[ARM] VQADD instructions
[llvm-complete.git] / lib / CodeGen / MachinePipeliner.cpp
blob89c9f6093a975d763e638d24d496ac383072a2e2
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/CodeGen/DFAPacketizer.h"
47 #include "llvm/CodeGen/LiveIntervals.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineMemOperand.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachinePipeliner.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/ModuloSchedule.h"
60 #include "llvm/CodeGen/RegisterPressure.h"
61 #include "llvm/CodeGen/ScheduleDAG.h"
62 #include "llvm/CodeGen/ScheduleDAGMutation.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/Config/llvm-config.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/MC/LaneBitmask.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCInstrItineraries.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <deque>
85 #include <functional>
86 #include <iterator>
87 #include <map>
88 #include <memory>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
93 using namespace llvm;
95 #define DEBUG_TYPE "pipeliner"
97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98 STATISTIC(NumPipelined, "Number of loops software pipelined");
99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
109 /// A command line option to turn software pipelining on or off.
110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
111 cl::ZeroOrMore,
112 cl::desc("Enable Software Pipelining"));
114 /// A command line option to enable SWP at -Os.
115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
116 cl::desc("Enable SWP at Os."), cl::Hidden,
117 cl::init(false));
119 /// A command line argument to limit minimum initial interval for pipelining.
120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
121 cl::desc("Size limit for the MII."),
122 cl::Hidden, cl::init(27));
124 /// A command line argument to limit the number of stages in the pipeline.
125 static cl::opt<int>
126 SwpMaxStages("pipeliner-max-stages",
127 cl::desc("Maximum stages allowed in the generated scheduled."),
128 cl::Hidden, cl::init(3));
130 /// A command line option to disable the pruning of chain dependences due to
131 /// an unrelated Phi.
132 static cl::opt<bool>
133 SwpPruneDeps("pipeliner-prune-deps",
134 cl::desc("Prune dependences between unrelated Phi nodes."),
135 cl::Hidden, cl::init(true));
137 /// A command line option to disable the pruning of loop carried order
138 /// dependences.
139 static cl::opt<bool>
140 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
141 cl::desc("Prune loop carried order dependences."),
142 cl::Hidden, cl::init(true));
144 #ifndef NDEBUG
145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
146 #endif
148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
149 cl::ReallyHidden, cl::init(false),
150 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
153 cl::init(false));
154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
155 cl::init(false));
157 static cl::opt<bool> EmitTestAnnotations(
158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
159 cl::desc("Instead of emitting the pipelined code, annotate instructions "
160 "with the generated schedule for feeding into the "
161 "-modulo-schedule-test pass"));
163 static cl::opt<bool> ExperimentalCodeGen(
164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
165 cl::desc(
166 "Use the experimental peeling code generator for software pipelining"));
168 namespace llvm {
170 // A command line option to enable the CopyToPhi DAG mutation.
171 cl::opt<bool>
172 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
173 cl::init(true), cl::ZeroOrMore,
174 cl::desc("Enable CopyToPhi DAG Mutation"));
176 } // end namespace llvm
178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
179 char MachinePipeliner::ID = 0;
180 #ifndef NDEBUG
181 int MachinePipeliner::NumTries = 0;
182 #endif
183 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
186 "Modulo Software Pipelining", false, false)
187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
192 "Modulo Software Pipelining", false, false)
194 /// The "main" function for implementing Swing Modulo Scheduling.
195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
196 if (skipFunction(mf.getFunction()))
197 return false;
199 if (!EnableSWP)
200 return false;
202 if (mf.getFunction().getAttributes().hasAttribute(
203 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
204 !EnableSWPOptSize.getPosition())
205 return false;
207 if (!mf.getSubtarget().enableMachinePipeliner())
208 return false;
210 // Cannot pipeline loops without instruction itineraries if we are using
211 // DFA for the pipeliner.
212 if (mf.getSubtarget().useDFAforSMS() &&
213 (!mf.getSubtarget().getInstrItineraryData() ||
214 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215 return false;
217 MF = &mf;
218 MLI = &getAnalysis<MachineLoopInfo>();
219 MDT = &getAnalysis<MachineDominatorTree>();
220 TII = MF->getSubtarget().getInstrInfo();
221 RegClassInfo.runOnMachineFunction(*MF);
223 for (auto &L : *MLI)
224 scheduleLoop(*L);
226 return false;
229 /// Attempt to perform the SMS algorithm on the specified loop. This function is
230 /// the main entry point for the algorithm. The function identifies candidate
231 /// loops, calculates the minimum initiation interval, and attempts to schedule
232 /// the loop.
233 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
234 bool Changed = false;
235 for (auto &InnerLoop : L)
236 Changed |= scheduleLoop(*InnerLoop);
238 #ifndef NDEBUG
239 // Stop trying after reaching the limit (if any).
240 int Limit = SwpLoopLimit;
241 if (Limit >= 0) {
242 if (NumTries >= SwpLoopLimit)
243 return Changed;
244 NumTries++;
246 #endif
248 setPragmaPipelineOptions(L);
249 if (!canPipelineLoop(L)) {
250 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
251 return Changed;
254 ++NumTrytoPipeline;
256 Changed = swingModuloScheduler(L);
258 return Changed;
261 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
262 MachineBasicBlock *LBLK = L.getTopBlock();
264 if (LBLK == nullptr)
265 return;
267 const BasicBlock *BBLK = LBLK->getBasicBlock();
268 if (BBLK == nullptr)
269 return;
271 const Instruction *TI = BBLK->getTerminator();
272 if (TI == nullptr)
273 return;
275 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
276 if (LoopID == nullptr)
277 return;
279 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
280 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
282 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
283 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
285 if (MD == nullptr)
286 continue;
288 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
290 if (S == nullptr)
291 continue;
293 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
294 assert(MD->getNumOperands() == 2 &&
295 "Pipeline initiation interval hint metadata should have two operands.");
296 II_setByPragma =
297 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
298 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
299 } else if (S->getString() == "llvm.loop.pipeline.disable") {
300 disabledByPragma = true;
305 /// Return true if the loop can be software pipelined. The algorithm is
306 /// restricted to loops with a single basic block. Make sure that the
307 /// branch in the loop can be analyzed.
308 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
309 if (L.getNumBlocks() != 1)
310 return false;
312 if (disabledByPragma)
313 return false;
315 // Check if the branch can't be understood because we can't do pipelining
316 // if that's the case.
317 LI.TBB = nullptr;
318 LI.FBB = nullptr;
319 LI.BrCond.clear();
320 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
321 LLVM_DEBUG(
322 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n");
323 NumFailBranch++;
324 return false;
327 LI.LoopInductionVar = nullptr;
328 LI.LoopCompare = nullptr;
329 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
330 LLVM_DEBUG(
331 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n");
332 NumFailLoop++;
333 return false;
336 if (!L.getLoopPreheader()) {
337 LLVM_DEBUG(
338 dbgs() << "Preheader not found, can NOT pipeline current Loop\n");
339 NumFailPreheader++;
340 return false;
343 // Remove any subregisters from inputs to phi nodes.
344 preprocessPhiNodes(*L.getHeader());
345 return true;
348 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
349 MachineRegisterInfo &MRI = MF->getRegInfo();
350 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
352 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
353 MachineOperand &DefOp = PI.getOperand(0);
354 assert(DefOp.getSubReg() == 0);
355 auto *RC = MRI.getRegClass(DefOp.getReg());
357 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
358 MachineOperand &RegOp = PI.getOperand(i);
359 if (RegOp.getSubReg() == 0)
360 continue;
362 // If the operand uses a subregister, replace it with a new register
363 // without subregisters, and generate a copy to the new register.
364 Register NewReg = MRI.createVirtualRegister(RC);
365 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
366 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
367 const DebugLoc &DL = PredB.findDebugLoc(At);
368 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
369 .addReg(RegOp.getReg(), getRegState(RegOp),
370 RegOp.getSubReg());
371 Slots.insertMachineInstrInMaps(*Copy);
372 RegOp.setReg(NewReg);
373 RegOp.setSubReg(0);
378 /// The SMS algorithm consists of the following main steps:
379 /// 1. Computation and analysis of the dependence graph.
380 /// 2. Ordering of the nodes (instructions).
381 /// 3. Attempt to Schedule the loop.
382 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
383 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
385 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
386 II_setByPragma);
388 MachineBasicBlock *MBB = L.getHeader();
389 // The kernel should not include any terminator instructions. These
390 // will be added back later.
391 SMS.startBlock(MBB);
393 // Compute the number of 'real' instructions in the basic block by
394 // ignoring terminators.
395 unsigned size = MBB->size();
396 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
397 E = MBB->instr_end();
398 I != E; ++I, --size)
401 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
402 SMS.schedule();
403 SMS.exitRegion();
405 SMS.finishBlock();
406 return SMS.hasNewSchedule();
409 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
410 if (II_setByPragma > 0)
411 MII = II_setByPragma;
412 else
413 MII = std::max(ResMII, RecMII);
416 void SwingSchedulerDAG::setMAX_II() {
417 if (II_setByPragma > 0)
418 MAX_II = II_setByPragma;
419 else
420 MAX_II = MII + 10;
423 /// We override the schedule function in ScheduleDAGInstrs to implement the
424 /// scheduling part of the Swing Modulo Scheduling algorithm.
425 void SwingSchedulerDAG::schedule() {
426 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
427 buildSchedGraph(AA);
428 addLoopCarriedDependences(AA);
429 updatePhiDependences();
430 Topo.InitDAGTopologicalSorting();
431 changeDependences();
432 postprocessDAG();
433 LLVM_DEBUG(dump());
435 NodeSetType NodeSets;
436 findCircuits(NodeSets);
437 NodeSetType Circuits = NodeSets;
439 // Calculate the MII.
440 unsigned ResMII = calculateResMII();
441 unsigned RecMII = calculateRecMII(NodeSets);
443 fuseRecs(NodeSets);
445 // This flag is used for testing and can cause correctness problems.
446 if (SwpIgnoreRecMII)
447 RecMII = 0;
449 setMII(ResMII, RecMII);
450 setMAX_II();
452 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
453 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
455 // Can't schedule a loop without a valid MII.
456 if (MII == 0) {
457 LLVM_DEBUG(
458 dbgs()
459 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n");
460 NumFailZeroMII++;
461 return;
464 // Don't pipeline large loops.
465 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
466 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
467 << ", we don't pipleline large loops\n");
468 NumFailLargeMaxMII++;
469 return;
472 computeNodeFunctions(NodeSets);
474 registerPressureFilter(NodeSets);
476 colocateNodeSets(NodeSets);
478 checkNodeSets(NodeSets);
480 LLVM_DEBUG({
481 for (auto &I : NodeSets) {
482 dbgs() << " Rec NodeSet ";
483 I.dump();
487 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
489 groupRemainingNodes(NodeSets);
491 removeDuplicateNodes(NodeSets);
493 LLVM_DEBUG({
494 for (auto &I : NodeSets) {
495 dbgs() << " NodeSet ";
496 I.dump();
500 computeNodeOrder(NodeSets);
502 // check for node order issues
503 checkValidNodeOrder(Circuits);
505 SMSchedule Schedule(Pass.MF);
506 Scheduled = schedulePipeline(Schedule);
508 if (!Scheduled){
509 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
510 NumFailNoSchedule++;
511 return;
514 unsigned numStages = Schedule.getMaxStageCount();
515 // No need to generate pipeline if there are no overlapped iterations.
516 if (numStages == 0) {
517 LLVM_DEBUG(
518 dbgs() << "No overlapped iterations, no need to generate pipeline\n");
519 NumFailZeroStage++;
520 return;
522 // Check that the maximum stage count is less than user-defined limit.
523 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
524 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
525 << " : too many stages, abort\n");
526 NumFailLargeMaxStage++;
527 return;
530 // Generate the schedule as a ModuloSchedule.
531 DenseMap<MachineInstr *, int> Cycles, Stages;
532 std::vector<MachineInstr *> OrderedInsts;
533 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
534 ++Cycle) {
535 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
536 OrderedInsts.push_back(SU->getInstr());
537 Cycles[SU->getInstr()] = Cycle;
538 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
541 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
542 for (auto &KV : NewMIs) {
543 Cycles[KV.first] = Cycles[KV.second];
544 Stages[KV.first] = Stages[KV.second];
545 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
548 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
549 std::move(Stages));
550 if (EmitTestAnnotations) {
551 assert(NewInstrChanges.empty() &&
552 "Cannot serialize a schedule with InstrChanges!");
553 ModuloScheduleTestAnnotater MSTI(MF, MS);
554 MSTI.annotate();
555 return;
557 // The experimental code generator can't work if there are InstChanges.
558 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
559 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
560 MSE.expand();
561 } else {
562 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
563 MSE.expand();
564 MSE.cleanup();
566 ++NumPipelined;
569 /// Clean up after the software pipeliner runs.
570 void SwingSchedulerDAG::finishBlock() {
571 for (auto &KV : NewMIs)
572 MF.DeleteMachineInstr(KV.second);
573 NewMIs.clear();
575 // Call the superclass.
576 ScheduleDAGInstrs::finishBlock();
579 /// Return the register values for the operands of a Phi instruction.
580 /// This function assume the instruction is a Phi.
581 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
582 unsigned &InitVal, unsigned &LoopVal) {
583 assert(Phi.isPHI() && "Expecting a Phi.");
585 InitVal = 0;
586 LoopVal = 0;
587 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
588 if (Phi.getOperand(i + 1).getMBB() != Loop)
589 InitVal = Phi.getOperand(i).getReg();
590 else
591 LoopVal = Phi.getOperand(i).getReg();
593 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
596 /// Return the Phi register value that comes the loop block.
597 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
598 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
599 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
600 return Phi.getOperand(i).getReg();
601 return 0;
604 /// Return true if SUb can be reached from SUa following the chain edges.
605 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
606 SmallPtrSet<SUnit *, 8> Visited;
607 SmallVector<SUnit *, 8> Worklist;
608 Worklist.push_back(SUa);
609 while (!Worklist.empty()) {
610 const SUnit *SU = Worklist.pop_back_val();
611 for (auto &SI : SU->Succs) {
612 SUnit *SuccSU = SI.getSUnit();
613 if (SI.getKind() == SDep::Order) {
614 if (Visited.count(SuccSU))
615 continue;
616 if (SuccSU == SUb)
617 return true;
618 Worklist.push_back(SuccSU);
619 Visited.insert(SuccSU);
623 return false;
626 /// Return true if the instruction causes a chain between memory
627 /// references before and after it.
628 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
629 return MI.isCall() || MI.mayRaiseFPException() ||
630 MI.hasUnmodeledSideEffects() ||
631 (MI.hasOrderedMemoryRef() &&
632 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
635 /// Return the underlying objects for the memory references of an instruction.
636 /// This function calls the code in ValueTracking, but first checks that the
637 /// instruction has a memory operand.
638 static void getUnderlyingObjects(const MachineInstr *MI,
639 SmallVectorImpl<const Value *> &Objs,
640 const DataLayout &DL) {
641 if (!MI->hasOneMemOperand())
642 return;
643 MachineMemOperand *MM = *MI->memoperands_begin();
644 if (!MM->getValue())
645 return;
646 GetUnderlyingObjects(MM->getValue(), Objs, DL);
647 for (const Value *V : Objs) {
648 if (!isIdentifiedObject(V)) {
649 Objs.clear();
650 return;
652 Objs.push_back(V);
656 /// Add a chain edge between a load and store if the store can be an
657 /// alias of the load on a subsequent iteration, i.e., a loop carried
658 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
659 /// but that code doesn't create loop carried dependences.
660 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
661 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
662 Value *UnknownValue =
663 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
664 for (auto &SU : SUnits) {
665 MachineInstr &MI = *SU.getInstr();
666 if (isDependenceBarrier(MI, AA))
667 PendingLoads.clear();
668 else if (MI.mayLoad()) {
669 SmallVector<const Value *, 4> Objs;
670 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
671 if (Objs.empty())
672 Objs.push_back(UnknownValue);
673 for (auto V : Objs) {
674 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
675 SUs.push_back(&SU);
677 } else if (MI.mayStore()) {
678 SmallVector<const Value *, 4> Objs;
679 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
680 if (Objs.empty())
681 Objs.push_back(UnknownValue);
682 for (auto V : Objs) {
683 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
684 PendingLoads.find(V);
685 if (I == PendingLoads.end())
686 continue;
687 for (auto Load : I->second) {
688 if (isSuccOrder(Load, &SU))
689 continue;
690 MachineInstr &LdMI = *Load->getInstr();
691 // First, perform the cheaper check that compares the base register.
692 // If they are the same and the load offset is less than the store
693 // offset, then mark the dependence as loop carried potentially.
694 const MachineOperand *BaseOp1, *BaseOp2;
695 int64_t Offset1, Offset2;
696 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
697 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
698 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
699 (int)Offset1 < (int)Offset2) {
700 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
701 "What happened to the chain edge?");
702 SDep Dep(Load, SDep::Barrier);
703 Dep.setLatency(1);
704 SU.addPred(Dep);
705 continue;
708 // Second, the more expensive check that uses alias analysis on the
709 // base registers. If they alias, and the load offset is less than
710 // the store offset, the mark the dependence as loop carried.
711 if (!AA) {
712 SDep Dep(Load, SDep::Barrier);
713 Dep.setLatency(1);
714 SU.addPred(Dep);
715 continue;
717 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
718 MachineMemOperand *MMO2 = *MI.memoperands_begin();
719 if (!MMO1->getValue() || !MMO2->getValue()) {
720 SDep Dep(Load, SDep::Barrier);
721 Dep.setLatency(1);
722 SU.addPred(Dep);
723 continue;
725 if (MMO1->getValue() == MMO2->getValue() &&
726 MMO1->getOffset() <= MMO2->getOffset()) {
727 SDep Dep(Load, SDep::Barrier);
728 Dep.setLatency(1);
729 SU.addPred(Dep);
730 continue;
732 AliasResult AAResult = AA->alias(
733 MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
734 MMO1->getAAInfo()),
735 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
736 MMO2->getAAInfo()));
738 if (AAResult != NoAlias) {
739 SDep Dep(Load, SDep::Barrier);
740 Dep.setLatency(1);
741 SU.addPred(Dep);
749 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
750 /// processes dependences for PHIs. This function adds true dependences
751 /// from a PHI to a use, and a loop carried dependence from the use to the
752 /// PHI. The loop carried dependence is represented as an anti dependence
753 /// edge. This function also removes chain dependences between unrelated
754 /// PHIs.
755 void SwingSchedulerDAG::updatePhiDependences() {
756 SmallVector<SDep, 4> RemoveDeps;
757 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
759 // Iterate over each DAG node.
760 for (SUnit &I : SUnits) {
761 RemoveDeps.clear();
762 // Set to true if the instruction has an operand defined by a Phi.
763 unsigned HasPhiUse = 0;
764 unsigned HasPhiDef = 0;
765 MachineInstr *MI = I.getInstr();
766 // Iterate over each operand, and we process the definitions.
767 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
768 MOE = MI->operands_end();
769 MOI != MOE; ++MOI) {
770 if (!MOI->isReg())
771 continue;
772 Register Reg = MOI->getReg();
773 if (MOI->isDef()) {
774 // If the register is used by a Phi, then create an anti dependence.
775 for (MachineRegisterInfo::use_instr_iterator
776 UI = MRI.use_instr_begin(Reg),
777 UE = MRI.use_instr_end();
778 UI != UE; ++UI) {
779 MachineInstr *UseMI = &*UI;
780 SUnit *SU = getSUnit(UseMI);
781 if (SU != nullptr && UseMI->isPHI()) {
782 if (!MI->isPHI()) {
783 SDep Dep(SU, SDep::Anti, Reg);
784 Dep.setLatency(1);
785 I.addPred(Dep);
786 } else {
787 HasPhiDef = Reg;
788 // Add a chain edge to a dependent Phi that isn't an existing
789 // predecessor.
790 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
791 I.addPred(SDep(SU, SDep::Barrier));
795 } else if (MOI->isUse()) {
796 // If the register is defined by a Phi, then create a true dependence.
797 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
798 if (DefMI == nullptr)
799 continue;
800 SUnit *SU = getSUnit(DefMI);
801 if (SU != nullptr && DefMI->isPHI()) {
802 if (!MI->isPHI()) {
803 SDep Dep(SU, SDep::Data, Reg);
804 Dep.setLatency(0);
805 ST.adjustSchedDependency(SU, &I, Dep);
806 I.addPred(Dep);
807 } else {
808 HasPhiUse = Reg;
809 // Add a chain edge to a dependent Phi that isn't an existing
810 // predecessor.
811 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
812 I.addPred(SDep(SU, SDep::Barrier));
817 // Remove order dependences from an unrelated Phi.
818 if (!SwpPruneDeps)
819 continue;
820 for (auto &PI : I.Preds) {
821 MachineInstr *PMI = PI.getSUnit()->getInstr();
822 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
823 if (I.getInstr()->isPHI()) {
824 if (PMI->getOperand(0).getReg() == HasPhiUse)
825 continue;
826 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
827 continue;
829 RemoveDeps.push_back(PI);
832 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
833 I.removePred(RemoveDeps[i]);
837 /// Iterate over each DAG node and see if we can change any dependences
838 /// in order to reduce the recurrence MII.
839 void SwingSchedulerDAG::changeDependences() {
840 // See if an instruction can use a value from the previous iteration.
841 // If so, we update the base and offset of the instruction and change
842 // the dependences.
843 for (SUnit &I : SUnits) {
844 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
845 int64_t NewOffset = 0;
846 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
847 NewOffset))
848 continue;
850 // Get the MI and SUnit for the instruction that defines the original base.
851 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
852 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
853 if (!DefMI)
854 continue;
855 SUnit *DefSU = getSUnit(DefMI);
856 if (!DefSU)
857 continue;
858 // Get the MI and SUnit for the instruction that defins the new base.
859 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
860 if (!LastMI)
861 continue;
862 SUnit *LastSU = getSUnit(LastMI);
863 if (!LastSU)
864 continue;
866 if (Topo.IsReachable(&I, LastSU))
867 continue;
869 // Remove the dependence. The value now depends on a prior iteration.
870 SmallVector<SDep, 4> Deps;
871 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
872 ++P)
873 if (P->getSUnit() == DefSU)
874 Deps.push_back(*P);
875 for (int i = 0, e = Deps.size(); i != e; i++) {
876 Topo.RemovePred(&I, Deps[i].getSUnit());
877 I.removePred(Deps[i]);
879 // Remove the chain dependence between the instructions.
880 Deps.clear();
881 for (auto &P : LastSU->Preds)
882 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
883 Deps.push_back(P);
884 for (int i = 0, e = Deps.size(); i != e; i++) {
885 Topo.RemovePred(LastSU, Deps[i].getSUnit());
886 LastSU->removePred(Deps[i]);
889 // Add a dependence between the new instruction and the instruction
890 // that defines the new base.
891 SDep Dep(&I, SDep::Anti, NewBase);
892 Topo.AddPred(LastSU, &I);
893 LastSU->addPred(Dep);
895 // Remember the base and offset information so that we can update the
896 // instruction during code generation.
897 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
901 namespace {
903 // FuncUnitSorter - Comparison operator used to sort instructions by
904 // the number of functional unit choices.
905 struct FuncUnitSorter {
906 const InstrItineraryData *InstrItins;
907 const MCSubtargetInfo *STI;
908 DenseMap<unsigned, unsigned> Resources;
910 FuncUnitSorter(const TargetSubtargetInfo &TSI)
911 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
913 // Compute the number of functional unit alternatives needed
914 // at each stage, and take the minimum value. We prioritize the
915 // instructions by the least number of choices first.
916 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
917 unsigned SchedClass = Inst->getDesc().getSchedClass();
918 unsigned min = UINT_MAX;
919 if (InstrItins && !InstrItins->isEmpty()) {
920 for (const InstrStage &IS :
921 make_range(InstrItins->beginStage(SchedClass),
922 InstrItins->endStage(SchedClass))) {
923 unsigned funcUnits = IS.getUnits();
924 unsigned numAlternatives = countPopulation(funcUnits);
925 if (numAlternatives < min) {
926 min = numAlternatives;
927 F = funcUnits;
930 return min;
932 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
933 const MCSchedClassDesc *SCDesc =
934 STI->getSchedModel().getSchedClassDesc(SchedClass);
935 if (!SCDesc->isValid())
936 // No valid Schedule Class Desc for schedClass, should be
937 // Pseudo/PostRAPseudo
938 return min;
940 for (const MCWriteProcResEntry &PRE :
941 make_range(STI->getWriteProcResBegin(SCDesc),
942 STI->getWriteProcResEnd(SCDesc))) {
943 if (!PRE.Cycles)
944 continue;
945 const MCProcResourceDesc *ProcResource =
946 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
947 unsigned NumUnits = ProcResource->NumUnits;
948 if (NumUnits < min) {
949 min = NumUnits;
950 F = PRE.ProcResourceIdx;
953 return min;
955 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
958 // Compute the critical resources needed by the instruction. This
959 // function records the functional units needed by instructions that
960 // must use only one functional unit. We use this as a tie breaker
961 // for computing the resource MII. The instrutions that require
962 // the same, highly used, functional unit have high priority.
963 void calcCriticalResources(MachineInstr &MI) {
964 unsigned SchedClass = MI.getDesc().getSchedClass();
965 if (InstrItins && !InstrItins->isEmpty()) {
966 for (const InstrStage &IS :
967 make_range(InstrItins->beginStage(SchedClass),
968 InstrItins->endStage(SchedClass))) {
969 unsigned FuncUnits = IS.getUnits();
970 if (countPopulation(FuncUnits) == 1)
971 Resources[FuncUnits]++;
973 return;
975 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
976 const MCSchedClassDesc *SCDesc =
977 STI->getSchedModel().getSchedClassDesc(SchedClass);
978 if (!SCDesc->isValid())
979 // No valid Schedule Class Desc for schedClass, should be
980 // Pseudo/PostRAPseudo
981 return;
983 for (const MCWriteProcResEntry &PRE :
984 make_range(STI->getWriteProcResBegin(SCDesc),
985 STI->getWriteProcResEnd(SCDesc))) {
986 if (!PRE.Cycles)
987 continue;
988 Resources[PRE.ProcResourceIdx]++;
990 return;
992 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
995 /// Return true if IS1 has less priority than IS2.
996 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
997 unsigned F1 = 0, F2 = 0;
998 unsigned MFUs1 = minFuncUnits(IS1, F1);
999 unsigned MFUs2 = minFuncUnits(IS2, F2);
1000 if (MFUs1 == MFUs2)
1001 return Resources.lookup(F1) < Resources.lookup(F2);
1002 return MFUs1 > MFUs2;
1006 } // end anonymous namespace
1008 /// Calculate the resource constrained minimum initiation interval for the
1009 /// specified loop. We use the DFA to model the resources needed for
1010 /// each instruction, and we ignore dependences. A different DFA is created
1011 /// for each cycle that is required. When adding a new instruction, we attempt
1012 /// to add it to each existing DFA, until a legal space is found. If the
1013 /// instruction cannot be reserved in an existing DFA, we create a new one.
1014 unsigned SwingSchedulerDAG::calculateResMII() {
1016 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1017 SmallVector<ResourceManager*, 8> Resources;
1018 MachineBasicBlock *MBB = Loop.getHeader();
1019 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1021 // Sort the instructions by the number of available choices for scheduling,
1022 // least to most. Use the number of critical resources as the tie breaker.
1023 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1024 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1025 E = MBB->getFirstTerminator();
1026 I != E; ++I)
1027 FUS.calcCriticalResources(*I);
1028 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1029 FuncUnitOrder(FUS);
1031 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1032 E = MBB->getFirstTerminator();
1033 I != E; ++I)
1034 FuncUnitOrder.push(&*I);
1036 while (!FuncUnitOrder.empty()) {
1037 MachineInstr *MI = FuncUnitOrder.top();
1038 FuncUnitOrder.pop();
1039 if (TII->isZeroCost(MI->getOpcode()))
1040 continue;
1041 // Attempt to reserve the instruction in an existing DFA. At least one
1042 // DFA is needed for each cycle.
1043 unsigned NumCycles = getSUnit(MI)->Latency;
1044 unsigned ReservedCycles = 0;
1045 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1046 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1047 LLVM_DEBUG({
1048 dbgs() << "Trying to reserve resource for " << NumCycles
1049 << " cycles for \n";
1050 MI->dump();
1052 for (unsigned C = 0; C < NumCycles; ++C)
1053 while (RI != RE) {
1054 if ((*RI)->canReserveResources(*MI)) {
1055 (*RI)->reserveResources(*MI);
1056 ++ReservedCycles;
1057 break;
1059 RI++;
1061 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1062 << ", NumCycles:" << NumCycles << "\n");
1063 // Add new DFAs, if needed, to reserve resources.
1064 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1065 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1066 << "NewResource created to reserve resources"
1067 << "\n");
1068 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1069 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1070 NewResource->reserveResources(*MI);
1071 Resources.push_back(NewResource);
1074 int Resmii = Resources.size();
1075 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n");
1076 // Delete the memory for each of the DFAs that were created earlier.
1077 for (ResourceManager *RI : Resources) {
1078 ResourceManager *D = RI;
1079 delete D;
1081 Resources.clear();
1082 return Resmii;
1085 /// Calculate the recurrence-constrainted minimum initiation interval.
1086 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1087 /// for each circuit. The II needs to satisfy the inequality
1088 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1089 /// II that satisfies the inequality, and the RecMII is the maximum
1090 /// of those values.
1091 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1092 unsigned RecMII = 0;
1094 for (NodeSet &Nodes : NodeSets) {
1095 if (Nodes.empty())
1096 continue;
1098 unsigned Delay = Nodes.getLatency();
1099 unsigned Distance = 1;
1101 // ii = ceil(delay / distance)
1102 unsigned CurMII = (Delay + Distance - 1) / Distance;
1103 Nodes.setRecMII(CurMII);
1104 if (CurMII > RecMII)
1105 RecMII = CurMII;
1108 return RecMII;
1111 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1112 /// but we do this to find the circuits, and then change them back.
1113 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1114 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1115 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1116 SUnit *SU = &SUnits[i];
1117 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1118 IP != EP; ++IP) {
1119 if (IP->getKind() != SDep::Anti)
1120 continue;
1121 DepsAdded.push_back(std::make_pair(SU, *IP));
1124 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1125 E = DepsAdded.end();
1126 I != E; ++I) {
1127 // Remove this anti dependency and add one in the reverse direction.
1128 SUnit *SU = I->first;
1129 SDep &D = I->second;
1130 SUnit *TargetSU = D.getSUnit();
1131 unsigned Reg = D.getReg();
1132 unsigned Lat = D.getLatency();
1133 SU->removePred(D);
1134 SDep Dep(SU, SDep::Anti, Reg);
1135 Dep.setLatency(Lat);
1136 TargetSU->addPred(Dep);
1140 /// Create the adjacency structure of the nodes in the graph.
1141 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1142 SwingSchedulerDAG *DAG) {
1143 BitVector Added(SUnits.size());
1144 DenseMap<int, int> OutputDeps;
1145 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1146 Added.reset();
1147 // Add any successor to the adjacency matrix and exclude duplicates.
1148 for (auto &SI : SUnits[i].Succs) {
1149 // Only create a back-edge on the first and last nodes of a dependence
1150 // chain. This records any chains and adds them later.
1151 if (SI.getKind() == SDep::Output) {
1152 int N = SI.getSUnit()->NodeNum;
1153 int BackEdge = i;
1154 auto Dep = OutputDeps.find(BackEdge);
1155 if (Dep != OutputDeps.end()) {
1156 BackEdge = Dep->second;
1157 OutputDeps.erase(Dep);
1159 OutputDeps[N] = BackEdge;
1161 // Do not process a boundary node, an artificial node.
1162 // A back-edge is processed only if it goes to a Phi.
1163 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1164 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1165 continue;
1166 int N = SI.getSUnit()->NodeNum;
1167 if (!Added.test(N)) {
1168 AdjK[i].push_back(N);
1169 Added.set(N);
1172 // A chain edge between a store and a load is treated as a back-edge in the
1173 // adjacency matrix.
1174 for (auto &PI : SUnits[i].Preds) {
1175 if (!SUnits[i].getInstr()->mayStore() ||
1176 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1177 continue;
1178 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1179 int N = PI.getSUnit()->NodeNum;
1180 if (!Added.test(N)) {
1181 AdjK[i].push_back(N);
1182 Added.set(N);
1187 // Add back-edges in the adjacency matrix for the output dependences.
1188 for (auto &OD : OutputDeps)
1189 if (!Added.test(OD.second)) {
1190 AdjK[OD.first].push_back(OD.second);
1191 Added.set(OD.second);
1195 /// Identify an elementary circuit in the dependence graph starting at the
1196 /// specified node.
1197 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1198 bool HasBackedge) {
1199 SUnit *SV = &SUnits[V];
1200 bool F = false;
1201 Stack.insert(SV);
1202 Blocked.set(V);
1204 for (auto W : AdjK[V]) {
1205 if (NumPaths > MaxPaths)
1206 break;
1207 if (W < S)
1208 continue;
1209 if (W == S) {
1210 if (!HasBackedge)
1211 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1212 F = true;
1213 ++NumPaths;
1214 break;
1215 } else if (!Blocked.test(W)) {
1216 if (circuit(W, S, NodeSets,
1217 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1218 F = true;
1222 if (F)
1223 unblock(V);
1224 else {
1225 for (auto W : AdjK[V]) {
1226 if (W < S)
1227 continue;
1228 if (B[W].count(SV) == 0)
1229 B[W].insert(SV);
1232 Stack.pop_back();
1233 return F;
1236 /// Unblock a node in the circuit finding algorithm.
1237 void SwingSchedulerDAG::Circuits::unblock(int U) {
1238 Blocked.reset(U);
1239 SmallPtrSet<SUnit *, 4> &BU = B[U];
1240 while (!BU.empty()) {
1241 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1242 assert(SI != BU.end() && "Invalid B set.");
1243 SUnit *W = *SI;
1244 BU.erase(W);
1245 if (Blocked.test(W->NodeNum))
1246 unblock(W->NodeNum);
1250 /// Identify all the elementary circuits in the dependence graph using
1251 /// Johnson's circuit algorithm.
1252 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1253 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1254 // but we do this to find the circuits, and then change them back.
1255 swapAntiDependences(SUnits);
1257 Circuits Cir(SUnits, Topo);
1258 // Create the adjacency structure.
1259 Cir.createAdjacencyStructure(this);
1260 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1261 Cir.reset();
1262 Cir.circuit(i, i, NodeSets);
1265 // Change the dependences back so that we've created a DAG again.
1266 swapAntiDependences(SUnits);
1269 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1270 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1271 // additional copies that are needed across iterations. An artificial dependence
1272 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1274 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1275 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1276 // PHI-------True-Dep------> USEOfPhi
1278 // The mutation creates
1279 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1281 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1282 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1283 // late to avoid additional copies across iterations. The possible scheduling
1284 // order would be
1285 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1287 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1288 for (SUnit &SU : DAG->SUnits) {
1289 // Find the COPY/REG_SEQUENCE instruction.
1290 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1291 continue;
1293 // Record the loop carried PHIs.
1294 SmallVector<SUnit *, 4> PHISUs;
1295 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1296 SmallVector<SUnit *, 4> SrcSUs;
1298 for (auto &Dep : SU.Preds) {
1299 SUnit *TmpSU = Dep.getSUnit();
1300 MachineInstr *TmpMI = TmpSU->getInstr();
1301 SDep::Kind DepKind = Dep.getKind();
1302 // Save the loop carried PHI.
1303 if (DepKind == SDep::Anti && TmpMI->isPHI())
1304 PHISUs.push_back(TmpSU);
1305 // Save the source of COPY/REG_SEQUENCE.
1306 // If the source has no pre-decessors, we will end up creating cycles.
1307 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1308 SrcSUs.push_back(TmpSU);
1311 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1312 continue;
1314 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1315 // SUnit to the container.
1316 SmallVector<SUnit *, 8> UseSUs;
1317 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1318 for (auto &Dep : (*I)->Succs) {
1319 if (Dep.getKind() != SDep::Data)
1320 continue;
1322 SUnit *TmpSU = Dep.getSUnit();
1323 MachineInstr *TmpMI = TmpSU->getInstr();
1324 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1325 PHISUs.push_back(TmpSU);
1326 continue;
1328 UseSUs.push_back(TmpSU);
1332 if (UseSUs.size() == 0)
1333 continue;
1335 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1336 // Add the artificial dependencies if it does not form a cycle.
1337 for (auto I : UseSUs) {
1338 for (auto Src : SrcSUs) {
1339 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1340 Src->addPred(SDep(I, SDep::Artificial));
1341 SDAG->Topo.AddPred(Src, I);
1348 /// Return true for DAG nodes that we ignore when computing the cost functions.
1349 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1350 /// in the calculation of the ASAP, ALAP, etc functions.
1351 static bool ignoreDependence(const SDep &D, bool isPred) {
1352 if (D.isArtificial())
1353 return true;
1354 return D.getKind() == SDep::Anti && isPred;
1357 /// Compute several functions need to order the nodes for scheduling.
1358 /// ASAP - Earliest time to schedule a node.
1359 /// ALAP - Latest time to schedule a node.
1360 /// MOV - Mobility function, difference between ALAP and ASAP.
1361 /// D - Depth of each node.
1362 /// H - Height of each node.
1363 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1364 ScheduleInfo.resize(SUnits.size());
1366 LLVM_DEBUG({
1367 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1368 E = Topo.end();
1369 I != E; ++I) {
1370 const SUnit &SU = SUnits[*I];
1371 dumpNode(SU);
1375 int maxASAP = 0;
1376 // Compute ASAP and ZeroLatencyDepth.
1377 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1378 E = Topo.end();
1379 I != E; ++I) {
1380 int asap = 0;
1381 int zeroLatencyDepth = 0;
1382 SUnit *SU = &SUnits[*I];
1383 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1384 EP = SU->Preds.end();
1385 IP != EP; ++IP) {
1386 SUnit *pred = IP->getSUnit();
1387 if (IP->getLatency() == 0)
1388 zeroLatencyDepth =
1389 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1390 if (ignoreDependence(*IP, true))
1391 continue;
1392 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1393 getDistance(pred, SU, *IP) * MII));
1395 maxASAP = std::max(maxASAP, asap);
1396 ScheduleInfo[*I].ASAP = asap;
1397 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1400 // Compute ALAP, ZeroLatencyHeight, and MOV.
1401 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1402 E = Topo.rend();
1403 I != E; ++I) {
1404 int alap = maxASAP;
1405 int zeroLatencyHeight = 0;
1406 SUnit *SU = &SUnits[*I];
1407 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1408 ES = SU->Succs.end();
1409 IS != ES; ++IS) {
1410 SUnit *succ = IS->getSUnit();
1411 if (IS->getLatency() == 0)
1412 zeroLatencyHeight =
1413 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1414 if (ignoreDependence(*IS, true))
1415 continue;
1416 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1417 getDistance(SU, succ, *IS) * MII));
1420 ScheduleInfo[*I].ALAP = alap;
1421 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1424 // After computing the node functions, compute the summary for each node set.
1425 for (NodeSet &I : NodeSets)
1426 I.computeNodeSetInfo(this);
1428 LLVM_DEBUG({
1429 for (unsigned i = 0; i < SUnits.size(); i++) {
1430 dbgs() << "\tNode " << i << ":\n";
1431 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1432 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1433 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1434 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1435 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1436 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1437 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1442 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1443 /// as the predecessors of the elements of NodeOrder that are not also in
1444 /// NodeOrder.
1445 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1446 SmallSetVector<SUnit *, 8> &Preds,
1447 const NodeSet *S = nullptr) {
1448 Preds.clear();
1449 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1450 I != E; ++I) {
1451 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1452 PI != PE; ++PI) {
1453 if (S && S->count(PI->getSUnit()) == 0)
1454 continue;
1455 if (ignoreDependence(*PI, true))
1456 continue;
1457 if (NodeOrder.count(PI->getSUnit()) == 0)
1458 Preds.insert(PI->getSUnit());
1460 // Back-edges are predecessors with an anti-dependence.
1461 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1462 ES = (*I)->Succs.end();
1463 IS != ES; ++IS) {
1464 if (IS->getKind() != SDep::Anti)
1465 continue;
1466 if (S && S->count(IS->getSUnit()) == 0)
1467 continue;
1468 if (NodeOrder.count(IS->getSUnit()) == 0)
1469 Preds.insert(IS->getSUnit());
1472 return !Preds.empty();
1475 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1476 /// as the successors of the elements of NodeOrder that are not also in
1477 /// NodeOrder.
1478 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1479 SmallSetVector<SUnit *, 8> &Succs,
1480 const NodeSet *S = nullptr) {
1481 Succs.clear();
1482 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1483 I != E; ++I) {
1484 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1485 SI != SE; ++SI) {
1486 if (S && S->count(SI->getSUnit()) == 0)
1487 continue;
1488 if (ignoreDependence(*SI, false))
1489 continue;
1490 if (NodeOrder.count(SI->getSUnit()) == 0)
1491 Succs.insert(SI->getSUnit());
1493 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1494 PE = (*I)->Preds.end();
1495 PI != PE; ++PI) {
1496 if (PI->getKind() != SDep::Anti)
1497 continue;
1498 if (S && S->count(PI->getSUnit()) == 0)
1499 continue;
1500 if (NodeOrder.count(PI->getSUnit()) == 0)
1501 Succs.insert(PI->getSUnit());
1504 return !Succs.empty();
1507 /// Return true if there is a path from the specified node to any of the nodes
1508 /// in DestNodes. Keep track and return the nodes in any path.
1509 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1510 SetVector<SUnit *> &DestNodes,
1511 SetVector<SUnit *> &Exclude,
1512 SmallPtrSet<SUnit *, 8> &Visited) {
1513 if (Cur->isBoundaryNode())
1514 return false;
1515 if (Exclude.count(Cur) != 0)
1516 return false;
1517 if (DestNodes.count(Cur) != 0)
1518 return true;
1519 if (!Visited.insert(Cur).second)
1520 return Path.count(Cur) != 0;
1521 bool FoundPath = false;
1522 for (auto &SI : Cur->Succs)
1523 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1524 for (auto &PI : Cur->Preds)
1525 if (PI.getKind() == SDep::Anti)
1526 FoundPath |=
1527 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1528 if (FoundPath)
1529 Path.insert(Cur);
1530 return FoundPath;
1533 /// Return true if Set1 is a subset of Set2.
1534 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1535 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1536 if (Set2.count(*I) == 0)
1537 return false;
1538 return true;
1541 /// Compute the live-out registers for the instructions in a node-set.
1542 /// The live-out registers are those that are defined in the node-set,
1543 /// but not used. Except for use operands of Phis.
1544 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1545 NodeSet &NS) {
1546 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1547 MachineRegisterInfo &MRI = MF.getRegInfo();
1548 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1549 SmallSet<unsigned, 4> Uses;
1550 for (SUnit *SU : NS) {
1551 const MachineInstr *MI = SU->getInstr();
1552 if (MI->isPHI())
1553 continue;
1554 for (const MachineOperand &MO : MI->operands())
1555 if (MO.isReg() && MO.isUse()) {
1556 Register Reg = MO.getReg();
1557 if (Register::isVirtualRegister(Reg))
1558 Uses.insert(Reg);
1559 else if (MRI.isAllocatable(Reg))
1560 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1561 Uses.insert(*Units);
1564 for (SUnit *SU : NS)
1565 for (const MachineOperand &MO : SU->getInstr()->operands())
1566 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1567 Register Reg = MO.getReg();
1568 if (Register::isVirtualRegister(Reg)) {
1569 if (!Uses.count(Reg))
1570 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1571 LaneBitmask::getNone()));
1572 } else if (MRI.isAllocatable(Reg)) {
1573 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1574 if (!Uses.count(*Units))
1575 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1576 LaneBitmask::getNone()));
1579 RPTracker.addLiveRegs(LiveOutRegs);
1582 /// A heuristic to filter nodes in recurrent node-sets if the register
1583 /// pressure of a set is too high.
1584 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1585 for (auto &NS : NodeSets) {
1586 // Skip small node-sets since they won't cause register pressure problems.
1587 if (NS.size() <= 2)
1588 continue;
1589 IntervalPressure RecRegPressure;
1590 RegPressureTracker RecRPTracker(RecRegPressure);
1591 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1592 computeLiveOuts(MF, RecRPTracker, NS);
1593 RecRPTracker.closeBottom();
1595 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1596 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1597 return A->NodeNum > B->NodeNum;
1600 for (auto &SU : SUnits) {
1601 // Since we're computing the register pressure for a subset of the
1602 // instructions in a block, we need to set the tracker for each
1603 // instruction in the node-set. The tracker is set to the instruction
1604 // just after the one we're interested in.
1605 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1606 RecRPTracker.setPos(std::next(CurInstI));
1608 RegPressureDelta RPDelta;
1609 ArrayRef<PressureChange> CriticalPSets;
1610 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1611 CriticalPSets,
1612 RecRegPressure.MaxSetPressure);
1613 if (RPDelta.Excess.isValid()) {
1614 LLVM_DEBUG(
1615 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1616 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1617 << ":" << RPDelta.Excess.getUnitInc());
1618 NS.setExceedPressure(SU);
1619 break;
1621 RecRPTracker.recede();
1626 /// A heuristic to colocate node sets that have the same set of
1627 /// successors.
1628 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1629 unsigned Colocate = 0;
1630 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1631 NodeSet &N1 = NodeSets[i];
1632 SmallSetVector<SUnit *, 8> S1;
1633 if (N1.empty() || !succ_L(N1, S1))
1634 continue;
1635 for (int j = i + 1; j < e; ++j) {
1636 NodeSet &N2 = NodeSets[j];
1637 if (N1.compareRecMII(N2) != 0)
1638 continue;
1639 SmallSetVector<SUnit *, 8> S2;
1640 if (N2.empty() || !succ_L(N2, S2))
1641 continue;
1642 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1643 N1.setColocate(++Colocate);
1644 N2.setColocate(Colocate);
1645 break;
1651 /// Check if the existing node-sets are profitable. If not, then ignore the
1652 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1653 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1654 /// then it's best to try to schedule all instructions together instead of
1655 /// starting with the recurrent node-sets.
1656 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1657 // Look for loops with a large MII.
1658 if (MII < 17)
1659 return;
1660 // Check if the node-set contains only a simple add recurrence.
1661 for (auto &NS : NodeSets) {
1662 if (NS.getRecMII() > 2)
1663 return;
1664 if (NS.getMaxDepth() > MII)
1665 return;
1667 NodeSets.clear();
1668 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1669 return;
1672 /// Add the nodes that do not belong to a recurrence set into groups
1673 /// based upon connected componenets.
1674 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1675 SetVector<SUnit *> NodesAdded;
1676 SmallPtrSet<SUnit *, 8> Visited;
1677 // Add the nodes that are on a path between the previous node sets and
1678 // the current node set.
1679 for (NodeSet &I : NodeSets) {
1680 SmallSetVector<SUnit *, 8> N;
1681 // Add the nodes from the current node set to the previous node set.
1682 if (succ_L(I, N)) {
1683 SetVector<SUnit *> Path;
1684 for (SUnit *NI : N) {
1685 Visited.clear();
1686 computePath(NI, Path, NodesAdded, I, Visited);
1688 if (!Path.empty())
1689 I.insert(Path.begin(), Path.end());
1691 // Add the nodes from the previous node set to the current node set.
1692 N.clear();
1693 if (succ_L(NodesAdded, N)) {
1694 SetVector<SUnit *> Path;
1695 for (SUnit *NI : N) {
1696 Visited.clear();
1697 computePath(NI, Path, I, NodesAdded, Visited);
1699 if (!Path.empty())
1700 I.insert(Path.begin(), Path.end());
1702 NodesAdded.insert(I.begin(), I.end());
1705 // Create a new node set with the connected nodes of any successor of a node
1706 // in a recurrent set.
1707 NodeSet NewSet;
1708 SmallSetVector<SUnit *, 8> N;
1709 if (succ_L(NodesAdded, N))
1710 for (SUnit *I : N)
1711 addConnectedNodes(I, NewSet, NodesAdded);
1712 if (!NewSet.empty())
1713 NodeSets.push_back(NewSet);
1715 // Create a new node set with the connected nodes of any predecessor of a node
1716 // in a recurrent set.
1717 NewSet.clear();
1718 if (pred_L(NodesAdded, N))
1719 for (SUnit *I : N)
1720 addConnectedNodes(I, NewSet, NodesAdded);
1721 if (!NewSet.empty())
1722 NodeSets.push_back(NewSet);
1724 // Create new nodes sets with the connected nodes any remaining node that
1725 // has no predecessor.
1726 for (unsigned i = 0; i < SUnits.size(); ++i) {
1727 SUnit *SU = &SUnits[i];
1728 if (NodesAdded.count(SU) == 0) {
1729 NewSet.clear();
1730 addConnectedNodes(SU, NewSet, NodesAdded);
1731 if (!NewSet.empty())
1732 NodeSets.push_back(NewSet);
1737 /// Add the node to the set, and add all of its connected nodes to the set.
1738 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1739 SetVector<SUnit *> &NodesAdded) {
1740 NewSet.insert(SU);
1741 NodesAdded.insert(SU);
1742 for (auto &SI : SU->Succs) {
1743 SUnit *Successor = SI.getSUnit();
1744 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1745 addConnectedNodes(Successor, NewSet, NodesAdded);
1747 for (auto &PI : SU->Preds) {
1748 SUnit *Predecessor = PI.getSUnit();
1749 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1750 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1754 /// Return true if Set1 contains elements in Set2. The elements in common
1755 /// are returned in a different container.
1756 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1757 SmallSetVector<SUnit *, 8> &Result) {
1758 Result.clear();
1759 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1760 SUnit *SU = Set1[i];
1761 if (Set2.count(SU) != 0)
1762 Result.insert(SU);
1764 return !Result.empty();
1767 /// Merge the recurrence node sets that have the same initial node.
1768 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1769 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1770 ++I) {
1771 NodeSet &NI = *I;
1772 for (NodeSetType::iterator J = I + 1; J != E;) {
1773 NodeSet &NJ = *J;
1774 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1775 if (NJ.compareRecMII(NI) > 0)
1776 NI.setRecMII(NJ.getRecMII());
1777 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1778 ++NII)
1779 I->insert(*NII);
1780 NodeSets.erase(J);
1781 E = NodeSets.end();
1782 } else {
1783 ++J;
1789 /// Remove nodes that have been scheduled in previous NodeSets.
1790 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1791 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1792 ++I)
1793 for (NodeSetType::iterator J = I + 1; J != E;) {
1794 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1796 if (J->empty()) {
1797 NodeSets.erase(J);
1798 E = NodeSets.end();
1799 } else {
1800 ++J;
1805 /// Compute an ordered list of the dependence graph nodes, which
1806 /// indicates the order that the nodes will be scheduled. This is a
1807 /// two-level algorithm. First, a partial order is created, which
1808 /// consists of a list of sets ordered from highest to lowest priority.
1809 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1810 SmallSetVector<SUnit *, 8> R;
1811 NodeOrder.clear();
1813 for (auto &Nodes : NodeSets) {
1814 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1815 OrderKind Order;
1816 SmallSetVector<SUnit *, 8> N;
1817 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1818 R.insert(N.begin(), N.end());
1819 Order = BottomUp;
1820 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1821 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1822 R.insert(N.begin(), N.end());
1823 Order = TopDown;
1824 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1825 } else if (isIntersect(N, Nodes, R)) {
1826 // If some of the successors are in the existing node-set, then use the
1827 // top-down ordering.
1828 Order = TopDown;
1829 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1830 } else if (NodeSets.size() == 1) {
1831 for (auto &N : Nodes)
1832 if (N->Succs.size() == 0)
1833 R.insert(N);
1834 Order = BottomUp;
1835 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1836 } else {
1837 // Find the node with the highest ASAP.
1838 SUnit *maxASAP = nullptr;
1839 for (SUnit *SU : Nodes) {
1840 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1841 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1842 maxASAP = SU;
1844 R.insert(maxASAP);
1845 Order = BottomUp;
1846 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1849 while (!R.empty()) {
1850 if (Order == TopDown) {
1851 // Choose the node with the maximum height. If more than one, choose
1852 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1853 // choose the node with the lowest MOV.
1854 while (!R.empty()) {
1855 SUnit *maxHeight = nullptr;
1856 for (SUnit *I : R) {
1857 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1858 maxHeight = I;
1859 else if (getHeight(I) == getHeight(maxHeight) &&
1860 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1861 maxHeight = I;
1862 else if (getHeight(I) == getHeight(maxHeight) &&
1863 getZeroLatencyHeight(I) ==
1864 getZeroLatencyHeight(maxHeight) &&
1865 getMOV(I) < getMOV(maxHeight))
1866 maxHeight = I;
1868 NodeOrder.insert(maxHeight);
1869 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1870 R.remove(maxHeight);
1871 for (const auto &I : maxHeight->Succs) {
1872 if (Nodes.count(I.getSUnit()) == 0)
1873 continue;
1874 if (NodeOrder.count(I.getSUnit()) != 0)
1875 continue;
1876 if (ignoreDependence(I, false))
1877 continue;
1878 R.insert(I.getSUnit());
1880 // Back-edges are predecessors with an anti-dependence.
1881 for (const auto &I : maxHeight->Preds) {
1882 if (I.getKind() != SDep::Anti)
1883 continue;
1884 if (Nodes.count(I.getSUnit()) == 0)
1885 continue;
1886 if (NodeOrder.count(I.getSUnit()) != 0)
1887 continue;
1888 R.insert(I.getSUnit());
1891 Order = BottomUp;
1892 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1893 SmallSetVector<SUnit *, 8> N;
1894 if (pred_L(NodeOrder, N, &Nodes))
1895 R.insert(N.begin(), N.end());
1896 } else {
1897 // Choose the node with the maximum depth. If more than one, choose
1898 // the node with the maximum ZeroLatencyDepth. If still more than one,
1899 // choose the node with the lowest MOV.
1900 while (!R.empty()) {
1901 SUnit *maxDepth = nullptr;
1902 for (SUnit *I : R) {
1903 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1904 maxDepth = I;
1905 else if (getDepth(I) == getDepth(maxDepth) &&
1906 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1907 maxDepth = I;
1908 else if (getDepth(I) == getDepth(maxDepth) &&
1909 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1910 getMOV(I) < getMOV(maxDepth))
1911 maxDepth = I;
1913 NodeOrder.insert(maxDepth);
1914 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1915 R.remove(maxDepth);
1916 if (Nodes.isExceedSU(maxDepth)) {
1917 Order = TopDown;
1918 R.clear();
1919 R.insert(Nodes.getNode(0));
1920 break;
1922 for (const auto &I : maxDepth->Preds) {
1923 if (Nodes.count(I.getSUnit()) == 0)
1924 continue;
1925 if (NodeOrder.count(I.getSUnit()) != 0)
1926 continue;
1927 R.insert(I.getSUnit());
1929 // Back-edges are predecessors with an anti-dependence.
1930 for (const auto &I : maxDepth->Succs) {
1931 if (I.getKind() != SDep::Anti)
1932 continue;
1933 if (Nodes.count(I.getSUnit()) == 0)
1934 continue;
1935 if (NodeOrder.count(I.getSUnit()) != 0)
1936 continue;
1937 R.insert(I.getSUnit());
1940 Order = TopDown;
1941 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1942 SmallSetVector<SUnit *, 8> N;
1943 if (succ_L(NodeOrder, N, &Nodes))
1944 R.insert(N.begin(), N.end());
1947 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1950 LLVM_DEBUG({
1951 dbgs() << "Node order: ";
1952 for (SUnit *I : NodeOrder)
1953 dbgs() << " " << I->NodeNum << " ";
1954 dbgs() << "\n";
1958 /// Process the nodes in the computed order and create the pipelined schedule
1959 /// of the instructions, if possible. Return true if a schedule is found.
1960 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1962 if (NodeOrder.empty()){
1963 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1964 return false;
1967 bool scheduleFound = false;
1968 unsigned II = 0;
1969 // Keep increasing II until a valid schedule is found.
1970 for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
1971 Schedule.reset();
1972 Schedule.setInitiationInterval(II);
1973 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1975 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1976 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1977 do {
1978 SUnit *SU = *NI;
1980 // Compute the schedule time for the instruction, which is based
1981 // upon the scheduled time for any predecessors/successors.
1982 int EarlyStart = INT_MIN;
1983 int LateStart = INT_MAX;
1984 // These values are set when the size of the schedule window is limited
1985 // due to chain dependences.
1986 int SchedEnd = INT_MAX;
1987 int SchedStart = INT_MIN;
1988 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1989 II, this);
1990 LLVM_DEBUG({
1991 dbgs() << "\n";
1992 dbgs() << "Inst (" << SU->NodeNum << ") ";
1993 SU->getInstr()->dump();
1994 dbgs() << "\n";
1996 LLVM_DEBUG({
1997 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
1998 LateStart, SchedEnd, SchedStart);
2001 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2002 SchedStart > LateStart)
2003 scheduleFound = false;
2004 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2005 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2006 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2007 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2008 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2009 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2010 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2011 SchedEnd =
2012 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2013 // When scheduling a Phi it is better to start at the late cycle and go
2014 // backwards. The default order may insert the Phi too far away from
2015 // its first dependence.
2016 if (SU->getInstr()->isPHI())
2017 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2018 else
2019 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2020 } else {
2021 int FirstCycle = Schedule.getFirstCycle();
2022 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2023 FirstCycle + getASAP(SU) + II - 1, II);
2025 // Even if we find a schedule, make sure the schedule doesn't exceed the
2026 // allowable number of stages. We keep trying if this happens.
2027 if (scheduleFound)
2028 if (SwpMaxStages > -1 &&
2029 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2030 scheduleFound = false;
2032 LLVM_DEBUG({
2033 if (!scheduleFound)
2034 dbgs() << "\tCan't schedule\n";
2036 } while (++NI != NE && scheduleFound);
2038 // If a schedule is found, check if it is a valid schedule too.
2039 if (scheduleFound)
2040 scheduleFound = Schedule.isValidSchedule(this);
2043 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
2044 << ")\n");
2046 if (scheduleFound)
2047 Schedule.finalizeSchedule(this);
2048 else
2049 Schedule.reset();
2051 return scheduleFound && Schedule.getMaxStageCount() > 0;
2054 /// Return true if we can compute the amount the instruction changes
2055 /// during each iteration. Set Delta to the amount of the change.
2056 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2057 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2058 const MachineOperand *BaseOp;
2059 int64_t Offset;
2060 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
2061 return false;
2063 if (!BaseOp->isReg())
2064 return false;
2066 Register BaseReg = BaseOp->getReg();
2068 MachineRegisterInfo &MRI = MF.getRegInfo();
2069 // Check if there is a Phi. If so, get the definition in the loop.
2070 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2071 if (BaseDef && BaseDef->isPHI()) {
2072 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2073 BaseDef = MRI.getVRegDef(BaseReg);
2075 if (!BaseDef)
2076 return false;
2078 int D = 0;
2079 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2080 return false;
2082 Delta = D;
2083 return true;
2086 /// Check if we can change the instruction to use an offset value from the
2087 /// previous iteration. If so, return true and set the base and offset values
2088 /// so that we can rewrite the load, if necessary.
2089 /// v1 = Phi(v0, v3)
2090 /// v2 = load v1, 0
2091 /// v3 = post_store v1, 4, x
2092 /// This function enables the load to be rewritten as v2 = load v3, 4.
2093 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2094 unsigned &BasePos,
2095 unsigned &OffsetPos,
2096 unsigned &NewBase,
2097 int64_t &Offset) {
2098 // Get the load instruction.
2099 if (TII->isPostIncrement(*MI))
2100 return false;
2101 unsigned BasePosLd, OffsetPosLd;
2102 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2103 return false;
2104 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2106 // Look for the Phi instruction.
2107 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2108 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2109 if (!Phi || !Phi->isPHI())
2110 return false;
2111 // Get the register defined in the loop block.
2112 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2113 if (!PrevReg)
2114 return false;
2116 // Check for the post-increment load/store instruction.
2117 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2118 if (!PrevDef || PrevDef == MI)
2119 return false;
2121 if (!TII->isPostIncrement(*PrevDef))
2122 return false;
2124 unsigned BasePos1 = 0, OffsetPos1 = 0;
2125 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2126 return false;
2128 // Make sure that the instructions do not access the same memory location in
2129 // the next iteration.
2130 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2131 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2132 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2133 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2134 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2135 MF.DeleteMachineInstr(NewMI);
2136 if (!Disjoint)
2137 return false;
2139 // Set the return value once we determine that we return true.
2140 BasePos = BasePosLd;
2141 OffsetPos = OffsetPosLd;
2142 NewBase = PrevReg;
2143 Offset = StoreOffset;
2144 return true;
2147 /// Apply changes to the instruction if needed. The changes are need
2148 /// to improve the scheduling and depend up on the final schedule.
2149 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2150 SMSchedule &Schedule) {
2151 SUnit *SU = getSUnit(MI);
2152 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2153 InstrChanges.find(SU);
2154 if (It != InstrChanges.end()) {
2155 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2156 unsigned BasePos, OffsetPos;
2157 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2158 return;
2159 Register BaseReg = MI->getOperand(BasePos).getReg();
2160 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2161 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2162 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2163 int BaseStageNum = Schedule.stageScheduled(SU);
2164 int BaseCycleNum = Schedule.cycleScheduled(SU);
2165 if (BaseStageNum < DefStageNum) {
2166 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2167 int OffsetDiff = DefStageNum - BaseStageNum;
2168 if (DefCycleNum < BaseCycleNum) {
2169 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2170 if (OffsetDiff > 0)
2171 --OffsetDiff;
2173 int64_t NewOffset =
2174 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2175 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2176 SU->setInstr(NewMI);
2177 MISUnitMap[NewMI] = SU;
2178 NewMIs[MI] = NewMI;
2183 /// Return the instruction in the loop that defines the register.
2184 /// If the definition is a Phi, then follow the Phi operand to
2185 /// the instruction in the loop.
2186 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2187 SmallPtrSet<MachineInstr *, 8> Visited;
2188 MachineInstr *Def = MRI.getVRegDef(Reg);
2189 while (Def->isPHI()) {
2190 if (!Visited.insert(Def).second)
2191 break;
2192 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2193 if (Def->getOperand(i + 1).getMBB() == BB) {
2194 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2195 break;
2198 return Def;
2201 /// Return true for an order or output dependence that is loop carried
2202 /// potentially. A dependence is loop carried if the destination defines a valu
2203 /// that may be used or defined by the source in a subsequent iteration.
2204 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2205 bool isSucc) {
2206 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2207 Dep.isArtificial())
2208 return false;
2210 if (!SwpPruneLoopCarried)
2211 return true;
2213 if (Dep.getKind() == SDep::Output)
2214 return true;
2216 MachineInstr *SI = Source->getInstr();
2217 MachineInstr *DI = Dep.getSUnit()->getInstr();
2218 if (!isSucc)
2219 std::swap(SI, DI);
2220 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2222 // Assume ordered loads and stores may have a loop carried dependence.
2223 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2224 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2225 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2226 return true;
2228 // Only chain dependences between a load and store can be loop carried.
2229 if (!DI->mayStore() || !SI->mayLoad())
2230 return false;
2232 unsigned DeltaS, DeltaD;
2233 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2234 return true;
2236 const MachineOperand *BaseOpS, *BaseOpD;
2237 int64_t OffsetS, OffsetD;
2238 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2239 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
2240 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
2241 return true;
2243 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2244 return true;
2246 // Check that the base register is incremented by a constant value for each
2247 // iteration.
2248 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2249 if (!Def || !Def->isPHI())
2250 return true;
2251 unsigned InitVal = 0;
2252 unsigned LoopVal = 0;
2253 getPhiRegs(*Def, BB, InitVal, LoopVal);
2254 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2255 int D = 0;
2256 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2257 return true;
2259 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2260 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2262 // This is the main test, which checks the offset values and the loop
2263 // increment value to determine if the accesses may be loop carried.
2264 if (AccessSizeS == MemoryLocation::UnknownSize ||
2265 AccessSizeD == MemoryLocation::UnknownSize)
2266 return true;
2268 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2269 return true;
2271 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2274 void SwingSchedulerDAG::postprocessDAG() {
2275 for (auto &M : Mutations)
2276 M->apply(this);
2279 /// Try to schedule the node at the specified StartCycle and continue
2280 /// until the node is schedule or the EndCycle is reached. This function
2281 /// returns true if the node is scheduled. This routine may search either
2282 /// forward or backward for a place to insert the instruction based upon
2283 /// the relative values of StartCycle and EndCycle.
2284 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2285 bool forward = true;
2286 LLVM_DEBUG({
2287 dbgs() << "Trying to insert node between " << StartCycle << " and "
2288 << EndCycle << " II: " << II << "\n";
2290 if (StartCycle > EndCycle)
2291 forward = false;
2293 // The terminating condition depends on the direction.
2294 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2295 for (int curCycle = StartCycle; curCycle != termCycle;
2296 forward ? ++curCycle : --curCycle) {
2298 // Add the already scheduled instructions at the specified cycle to the
2299 // DFA.
2300 ProcItinResources.clearResources();
2301 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2302 checkCycle <= LastCycle; checkCycle += II) {
2303 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2305 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
2306 E = cycleInstrs.end();
2307 I != E; ++I) {
2308 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
2309 continue;
2310 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
2311 "These instructions have already been scheduled.");
2312 ProcItinResources.reserveResources(*(*I)->getInstr());
2315 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2316 ProcItinResources.canReserveResources(*SU->getInstr())) {
2317 LLVM_DEBUG({
2318 dbgs() << "\tinsert at cycle " << curCycle << " ";
2319 SU->getInstr()->dump();
2322 ScheduledInstrs[curCycle].push_back(SU);
2323 InstrToCycle.insert(std::make_pair(SU, curCycle));
2324 if (curCycle > LastCycle)
2325 LastCycle = curCycle;
2326 if (curCycle < FirstCycle)
2327 FirstCycle = curCycle;
2328 return true;
2330 LLVM_DEBUG({
2331 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2332 SU->getInstr()->dump();
2335 return false;
2338 // Return the cycle of the earliest scheduled instruction in the chain.
2339 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2340 SmallPtrSet<SUnit *, 8> Visited;
2341 SmallVector<SDep, 8> Worklist;
2342 Worklist.push_back(Dep);
2343 int EarlyCycle = INT_MAX;
2344 while (!Worklist.empty()) {
2345 const SDep &Cur = Worklist.pop_back_val();
2346 SUnit *PrevSU = Cur.getSUnit();
2347 if (Visited.count(PrevSU))
2348 continue;
2349 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2350 if (it == InstrToCycle.end())
2351 continue;
2352 EarlyCycle = std::min(EarlyCycle, it->second);
2353 for (const auto &PI : PrevSU->Preds)
2354 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
2355 Worklist.push_back(PI);
2356 Visited.insert(PrevSU);
2358 return EarlyCycle;
2361 // Return the cycle of the latest scheduled instruction in the chain.
2362 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2363 SmallPtrSet<SUnit *, 8> Visited;
2364 SmallVector<SDep, 8> Worklist;
2365 Worklist.push_back(Dep);
2366 int LateCycle = INT_MIN;
2367 while (!Worklist.empty()) {
2368 const SDep &Cur = Worklist.pop_back_val();
2369 SUnit *SuccSU = Cur.getSUnit();
2370 if (Visited.count(SuccSU))
2371 continue;
2372 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2373 if (it == InstrToCycle.end())
2374 continue;
2375 LateCycle = std::max(LateCycle, it->second);
2376 for (const auto &SI : SuccSU->Succs)
2377 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
2378 Worklist.push_back(SI);
2379 Visited.insert(SuccSU);
2381 return LateCycle;
2384 /// If an instruction has a use that spans multiple iterations, then
2385 /// return true. These instructions are characterized by having a back-ege
2386 /// to a Phi, which contains a reference to another Phi.
2387 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2388 for (auto &P : SU->Preds)
2389 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2390 for (auto &S : P.getSUnit()->Succs)
2391 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2392 return P.getSUnit();
2393 return nullptr;
2396 /// Compute the scheduling start slot for the instruction. The start slot
2397 /// depends on any predecessor or successor nodes scheduled already.
2398 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2399 int *MinEnd, int *MaxStart, int II,
2400 SwingSchedulerDAG *DAG) {
2401 // Iterate over each instruction that has been scheduled already. The start
2402 // slot computation depends on whether the previously scheduled instruction
2403 // is a predecessor or successor of the specified instruction.
2404 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2406 // Iterate over each instruction in the current cycle.
2407 for (SUnit *I : getInstructions(cycle)) {
2408 // Because we're processing a DAG for the dependences, we recognize
2409 // the back-edge in recurrences by anti dependences.
2410 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2411 const SDep &Dep = SU->Preds[i];
2412 if (Dep.getSUnit() == I) {
2413 if (!DAG->isBackedge(SU, Dep)) {
2414 int EarlyStart = cycle + Dep.getLatency() -
2415 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2416 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2417 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2418 int End = earliestCycleInChain(Dep) + (II - 1);
2419 *MinEnd = std::min(*MinEnd, End);
2421 } else {
2422 int LateStart = cycle - Dep.getLatency() +
2423 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2424 *MinLateStart = std::min(*MinLateStart, LateStart);
2427 // For instruction that requires multiple iterations, make sure that
2428 // the dependent instruction is not scheduled past the definition.
2429 SUnit *BE = multipleIterations(I, DAG);
2430 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2431 !SU->isPred(I))
2432 *MinLateStart = std::min(*MinLateStart, cycle);
2434 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2435 if (SU->Succs[i].getSUnit() == I) {
2436 const SDep &Dep = SU->Succs[i];
2437 if (!DAG->isBackedge(SU, Dep)) {
2438 int LateStart = cycle - Dep.getLatency() +
2439 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2440 *MinLateStart = std::min(*MinLateStart, LateStart);
2441 if (DAG->isLoopCarriedDep(SU, Dep)) {
2442 int Start = latestCycleInChain(Dep) + 1 - II;
2443 *MaxStart = std::max(*MaxStart, Start);
2445 } else {
2446 int EarlyStart = cycle + Dep.getLatency() -
2447 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2448 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2456 /// Order the instructions within a cycle so that the definitions occur
2457 /// before the uses. Returns true if the instruction is added to the start
2458 /// of the list, or false if added to the end.
2459 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2460 std::deque<SUnit *> &Insts) {
2461 MachineInstr *MI = SU->getInstr();
2462 bool OrderBeforeUse = false;
2463 bool OrderAfterDef = false;
2464 bool OrderBeforeDef = false;
2465 unsigned MoveDef = 0;
2466 unsigned MoveUse = 0;
2467 int StageInst1 = stageScheduled(SU);
2469 unsigned Pos = 0;
2470 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2471 ++I, ++Pos) {
2472 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2473 MachineOperand &MO = MI->getOperand(i);
2474 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2475 continue;
2477 Register Reg = MO.getReg();
2478 unsigned BasePos, OffsetPos;
2479 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2480 if (MI->getOperand(BasePos).getReg() == Reg)
2481 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2482 Reg = NewReg;
2483 bool Reads, Writes;
2484 std::tie(Reads, Writes) =
2485 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2486 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2487 OrderBeforeUse = true;
2488 if (MoveUse == 0)
2489 MoveUse = Pos;
2490 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2491 // Add the instruction after the scheduled instruction.
2492 OrderAfterDef = true;
2493 MoveDef = Pos;
2494 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2495 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2496 OrderBeforeUse = true;
2497 if (MoveUse == 0)
2498 MoveUse = Pos;
2499 } else {
2500 OrderAfterDef = true;
2501 MoveDef = Pos;
2503 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2504 OrderBeforeUse = true;
2505 if (MoveUse == 0)
2506 MoveUse = Pos;
2507 if (MoveUse != 0) {
2508 OrderAfterDef = true;
2509 MoveDef = Pos - 1;
2511 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2512 // Add the instruction before the scheduled instruction.
2513 OrderBeforeUse = true;
2514 if (MoveUse == 0)
2515 MoveUse = Pos;
2516 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2517 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2518 if (MoveUse == 0) {
2519 OrderBeforeDef = true;
2520 MoveUse = Pos;
2524 // Check for order dependences between instructions. Make sure the source
2525 // is ordered before the destination.
2526 for (auto &S : SU->Succs) {
2527 if (S.getSUnit() != *I)
2528 continue;
2529 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2530 OrderBeforeUse = true;
2531 if (Pos < MoveUse)
2532 MoveUse = Pos;
2534 // We did not handle HW dependences in previous for loop,
2535 // and we normally set Latency = 0 for Anti deps,
2536 // so may have nodes in same cycle with Anti denpendent on HW regs.
2537 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2538 OrderBeforeUse = true;
2539 if ((MoveUse == 0) || (Pos < MoveUse))
2540 MoveUse = Pos;
2543 for (auto &P : SU->Preds) {
2544 if (P.getSUnit() != *I)
2545 continue;
2546 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2547 OrderAfterDef = true;
2548 MoveDef = Pos;
2553 // A circular dependence.
2554 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2555 OrderBeforeUse = false;
2557 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2558 // to a loop-carried dependence.
2559 if (OrderBeforeDef)
2560 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2562 // The uncommon case when the instruction order needs to be updated because
2563 // there is both a use and def.
2564 if (OrderBeforeUse && OrderAfterDef) {
2565 SUnit *UseSU = Insts.at(MoveUse);
2566 SUnit *DefSU = Insts.at(MoveDef);
2567 if (MoveUse > MoveDef) {
2568 Insts.erase(Insts.begin() + MoveUse);
2569 Insts.erase(Insts.begin() + MoveDef);
2570 } else {
2571 Insts.erase(Insts.begin() + MoveDef);
2572 Insts.erase(Insts.begin() + MoveUse);
2574 orderDependence(SSD, UseSU, Insts);
2575 orderDependence(SSD, SU, Insts);
2576 orderDependence(SSD, DefSU, Insts);
2577 return;
2579 // Put the new instruction first if there is a use in the list. Otherwise,
2580 // put it at the end of the list.
2581 if (OrderBeforeUse)
2582 Insts.push_front(SU);
2583 else
2584 Insts.push_back(SU);
2587 /// Return true if the scheduled Phi has a loop carried operand.
2588 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2589 if (!Phi.isPHI())
2590 return false;
2591 assert(Phi.isPHI() && "Expecting a Phi.");
2592 SUnit *DefSU = SSD->getSUnit(&Phi);
2593 unsigned DefCycle = cycleScheduled(DefSU);
2594 int DefStage = stageScheduled(DefSU);
2596 unsigned InitVal = 0;
2597 unsigned LoopVal = 0;
2598 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2599 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2600 if (!UseSU)
2601 return true;
2602 if (UseSU->getInstr()->isPHI())
2603 return true;
2604 unsigned LoopCycle = cycleScheduled(UseSU);
2605 int LoopStage = stageScheduled(UseSU);
2606 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2609 /// Return true if the instruction is a definition that is loop carried
2610 /// and defines the use on the next iteration.
2611 /// v1 = phi(v2, v3)
2612 /// (Def) v3 = op v1
2613 /// (MO) = v1
2614 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2615 /// register.
2616 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2617 MachineInstr *Def, MachineOperand &MO) {
2618 if (!MO.isReg())
2619 return false;
2620 if (Def->isPHI())
2621 return false;
2622 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2623 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2624 return false;
2625 if (!isLoopCarried(SSD, *Phi))
2626 return false;
2627 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2628 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2629 MachineOperand &DMO = Def->getOperand(i);
2630 if (!DMO.isReg() || !DMO.isDef())
2631 continue;
2632 if (DMO.getReg() == LoopReg)
2633 return true;
2635 return false;
2638 // Check if the generated schedule is valid. This function checks if
2639 // an instruction that uses a physical register is scheduled in a
2640 // different stage than the definition. The pipeliner does not handle
2641 // physical register values that may cross a basic block boundary.
2642 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2643 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
2644 SUnit &SU = SSD->SUnits[i];
2645 if (!SU.hasPhysRegDefs)
2646 continue;
2647 int StageDef = stageScheduled(&SU);
2648 assert(StageDef != -1 && "Instruction should have been scheduled.");
2649 for (auto &SI : SU.Succs)
2650 if (SI.isAssignedRegDep())
2651 if (Register::isPhysicalRegister(SI.getReg()))
2652 if (stageScheduled(SI.getSUnit()) != StageDef)
2653 return false;
2655 return true;
2658 /// A property of the node order in swing-modulo-scheduling is
2659 /// that for nodes outside circuits the following holds:
2660 /// none of them is scheduled after both a successor and a
2661 /// predecessor.
2662 /// The method below checks whether the property is met.
2663 /// If not, debug information is printed and statistics information updated.
2664 /// Note that we do not use an assert statement.
2665 /// The reason is that although an invalid node oder may prevent
2666 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2667 /// it does not lead to the generation of incorrect code.
2668 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2670 // a sorted vector that maps each SUnit to its index in the NodeOrder
2671 typedef std::pair<SUnit *, unsigned> UnitIndex;
2672 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2674 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2675 Indices.push_back(std::make_pair(NodeOrder[i], i));
2677 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2678 return std::get<0>(i1) < std::get<0>(i2);
2681 // sort, so that we can perform a binary search
2682 llvm::sort(Indices, CompareKey);
2684 bool Valid = true;
2685 (void)Valid;
2686 // for each SUnit in the NodeOrder, check whether
2687 // it appears after both a successor and a predecessor
2688 // of the SUnit. If this is the case, and the SUnit
2689 // is not part of circuit, then the NodeOrder is not
2690 // valid.
2691 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2692 SUnit *SU = NodeOrder[i];
2693 unsigned Index = i;
2695 bool PredBefore = false;
2696 bool SuccBefore = false;
2698 SUnit *Succ;
2699 SUnit *Pred;
2700 (void)Succ;
2701 (void)Pred;
2703 for (SDep &PredEdge : SU->Preds) {
2704 SUnit *PredSU = PredEdge.getSUnit();
2705 unsigned PredIndex = std::get<1>(
2706 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2707 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2708 PredBefore = true;
2709 Pred = PredSU;
2710 break;
2714 for (SDep &SuccEdge : SU->Succs) {
2715 SUnit *SuccSU = SuccEdge.getSUnit();
2716 // Do not process a boundary node, it was not included in NodeOrder,
2717 // hence not in Indices either, call to std::lower_bound() below will
2718 // return Indices.end().
2719 if (SuccSU->isBoundaryNode())
2720 continue;
2721 unsigned SuccIndex = std::get<1>(
2722 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2723 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2724 SuccBefore = true;
2725 Succ = SuccSU;
2726 break;
2730 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2731 // instructions in circuits are allowed to be scheduled
2732 // after both a successor and predecessor.
2733 bool InCircuit = llvm::any_of(
2734 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2735 if (InCircuit)
2736 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2737 else {
2738 Valid = false;
2739 NumNodeOrderIssues++;
2740 LLVM_DEBUG(dbgs() << "Predecessor ";);
2742 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2743 << " are scheduled before node " << SU->NodeNum
2744 << "\n";);
2748 LLVM_DEBUG({
2749 if (!Valid)
2750 dbgs() << "Invalid node order found!\n";
2754 /// Attempt to fix the degenerate cases when the instruction serialization
2755 /// causes the register lifetimes to overlap. For example,
2756 /// p' = store_pi(p, b)
2757 /// = load p, offset
2758 /// In this case p and p' overlap, which means that two registers are needed.
2759 /// Instead, this function changes the load to use p' and updates the offset.
2760 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2761 unsigned OverlapReg = 0;
2762 unsigned NewBaseReg = 0;
2763 for (SUnit *SU : Instrs) {
2764 MachineInstr *MI = SU->getInstr();
2765 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2766 const MachineOperand &MO = MI->getOperand(i);
2767 // Look for an instruction that uses p. The instruction occurs in the
2768 // same cycle but occurs later in the serialized order.
2769 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2770 // Check that the instruction appears in the InstrChanges structure,
2771 // which contains instructions that can have the offset updated.
2772 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2773 InstrChanges.find(SU);
2774 if (It != InstrChanges.end()) {
2775 unsigned BasePos, OffsetPos;
2776 // Update the base register and adjust the offset.
2777 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2778 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2779 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2780 int64_t NewOffset =
2781 MI->getOperand(OffsetPos).getImm() - It->second.second;
2782 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2783 SU->setInstr(NewMI);
2784 MISUnitMap[NewMI] = SU;
2785 NewMIs[MI] = NewMI;
2788 OverlapReg = 0;
2789 NewBaseReg = 0;
2790 break;
2792 // Look for an instruction of the form p' = op(p), which uses and defines
2793 // two virtual registers that get allocated to the same physical register.
2794 unsigned TiedUseIdx = 0;
2795 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2796 // OverlapReg is p in the example above.
2797 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2798 // NewBaseReg is p' in the example above.
2799 NewBaseReg = MI->getOperand(i).getReg();
2800 break;
2806 /// After the schedule has been formed, call this function to combine
2807 /// the instructions from the different stages/cycles. That is, this
2808 /// function creates a schedule that represents a single iteration.
2809 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2810 // Move all instructions to the first stage from later stages.
2811 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2812 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2813 ++stage) {
2814 std::deque<SUnit *> &cycleInstrs =
2815 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2816 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2817 E = cycleInstrs.rend();
2818 I != E; ++I)
2819 ScheduledInstrs[cycle].push_front(*I);
2823 // Erase all the elements in the later stages. Only one iteration should
2824 // remain in the scheduled list, and it contains all the instructions.
2825 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2826 ScheduledInstrs.erase(cycle);
2828 // Change the registers in instruction as specified in the InstrChanges
2829 // map. We need to use the new registers to create the correct order.
2830 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2831 SUnit *SU = &SSD->SUnits[i];
2832 SSD->applyInstrChange(SU->getInstr(), *this);
2835 // Reorder the instructions in each cycle to fix and improve the
2836 // generated code.
2837 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2838 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2839 std::deque<SUnit *> newOrderPhi;
2840 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2841 SUnit *SU = cycleInstrs[i];
2842 if (SU->getInstr()->isPHI())
2843 newOrderPhi.push_back(SU);
2845 std::deque<SUnit *> newOrderI;
2846 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2847 SUnit *SU = cycleInstrs[i];
2848 if (!SU->getInstr()->isPHI())
2849 orderDependence(SSD, SU, newOrderI);
2851 // Replace the old order with the new order.
2852 cycleInstrs.swap(newOrderPhi);
2853 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
2854 SSD->fixupRegisterOverlaps(cycleInstrs);
2857 LLVM_DEBUG(dump(););
2860 void NodeSet::print(raw_ostream &os) const {
2861 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2862 << " depth " << MaxDepth << " col " << Colocate << "\n";
2863 for (const auto &I : Nodes)
2864 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2865 os << "\n";
2868 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2869 /// Print the schedule information to the given output.
2870 void SMSchedule::print(raw_ostream &os) const {
2871 // Iterate over each cycle.
2872 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2873 // Iterate over each instruction in the cycle.
2874 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2875 for (SUnit *CI : cycleInstrs->second) {
2876 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2877 os << "(" << CI->NodeNum << ") ";
2878 CI->getInstr()->print(os);
2879 os << "\n";
2884 /// Utility function used for debugging to print the schedule.
2885 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2886 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2888 #endif
2890 void ResourceManager::initProcResourceVectors(
2891 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2892 unsigned ProcResourceID = 0;
2894 // We currently limit the resource kinds to 64 and below so that we can use
2895 // uint64_t for Masks
2896 assert(SM.getNumProcResourceKinds() < 64 &&
2897 "Too many kinds of resources, unsupported");
2898 // Create a unique bitmask for every processor resource unit.
2899 // Skip resource at index 0, since it always references 'InvalidUnit'.
2900 Masks.resize(SM.getNumProcResourceKinds());
2901 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2902 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2903 if (Desc.SubUnitsIdxBegin)
2904 continue;
2905 Masks[I] = 1ULL << ProcResourceID;
2906 ProcResourceID++;
2908 // Create a unique bitmask for every processor resource group.
2909 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2910 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2911 if (!Desc.SubUnitsIdxBegin)
2912 continue;
2913 Masks[I] = 1ULL << ProcResourceID;
2914 for (unsigned U = 0; U < Desc.NumUnits; ++U)
2915 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2916 ProcResourceID++;
2918 LLVM_DEBUG({
2919 if (SwpShowResMask) {
2920 dbgs() << "ProcResourceDesc:\n";
2921 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2922 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
2923 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2924 ProcResource->Name, I, Masks[I],
2925 ProcResource->NumUnits);
2927 dbgs() << " -----------------\n";
2932 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
2934 LLVM_DEBUG({
2935 if (SwpDebugResource)
2936 dbgs() << "canReserveResources:\n";
2938 if (UseDFA)
2939 return DFAResources->canReserveResources(MID);
2941 unsigned InsnClass = MID->getSchedClass();
2942 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
2943 if (!SCDesc->isValid()) {
2944 LLVM_DEBUG({
2945 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
2946 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
2948 return true;
2951 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
2952 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
2953 for (; I != E; ++I) {
2954 if (!I->Cycles)
2955 continue;
2956 const MCProcResourceDesc *ProcResource =
2957 SM.getProcResource(I->ProcResourceIdx);
2958 unsigned NumUnits = ProcResource->NumUnits;
2959 LLVM_DEBUG({
2960 if (SwpDebugResource)
2961 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
2962 ProcResource->Name, I->ProcResourceIdx,
2963 ProcResourceCount[I->ProcResourceIdx], NumUnits,
2964 I->Cycles);
2966 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
2967 return false;
2969 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
2970 return true;
2973 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
2974 LLVM_DEBUG({
2975 if (SwpDebugResource)
2976 dbgs() << "reserveResources:\n";
2978 if (UseDFA)
2979 return DFAResources->reserveResources(MID);
2981 unsigned InsnClass = MID->getSchedClass();
2982 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
2983 if (!SCDesc->isValid()) {
2984 LLVM_DEBUG({
2985 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
2986 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
2988 return;
2990 for (const MCWriteProcResEntry &PRE :
2991 make_range(STI->getWriteProcResBegin(SCDesc),
2992 STI->getWriteProcResEnd(SCDesc))) {
2993 if (!PRE.Cycles)
2994 continue;
2995 ++ProcResourceCount[PRE.ProcResourceIdx];
2996 LLVM_DEBUG({
2997 if (SwpDebugResource) {
2998 const MCProcResourceDesc *ProcResource =
2999 SM.getProcResource(PRE.ProcResourceIdx);
3000 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3001 ProcResource->Name, PRE.ProcResourceIdx,
3002 ProcResourceCount[PRE.ProcResourceIdx],
3003 ProcResource->NumUnits, PRE.Cycles);
3007 LLVM_DEBUG({
3008 if (SwpDebugResource)
3009 dbgs() << "reserveResources: done!\n\n";
3013 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3014 return canReserveResources(&MI.getDesc());
3017 void ResourceManager::reserveResources(const MachineInstr &MI) {
3018 return reserveResources(&MI.getDesc());
3021 void ResourceManager::clearResources() {
3022 if (UseDFA)
3023 return DFAResources->clearResources();
3024 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);