[ARM] VQADD instructions
[llvm-complete.git] / lib / CodeGen / MachineBasicBlock.cpp
blob854bef3aab050ea4cac2c886a025867d3d9d560f
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
40 #define DEBUG_TYPE "codegen"
42 static cl::opt<bool> PrintSlotIndexes(
43 "print-slotindexes",
44 cl::desc("When printing machine IR, annotate instructions and blocks with "
45 "SlotIndexes when available"),
46 cl::init(true), cl::Hidden);
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49 : BB(B), Number(-1), xParent(&MF) {
50 Insts.Parent = this;
51 if (B)
52 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
55 MachineBasicBlock::~MachineBasicBlock() {
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60 if (!CachedMCSymbol) {
61 const MachineFunction *MF = getParent();
62 MCContext &Ctx = MF->getContext();
63 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
64 assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
65 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
66 Twine(MF->getFunctionNumber()) +
67 "_" + Twine(getNumber()));
70 return CachedMCSymbol;
74 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
75 MBB.print(OS);
76 return OS;
79 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
80 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
83 /// When an MBB is added to an MF, we need to update the parent pointer of the
84 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
85 /// operand list for registers.
86 ///
87 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
88 /// gets the next available unique MBB number. If it is removed from a
89 /// MachineFunction, it goes back to being #-1.
90 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
91 MachineBasicBlock *N) {
92 MachineFunction &MF = *N->getParent();
93 N->Number = MF.addToMBBNumbering(N);
95 // Make sure the instructions have their operands in the reginfo lists.
96 MachineRegisterInfo &RegInfo = MF.getRegInfo();
97 for (MachineBasicBlock::instr_iterator
98 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
99 I->AddRegOperandsToUseLists(RegInfo);
102 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
103 MachineBasicBlock *N) {
104 N->getParent()->removeFromMBBNumbering(N->Number);
105 N->Number = -1;
108 /// When we add an instruction to a basic block list, we update its parent
109 /// pointer and add its operands from reg use/def lists if appropriate.
110 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
111 assert(!N->getParent() && "machine instruction already in a basic block");
112 N->setParent(Parent);
114 // Add the instruction's register operands to their corresponding
115 // use/def lists.
116 MachineFunction *MF = Parent->getParent();
117 N->AddRegOperandsToUseLists(MF->getRegInfo());
118 MF->handleInsertion(*N);
121 /// When we remove an instruction from a basic block list, we update its parent
122 /// pointer and remove its operands from reg use/def lists if appropriate.
123 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
124 assert(N->getParent() && "machine instruction not in a basic block");
126 // Remove from the use/def lists.
127 if (MachineFunction *MF = N->getMF()) {
128 MF->handleRemoval(*N);
129 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
132 N->setParent(nullptr);
135 /// When moving a range of instructions from one MBB list to another, we need to
136 /// update the parent pointers and the use/def lists.
137 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
138 instr_iterator First,
139 instr_iterator Last) {
140 assert(Parent->getParent() == FromList.Parent->getParent() &&
141 "cannot transfer MachineInstrs between MachineFunctions");
143 // If it's within the same BB, there's nothing to do.
144 if (this == &FromList)
145 return;
147 assert(Parent != FromList.Parent && "Two lists have the same parent?");
149 // If splicing between two blocks within the same function, just update the
150 // parent pointers.
151 for (; First != Last; ++First)
152 First->setParent(Parent);
155 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
156 assert(!MI->getParent() && "MI is still in a block!");
157 Parent->getParent()->DeleteMachineInstr(MI);
160 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
161 instr_iterator I = instr_begin(), E = instr_end();
162 while (I != E && I->isPHI())
163 ++I;
164 assert((I == E || !I->isInsideBundle()) &&
165 "First non-phi MI cannot be inside a bundle!");
166 return I;
169 MachineBasicBlock::iterator
170 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
171 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
173 iterator E = end();
174 while (I != E && (I->isPHI() || I->isPosition() ||
175 TII->isBasicBlockPrologue(*I)))
176 ++I;
177 // FIXME: This needs to change if we wish to bundle labels
178 // inside the bundle.
179 assert((I == E || !I->isInsideBundle()) &&
180 "First non-phi / non-label instruction is inside a bundle!");
181 return I;
184 MachineBasicBlock::iterator
185 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
186 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
188 iterator E = end();
189 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
190 TII->isBasicBlockPrologue(*I)))
191 ++I;
192 // FIXME: This needs to change if we wish to bundle labels / dbg_values
193 // inside the bundle.
194 assert((I == E || !I->isInsideBundle()) &&
195 "First non-phi / non-label / non-debug "
196 "instruction is inside a bundle!");
197 return I;
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
201 iterator B = begin(), E = end(), I = E;
202 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
203 ; /*noop */
204 while (I != E && !I->isTerminator())
205 ++I;
206 return I;
209 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
210 instr_iterator B = instr_begin(), E = instr_end(), I = E;
211 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
212 ; /*noop */
213 while (I != E && !I->isTerminator())
214 ++I;
215 return I;
218 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
219 // Skip over begin-of-block dbg_value instructions.
220 return skipDebugInstructionsForward(begin(), end());
223 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
224 // Skip over end-of-block dbg_value instructions.
225 instr_iterator B = instr_begin(), I = instr_end();
226 while (I != B) {
227 --I;
228 // Return instruction that starts a bundle.
229 if (I->isDebugInstr() || I->isInsideBundle())
230 continue;
231 return I;
233 // The block is all debug values.
234 return end();
237 bool MachineBasicBlock::hasEHPadSuccessor() const {
238 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
239 if ((*I)->isEHPad())
240 return true;
241 return false;
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
246 print(dbgs());
248 #endif
250 bool MachineBasicBlock::isLegalToHoistInto() const {
251 if (isReturnBlock() || hasEHPadSuccessor())
252 return false;
253 return true;
256 StringRef MachineBasicBlock::getName() const {
257 if (const BasicBlock *LBB = getBasicBlock())
258 return LBB->getName();
259 else
260 return StringRef("", 0);
263 /// Return a hopefully unique identifier for this block.
264 std::string MachineBasicBlock::getFullName() const {
265 std::string Name;
266 if (getParent())
267 Name = (getParent()->getName() + ":").str();
268 if (getBasicBlock())
269 Name += getBasicBlock()->getName();
270 else
271 Name += ("BB" + Twine(getNumber())).str();
272 return Name;
275 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
276 bool IsStandalone) const {
277 const MachineFunction *MF = getParent();
278 if (!MF) {
279 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
280 << " is null\n";
281 return;
283 const Function &F = MF->getFunction();
284 const Module *M = F.getParent();
285 ModuleSlotTracker MST(M);
286 MST.incorporateFunction(F);
287 print(OS, MST, Indexes, IsStandalone);
290 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
291 const SlotIndexes *Indexes,
292 bool IsStandalone) const {
293 const MachineFunction *MF = getParent();
294 if (!MF) {
295 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
296 << " is null\n";
297 return;
300 if (Indexes && PrintSlotIndexes)
301 OS << Indexes->getMBBStartIdx(this) << '\t';
303 OS << "bb." << getNumber();
304 bool HasAttributes = false;
305 if (const auto *BB = getBasicBlock()) {
306 if (BB->hasName()) {
307 OS << "." << BB->getName();
308 } else {
309 HasAttributes = true;
310 OS << " (";
311 int Slot = MST.getLocalSlot(BB);
312 if (Slot == -1)
313 OS << "<ir-block badref>";
314 else
315 OS << (Twine("%ir-block.") + Twine(Slot)).str();
319 if (hasAddressTaken()) {
320 OS << (HasAttributes ? ", " : " (");
321 OS << "address-taken";
322 HasAttributes = true;
324 if (isEHPad()) {
325 OS << (HasAttributes ? ", " : " (");
326 OS << "landing-pad";
327 HasAttributes = true;
329 if (getAlignment() != Align::None()) {
330 OS << (HasAttributes ? ", " : " (");
331 OS << "align " << Log2(getAlignment());
332 HasAttributes = true;
334 if (HasAttributes)
335 OS << ")";
336 OS << ":\n";
338 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
339 const MachineRegisterInfo &MRI = MF->getRegInfo();
340 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
341 bool HasLineAttributes = false;
343 // Print the preds of this block according to the CFG.
344 if (!pred_empty() && IsStandalone) {
345 if (Indexes) OS << '\t';
346 // Don't indent(2), align with previous line attributes.
347 OS << "; predecessors: ";
348 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
349 if (I != pred_begin())
350 OS << ", ";
351 OS << printMBBReference(**I);
353 OS << '\n';
354 HasLineAttributes = true;
357 if (!succ_empty()) {
358 if (Indexes) OS << '\t';
359 // Print the successors
360 OS.indent(2) << "successors: ";
361 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
362 if (I != succ_begin())
363 OS << ", ";
364 OS << printMBBReference(**I);
365 if (!Probs.empty())
366 OS << '('
367 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
368 << ')';
370 if (!Probs.empty() && IsStandalone) {
371 // Print human readable probabilities as comments.
372 OS << "; ";
373 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
374 const BranchProbability &BP = getSuccProbability(I);
375 if (I != succ_begin())
376 OS << ", ";
377 OS << printMBBReference(**I) << '('
378 << format("%.2f%%",
379 rint(((double)BP.getNumerator() / BP.getDenominator()) *
380 100.0 * 100.0) /
381 100.0)
382 << ')';
386 OS << '\n';
387 HasLineAttributes = true;
390 if (!livein_empty() && MRI.tracksLiveness()) {
391 if (Indexes) OS << '\t';
392 OS.indent(2) << "liveins: ";
394 bool First = true;
395 for (const auto &LI : liveins()) {
396 if (!First)
397 OS << ", ";
398 First = false;
399 OS << printReg(LI.PhysReg, TRI);
400 if (!LI.LaneMask.all())
401 OS << ":0x" << PrintLaneMask(LI.LaneMask);
403 HasLineAttributes = true;
406 if (HasLineAttributes)
407 OS << '\n';
409 bool IsInBundle = false;
410 for (const MachineInstr &MI : instrs()) {
411 if (Indexes && PrintSlotIndexes) {
412 if (Indexes->hasIndex(MI))
413 OS << Indexes->getInstructionIndex(MI);
414 OS << '\t';
417 if (IsInBundle && !MI.isInsideBundle()) {
418 OS.indent(2) << "}\n";
419 IsInBundle = false;
422 OS.indent(IsInBundle ? 4 : 2);
423 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
424 /*AddNewLine=*/false, &TII);
426 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
427 OS << " {";
428 IsInBundle = true;
430 OS << '\n';
433 if (IsInBundle)
434 OS.indent(2) << "}\n";
436 if (IrrLoopHeaderWeight && IsStandalone) {
437 if (Indexes) OS << '\t';
438 OS.indent(2) << "; Irreducible loop header weight: "
439 << IrrLoopHeaderWeight.getValue() << '\n';
443 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
444 bool /*PrintType*/) const {
445 OS << "%bb." << getNumber();
448 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
449 LiveInVector::iterator I = find_if(
450 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
451 if (I == LiveIns.end())
452 return;
454 I->LaneMask &= ~LaneMask;
455 if (I->LaneMask.none())
456 LiveIns.erase(I);
459 MachineBasicBlock::livein_iterator
460 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
461 // Get non-const version of iterator.
462 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
463 return LiveIns.erase(LI);
466 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
467 livein_iterator I = find_if(
468 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
469 return I != livein_end() && (I->LaneMask & LaneMask).any();
472 void MachineBasicBlock::sortUniqueLiveIns() {
473 llvm::sort(LiveIns,
474 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
475 return LI0.PhysReg < LI1.PhysReg;
477 // Liveins are sorted by physreg now we can merge their lanemasks.
478 LiveInVector::const_iterator I = LiveIns.begin();
479 LiveInVector::const_iterator J;
480 LiveInVector::iterator Out = LiveIns.begin();
481 for (; I != LiveIns.end(); ++Out, I = J) {
482 unsigned PhysReg = I->PhysReg;
483 LaneBitmask LaneMask = I->LaneMask;
484 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
485 LaneMask |= J->LaneMask;
486 Out->PhysReg = PhysReg;
487 Out->LaneMask = LaneMask;
489 LiveIns.erase(Out, LiveIns.end());
492 unsigned
493 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
494 assert(getParent() && "MBB must be inserted in function");
495 assert(PhysReg.isPhysical() && "Expected physreg");
496 assert(RC && "Register class is required");
497 assert((isEHPad() || this == &getParent()->front()) &&
498 "Only the entry block and landing pads can have physreg live ins");
500 bool LiveIn = isLiveIn(PhysReg);
501 iterator I = SkipPHIsAndLabels(begin()), E = end();
502 MachineRegisterInfo &MRI = getParent()->getRegInfo();
503 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
505 // Look for an existing copy.
506 if (LiveIn)
507 for (;I != E && I->isCopy(); ++I)
508 if (I->getOperand(1).getReg() == PhysReg) {
509 Register VirtReg = I->getOperand(0).getReg();
510 if (!MRI.constrainRegClass(VirtReg, RC))
511 llvm_unreachable("Incompatible live-in register class.");
512 return VirtReg;
515 // No luck, create a virtual register.
516 Register VirtReg = MRI.createVirtualRegister(RC);
517 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
518 .addReg(PhysReg, RegState::Kill);
519 if (!LiveIn)
520 addLiveIn(PhysReg);
521 return VirtReg;
524 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
525 getParent()->splice(NewAfter->getIterator(), getIterator());
528 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
529 getParent()->splice(++NewBefore->getIterator(), getIterator());
532 void MachineBasicBlock::updateTerminator() {
533 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
534 // A block with no successors has no concerns with fall-through edges.
535 if (this->succ_empty())
536 return;
538 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
539 SmallVector<MachineOperand, 4> Cond;
540 DebugLoc DL = findBranchDebugLoc();
541 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
542 (void) B;
543 assert(!B && "UpdateTerminators requires analyzable predecessors!");
544 if (Cond.empty()) {
545 if (TBB) {
546 // The block has an unconditional branch. If its successor is now its
547 // layout successor, delete the branch.
548 if (isLayoutSuccessor(TBB))
549 TII->removeBranch(*this);
550 } else {
551 // The block has an unconditional fallthrough. If its successor is not its
552 // layout successor, insert a branch. First we have to locate the only
553 // non-landing-pad successor, as that is the fallthrough block.
554 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
555 if ((*SI)->isEHPad())
556 continue;
557 assert(!TBB && "Found more than one non-landing-pad successor!");
558 TBB = *SI;
561 // If there is no non-landing-pad successor, the block has no fall-through
562 // edges to be concerned with.
563 if (!TBB)
564 return;
566 // Finally update the unconditional successor to be reached via a branch
567 // if it would not be reached by fallthrough.
568 if (!isLayoutSuccessor(TBB))
569 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
571 return;
574 if (FBB) {
575 // The block has a non-fallthrough conditional branch. If one of its
576 // successors is its layout successor, rewrite it to a fallthrough
577 // conditional branch.
578 if (isLayoutSuccessor(TBB)) {
579 if (TII->reverseBranchCondition(Cond))
580 return;
581 TII->removeBranch(*this);
582 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
583 } else if (isLayoutSuccessor(FBB)) {
584 TII->removeBranch(*this);
585 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
587 return;
590 // Walk through the successors and find the successor which is not a landing
591 // pad and is not the conditional branch destination (in TBB) as the
592 // fallthrough successor.
593 MachineBasicBlock *FallthroughBB = nullptr;
594 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
595 if ((*SI)->isEHPad() || *SI == TBB)
596 continue;
597 assert(!FallthroughBB && "Found more than one fallthrough successor.");
598 FallthroughBB = *SI;
601 if (!FallthroughBB) {
602 if (canFallThrough()) {
603 // We fallthrough to the same basic block as the conditional jump targets.
604 // Remove the conditional jump, leaving unconditional fallthrough.
605 // FIXME: This does not seem like a reasonable pattern to support, but it
606 // has been seen in the wild coming out of degenerate ARM test cases.
607 TII->removeBranch(*this);
609 // Finally update the unconditional successor to be reached via a branch if
610 // it would not be reached by fallthrough.
611 if (!isLayoutSuccessor(TBB))
612 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
613 return;
616 // We enter here iff exactly one successor is TBB which cannot fallthrough
617 // and the rest successors if any are EHPads. In this case, we need to
618 // change the conditional branch into unconditional branch.
619 TII->removeBranch(*this);
620 Cond.clear();
621 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
622 return;
625 // The block has a fallthrough conditional branch.
626 if (isLayoutSuccessor(TBB)) {
627 if (TII->reverseBranchCondition(Cond)) {
628 // We can't reverse the condition, add an unconditional branch.
629 Cond.clear();
630 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
631 return;
633 TII->removeBranch(*this);
634 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
635 } else if (!isLayoutSuccessor(FallthroughBB)) {
636 TII->removeBranch(*this);
637 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
641 void MachineBasicBlock::validateSuccProbs() const {
642 #ifndef NDEBUG
643 int64_t Sum = 0;
644 for (auto Prob : Probs)
645 Sum += Prob.getNumerator();
646 // Due to precision issue, we assume that the sum of probabilities is one if
647 // the difference between the sum of their numerators and the denominator is
648 // no greater than the number of successors.
649 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
650 Probs.size() &&
651 "The sum of successors's probabilities exceeds one.");
652 #endif // NDEBUG
655 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
656 BranchProbability Prob) {
657 // Probability list is either empty (if successor list isn't empty, this means
658 // disabled optimization) or has the same size as successor list.
659 if (!(Probs.empty() && !Successors.empty()))
660 Probs.push_back(Prob);
661 Successors.push_back(Succ);
662 Succ->addPredecessor(this);
665 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
666 // We need to make sure probability list is either empty or has the same size
667 // of successor list. When this function is called, we can safely delete all
668 // probability in the list.
669 Probs.clear();
670 Successors.push_back(Succ);
671 Succ->addPredecessor(this);
674 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
675 MachineBasicBlock *New,
676 bool NormalizeSuccProbs) {
677 succ_iterator OldI = llvm::find(successors(), Old);
678 assert(OldI != succ_end() && "Old is not a successor of this block!");
679 assert(llvm::find(successors(), New) == succ_end() &&
680 "New is already a successor of this block!");
682 // Add a new successor with equal probability as the original one. Note
683 // that we directly copy the probability using the iterator rather than
684 // getting a potentially synthetic probability computed when unknown. This
685 // preserves the probabilities as-is and then we can renormalize them and
686 // query them effectively afterward.
687 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
688 : *getProbabilityIterator(OldI));
689 if (NormalizeSuccProbs)
690 normalizeSuccProbs();
693 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
694 bool NormalizeSuccProbs) {
695 succ_iterator I = find(Successors, Succ);
696 removeSuccessor(I, NormalizeSuccProbs);
699 MachineBasicBlock::succ_iterator
700 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
701 assert(I != Successors.end() && "Not a current successor!");
703 // If probability list is empty it means we don't use it (disabled
704 // optimization).
705 if (!Probs.empty()) {
706 probability_iterator WI = getProbabilityIterator(I);
707 Probs.erase(WI);
708 if (NormalizeSuccProbs)
709 normalizeSuccProbs();
712 (*I)->removePredecessor(this);
713 return Successors.erase(I);
716 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
717 MachineBasicBlock *New) {
718 if (Old == New)
719 return;
721 succ_iterator E = succ_end();
722 succ_iterator NewI = E;
723 succ_iterator OldI = E;
724 for (succ_iterator I = succ_begin(); I != E; ++I) {
725 if (*I == Old) {
726 OldI = I;
727 if (NewI != E)
728 break;
730 if (*I == New) {
731 NewI = I;
732 if (OldI != E)
733 break;
736 assert(OldI != E && "Old is not a successor of this block");
738 // If New isn't already a successor, let it take Old's place.
739 if (NewI == E) {
740 Old->removePredecessor(this);
741 New->addPredecessor(this);
742 *OldI = New;
743 return;
746 // New is already a successor.
747 // Update its probability instead of adding a duplicate edge.
748 if (!Probs.empty()) {
749 auto ProbIter = getProbabilityIterator(NewI);
750 if (!ProbIter->isUnknown())
751 *ProbIter += *getProbabilityIterator(OldI);
753 removeSuccessor(OldI);
756 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
757 succ_iterator I) {
758 if (Orig->Probs.empty())
759 addSuccessor(*I, Orig->getSuccProbability(I));
760 else
761 addSuccessorWithoutProb(*I);
764 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
765 Predecessors.push_back(Pred);
768 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
769 pred_iterator I = find(Predecessors, Pred);
770 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
771 Predecessors.erase(I);
774 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
775 if (this == FromMBB)
776 return;
778 while (!FromMBB->succ_empty()) {
779 MachineBasicBlock *Succ = *FromMBB->succ_begin();
781 // If probability list is empty it means we don't use it (disabled
782 // optimization).
783 if (!FromMBB->Probs.empty()) {
784 auto Prob = *FromMBB->Probs.begin();
785 addSuccessor(Succ, Prob);
786 } else
787 addSuccessorWithoutProb(Succ);
789 FromMBB->removeSuccessor(Succ);
793 void
794 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
795 if (this == FromMBB)
796 return;
798 while (!FromMBB->succ_empty()) {
799 MachineBasicBlock *Succ = *FromMBB->succ_begin();
800 if (!FromMBB->Probs.empty()) {
801 auto Prob = *FromMBB->Probs.begin();
802 addSuccessor(Succ, Prob);
803 } else
804 addSuccessorWithoutProb(Succ);
805 FromMBB->removeSuccessor(Succ);
807 // Fix up any PHI nodes in the successor.
808 Succ->replacePhiUsesWith(FromMBB, this);
810 normalizeSuccProbs();
813 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
814 return is_contained(predecessors(), MBB);
817 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
818 return is_contained(successors(), MBB);
821 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
822 MachineFunction::const_iterator I(this);
823 return std::next(I) == MachineFunction::const_iterator(MBB);
826 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
827 MachineFunction::iterator Fallthrough = getIterator();
828 ++Fallthrough;
829 // If FallthroughBlock is off the end of the function, it can't fall through.
830 if (Fallthrough == getParent()->end())
831 return nullptr;
833 // If FallthroughBlock isn't a successor, no fallthrough is possible.
834 if (!isSuccessor(&*Fallthrough))
835 return nullptr;
837 // Analyze the branches, if any, at the end of the block.
838 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
839 SmallVector<MachineOperand, 4> Cond;
840 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
841 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
842 // If we couldn't analyze the branch, examine the last instruction.
843 // If the block doesn't end in a known control barrier, assume fallthrough
844 // is possible. The isPredicated check is needed because this code can be
845 // called during IfConversion, where an instruction which is normally a
846 // Barrier is predicated and thus no longer an actual control barrier.
847 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
848 ? &*Fallthrough
849 : nullptr;
852 // If there is no branch, control always falls through.
853 if (!TBB) return &*Fallthrough;
855 // If there is some explicit branch to the fallthrough block, it can obviously
856 // reach, even though the branch should get folded to fall through implicitly.
857 if (MachineFunction::iterator(TBB) == Fallthrough ||
858 MachineFunction::iterator(FBB) == Fallthrough)
859 return &*Fallthrough;
861 // If it's an unconditional branch to some block not the fall through, it
862 // doesn't fall through.
863 if (Cond.empty()) return nullptr;
865 // Otherwise, if it is conditional and has no explicit false block, it falls
866 // through.
867 return (FBB == nullptr) ? &*Fallthrough : nullptr;
870 bool MachineBasicBlock::canFallThrough() {
871 return getFallThrough() != nullptr;
874 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
875 Pass &P) {
876 if (!canSplitCriticalEdge(Succ))
877 return nullptr;
879 MachineFunction *MF = getParent();
880 DebugLoc DL; // FIXME: this is nowhere
882 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
883 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
884 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
885 << " -- " << printMBBReference(*NMBB) << " -- "
886 << printMBBReference(*Succ) << '\n');
888 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
889 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
890 if (LIS)
891 LIS->insertMBBInMaps(NMBB);
892 else if (Indexes)
893 Indexes->insertMBBInMaps(NMBB);
895 // On some targets like Mips, branches may kill virtual registers. Make sure
896 // that LiveVariables is properly updated after updateTerminator replaces the
897 // terminators.
898 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
900 // Collect a list of virtual registers killed by the terminators.
901 SmallVector<unsigned, 4> KilledRegs;
902 if (LV)
903 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
904 I != E; ++I) {
905 MachineInstr *MI = &*I;
906 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
907 OE = MI->operands_end(); OI != OE; ++OI) {
908 if (!OI->isReg() || OI->getReg() == 0 ||
909 !OI->isUse() || !OI->isKill() || OI->isUndef())
910 continue;
911 Register Reg = OI->getReg();
912 if (Register::isPhysicalRegister(Reg) ||
913 LV->getVarInfo(Reg).removeKill(*MI)) {
914 KilledRegs.push_back(Reg);
915 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
916 OI->setIsKill(false);
921 SmallVector<unsigned, 4> UsedRegs;
922 if (LIS) {
923 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
924 I != E; ++I) {
925 MachineInstr *MI = &*I;
927 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
928 OE = MI->operands_end(); OI != OE; ++OI) {
929 if (!OI->isReg() || OI->getReg() == 0)
930 continue;
932 Register Reg = OI->getReg();
933 if (!is_contained(UsedRegs, Reg))
934 UsedRegs.push_back(Reg);
939 ReplaceUsesOfBlockWith(Succ, NMBB);
941 // If updateTerminator() removes instructions, we need to remove them from
942 // SlotIndexes.
943 SmallVector<MachineInstr*, 4> Terminators;
944 if (Indexes) {
945 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
946 I != E; ++I)
947 Terminators.push_back(&*I);
950 updateTerminator();
952 if (Indexes) {
953 SmallVector<MachineInstr*, 4> NewTerminators;
954 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
955 I != E; ++I)
956 NewTerminators.push_back(&*I);
958 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
959 E = Terminators.end(); I != E; ++I) {
960 if (!is_contained(NewTerminators, *I))
961 Indexes->removeMachineInstrFromMaps(**I);
965 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
966 NMBB->addSuccessor(Succ);
967 if (!NMBB->isLayoutSuccessor(Succ)) {
968 SmallVector<MachineOperand, 4> Cond;
969 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
970 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
972 if (Indexes) {
973 for (MachineInstr &MI : NMBB->instrs()) {
974 // Some instructions may have been moved to NMBB by updateTerminator(),
975 // so we first remove any instruction that already has an index.
976 if (Indexes->hasIndex(MI))
977 Indexes->removeMachineInstrFromMaps(MI);
978 Indexes->insertMachineInstrInMaps(MI);
983 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
984 Succ->replacePhiUsesWith(this, NMBB);
986 // Inherit live-ins from the successor
987 for (const auto &LI : Succ->liveins())
988 NMBB->addLiveIn(LI);
990 // Update LiveVariables.
991 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
992 if (LV) {
993 // Restore kills of virtual registers that were killed by the terminators.
994 while (!KilledRegs.empty()) {
995 unsigned Reg = KilledRegs.pop_back_val();
996 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
997 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
998 continue;
999 if (Register::isVirtualRegister(Reg))
1000 LV->getVarInfo(Reg).Kills.push_back(&*I);
1001 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1002 break;
1005 // Update relevant live-through information.
1006 LV->addNewBlock(NMBB, this, Succ);
1009 if (LIS) {
1010 // After splitting the edge and updating SlotIndexes, live intervals may be
1011 // in one of two situations, depending on whether this block was the last in
1012 // the function. If the original block was the last in the function, all
1013 // live intervals will end prior to the beginning of the new split block. If
1014 // the original block was not at the end of the function, all live intervals
1015 // will extend to the end of the new split block.
1017 bool isLastMBB =
1018 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1020 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1021 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1022 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1024 // Find the registers used from NMBB in PHIs in Succ.
1025 SmallSet<unsigned, 8> PHISrcRegs;
1026 for (MachineBasicBlock::instr_iterator
1027 I = Succ->instr_begin(), E = Succ->instr_end();
1028 I != E && I->isPHI(); ++I) {
1029 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1030 if (I->getOperand(ni+1).getMBB() == NMBB) {
1031 MachineOperand &MO = I->getOperand(ni);
1032 Register Reg = MO.getReg();
1033 PHISrcRegs.insert(Reg);
1034 if (MO.isUndef())
1035 continue;
1037 LiveInterval &LI = LIS->getInterval(Reg);
1038 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1039 assert(VNI &&
1040 "PHI sources should be live out of their predecessors.");
1041 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1046 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1047 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1048 unsigned Reg = Register::index2VirtReg(i);
1049 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1050 continue;
1052 LiveInterval &LI = LIS->getInterval(Reg);
1053 if (!LI.liveAt(PrevIndex))
1054 continue;
1056 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1057 if (isLiveOut && isLastMBB) {
1058 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1059 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1060 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1061 } else if (!isLiveOut && !isLastMBB) {
1062 LI.removeSegment(StartIndex, EndIndex);
1066 // Update all intervals for registers whose uses may have been modified by
1067 // updateTerminator().
1068 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1071 if (MachineDominatorTree *MDT =
1072 P.getAnalysisIfAvailable<MachineDominatorTree>())
1073 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1075 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1076 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1077 // If one or the other blocks were not in a loop, the new block is not
1078 // either, and thus LI doesn't need to be updated.
1079 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1080 if (TIL == DestLoop) {
1081 // Both in the same loop, the NMBB joins loop.
1082 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1083 } else if (TIL->contains(DestLoop)) {
1084 // Edge from an outer loop to an inner loop. Add to the outer loop.
1085 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1086 } else if (DestLoop->contains(TIL)) {
1087 // Edge from an inner loop to an outer loop. Add to the outer loop.
1088 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1089 } else {
1090 // Edge from two loops with no containment relation. Because these
1091 // are natural loops, we know that the destination block must be the
1092 // header of its loop (adding a branch into a loop elsewhere would
1093 // create an irreducible loop).
1094 assert(DestLoop->getHeader() == Succ &&
1095 "Should not create irreducible loops!");
1096 if (MachineLoop *P = DestLoop->getParentLoop())
1097 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1102 return NMBB;
1105 bool MachineBasicBlock::canSplitCriticalEdge(
1106 const MachineBasicBlock *Succ) const {
1107 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1108 // it in this generic function.
1109 if (Succ->isEHPad())
1110 return false;
1112 const MachineFunction *MF = getParent();
1114 // Performance might be harmed on HW that implements branching using exec mask
1115 // where both sides of the branches are always executed.
1116 if (MF->getTarget().requiresStructuredCFG())
1117 return false;
1119 // We may need to update this's terminator, but we can't do that if
1120 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1121 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1122 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1123 SmallVector<MachineOperand, 4> Cond;
1124 // AnalyzeBanch should modify this, since we did not allow modification.
1125 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1126 /*AllowModify*/ false))
1127 return false;
1129 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1130 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1131 // case that we can't handle. Since this never happens in properly optimized
1132 // code, just skip those edges.
1133 if (TBB && TBB == FBB) {
1134 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1135 << printMBBReference(*this) << '\n');
1136 return false;
1138 return true;
1141 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1142 /// neighboring instructions so the bundle won't be broken by removing MI.
1143 static void unbundleSingleMI(MachineInstr *MI) {
1144 // Removing the first instruction in a bundle.
1145 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1146 MI->unbundleFromSucc();
1147 // Removing the last instruction in a bundle.
1148 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1149 MI->unbundleFromPred();
1150 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1151 // are already fine.
1154 MachineBasicBlock::instr_iterator
1155 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1156 unbundleSingleMI(&*I);
1157 return Insts.erase(I);
1160 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1161 unbundleSingleMI(MI);
1162 MI->clearFlag(MachineInstr::BundledPred);
1163 MI->clearFlag(MachineInstr::BundledSucc);
1164 return Insts.remove(MI);
1167 MachineBasicBlock::instr_iterator
1168 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1169 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1170 "Cannot insert instruction with bundle flags");
1171 // Set the bundle flags when inserting inside a bundle.
1172 if (I != instr_end() && I->isBundledWithPred()) {
1173 MI->setFlag(MachineInstr::BundledPred);
1174 MI->setFlag(MachineInstr::BundledSucc);
1176 return Insts.insert(I, MI);
1179 /// This method unlinks 'this' from the containing function, and returns it, but
1180 /// does not delete it.
1181 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1182 assert(getParent() && "Not embedded in a function!");
1183 getParent()->remove(this);
1184 return this;
1187 /// This method unlinks 'this' from the containing function, and deletes it.
1188 void MachineBasicBlock::eraseFromParent() {
1189 assert(getParent() && "Not embedded in a function!");
1190 getParent()->erase(this);
1193 /// Given a machine basic block that branched to 'Old', change the code and CFG
1194 /// so that it branches to 'New' instead.
1195 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1196 MachineBasicBlock *New) {
1197 assert(Old != New && "Cannot replace self with self!");
1199 MachineBasicBlock::instr_iterator I = instr_end();
1200 while (I != instr_begin()) {
1201 --I;
1202 if (!I->isTerminator()) break;
1204 // Scan the operands of this machine instruction, replacing any uses of Old
1205 // with New.
1206 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1207 if (I->getOperand(i).isMBB() &&
1208 I->getOperand(i).getMBB() == Old)
1209 I->getOperand(i).setMBB(New);
1212 // Update the successor information.
1213 replaceSuccessor(Old, New);
1216 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1217 MachineBasicBlock *New) {
1218 for (MachineInstr &MI : phis())
1219 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1220 MachineOperand &MO = MI.getOperand(i);
1221 if (MO.getMBB() == Old)
1222 MO.setMBB(New);
1226 /// Various pieces of code can cause excess edges in the CFG to be inserted. If
1227 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1228 /// MBB successors from the CFG. DestA and DestB can be null.
1230 /// Besides DestA and DestB, retain other edges leading to LandingPads
1231 /// (currently there can be only one; we don't check or require that here).
1232 /// Note it is possible that DestA and/or DestB are LandingPads.
1233 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1234 MachineBasicBlock *DestB,
1235 bool IsCond) {
1236 // The values of DestA and DestB frequently come from a call to the
1237 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1238 // values from there.
1240 // 1. If both DestA and DestB are null, then the block ends with no branches
1241 // (it falls through to its successor).
1242 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1243 // with only an unconditional branch.
1244 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1245 // with a conditional branch that falls through to a successor (DestB).
1246 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1247 // conditional branch followed by an unconditional branch. DestA is the
1248 // 'true' destination and DestB is the 'false' destination.
1250 bool Changed = false;
1252 MachineBasicBlock *FallThru = getNextNode();
1254 if (!DestA && !DestB) {
1255 // Block falls through to successor.
1256 DestA = FallThru;
1257 DestB = FallThru;
1258 } else if (DestA && !DestB) {
1259 if (IsCond)
1260 // Block ends in conditional jump that falls through to successor.
1261 DestB = FallThru;
1262 } else {
1263 assert(DestA && DestB && IsCond &&
1264 "CFG in a bad state. Cannot correct CFG edges");
1267 // Remove superfluous edges. I.e., those which aren't destinations of this
1268 // basic block, duplicate edges, or landing pads.
1269 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1270 MachineBasicBlock::succ_iterator SI = succ_begin();
1271 while (SI != succ_end()) {
1272 const MachineBasicBlock *MBB = *SI;
1273 if (!SeenMBBs.insert(MBB).second ||
1274 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1275 // This is a superfluous edge, remove it.
1276 SI = removeSuccessor(SI);
1277 Changed = true;
1278 } else {
1279 ++SI;
1283 if (Changed)
1284 normalizeSuccProbs();
1285 return Changed;
1288 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1289 /// instructions. Return UnknownLoc if there is none.
1290 DebugLoc
1291 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1292 // Skip debug declarations, we don't want a DebugLoc from them.
1293 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1294 if (MBBI != instr_end())
1295 return MBBI->getDebugLoc();
1296 return {};
1299 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1300 /// instructions. Return UnknownLoc if there is none.
1301 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1302 if (MBBI == instr_begin()) return {};
1303 // Skip debug declarations, we don't want a DebugLoc from them.
1304 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1305 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1306 return {};
1309 /// Find and return the merged DebugLoc of the branch instructions of the block.
1310 /// Return UnknownLoc if there is none.
1311 DebugLoc
1312 MachineBasicBlock::findBranchDebugLoc() {
1313 DebugLoc DL;
1314 auto TI = getFirstTerminator();
1315 while (TI != end() && !TI->isBranch())
1316 ++TI;
1318 if (TI != end()) {
1319 DL = TI->getDebugLoc();
1320 for (++TI ; TI != end() ; ++TI)
1321 if (TI->isBranch())
1322 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1324 return DL;
1327 /// Return probability of the edge from this block to MBB.
1328 BranchProbability
1329 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1330 if (Probs.empty())
1331 return BranchProbability(1, succ_size());
1333 const auto &Prob = *getProbabilityIterator(Succ);
1334 if (Prob.isUnknown()) {
1335 // For unknown probabilities, collect the sum of all known ones, and evenly
1336 // ditribute the complemental of the sum to each unknown probability.
1337 unsigned KnownProbNum = 0;
1338 auto Sum = BranchProbability::getZero();
1339 for (auto &P : Probs) {
1340 if (!P.isUnknown()) {
1341 Sum += P;
1342 KnownProbNum++;
1345 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1346 } else
1347 return Prob;
1350 /// Set successor probability of a given iterator.
1351 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1352 BranchProbability Prob) {
1353 assert(!Prob.isUnknown());
1354 if (Probs.empty())
1355 return;
1356 *getProbabilityIterator(I) = Prob;
1359 /// Return probability iterator corresonding to the I successor iterator
1360 MachineBasicBlock::const_probability_iterator
1361 MachineBasicBlock::getProbabilityIterator(
1362 MachineBasicBlock::const_succ_iterator I) const {
1363 assert(Probs.size() == Successors.size() && "Async probability list!");
1364 const size_t index = std::distance(Successors.begin(), I);
1365 assert(index < Probs.size() && "Not a current successor!");
1366 return Probs.begin() + index;
1369 /// Return probability iterator corresonding to the I successor iterator.
1370 MachineBasicBlock::probability_iterator
1371 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1372 assert(Probs.size() == Successors.size() && "Async probability list!");
1373 const size_t index = std::distance(Successors.begin(), I);
1374 assert(index < Probs.size() && "Not a current successor!");
1375 return Probs.begin() + index;
1378 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1379 /// as of just before "MI".
1381 /// Search is localised to a neighborhood of
1382 /// Neighborhood instructions before (searching for defs or kills) and N
1383 /// instructions after (searching just for defs) MI.
1384 MachineBasicBlock::LivenessQueryResult
1385 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1386 unsigned Reg, const_iterator Before,
1387 unsigned Neighborhood) const {
1388 unsigned N = Neighborhood;
1390 // Try searching forwards from Before, looking for reads or defs.
1391 const_iterator I(Before);
1392 for (; I != end() && N > 0; ++I) {
1393 if (I->isDebugInstr())
1394 continue;
1396 --N;
1398 MachineOperandIteratorBase::PhysRegInfo Info =
1399 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1401 // Register is live when we read it here.
1402 if (Info.Read)
1403 return LQR_Live;
1404 // Register is dead if we can fully overwrite or clobber it here.
1405 if (Info.FullyDefined || Info.Clobbered)
1406 return LQR_Dead;
1409 // If we reached the end, it is safe to clobber Reg at the end of a block of
1410 // no successor has it live in.
1411 if (I == end()) {
1412 for (MachineBasicBlock *S : successors()) {
1413 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1414 if (TRI->regsOverlap(LI.PhysReg, Reg))
1415 return LQR_Live;
1419 return LQR_Dead;
1423 N = Neighborhood;
1425 // Start by searching backwards from Before, looking for kills, reads or defs.
1426 I = const_iterator(Before);
1427 // If this is the first insn in the block, don't search backwards.
1428 if (I != begin()) {
1429 do {
1430 --I;
1432 if (I->isDebugInstr())
1433 continue;
1435 --N;
1437 MachineOperandIteratorBase::PhysRegInfo Info =
1438 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1440 // Defs happen after uses so they take precedence if both are present.
1442 // Register is dead after a dead def of the full register.
1443 if (Info.DeadDef)
1444 return LQR_Dead;
1445 // Register is (at least partially) live after a def.
1446 if (Info.Defined) {
1447 if (!Info.PartialDeadDef)
1448 return LQR_Live;
1449 // As soon as we saw a partial definition (dead or not),
1450 // we cannot tell if the value is partial live without
1451 // tracking the lanemasks. We are not going to do this,
1452 // so fall back on the remaining of the analysis.
1453 break;
1455 // Register is dead after a full kill or clobber and no def.
1456 if (Info.Killed || Info.Clobbered)
1457 return LQR_Dead;
1458 // Register must be live if we read it.
1459 if (Info.Read)
1460 return LQR_Live;
1462 } while (I != begin() && N > 0);
1465 // Did we get to the start of the block?
1466 if (I == begin()) {
1467 // If so, the register's state is definitely defined by the live-in state.
1468 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1469 if (TRI->regsOverlap(LI.PhysReg, Reg))
1470 return LQR_Live;
1472 return LQR_Dead;
1475 // At this point we have no idea of the liveness of the register.
1476 return LQR_Unknown;
1479 const uint32_t *
1480 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1481 // EH funclet entry does not preserve any registers.
1482 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1485 const uint32_t *
1486 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1487 // If we see a return block with successors, this must be a funclet return,
1488 // which does not preserve any registers. If there are no successors, we don't
1489 // care what kind of return it is, putting a mask after it is a no-op.
1490 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1493 void MachineBasicBlock::clearLiveIns() {
1494 LiveIns.clear();
1497 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1498 assert(getParent()->getProperties().hasProperty(
1499 MachineFunctionProperties::Property::TracksLiveness) &&
1500 "Liveness information is accurate");
1501 return LiveIns.begin();