr(MI);
3105 return Legalized;
3106 case TargetOpcode::G_AND:
3107 case TargetOpcode::G_OR:
3108 case TargetOpcode::G_XOR:
3109 case TargetOpcode::G_SMIN:
3110 case TargetOpcode::G_SMAX:
3111 case TargetOpcode::G_UMIN:
3112 case TargetOpcode::G_UMAX: {
3113 Observer.changingInstr(MI);
3114 moreElementsVectorSrc(MI, MoreTy, 1);
3115 moreElementsVectorSrc(MI, MoreTy, 2);
3116 moreElementsVectorDst(MI, MoreTy, 0);
3117 Observer.changedInstr(MI);
3118 return Legalized;
3120 case TargetOpcode::G_EXTRACT:
3121 if (TypeIdx != 1)
3122 return UnableToLegalize;
3123 Observer.changingInstr(MI);
3124 moreElementsVectorSrc(MI, MoreTy, 1);
3125 Observer.changedInstr(MI);
3126 return Legalized;
3127 case TargetOpcode::G_INSERT:
3128 if (TypeIdx != 0)
3129 return UnableToLegalize;
3130 Observer.changingInstr(MI);
3131 moreElementsVectorSrc(MI, MoreTy, 1);
3132 moreElementsVectorDst(MI, MoreTy, 0);
3133 Observer.changedInstr(MI);
3134 return Legalized;
3135 case TargetOpcode::G_SELECT:
3136 if (TypeIdx != 0)
3137 return UnableToLegalize;
3138 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3139 return UnableToLegalize;
3141 Observer.changingInstr(MI);
3142 moreElementsVectorSrc(MI, MoreTy, 2);
3143 moreElementsVectorSrc(MI, MoreTy, 3);
3144 moreElementsVectorDst(MI, MoreTy, 0);
3145 Observer.changedInstr(MI);
3146 return Legalized;
3147 case TargetOpcode::G_PHI:
3148 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3149 default:
3150 return UnableToLegalize;
3154 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3155 ArrayRef<Register> Src1Regs,
3156 ArrayRef<Register> Src2Regs,
3157 LLT NarrowTy) {
3158 MachineIRBuilder &B = MIRBuilder;
3159 unsigned SrcParts = Src1Regs.size();
3160 unsigned DstParts = DstRegs.size();
3162 unsigned DstIdx = 0; // Low bits of the result.
3163 Register FactorSum =
3164 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3165 DstRegs[DstIdx] = FactorSum;
3167 unsigned CarrySumPrevDstIdx;
3168 SmallVector<Register, 4> Factors;
3170 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3171 // Collect low parts of muls for DstIdx.
3172 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3173 i <= std::min(DstIdx, SrcParts - 1); ++i) {
3174 MachineInstrBuilder Mul =
3175 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3176 Factors.push_back(Mul.getReg(0));
3178 // Collect high parts of muls from previous DstIdx.
3179 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3180 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3181 MachineInstrBuilder Umulh =
3182 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3183 Factors.push_back(Umulh.getReg(0));
3185 // Add CarrySum from additons calculated for previous DstIdx.
3186 if (DstIdx != 1) {
3187 Factors.push_back(CarrySumPrevDstIdx);
3190 Register CarrySum;
3191 // Add all factors and accumulate all carries into CarrySum.
3192 if (DstIdx != DstParts - 1) {
3193 MachineInstrBuilder Uaddo =
3194 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3195 FactorSum = Uaddo.getReg(0);
3196 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3197 for (unsigned i = 2; i < Factors.size(); ++i) {
3198 MachineInstrBuilder Uaddo =
3199 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3200 FactorSum = Uaddo.getReg(0);
3201 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3202 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3204 } else {
3205 // Since value for the next index is not calculated, neither is CarrySum.
3206 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3207 for (unsigned i = 2; i < Factors.size(); ++i)
3208 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3211 CarrySumPrevDstIdx = CarrySum;
3212 DstRegs[DstIdx] = FactorSum;
3213 Factors.clear();
3217 LegalizerHelper::LegalizeResult
3218 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3219 Register DstReg = MI.getOperand(0).getReg();
3220 Register Src1 = MI.getOperand(1).getReg();
3221 Register Src2 = MI.getOperand(2).getReg();
3223 LLT Ty = MRI.getType(DstReg);
3224 if (Ty.isVector())
3225 return UnableToLegalize;
3227 unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3228 unsigned DstSize = Ty.getSizeInBits();
3229 unsigned NarrowSize = NarrowTy.getSizeInBits();
3230 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3231 return UnableToLegalize;
3233 unsigned NumDstParts = DstSize / NarrowSize;
3234 unsigned NumSrcParts = SrcSize / NarrowSize;
3235 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3236 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3238 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs;
3239 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3240 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3241 DstTmpRegs.resize(DstTmpParts);
3242 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3244 // Take only high half of registers if this is high mul.
3245 ArrayRef<Register> DstRegs(
3246 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3247 MIRBuilder.buildMerge(DstReg, DstRegs);
3248 MI.eraseFromParent();
3249 return Legalized;
3252 LegalizerHelper::LegalizeResult
3253 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3254 LLT NarrowTy) {
3255 if (TypeIdx != 1)
3256 return UnableToLegalize;
3258 uint64_t NarrowSize = NarrowTy.getSizeInBits();
3260 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3261 // FIXME: add support for when SizeOp1 isn't an exact multiple of
3262 // NarrowSize.
3263 if (SizeOp1 % NarrowSize != 0)
3264 return UnableToLegalize;
3265 int NumParts = SizeOp1 / NarrowSize;
3267 SmallVector<Register, 2> SrcRegs, DstRegs;
3268 SmallVector<uint64_t, 2> Indexes;
3269 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3271 Register OpReg = MI.getOperand(0).getReg();
3272 uint64_t OpStart = MI.getOperand(2).getImm();
3273 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3274 for (int i = 0; i < NumParts; ++i) {
3275 unsigned SrcStart = i * NarrowSize;
3277 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3278 // No part of the extract uses this subregister, ignore it.
3279 continue;
3280 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3281 // The entire subregister is extracted, forward the value.
3282 DstRegs.push_back(SrcRegs[i]);
3283 continue;
3286 // OpSegStart is where this destination segment would start in OpReg if it
3287 // extended infinitely in both directions.
3288 int64_t ExtractOffset;
3289 uint64_t SegSize;
3290 if (OpStart < SrcStart) {
3291 ExtractOffset = 0;
3292 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3293 } else {
3294 ExtractOffset = OpStart - SrcStart;
3295 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3298 Register SegReg = SrcRegs[i];
3299 if (ExtractOffset != 0 || SegSize != NarrowSize) {
3300 // A genuine extract is needed.
3301 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3302 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3305 DstRegs.push_back(SegReg);
3308 Register DstReg = MI.getOperand(0).getReg();
3309 if(MRI.getType(DstReg).isVector())
3310 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3311 else
3312 MIRBuilder.buildMerge(DstReg, DstRegs);
3313 MI.eraseFromParent();
3314 return Legalized;
3317 LegalizerHelper::LegalizeResult
3318 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3319 LLT NarrowTy) {
3320 // FIXME: Don't know how to handle secondary types yet.
3321 if (TypeIdx != 0)
3322 return UnableToLegalize;
3324 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3325 uint64_t NarrowSize = NarrowTy.getSizeInBits();
3327 // FIXME: add support for when SizeOp0 isn't an exact multiple of
3328 // NarrowSize.
3329 if (SizeOp0 % NarrowSize != 0)
3330 return UnableToLegalize;
3332 int NumParts = SizeOp0 / NarrowSize;
3334 SmallVector<Register, 2> SrcRegs, DstRegs;
3335 SmallVector<uint64_t, 2> Indexes;
3336 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3338 Register OpReg = MI.getOperand(2).getReg();
3339 uint64_t OpStart = MI.getOperand(3).getImm();
3340 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3341 for (int i = 0; i < NumParts; ++i) {
3342 unsigned DstStart = i * NarrowSize;
3344 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3345 // No part of the insert affects this subregister, forward the original.
3346 DstRegs.push_back(SrcRegs[i]);
3347 continue;
3348 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3349 // The entire subregister is defined by this insert, forward the new
3350 // value.
3351 DstRegs.push_back(OpReg);
3352 continue;
3355 // OpSegStart is where this destination segment would start in OpReg if it
3356 // extended infinitely in both directions.
3357 int64_t ExtractOffset, InsertOffset;
3358 uint64_t SegSize;
3359 if (OpStart < DstStart) {
3360 InsertOffset = 0;
3361 ExtractOffset = DstStart - OpStart;
3362 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3363 } else {
3364 InsertOffset = OpStart - DstStart;
3365 ExtractOffset = 0;
3366 SegSize =
3367 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3370 Register SegReg = OpReg;
3371 if (ExtractOffset != 0 || SegSize != OpSize) {
3372 // A genuine extract is needed.
3373 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3374 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3377 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3378 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3379 DstRegs.push_back(DstReg);
3382 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3383 Register DstReg = MI.getOperand(0).getReg();
3384 if(MRI.getType(DstReg).isVector())
3385 MIRBuilder.buildBuildVector(DstReg, DstRegs);
3386 else
3387 MIRBuilder.buildMerge(DstReg, DstRegs);
3388 MI.eraseFromParent();
3389 return Legalized;
3392 LegalizerHelper::LegalizeResult
3393 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3394 LLT NarrowTy) {
3395 Register DstReg = MI.getOperand(0).getReg();
3396 LLT DstTy = MRI.getType(DstReg);
3398 assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3400 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3401 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3402 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3403 LLT LeftoverTy;
3404 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3405 Src0Regs, Src0LeftoverRegs))
3406 return UnableToLegalize;
3408 LLT Unused;
3409 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3410 Src1Regs, Src1LeftoverRegs))
3411 llvm_unreachable("inconsistent extractParts result");
3413 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3414 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3415 {Src0Regs[I], Src1Regs[I]});
3416 DstRegs.push_back(Inst->getOperand(0).getReg());
3419 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3420 auto Inst = MIRBuilder.buildInstr(
3421 MI.getOpcode(),
3422 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3423 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
3426 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3427 LeftoverTy, DstLeftoverRegs);
3429 MI.eraseFromParent();
3430 return Legalized;
3433 LegalizerHelper::LegalizeResult
3434 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3435 LLT NarrowTy) {
3436 if (TypeIdx != 0)
3437 return UnableToLegalize;
3439 Register CondReg = MI.getOperand(1).getReg();
3440 LLT CondTy = MRI.getType(CondReg);
3441 if (CondTy.isVector()) // TODO: Handle vselect
3442 return UnableToLegalize;
3444 Register DstReg = MI.getOperand(0).getReg();
3445 LLT DstTy = MRI.getType(DstReg);
3447 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3448 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3449 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3450 LLT LeftoverTy;
3451 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3452 Src1Regs, Src1LeftoverRegs))
3453 return UnableToLegalize;
3455 LLT Unused;
3456 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3457 Src2Regs, Src2LeftoverRegs))
3458 llvm_unreachable("inconsistent extractParts result");
3460 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3461 auto Select = MIRBuilder.buildSelect(NarrowTy,
3462 CondReg, Src1Regs[I], Src2Regs[I]);
3463 DstRegs.push_back(Select->getOperand(0).getReg());
3466 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3467 auto Select = MIRBuilder.buildSelect(
3468 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3469 DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
3472 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3473 LeftoverTy, DstLeftoverRegs);
3475 MI.eraseFromParent();
3476 return Legalized;
3479 LegalizerHelper::LegalizeResult
3480 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3481 unsigned Opc = MI.getOpcode();
3482 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
3483 auto isSupported = [this](const LegalityQuery &Q) {
3484 auto QAction = LI.getAction(Q).Action;
3485 return QAction == Legal || QAction == Libcall || QAction == Custom;
3487 switch (Opc) {
3488 default:
3489 return UnableToLegalize;
3490 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
3491 // This trivially expands to CTLZ.
3492 Observer.changingInstr(MI);
3493 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
3494 Observer.changedInstr(MI);
3495 return Legalized;
3497 case TargetOpcode::G_CTLZ: {
3498 Register SrcReg = MI.getOperand(1).getReg();
3499 unsigned Len = Ty.getSizeInBits();
3500 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
3501 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
3502 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
3503 {Ty}, {SrcReg});
3504 auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3505 auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3506 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3507 SrcReg, MIBZero);
3508 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3509 MIBCtlzZU);
3510 MI.eraseFromParent();
3511 return Legalized;
3513 // for now, we do this:
3514 // NewLen = NextPowerOf2(Len);
3515 // x = x | (x >> 1);
3516 // x = x | (x >> 2);
3517 // ...
3518 // x = x | (x >>16);
3519 // x = x | (x >>32); // for 64-bit input
3520 // Upto NewLen/2
3521 // return Len - popcount(x);
3523 // Ref: "Hacker's Delight" by Henry Warren
3524 Register Op = SrcReg;
3525 unsigned NewLen = PowerOf2Ceil(Len);
3526 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
3527 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
3528 auto MIBOp = MIRBuilder.buildInstr(
3529 TargetOpcode::G_OR, {Ty},
3530 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
3531 {Op, MIBShiftAmt})});
3532 Op = MIBOp->getOperand(0).getReg();
3534 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
3535 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3536 {MIRBuilder.buildConstant(Ty, Len), MIBPop});
3537 MI.eraseFromParent();
3538 return Legalized;
3540 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
3541 // This trivially expands to CTTZ.
3542 Observer.changingInstr(MI);
3543 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
3544 Observer.changedInstr(MI);
3545 return Legalized;
3547 case TargetOpcode::G_CTTZ: {
3548 Register SrcReg = MI.getOperand(1).getReg();
3549 unsigned Len = Ty.getSizeInBits();
3550 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
3551 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
3552 // zero.
3553 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
3554 {Ty}, {SrcReg});
3555 auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3556 auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3557 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3558 SrcReg, MIBZero);
3559 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3560 MIBCttzZU);
3561 MI.eraseFromParent();
3562 return Legalized;
3564 // for now, we use: { return popcount(~x & (x - 1)); }
3565 // unless the target has ctlz but not ctpop, in which case we use:
3566 // { return 32 - nlz(~x & (x-1)); }
3567 // Ref: "Hacker's Delight" by Henry Warren
3568 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
3569 auto MIBNot =
3570 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
3571 auto MIBTmp = MIRBuilder.buildInstr(
3572 TargetOpcode::G_AND, {Ty},
3573 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
3574 {SrcReg, MIBCstNeg1})});
3575 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
3576 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
3577 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
3578 MIRBuilder.buildInstr(
3579 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3580 {MIBCstLen,
3581 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
3582 MI.eraseFromParent();
3583 return Legalized;
3585 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
3586 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
3587 return Legalized;
3592 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
3593 // representation.
3594 LegalizerHelper::LegalizeResult
3595 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
3596 Register Dst = MI.getOperand(0).getReg();
3597 Register Src = MI.getOperand(1).getReg();
3598 const LLT S64 = LLT::scalar(64);
3599 const LLT S32 = LLT::scalar(32);
3600 const LLT S1 = LLT::scalar(1);
3602 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
3604 // unsigned cul2f(ulong u) {
3605 // uint lz = clz(u);
3606 // uint e = (u != 0) ? 127U + 63U - lz : 0;
3607 // u = (u << lz) & 0x7fffffffffffffffUL;
3608 // ulong t = u & 0xffffffffffUL;
3609 // uint v = (e << 23) | (uint)(u >> 40);
3610 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
3611 // return as_float(v + r);
3612 // }
3614 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
3615 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
3617 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
3619 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
3620 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
3622 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
3623 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
3625 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
3626 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
3628 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
3630 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
3631 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
3633 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
3634 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
3635 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
3637 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
3638 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
3639 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
3640 auto One = MIRBuilder.buildConstant(S32, 1);
3642 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
3643 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
3644 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
3645 MIRBuilder.buildAdd(Dst, V, R);
3647 return Legalized;
3650 LegalizerHelper::LegalizeResult
3651 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3652 Register Dst = MI.getOperand(0).getReg();
3653 Register Src = MI.getOperand(1).getReg();
3654 LLT DstTy = MRI.getType(Dst);
3655 LLT SrcTy = MRI.getType(Src);
3657 if (SrcTy != LLT::scalar(64))
3658 return UnableToLegalize;
3660 if (DstTy == LLT::scalar(32)) {
3661 // TODO: SelectionDAG has several alternative expansions to port which may
3662 // be more reasonble depending on the available instructions. If a target
3663 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
3664 // intermediate type, this is probably worse.
3665 return lowerU64ToF32BitOps(MI);
3668 return UnableToLegalize;
3671 LegalizerHelper::LegalizeResult
3672 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3673 Register Dst = MI.getOperand(0).getReg();
3674 Register Src = MI.getOperand(1).getReg();
3675 LLT DstTy = MRI.getType(Dst);
3676 LLT SrcTy = MRI.getType(Src);
3678 const LLT S64 = LLT::scalar(64);
3679 const LLT S32 = LLT::scalar(32);
3680 const LLT S1 = LLT::scalar(1);
3682 if (SrcTy != S64)
3683 return UnableToLegalize;
3685 if (DstTy == S32) {
3686 // signed cl2f(long l) {
3687 // long s = l >> 63;
3688 // float r = cul2f((l + s) ^ s);
3689 // return s ? -r : r;
3690 // }
3691 Register L = Src;
3692 auto SignBit = MIRBuilder.buildConstant(S64, 63);
3693 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
3695 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
3696 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
3697 auto R = MIRBuilder.buildUITOFP(S32, Xor);
3699 auto RNeg = MIRBuilder.buildFNeg(S32, R);
3700 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
3701 MIRBuilder.buildConstant(S64, 0));
3702 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
3703 return Legalized;
3706 return UnableToLegalize;
3709 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
3710 switch (Opc) {
3711 case TargetOpcode::G_SMIN:
3712 return CmpInst::ICMP_SLT;
3713 case TargetOpcode::G_SMAX:
3714 return CmpInst::ICMP_SGT;
3715 case TargetOpcode::G_UMIN:
3716 return CmpInst::ICMP_ULT;
3717 case TargetOpcode::G_UMAX:
3718 return CmpInst::ICMP_UGT;
3719 default:
3720 llvm_unreachable("not in integer min/max");
3724 LegalizerHelper::LegalizeResult
3725 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3726 Register Dst = MI.getOperand(0).getReg();
3727 Register Src0 = MI.getOperand(1).getReg();
3728 Register Src1 = MI.getOperand(2).getReg();
3730 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
3731 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
3733 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
3734 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
3736 MI.eraseFromParent();
3737 return Legalized;
3740 LegalizerHelper::LegalizeResult
3741 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3742 Register Dst = MI.getOperand(0).getReg();
3743 Register Src0 = MI.getOperand(1).getReg();
3744 Register Src1 = MI.getOperand(2).getReg();
3746 const LLT Src0Ty = MRI.getType(Src0);
3747 const LLT Src1Ty = MRI.getType(Src1);
3749 const int Src0Size = Src0Ty.getScalarSizeInBits();
3750 const int Src1Size = Src1Ty.getScalarSizeInBits();
3752 auto SignBitMask = MIRBuilder.buildConstant(
3753 Src0Ty, APInt::getSignMask(Src0Size));
3755 auto NotSignBitMask = MIRBuilder.buildConstant(
3756 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
3758 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
3759 MachineInstr *Or;
3761 if (Src0Ty == Src1Ty) {
3762 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
3763 Or = MIRBuilder.buildOr(Dst, And0, And1);
3764 } else if (Src0Size > Src1Size) {
3765 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
3766 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
3767 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
3768 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
3769 Or = MIRBuilder.buildOr(Dst, And0, And1);
3770 } else {
3771 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
3772 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
3773 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
3774 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
3775 Or = MIRBuilder.buildOr(Dst, And0, And1);
3778 // Be careful about setting nsz/nnan/ninf on every instruction, since the
3779 // constants are a nan and -0.0, but the final result should preserve
3780 // everything.
3781 if (unsigned Flags = MI.getFlags())
3782 Or->setFlags(Flags);
3784 MI.eraseFromParent();
3785 return Legalized;
3788 LegalizerHelper::LegalizeResult
3789 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
3790 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
3791 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
3793 Register Dst = MI.getOperand(0).getReg();
3794 Register Src0 = MI.getOperand(1).getReg();
3795 Register Src1 = MI.getOperand(2).getReg();
3796 LLT Ty = MRI.getType(Dst);
3798 if (!MI.getFlag(MachineInstr::FmNoNans)) {
3799 // Insert canonicalizes if it's possible we need to quiet to get correct
3800 // sNaN behavior.
3802 // Note this must be done here, and not as an optimization combine in the
3803 // absence of a dedicate quiet-snan instruction as we're using an
3804 // omni-purpose G_FCANONICALIZE.
3805 if (!isKnownNeverSNaN(Src0, MRI))
3806 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
3808 if (!isKnownNeverSNaN(Src1, MRI))
3809 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
3812 // If there are no nans, it's safe to simply replace this with the non-IEEE
3813 // version.
3814 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
3815 MI.eraseFromParent();
3816 return Legalized;
3819 LegalizerHelper::LegalizeResult
3820 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
3821 const unsigned NumDst = MI.getNumOperands() - 1;
3822 const Register SrcReg = MI.getOperand(NumDst).getReg();
3823 LLT SrcTy = MRI.getType(SrcReg);
3825 Register Dst0Reg = MI.getOperand(0).getReg();
3826 LLT DstTy = MRI.getType(Dst0Reg);
3829 // Expand scalarizing unmerge as bitcast to integer and shift.
3830 if (!DstTy.isVector() && SrcTy.isVector() &&
3831 SrcTy.getElementType() == DstTy) {
3832 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
3833 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
3835 MIRBuilder.buildTrunc(Dst0Reg, Cast);
3837 const unsigned DstSize = DstTy.getSizeInBits();
3838 unsigned Offset = DstSize;
3839 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
3840 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
3841 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
3842 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
3845 MI.eraseFromParent();
3846 return Legalized;
3849 return UnableToLegalize;
3852 LegalizerHelper::LegalizeResult
3853 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
3854 Register DstReg = MI.getOperand(0).getReg();
3855 Register Src0Reg = MI.getOperand(1).getReg();
3856 Register Src1Reg = MI.getOperand(2).getReg();
3857 LLT Src0Ty = MRI.getType(Src0Reg);
3858 LLT DstTy = MRI.getType(DstReg);
3859 LLT IdxTy = LLT::scalar(32);
3861 const Constant *ShufMask = MI.getOperand(3).getShuffleMask();
3863 SmallVector<int, 32> Mask;
3864 ShuffleVectorInst::getShuffleMask(ShufMask, Mask);
3866 if (DstTy.isScalar()) {
3867 if (Src0Ty.isVector())
3868 return UnableToLegalize;
3870 // This is just a SELECT.
3871 assert(Mask.size() == 1 && "Expected a single mask element");
3872 Register Val;
3873 if (Mask[0] < 0 || Mask[0] > 1)
3874 Val = MIRBuilder.buildUndef(DstTy).getReg(0);
3875 else
3876 Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
3877 MIRBuilder.buildCopy(DstReg, Val);
3878 MI.eraseFromParent();
3879 return Legalized;
3882 Register Undef;
3883 SmallVector<Register, 32> BuildVec;
3884 LLT EltTy = DstTy.getElementType();
3886 for (int Idx : Mask) {
3887 if (Idx < 0) {
3888 if (!Undef.isValid())
3889 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
3890 BuildVec.push_back(Undef);
3891 continue;
3894 if (Src0Ty.isScalar()) {
3895 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
3896 } else {
3897 int NumElts = Src0Ty.getNumElements();
3898 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
3899 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
3900 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
3901 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
3902 BuildVec.push_back(Extract.getReg(0));
3906 MIRBuilder.buildBuildVector(DstReg, BuildVec);
3907 MI.eraseFromParent();
3908 return Legalized;