[ARM] VQADD instructions
[llvm-complete.git] / lib / Analysis / TargetTransformInfo.cpp
blobb5467813094e8f523646effc49e32b4c3c3cb811
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/CFG.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include <utility>
26 using namespace llvm;
27 using namespace PatternMatch;
29 #define DEBUG_TYPE "tti"
31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
32 cl::Hidden,
33 cl::desc("Recognize reduction patterns."));
35 namespace {
36 /// No-op implementation of the TTI interface using the utility base
37 /// classes.
38 ///
39 /// This is used when no target specific information is available.
40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
41 explicit NoTTIImpl(const DataLayout &DL)
42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 unsigned getCacheLineSize() const { return 0; }
46 llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) const {
47 switch (Level) {
48 case TargetTransformInfo::CacheLevel::L1D:
49 LLVM_FALLTHROUGH;
50 case TargetTransformInfo::CacheLevel::L2D:
51 return llvm::Optional<unsigned>();
53 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
56 llvm::Optional<unsigned> getCacheAssociativity(
57 TargetTransformInfo::CacheLevel Level) const {
58 switch (Level) {
59 case TargetTransformInfo::CacheLevel::L1D:
60 LLVM_FALLTHROUGH;
61 case TargetTransformInfo::CacheLevel::L2D:
62 return llvm::Optional<unsigned>();
65 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
68 unsigned getPrefetchDistance() const { return 0; }
69 unsigned getMinPrefetchStride() const { return 1; }
70 unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }
74 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
75 // If the loop has irreducible control flow, it can not be converted to
76 // Hardware loop.
77 LoopBlocksRPO RPOT(L);
78 RPOT.perform(&LI);
79 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
80 return false;
81 return true;
84 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
85 LoopInfo &LI, DominatorTree &DT,
86 bool ForceNestedLoop,
87 bool ForceHardwareLoopPHI) {
88 SmallVector<BasicBlock *, 4> ExitingBlocks;
89 L->getExitingBlocks(ExitingBlocks);
91 for (BasicBlock *BB : ExitingBlocks) {
92 // If we pass the updated counter back through a phi, we need to know
93 // which latch the updated value will be coming from.
94 if (!L->isLoopLatch(BB)) {
95 if (ForceHardwareLoopPHI || CounterInReg)
96 continue;
99 const SCEV *EC = SE.getExitCount(L, BB);
100 if (isa<SCEVCouldNotCompute>(EC))
101 continue;
102 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
103 if (ConstEC->getValue()->isZero())
104 continue;
105 } else if (!SE.isLoopInvariant(EC, L))
106 continue;
108 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
109 continue;
111 // If this exiting block is contained in a nested loop, it is not eligible
112 // for insertion of the branch-and-decrement since the inner loop would
113 // end up messing up the value in the CTR.
114 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
115 continue;
117 // We now have a loop-invariant count of loop iterations (which is not the
118 // constant zero) for which we know that this loop will not exit via this
119 // existing block.
121 // We need to make sure that this block will run on every loop iteration.
122 // For this to be true, we must dominate all blocks with backedges. Such
123 // blocks are in-loop predecessors to the header block.
124 bool NotAlways = false;
125 for (BasicBlock *Pred : predecessors(L->getHeader())) {
126 if (!L->contains(Pred))
127 continue;
129 if (!DT.dominates(BB, Pred)) {
130 NotAlways = true;
131 break;
135 if (NotAlways)
136 continue;
138 // Make sure this blocks ends with a conditional branch.
139 Instruction *TI = BB->getTerminator();
140 if (!TI)
141 continue;
143 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
144 if (!BI->isConditional())
145 continue;
147 ExitBranch = BI;
148 } else
149 continue;
151 // Note that this block may not be the loop latch block, even if the loop
152 // has a latch block.
153 ExitBlock = BB;
154 ExitCount = EC;
155 break;
158 if (!ExitBlock)
159 return false;
160 return true;
163 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
164 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
166 TargetTransformInfo::~TargetTransformInfo() {}
168 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
169 : TTIImpl(std::move(Arg.TTIImpl)) {}
171 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
172 TTIImpl = std::move(RHS.TTIImpl);
173 return *this;
176 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
177 Type *OpTy) const {
178 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
179 assert(Cost >= 0 && "TTI should not produce negative costs!");
180 return Cost;
183 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
184 const User *U) const {
185 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
186 assert(Cost >= 0 && "TTI should not produce negative costs!");
187 return Cost;
190 int TargetTransformInfo::getCallCost(const Function *F,
191 ArrayRef<const Value *> Arguments,
192 const User *U) const {
193 int Cost = TTIImpl->getCallCost(F, Arguments, U);
194 assert(Cost >= 0 && "TTI should not produce negative costs!");
195 return Cost;
198 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
199 return TTIImpl->getInliningThresholdMultiplier();
202 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
203 return TTIImpl->getInlinerVectorBonusPercent();
206 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
207 ArrayRef<const Value *> Operands) const {
208 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
211 int TargetTransformInfo::getExtCost(const Instruction *I,
212 const Value *Src) const {
213 return TTIImpl->getExtCost(I, Src);
216 int TargetTransformInfo::getIntrinsicCost(
217 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
218 const User *U) const {
219 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
220 assert(Cost >= 0 && "TTI should not produce negative costs!");
221 return Cost;
224 unsigned
225 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
226 unsigned &JTSize) const {
227 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
230 int TargetTransformInfo::getUserCost(const User *U,
231 ArrayRef<const Value *> Operands) const {
232 int Cost = TTIImpl->getUserCost(U, Operands);
233 assert(Cost >= 0 && "TTI should not produce negative costs!");
234 return Cost;
237 bool TargetTransformInfo::hasBranchDivergence() const {
238 return TTIImpl->hasBranchDivergence();
241 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
242 return TTIImpl->isSourceOfDivergence(V);
245 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
246 return TTIImpl->isAlwaysUniform(V);
249 unsigned TargetTransformInfo::getFlatAddressSpace() const {
250 return TTIImpl->getFlatAddressSpace();
253 bool TargetTransformInfo::collectFlatAddressOperands(
254 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
255 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
258 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
259 IntrinsicInst *II, Value *OldV, Value *NewV) const {
260 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
263 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
264 return TTIImpl->isLoweredToCall(F);
267 bool TargetTransformInfo::isHardwareLoopProfitable(
268 Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
269 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
270 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
273 void TargetTransformInfo::getUnrollingPreferences(
274 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
275 return TTIImpl->getUnrollingPreferences(L, SE, UP);
278 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
279 return TTIImpl->isLegalAddImmediate(Imm);
282 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
283 return TTIImpl->isLegalICmpImmediate(Imm);
286 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
287 int64_t BaseOffset,
288 bool HasBaseReg,
289 int64_t Scale,
290 unsigned AddrSpace,
291 Instruction *I) const {
292 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
293 Scale, AddrSpace, I);
296 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
297 return TTIImpl->isLSRCostLess(C1, C2);
300 bool TargetTransformInfo::canMacroFuseCmp() const {
301 return TTIImpl->canMacroFuseCmp();
304 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
305 ScalarEvolution *SE, LoopInfo *LI,
306 DominatorTree *DT, AssumptionCache *AC,
307 TargetLibraryInfo *LibInfo) const {
308 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
311 bool TargetTransformInfo::shouldFavorPostInc() const {
312 return TTIImpl->shouldFavorPostInc();
315 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
316 return TTIImpl->shouldFavorBackedgeIndex(L);
319 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
320 return TTIImpl->isLegalMaskedStore(DataType);
323 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
324 return TTIImpl->isLegalMaskedLoad(DataType);
327 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
328 Align Alignment) const {
329 return TTIImpl->isLegalNTStore(DataType, Alignment);
332 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
333 return TTIImpl->isLegalNTLoad(DataType, Alignment);
336 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
337 return TTIImpl->isLegalMaskedGather(DataType);
340 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
341 return TTIImpl->isLegalMaskedScatter(DataType);
344 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
345 return TTIImpl->isLegalMaskedCompressStore(DataType);
348 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
349 return TTIImpl->isLegalMaskedExpandLoad(DataType);
352 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
353 return TTIImpl->hasDivRemOp(DataType, IsSigned);
356 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
357 unsigned AddrSpace) const {
358 return TTIImpl->hasVolatileVariant(I, AddrSpace);
361 bool TargetTransformInfo::prefersVectorizedAddressing() const {
362 return TTIImpl->prefersVectorizedAddressing();
365 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
366 int64_t BaseOffset,
367 bool HasBaseReg,
368 int64_t Scale,
369 unsigned AddrSpace) const {
370 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
371 Scale, AddrSpace);
372 assert(Cost >= 0 && "TTI should not produce negative costs!");
373 return Cost;
376 bool TargetTransformInfo::LSRWithInstrQueries() const {
377 return TTIImpl->LSRWithInstrQueries();
380 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
381 return TTIImpl->isTruncateFree(Ty1, Ty2);
384 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
385 return TTIImpl->isProfitableToHoist(I);
388 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
390 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
391 return TTIImpl->isTypeLegal(Ty);
394 bool TargetTransformInfo::shouldBuildLookupTables() const {
395 return TTIImpl->shouldBuildLookupTables();
397 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
398 return TTIImpl->shouldBuildLookupTablesForConstant(C);
401 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
402 return TTIImpl->useColdCCForColdCall(F);
405 unsigned TargetTransformInfo::
406 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
407 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
410 unsigned TargetTransformInfo::
411 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
412 unsigned VF) const {
413 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
416 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
417 return TTIImpl->supportsEfficientVectorElementLoadStore();
420 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
421 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
424 TargetTransformInfo::MemCmpExpansionOptions
425 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
426 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
429 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
430 return TTIImpl->enableInterleavedAccessVectorization();
433 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
434 return TTIImpl->enableMaskedInterleavedAccessVectorization();
437 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
438 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
441 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
442 unsigned BitWidth,
443 unsigned AddressSpace,
444 unsigned Alignment,
445 bool *Fast) const {
446 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
447 Alignment, Fast);
450 TargetTransformInfo::PopcntSupportKind
451 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
452 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
455 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
456 return TTIImpl->haveFastSqrt(Ty);
459 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
460 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
463 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
464 int Cost = TTIImpl->getFPOpCost(Ty);
465 assert(Cost >= 0 && "TTI should not produce negative costs!");
466 return Cost;
469 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
470 const APInt &Imm,
471 Type *Ty) const {
472 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
473 assert(Cost >= 0 && "TTI should not produce negative costs!");
474 return Cost;
477 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
478 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
479 assert(Cost >= 0 && "TTI should not produce negative costs!");
480 return Cost;
483 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
484 const APInt &Imm, Type *Ty) const {
485 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
486 assert(Cost >= 0 && "TTI should not produce negative costs!");
487 return Cost;
490 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
491 const APInt &Imm, Type *Ty) const {
492 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
493 assert(Cost >= 0 && "TTI should not produce negative costs!");
494 return Cost;
497 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
498 return TTIImpl->getNumberOfRegisters(Vector);
501 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
502 return TTIImpl->getRegisterBitWidth(Vector);
505 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
506 return TTIImpl->getMinVectorRegisterBitWidth();
509 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
510 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
513 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
514 return TTIImpl->getMinimumVF(ElemWidth);
517 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
518 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
519 return TTIImpl->shouldConsiderAddressTypePromotion(
520 I, AllowPromotionWithoutCommonHeader);
523 unsigned TargetTransformInfo::getCacheLineSize() const {
524 return TTIImpl->getCacheLineSize();
527 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
528 const {
529 return TTIImpl->getCacheSize(Level);
532 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
533 CacheLevel Level) const {
534 return TTIImpl->getCacheAssociativity(Level);
537 unsigned TargetTransformInfo::getPrefetchDistance() const {
538 return TTIImpl->getPrefetchDistance();
541 unsigned TargetTransformInfo::getMinPrefetchStride() const {
542 return TTIImpl->getMinPrefetchStride();
545 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
546 return TTIImpl->getMaxPrefetchIterationsAhead();
549 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
550 return TTIImpl->getMaxInterleaveFactor(VF);
553 TargetTransformInfo::OperandValueKind
554 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
555 OperandValueKind OpInfo = OK_AnyValue;
556 OpProps = OP_None;
558 if (auto *CI = dyn_cast<ConstantInt>(V)) {
559 if (CI->getValue().isPowerOf2())
560 OpProps = OP_PowerOf2;
561 return OK_UniformConstantValue;
564 // A broadcast shuffle creates a uniform value.
565 // TODO: Add support for non-zero index broadcasts.
566 // TODO: Add support for different source vector width.
567 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
568 if (ShuffleInst->isZeroEltSplat())
569 OpInfo = OK_UniformValue;
571 const Value *Splat = getSplatValue(V);
573 // Check for a splat of a constant or for a non uniform vector of constants
574 // and check if the constant(s) are all powers of two.
575 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
576 OpInfo = OK_NonUniformConstantValue;
577 if (Splat) {
578 OpInfo = OK_UniformConstantValue;
579 if (auto *CI = dyn_cast<ConstantInt>(Splat))
580 if (CI->getValue().isPowerOf2())
581 OpProps = OP_PowerOf2;
582 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
583 OpProps = OP_PowerOf2;
584 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
585 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
586 if (CI->getValue().isPowerOf2())
587 continue;
588 OpProps = OP_None;
589 break;
594 // Check for a splat of a uniform value. This is not loop aware, so return
595 // true only for the obviously uniform cases (argument, globalvalue)
596 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
597 OpInfo = OK_UniformValue;
599 return OpInfo;
602 int TargetTransformInfo::getArithmeticInstrCost(
603 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
604 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
605 OperandValueProperties Opd2PropInfo,
606 ArrayRef<const Value *> Args) const {
607 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
608 Opd1PropInfo, Opd2PropInfo, Args);
609 assert(Cost >= 0 && "TTI should not produce negative costs!");
610 return Cost;
613 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
614 Type *SubTp) const {
615 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
616 assert(Cost >= 0 && "TTI should not produce negative costs!");
617 return Cost;
620 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
621 Type *Src, const Instruction *I) const {
622 assert ((I == nullptr || I->getOpcode() == Opcode) &&
623 "Opcode should reflect passed instruction.");
624 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
625 assert(Cost >= 0 && "TTI should not produce negative costs!");
626 return Cost;
629 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
630 VectorType *VecTy,
631 unsigned Index) const {
632 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
633 assert(Cost >= 0 && "TTI should not produce negative costs!");
634 return Cost;
637 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
638 int Cost = TTIImpl->getCFInstrCost(Opcode);
639 assert(Cost >= 0 && "TTI should not produce negative costs!");
640 return Cost;
643 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
644 Type *CondTy, const Instruction *I) const {
645 assert ((I == nullptr || I->getOpcode() == Opcode) &&
646 "Opcode should reflect passed instruction.");
647 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
648 assert(Cost >= 0 && "TTI should not produce negative costs!");
649 return Cost;
652 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
653 unsigned Index) const {
654 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
655 assert(Cost >= 0 && "TTI should not produce negative costs!");
656 return Cost;
659 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
660 unsigned Alignment,
661 unsigned AddressSpace,
662 const Instruction *I) const {
663 assert ((I == nullptr || I->getOpcode() == Opcode) &&
664 "Opcode should reflect passed instruction.");
665 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
666 assert(Cost >= 0 && "TTI should not produce negative costs!");
667 return Cost;
670 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
671 unsigned Alignment,
672 unsigned AddressSpace) const {
673 int Cost =
674 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
675 assert(Cost >= 0 && "TTI should not produce negative costs!");
676 return Cost;
679 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
680 Value *Ptr, bool VariableMask,
681 unsigned Alignment) const {
682 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
683 Alignment);
684 assert(Cost >= 0 && "TTI should not produce negative costs!");
685 return Cost;
688 int TargetTransformInfo::getInterleavedMemoryOpCost(
689 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
690 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
691 bool UseMaskForGaps) const {
692 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
693 Alignment, AddressSpace,
694 UseMaskForCond,
695 UseMaskForGaps);
696 assert(Cost >= 0 && "TTI should not produce negative costs!");
697 return Cost;
700 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
701 ArrayRef<Type *> Tys, FastMathFlags FMF,
702 unsigned ScalarizationCostPassed) const {
703 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
704 ScalarizationCostPassed);
705 assert(Cost >= 0 && "TTI should not produce negative costs!");
706 return Cost;
709 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
710 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
711 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
712 assert(Cost >= 0 && "TTI should not produce negative costs!");
713 return Cost;
716 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
717 ArrayRef<Type *> Tys) const {
718 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
719 assert(Cost >= 0 && "TTI should not produce negative costs!");
720 return Cost;
723 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
724 return TTIImpl->getNumberOfParts(Tp);
727 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
728 ScalarEvolution *SE,
729 const SCEV *Ptr) const {
730 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
731 assert(Cost >= 0 && "TTI should not produce negative costs!");
732 return Cost;
735 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
736 int Cost = TTIImpl->getMemcpyCost(I);
737 assert(Cost >= 0 && "TTI should not produce negative costs!");
738 return Cost;
741 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
742 bool IsPairwiseForm) const {
743 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
744 assert(Cost >= 0 && "TTI should not produce negative costs!");
745 return Cost;
748 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
749 bool IsPairwiseForm,
750 bool IsUnsigned) const {
751 int Cost =
752 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
753 assert(Cost >= 0 && "TTI should not produce negative costs!");
754 return Cost;
757 unsigned
758 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
759 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
762 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
763 MemIntrinsicInfo &Info) const {
764 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
767 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
768 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
771 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
772 IntrinsicInst *Inst, Type *ExpectedType) const {
773 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
776 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
777 Value *Length,
778 unsigned SrcAlign,
779 unsigned DestAlign) const {
780 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
781 DestAlign);
784 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
785 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
786 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
787 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
788 SrcAlign, DestAlign);
791 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
792 const Function *Callee) const {
793 return TTIImpl->areInlineCompatible(Caller, Callee);
796 bool TargetTransformInfo::areFunctionArgsABICompatible(
797 const Function *Caller, const Function *Callee,
798 SmallPtrSetImpl<Argument *> &Args) const {
799 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
802 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
803 Type *Ty) const {
804 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
807 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
808 Type *Ty) const {
809 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
812 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
813 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
816 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
817 return TTIImpl->isLegalToVectorizeLoad(LI);
820 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
821 return TTIImpl->isLegalToVectorizeStore(SI);
824 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
825 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
826 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
827 AddrSpace);
830 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
831 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
832 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
833 AddrSpace);
836 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
837 unsigned LoadSize,
838 unsigned ChainSizeInBytes,
839 VectorType *VecTy) const {
840 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
843 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
844 unsigned StoreSize,
845 unsigned ChainSizeInBytes,
846 VectorType *VecTy) const {
847 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
850 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
851 Type *Ty, ReductionFlags Flags) const {
852 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
855 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
856 return TTIImpl->shouldExpandReduction(II);
859 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
860 return TTIImpl->getGISelRematGlobalCost();
863 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
864 return TTIImpl->getInstructionLatency(I);
867 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
868 unsigned Level) {
869 // We don't need a shuffle if we just want to have element 0 in position 0 of
870 // the vector.
871 if (!SI && Level == 0 && IsLeft)
872 return true;
873 else if (!SI)
874 return false;
876 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
878 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
879 // we look at the left or right side.
880 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
881 Mask[i] = val;
883 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
884 return Mask == ActualMask;
887 namespace {
888 /// Kind of the reduction data.
889 enum ReductionKind {
890 RK_None, /// Not a reduction.
891 RK_Arithmetic, /// Binary reduction data.
892 RK_MinMax, /// Min/max reduction data.
893 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
895 /// Contains opcode + LHS/RHS parts of the reduction operations.
896 struct ReductionData {
897 ReductionData() = delete;
898 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
899 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
900 assert(Kind != RK_None && "expected binary or min/max reduction only.");
902 unsigned Opcode = 0;
903 Value *LHS = nullptr;
904 Value *RHS = nullptr;
905 ReductionKind Kind = RK_None;
906 bool hasSameData(ReductionData &RD) const {
907 return Kind == RD.Kind && Opcode == RD.Opcode;
910 } // namespace
912 static Optional<ReductionData> getReductionData(Instruction *I) {
913 Value *L, *R;
914 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
915 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
916 if (auto *SI = dyn_cast<SelectInst>(I)) {
917 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
918 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
919 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
920 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
921 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
922 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
923 auto *CI = cast<CmpInst>(SI->getCondition());
924 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
926 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
927 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
928 auto *CI = cast<CmpInst>(SI->getCondition());
929 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
932 return llvm::None;
935 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
936 unsigned Level,
937 unsigned NumLevels) {
938 // Match one level of pairwise operations.
939 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
940 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
941 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
942 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
943 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
944 if (!I)
945 return RK_None;
947 assert(I->getType()->isVectorTy() && "Expecting a vector type");
949 Optional<ReductionData> RD = getReductionData(I);
950 if (!RD)
951 return RK_None;
953 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
954 if (!LS && Level)
955 return RK_None;
956 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
957 if (!RS && Level)
958 return RK_None;
960 // On level 0 we can omit one shufflevector instruction.
961 if (!Level && !RS && !LS)
962 return RK_None;
964 // Shuffle inputs must match.
965 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
966 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
967 Value *NextLevelOp = nullptr;
968 if (NextLevelOpR && NextLevelOpL) {
969 // If we have two shuffles their operands must match.
970 if (NextLevelOpL != NextLevelOpR)
971 return RK_None;
973 NextLevelOp = NextLevelOpL;
974 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
975 // On the first level we can omit the shufflevector <0, undef,...>. So the
976 // input to the other shufflevector <1, undef> must match with one of the
977 // inputs to the current binary operation.
978 // Example:
979 // %NextLevelOpL = shufflevector %R, <1, undef ...>
980 // %BinOp = fadd %NextLevelOpL, %R
981 if (NextLevelOpL && NextLevelOpL != RD->RHS)
982 return RK_None;
983 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
984 return RK_None;
986 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
987 } else
988 return RK_None;
990 // Check that the next levels binary operation exists and matches with the
991 // current one.
992 if (Level + 1 != NumLevels) {
993 Optional<ReductionData> NextLevelRD =
994 getReductionData(cast<Instruction>(NextLevelOp));
995 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
996 return RK_None;
999 // Shuffle mask for pairwise operation must match.
1000 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
1001 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
1002 return RK_None;
1003 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
1004 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
1005 return RK_None;
1006 } else {
1007 return RK_None;
1010 if (++Level == NumLevels)
1011 return RD->Kind;
1013 // Match next level.
1014 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
1015 NumLevels);
1018 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
1019 unsigned &Opcode, Type *&Ty) {
1020 if (!EnableReduxCost)
1021 return RK_None;
1023 // Need to extract the first element.
1024 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1025 unsigned Idx = ~0u;
1026 if (CI)
1027 Idx = CI->getZExtValue();
1028 if (Idx != 0)
1029 return RK_None;
1031 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1032 if (!RdxStart)
1033 return RK_None;
1034 Optional<ReductionData> RD = getReductionData(RdxStart);
1035 if (!RD)
1036 return RK_None;
1038 Type *VecTy = RdxStart->getType();
1039 unsigned NumVecElems = VecTy->getVectorNumElements();
1040 if (!isPowerOf2_32(NumVecElems))
1041 return RK_None;
1043 // We look for a sequence of shuffle,shuffle,add triples like the following
1044 // that builds a pairwise reduction tree.
1046 // (X0, X1, X2, X3)
1047 // (X0 + X1, X2 + X3, undef, undef)
1048 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
1050 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1051 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1052 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1053 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1054 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1055 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1056 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1057 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1058 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1059 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1060 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1061 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1062 RK_None)
1063 return RK_None;
1065 Opcode = RD->Opcode;
1066 Ty = VecTy;
1068 return RD->Kind;
1071 static std::pair<Value *, ShuffleVectorInst *>
1072 getShuffleAndOtherOprd(Value *L, Value *R) {
1073 ShuffleVectorInst *S = nullptr;
1075 if ((S = dyn_cast<ShuffleVectorInst>(L)))
1076 return std::make_pair(R, S);
1078 S = dyn_cast<ShuffleVectorInst>(R);
1079 return std::make_pair(L, S);
1082 static ReductionKind
1083 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1084 unsigned &Opcode, Type *&Ty) {
1085 if (!EnableReduxCost)
1086 return RK_None;
1088 // Need to extract the first element.
1089 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1090 unsigned Idx = ~0u;
1091 if (CI)
1092 Idx = CI->getZExtValue();
1093 if (Idx != 0)
1094 return RK_None;
1096 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1097 if (!RdxStart)
1098 return RK_None;
1099 Optional<ReductionData> RD = getReductionData(RdxStart);
1100 if (!RD)
1101 return RK_None;
1103 Type *VecTy = ReduxRoot->getOperand(0)->getType();
1104 unsigned NumVecElems = VecTy->getVectorNumElements();
1105 if (!isPowerOf2_32(NumVecElems))
1106 return RK_None;
1108 // We look for a sequence of shuffles and adds like the following matching one
1109 // fadd, shuffle vector pair at a time.
1111 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1112 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1113 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1114 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1115 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1116 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1117 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1119 unsigned MaskStart = 1;
1120 Instruction *RdxOp = RdxStart;
1121 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1122 unsigned NumVecElemsRemain = NumVecElems;
1123 while (NumVecElemsRemain - 1) {
1124 // Check for the right reduction operation.
1125 if (!RdxOp)
1126 return RK_None;
1127 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1128 if (!RDLevel || !RDLevel->hasSameData(*RD))
1129 return RK_None;
1131 Value *NextRdxOp;
1132 ShuffleVectorInst *Shuffle;
1133 std::tie(NextRdxOp, Shuffle) =
1134 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1136 // Check the current reduction operation and the shuffle use the same value.
1137 if (Shuffle == nullptr)
1138 return RK_None;
1139 if (Shuffle->getOperand(0) != NextRdxOp)
1140 return RK_None;
1142 // Check that shuffle masks matches.
1143 for (unsigned j = 0; j != MaskStart; ++j)
1144 ShuffleMask[j] = MaskStart + j;
1145 // Fill the rest of the mask with -1 for undef.
1146 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1148 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1149 if (ShuffleMask != Mask)
1150 return RK_None;
1152 RdxOp = dyn_cast<Instruction>(NextRdxOp);
1153 NumVecElemsRemain /= 2;
1154 MaskStart *= 2;
1157 Opcode = RD->Opcode;
1158 Ty = VecTy;
1159 return RD->Kind;
1162 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1163 switch (I->getOpcode()) {
1164 case Instruction::GetElementPtr:
1165 return getUserCost(I);
1167 case Instruction::Ret:
1168 case Instruction::PHI:
1169 case Instruction::Br: {
1170 return getCFInstrCost(I->getOpcode());
1172 case Instruction::Add:
1173 case Instruction::FAdd:
1174 case Instruction::Sub:
1175 case Instruction::FSub:
1176 case Instruction::Mul:
1177 case Instruction::FMul:
1178 case Instruction::UDiv:
1179 case Instruction::SDiv:
1180 case Instruction::FDiv:
1181 case Instruction::URem:
1182 case Instruction::SRem:
1183 case Instruction::FRem:
1184 case Instruction::Shl:
1185 case Instruction::LShr:
1186 case Instruction::AShr:
1187 case Instruction::And:
1188 case Instruction::Or:
1189 case Instruction::Xor: {
1190 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1191 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1192 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1193 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1194 SmallVector<const Value *, 2> Operands(I->operand_values());
1195 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1196 Op1VP, Op2VP, Operands);
1198 case Instruction::FNeg: {
1199 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1200 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1201 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1202 Op2VK = OK_AnyValue;
1203 Op2VP = OP_None;
1204 SmallVector<const Value *, 2> Operands(I->operand_values());
1205 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1206 Op1VP, Op2VP, Operands);
1208 case Instruction::Select: {
1209 const SelectInst *SI = cast<SelectInst>(I);
1210 Type *CondTy = SI->getCondition()->getType();
1211 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1213 case Instruction::ICmp:
1214 case Instruction::FCmp: {
1215 Type *ValTy = I->getOperand(0)->getType();
1216 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1218 case Instruction::Store: {
1219 const StoreInst *SI = cast<StoreInst>(I);
1220 Type *ValTy = SI->getValueOperand()->getType();
1221 return getMemoryOpCost(I->getOpcode(), ValTy,
1222 SI->getAlignment(),
1223 SI->getPointerAddressSpace(), I);
1225 case Instruction::Load: {
1226 const LoadInst *LI = cast<LoadInst>(I);
1227 return getMemoryOpCost(I->getOpcode(), I->getType(),
1228 LI->getAlignment(),
1229 LI->getPointerAddressSpace(), I);
1231 case Instruction::ZExt:
1232 case Instruction::SExt:
1233 case Instruction::FPToUI:
1234 case Instruction::FPToSI:
1235 case Instruction::FPExt:
1236 case Instruction::PtrToInt:
1237 case Instruction::IntToPtr:
1238 case Instruction::SIToFP:
1239 case Instruction::UIToFP:
1240 case Instruction::Trunc:
1241 case Instruction::FPTrunc:
1242 case Instruction::BitCast:
1243 case Instruction::AddrSpaceCast: {
1244 Type *SrcTy = I->getOperand(0)->getType();
1245 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1247 case Instruction::ExtractElement: {
1248 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1249 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1250 unsigned Idx = -1;
1251 if (CI)
1252 Idx = CI->getZExtValue();
1254 // Try to match a reduction sequence (series of shufflevector and vector
1255 // adds followed by a extractelement).
1256 unsigned ReduxOpCode;
1257 Type *ReduxType;
1259 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1260 case RK_Arithmetic:
1261 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1262 /*IsPairwiseForm=*/false);
1263 case RK_MinMax:
1264 return getMinMaxReductionCost(
1265 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1266 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1267 case RK_UnsignedMinMax:
1268 return getMinMaxReductionCost(
1269 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1270 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1271 case RK_None:
1272 break;
1275 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1276 case RK_Arithmetic:
1277 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1278 /*IsPairwiseForm=*/true);
1279 case RK_MinMax:
1280 return getMinMaxReductionCost(
1281 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1282 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1283 case RK_UnsignedMinMax:
1284 return getMinMaxReductionCost(
1285 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1286 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1287 case RK_None:
1288 break;
1291 return getVectorInstrCost(I->getOpcode(),
1292 EEI->getOperand(0)->getType(), Idx);
1294 case Instruction::InsertElement: {
1295 const InsertElementInst * IE = cast<InsertElementInst>(I);
1296 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1297 unsigned Idx = -1;
1298 if (CI)
1299 Idx = CI->getZExtValue();
1300 return getVectorInstrCost(I->getOpcode(),
1301 IE->getType(), Idx);
1303 case Instruction::ExtractValue:
1304 return 0; // Model all ExtractValue nodes as free.
1305 case Instruction::ShuffleVector: {
1306 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1307 Type *Ty = Shuffle->getType();
1308 Type *SrcTy = Shuffle->getOperand(0)->getType();
1310 // TODO: Identify and add costs for insert subvector, etc.
1311 int SubIndex;
1312 if (Shuffle->isExtractSubvectorMask(SubIndex))
1313 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1315 if (Shuffle->changesLength())
1316 return -1;
1318 if (Shuffle->isIdentity())
1319 return 0;
1321 if (Shuffle->isReverse())
1322 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1324 if (Shuffle->isSelect())
1325 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1327 if (Shuffle->isTranspose())
1328 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1330 if (Shuffle->isZeroEltSplat())
1331 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1333 if (Shuffle->isSingleSource())
1334 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1336 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1338 case Instruction::Call:
1339 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1340 SmallVector<Value *, 4> Args(II->arg_operands());
1342 FastMathFlags FMF;
1343 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1344 FMF = FPMO->getFastMathFlags();
1346 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1347 Args, FMF);
1349 return -1;
1350 default:
1351 // We don't have any information on this instruction.
1352 return -1;
1356 TargetTransformInfo::Concept::~Concept() {}
1358 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1360 TargetIRAnalysis::TargetIRAnalysis(
1361 std::function<Result(const Function &)> TTICallback)
1362 : TTICallback(std::move(TTICallback)) {}
1364 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1365 FunctionAnalysisManager &) {
1366 return TTICallback(F);
1369 AnalysisKey TargetIRAnalysis::Key;
1371 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1372 return Result(F.getParent()->getDataLayout());
1375 // Register the basic pass.
1376 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1377 "Target Transform Information", false, true)
1378 char TargetTransformInfoWrapperPass::ID = 0;
1380 void TargetTransformInfoWrapperPass::anchor() {}
1382 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1383 : ImmutablePass(ID) {
1384 initializeTargetTransformInfoWrapperPassPass(
1385 *PassRegistry::getPassRegistry());
1388 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1389 TargetIRAnalysis TIRA)
1390 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1391 initializeTargetTransformInfoWrapperPassPass(
1392 *PassRegistry::getPassRegistry());
1395 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1396 FunctionAnalysisManager DummyFAM;
1397 TTI = TIRA.run(F, DummyFAM);
1398 return *TTI;
1401 ImmutablePass *
1402 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1403 return new TargetTransformInfoWrapperPass(std::move(TIRA));