[ARM] VQADD instructions
[llvm-complete.git] / lib / CodeGen / MachineVerifier.cpp
blobd23f6c8e5477f4a9501e3a892ff55ed2536b4d66
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
11 // Operand counts: All explicit operands must be present.
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
82 using namespace llvm;
84 namespace {
86 struct MachineVerifier {
87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89 unsigned verify(MachineFunction &MF);
91 Pass *const PASS;
92 const char *Banner;
93 const MachineFunction *MF;
94 const TargetMachine *TM;
95 const TargetInstrInfo *TII;
96 const TargetRegisterInfo *TRI;
97 const MachineRegisterInfo *MRI;
99 unsigned foundErrors;
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected;
103 bool isFunctionSelected;
105 using RegVector = SmallVector<unsigned, 16>;
106 using RegMaskVector = SmallVector<const uint32_t *, 4>;
107 using RegSet = DenseSet<unsigned>;
108 using RegMap = DenseMap<unsigned, const MachineInstr *>;
109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111 const MachineInstr *FirstNonPHI;
112 const MachineInstr *FirstTerminator;
113 BlockSet FunctionBlocks;
115 BitVector regsReserved;
116 RegSet regsLive;
117 RegVector regsDefined, regsDead, regsKilled;
118 RegMaskVector regMasks;
120 SlotIndex lastIndex;
122 // Add Reg and any sub-registers to RV
123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124 RV.push_back(Reg);
125 if (Register::isPhysicalRegister(Reg))
126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127 RV.push_back(*SubRegs);
130 struct BBInfo {
131 // Is this MBB reachable from the MF entry point?
132 bool reachable = false;
134 // Vregs that must be live in because they are used without being
135 // defined. Map value is the user.
136 RegMap vregsLiveIn;
138 // Regs killed in MBB. They may be defined again, and will then be in both
139 // regsKilled and regsLiveOut.
140 RegSet regsKilled;
142 // Regs defined in MBB and live out. Note that vregs passing through may
143 // be live out without being mentioned here.
144 RegSet regsLiveOut;
146 // Vregs that pass through MBB untouched. This set is disjoint from
147 // regsKilled and regsLiveOut.
148 RegSet vregsPassed;
150 // Vregs that must pass through MBB because they are needed by a successor
151 // block. This set is disjoint from regsLiveOut.
152 RegSet vregsRequired;
154 // Set versions of block's predecessor and successor lists.
155 BlockSet Preds, Succs;
157 BBInfo() = default;
159 // Add register to vregsPassed if it belongs there. Return true if
160 // anything changed.
161 bool addPassed(unsigned Reg) {
162 if (!Register::isVirtualRegister(Reg))
163 return false;
164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165 return false;
166 return vregsPassed.insert(Reg).second;
169 // Same for a full set.
170 bool addPassed(const RegSet &RS) {
171 bool changed = false;
172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173 if (addPassed(*I))
174 changed = true;
175 return changed;
178 // Add register to vregsRequired if it belongs there. Return true if
179 // anything changed.
180 bool addRequired(unsigned Reg) {
181 if (!Register::isVirtualRegister(Reg))
182 return false;
183 if (regsLiveOut.count(Reg))
184 return false;
185 return vregsRequired.insert(Reg).second;
188 // Same for a full set.
189 bool addRequired(const RegSet &RS) {
190 bool changed = false;
191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192 if (addRequired(*I))
193 changed = true;
194 return changed;
197 // Same for a full map.
198 bool addRequired(const RegMap &RM) {
199 bool changed = false;
200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201 if (addRequired(I->first))
202 changed = true;
203 return changed;
206 // Live-out registers are either in regsLiveOut or vregsPassed.
207 bool isLiveOut(unsigned Reg) const {
208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
212 // Extra register info per MBB.
213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215 bool isReserved(unsigned Reg) {
216 return Reg < regsReserved.size() && regsReserved.test(Reg);
219 bool isAllocatable(unsigned Reg) const {
220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221 !regsReserved.test(Reg);
224 // Analysis information if available
225 LiveVariables *LiveVars;
226 LiveIntervals *LiveInts;
227 LiveStacks *LiveStks;
228 SlotIndexes *Indexes;
230 void visitMachineFunctionBefore();
231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232 void visitMachineBundleBefore(const MachineInstr *MI);
234 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
235 void verifyPreISelGenericInstruction(const MachineInstr *MI);
236 void visitMachineInstrBefore(const MachineInstr *MI);
237 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
238 void visitMachineInstrAfter(const MachineInstr *MI);
239 void visitMachineBundleAfter(const MachineInstr *MI);
240 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
241 void visitMachineFunctionAfter();
243 void report(const char *msg, const MachineFunction *MF);
244 void report(const char *msg, const MachineBasicBlock *MBB);
245 void report(const char *msg, const MachineInstr *MI);
246 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
247 LLT MOVRegType = LLT{});
249 void report_context(const LiveInterval &LI) const;
250 void report_context(const LiveRange &LR, unsigned VRegUnit,
251 LaneBitmask LaneMask) const;
252 void report_context(const LiveRange::Segment &S) const;
253 void report_context(const VNInfo &VNI) const;
254 void report_context(SlotIndex Pos) const;
255 void report_context(MCPhysReg PhysReg) const;
256 void report_context_liverange(const LiveRange &LR) const;
257 void report_context_lanemask(LaneBitmask LaneMask) const;
258 void report_context_vreg(unsigned VReg) const;
259 void report_context_vreg_regunit(unsigned VRegOrUnit) const;
261 void verifyInlineAsm(const MachineInstr *MI);
263 void checkLiveness(const MachineOperand *MO, unsigned MONum);
264 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
265 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
266 LaneBitmask LaneMask = LaneBitmask::getNone());
267 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
268 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
269 bool SubRangeCheck = false,
270 LaneBitmask LaneMask = LaneBitmask::getNone());
272 void markReachable(const MachineBasicBlock *MBB);
273 void calcRegsPassed();
274 void checkPHIOps(const MachineBasicBlock &MBB);
276 void calcRegsRequired();
277 void verifyLiveVariables();
278 void verifyLiveIntervals();
279 void verifyLiveInterval(const LiveInterval&);
280 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
281 LaneBitmask);
282 void verifyLiveRangeSegment(const LiveRange&,
283 const LiveRange::const_iterator I, unsigned,
284 LaneBitmask);
285 void verifyLiveRange(const LiveRange&, unsigned,
286 LaneBitmask LaneMask = LaneBitmask::getNone());
288 void verifyStackFrame();
290 void verifySlotIndexes() const;
291 void verifyProperties(const MachineFunction &MF);
294 struct MachineVerifierPass : public MachineFunctionPass {
295 static char ID; // Pass ID, replacement for typeid
297 const std::string Banner;
299 MachineVerifierPass(std::string banner = std::string())
300 : MachineFunctionPass(ID), Banner(std::move(banner)) {
301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
304 void getAnalysisUsage(AnalysisUsage &AU) const override {
305 AU.setPreservesAll();
306 MachineFunctionPass::getAnalysisUsage(AU);
309 bool runOnMachineFunction(MachineFunction &MF) override {
310 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
311 if (FoundErrors)
312 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
313 return false;
317 } // end anonymous namespace
319 char MachineVerifierPass::ID = 0;
321 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
322 "Verify generated machine code", false, false)
324 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
325 return new MachineVerifierPass(Banner);
328 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
329 const {
330 MachineFunction &MF = const_cast<MachineFunction&>(*this);
331 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
332 if (AbortOnErrors && FoundErrors)
333 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
334 return FoundErrors == 0;
337 void MachineVerifier::verifySlotIndexes() const {
338 if (Indexes == nullptr)
339 return;
341 // Ensure the IdxMBB list is sorted by slot indexes.
342 SlotIndex Last;
343 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
344 E = Indexes->MBBIndexEnd(); I != E; ++I) {
345 assert(!Last.isValid() || I->first > Last);
346 Last = I->first;
350 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
351 // If a pass has introduced virtual registers without clearing the
352 // NoVRegs property (or set it without allocating the vregs)
353 // then report an error.
354 if (MF.getProperties().hasProperty(
355 MachineFunctionProperties::Property::NoVRegs) &&
356 MRI->getNumVirtRegs())
357 report("Function has NoVRegs property but there are VReg operands", &MF);
360 unsigned MachineVerifier::verify(MachineFunction &MF) {
361 foundErrors = 0;
363 this->MF = &MF;
364 TM = &MF.getTarget();
365 TII = MF.getSubtarget().getInstrInfo();
366 TRI = MF.getSubtarget().getRegisterInfo();
367 MRI = &MF.getRegInfo();
369 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
370 MachineFunctionProperties::Property::FailedISel);
372 // If we're mid-GlobalISel and we already triggered the fallback path then
373 // it's expected that the MIR is somewhat broken but that's ok since we'll
374 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375 if (isFunctionFailedISel)
376 return foundErrors;
378 isFunctionRegBankSelected =
379 !isFunctionFailedISel &&
380 MF.getProperties().hasProperty(
381 MachineFunctionProperties::Property::RegBankSelected);
382 isFunctionSelected = !isFunctionFailedISel &&
383 MF.getProperties().hasProperty(
384 MachineFunctionProperties::Property::Selected);
385 LiveVars = nullptr;
386 LiveInts = nullptr;
387 LiveStks = nullptr;
388 Indexes = nullptr;
389 if (PASS) {
390 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
391 // We don't want to verify LiveVariables if LiveIntervals is available.
392 if (!LiveInts)
393 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
394 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
395 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
398 verifySlotIndexes();
400 verifyProperties(MF);
402 visitMachineFunctionBefore();
403 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
404 MFI!=MFE; ++MFI) {
405 visitMachineBasicBlockBefore(&*MFI);
406 // Keep track of the current bundle header.
407 const MachineInstr *CurBundle = nullptr;
408 // Do we expect the next instruction to be part of the same bundle?
409 bool InBundle = false;
411 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
412 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
413 if (MBBI->getParent() != &*MFI) {
414 report("Bad instruction parent pointer", &*MFI);
415 errs() << "Instruction: " << *MBBI;
416 continue;
419 // Check for consistent bundle flags.
420 if (InBundle && !MBBI->isBundledWithPred())
421 report("Missing BundledPred flag, "
422 "BundledSucc was set on predecessor",
423 &*MBBI);
424 if (!InBundle && MBBI->isBundledWithPred())
425 report("BundledPred flag is set, "
426 "but BundledSucc not set on predecessor",
427 &*MBBI);
429 // Is this a bundle header?
430 if (!MBBI->isInsideBundle()) {
431 if (CurBundle)
432 visitMachineBundleAfter(CurBundle);
433 CurBundle = &*MBBI;
434 visitMachineBundleBefore(CurBundle);
435 } else if (!CurBundle)
436 report("No bundle header", &*MBBI);
437 visitMachineInstrBefore(&*MBBI);
438 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
439 const MachineInstr &MI = *MBBI;
440 const MachineOperand &Op = MI.getOperand(I);
441 if (Op.getParent() != &MI) {
442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443 // functions when replacing operands of a MachineInstr.
444 report("Instruction has operand with wrong parent set", &MI);
447 visitMachineOperand(&Op, I);
450 visitMachineInstrAfter(&*MBBI);
452 // Was this the last bundled instruction?
453 InBundle = MBBI->isBundledWithSucc();
455 if (CurBundle)
456 visitMachineBundleAfter(CurBundle);
457 if (InBundle)
458 report("BundledSucc flag set on last instruction in block", &MFI->back());
459 visitMachineBasicBlockAfter(&*MFI);
461 visitMachineFunctionAfter();
463 // Clean up.
464 regsLive.clear();
465 regsDefined.clear();
466 regsDead.clear();
467 regsKilled.clear();
468 regMasks.clear();
469 MBBInfoMap.clear();
471 return foundErrors;
474 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
475 assert(MF);
476 errs() << '\n';
477 if (!foundErrors++) {
478 if (Banner)
479 errs() << "# " << Banner << '\n';
480 if (LiveInts != nullptr)
481 LiveInts->print(errs());
482 else
483 MF->print(errs(), Indexes);
485 errs() << "*** Bad machine code: " << msg << " ***\n"
486 << "- function: " << MF->getName() << "\n";
489 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
490 assert(MBB);
491 report(msg, MBB->getParent());
492 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
493 << MBB->getName() << " (" << (const void *)MBB << ')';
494 if (Indexes)
495 errs() << " [" << Indexes->getMBBStartIdx(MBB)
496 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
497 errs() << '\n';
500 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
501 assert(MI);
502 report(msg, MI->getParent());
503 errs() << "- instruction: ";
504 if (Indexes && Indexes->hasIndex(*MI))
505 errs() << Indexes->getInstructionIndex(*MI) << '\t';
506 MI->print(errs(), /*SkipOpers=*/true);
509 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
510 unsigned MONum, LLT MOVRegType) {
511 assert(MO);
512 report(msg, MO->getParent());
513 errs() << "- operand " << MONum << ": ";
514 MO->print(errs(), MOVRegType, TRI);
515 errs() << "\n";
518 void MachineVerifier::report_context(SlotIndex Pos) const {
519 errs() << "- at: " << Pos << '\n';
522 void MachineVerifier::report_context(const LiveInterval &LI) const {
523 errs() << "- interval: " << LI << '\n';
526 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
527 LaneBitmask LaneMask) const {
528 report_context_liverange(LR);
529 report_context_vreg_regunit(VRegUnit);
530 if (LaneMask.any())
531 report_context_lanemask(LaneMask);
534 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
535 errs() << "- segment: " << S << '\n';
538 void MachineVerifier::report_context(const VNInfo &VNI) const {
539 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
542 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
543 errs() << "- liverange: " << LR << '\n';
546 void MachineVerifier::report_context(MCPhysReg PReg) const {
547 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
550 void MachineVerifier::report_context_vreg(unsigned VReg) const {
551 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
555 if (Register::isVirtualRegister(VRegOrUnit)) {
556 report_context_vreg(VRegOrUnit);
557 } else {
558 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
563 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
566 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
567 BBInfo &MInfo = MBBInfoMap[MBB];
568 if (!MInfo.reachable) {
569 MInfo.reachable = true;
570 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
571 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
572 markReachable(*SuI);
576 void MachineVerifier::visitMachineFunctionBefore() {
577 lastIndex = SlotIndex();
578 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
579 : TRI->getReservedRegs(*MF);
581 if (!MF->empty())
582 markReachable(&MF->front());
584 // Build a set of the basic blocks in the function.
585 FunctionBlocks.clear();
586 for (const auto &MBB : *MF) {
587 FunctionBlocks.insert(&MBB);
588 BBInfo &MInfo = MBBInfoMap[&MBB];
590 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
591 if (MInfo.Preds.size() != MBB.pred_size())
592 report("MBB has duplicate entries in its predecessor list.", &MBB);
594 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
595 if (MInfo.Succs.size() != MBB.succ_size())
596 report("MBB has duplicate entries in its successor list.", &MBB);
599 // Check that the register use lists are sane.
600 MRI->verifyUseLists();
602 if (!MF->empty())
603 verifyStackFrame();
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
608 const MachineBasicBlock *a, const MachineBasicBlock *b) {
609 if (*i == a)
610 return *++i == b;
611 if (*i == b)
612 return *++i == a;
613 return false;
616 void
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
618 FirstTerminator = nullptr;
619 FirstNonPHI = nullptr;
621 if (!MF->getProperties().hasProperty(
622 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
623 // If this block has allocatable physical registers live-in, check that
624 // it is an entry block or landing pad.
625 for (const auto &LI : MBB->liveins()) {
626 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
627 MBB->getIterator() != MBB->getParent()->begin()) {
628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
629 report_context(LI.PhysReg);
634 // Count the number of landing pad successors.
635 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
636 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
637 E = MBB->succ_end(); I != E; ++I) {
638 if ((*I)->isEHPad())
639 LandingPadSuccs.insert(*I);
640 if (!FunctionBlocks.count(*I))
641 report("MBB has successor that isn't part of the function.", MBB);
642 if (!MBBInfoMap[*I].Preds.count(MBB)) {
643 report("Inconsistent CFG", MBB);
644 errs() << "MBB is not in the predecessor list of the successor "
645 << printMBBReference(*(*I)) << ".\n";
649 // Check the predecessor list.
650 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
651 E = MBB->pred_end(); I != E; ++I) {
652 if (!FunctionBlocks.count(*I))
653 report("MBB has predecessor that isn't part of the function.", MBB);
654 if (!MBBInfoMap[*I].Succs.count(MBB)) {
655 report("Inconsistent CFG", MBB);
656 errs() << "MBB is not in the successor list of the predecessor "
657 << printMBBReference(*(*I)) << ".\n";
661 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
662 const BasicBlock *BB = MBB->getBasicBlock();
663 const Function &F = MF->getFunction();
664 if (LandingPadSuccs.size() > 1 &&
665 !(AsmInfo &&
666 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
667 BB && isa<SwitchInst>(BB->getTerminator())) &&
668 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
669 report("MBB has more than one landing pad successor", MBB);
671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
673 SmallVector<MachineOperand, 4> Cond;
674 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
675 Cond)) {
676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677 // check whether its answers match up with reality.
678 if (!TBB && !FBB) {
679 // Block falls through to its successor.
680 MachineFunction::const_iterator MBBI = MBB->getIterator();
681 ++MBBI;
682 if (MBBI == MF->end()) {
683 // It's possible that the block legitimately ends with a noreturn
684 // call or an unreachable, in which case it won't actually fall
685 // out the bottom of the function.
686 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
687 // It's possible that the block legitimately ends with a noreturn
688 // call or an unreachable, in which case it won't actually fall
689 // out of the block.
690 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
691 report("MBB exits via unconditional fall-through but doesn't have "
692 "exactly one CFG successor!", MBB);
693 } else if (!MBB->isSuccessor(&*MBBI)) {
694 report("MBB exits via unconditional fall-through but its successor "
695 "differs from its CFG successor!", MBB);
697 if (!MBB->empty() && MBB->back().isBarrier() &&
698 !TII->isPredicated(MBB->back())) {
699 report("MBB exits via unconditional fall-through but ends with a "
700 "barrier instruction!", MBB);
702 if (!Cond.empty()) {
703 report("MBB exits via unconditional fall-through but has a condition!",
704 MBB);
706 } else if (TBB && !FBB && Cond.empty()) {
707 // Block unconditionally branches somewhere.
708 // If the block has exactly one successor, that happens to be a
709 // landingpad, accept it as valid control flow.
710 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
711 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
712 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
713 report("MBB exits via unconditional branch but doesn't have "
714 "exactly one CFG successor!", MBB);
715 } else if (!MBB->isSuccessor(TBB)) {
716 report("MBB exits via unconditional branch but the CFG "
717 "successor doesn't match the actual successor!", MBB);
719 if (MBB->empty()) {
720 report("MBB exits via unconditional branch but doesn't contain "
721 "any instructions!", MBB);
722 } else if (!MBB->back().isBarrier()) {
723 report("MBB exits via unconditional branch but doesn't end with a "
724 "barrier instruction!", MBB);
725 } else if (!MBB->back().isTerminator()) {
726 report("MBB exits via unconditional branch but the branch isn't a "
727 "terminator instruction!", MBB);
729 } else if (TBB && !FBB && !Cond.empty()) {
730 // Block conditionally branches somewhere, otherwise falls through.
731 MachineFunction::const_iterator MBBI = MBB->getIterator();
732 ++MBBI;
733 if (MBBI == MF->end()) {
734 report("MBB conditionally falls through out of function!", MBB);
735 } else if (MBB->succ_size() == 1) {
736 // A conditional branch with only one successor is weird, but allowed.
737 if (&*MBBI != TBB)
738 report("MBB exits via conditional branch/fall-through but only has "
739 "one CFG successor!", MBB);
740 else if (TBB != *MBB->succ_begin())
741 report("MBB exits via conditional branch/fall-through but the CFG "
742 "successor don't match the actual successor!", MBB);
743 } else if (MBB->succ_size() != 2) {
744 report("MBB exits via conditional branch/fall-through but doesn't have "
745 "exactly two CFG successors!", MBB);
746 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
747 report("MBB exits via conditional branch/fall-through but the CFG "
748 "successors don't match the actual successors!", MBB);
750 if (MBB->empty()) {
751 report("MBB exits via conditional branch/fall-through but doesn't "
752 "contain any instructions!", MBB);
753 } else if (MBB->back().isBarrier()) {
754 report("MBB exits via conditional branch/fall-through but ends with a "
755 "barrier instruction!", MBB);
756 } else if (!MBB->back().isTerminator()) {
757 report("MBB exits via conditional branch/fall-through but the branch "
758 "isn't a terminator instruction!", MBB);
760 } else if (TBB && FBB) {
761 // Block conditionally branches somewhere, otherwise branches
762 // somewhere else.
763 if (MBB->succ_size() == 1) {
764 // A conditional branch with only one successor is weird, but allowed.
765 if (FBB != TBB)
766 report("MBB exits via conditional branch/branch through but only has "
767 "one CFG successor!", MBB);
768 else if (TBB != *MBB->succ_begin())
769 report("MBB exits via conditional branch/branch through but the CFG "
770 "successor don't match the actual successor!", MBB);
771 } else if (MBB->succ_size() != 2) {
772 report("MBB exits via conditional branch/branch but doesn't have "
773 "exactly two CFG successors!", MBB);
774 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
775 report("MBB exits via conditional branch/branch but the CFG "
776 "successors don't match the actual successors!", MBB);
778 if (MBB->empty()) {
779 report("MBB exits via conditional branch/branch but doesn't "
780 "contain any instructions!", MBB);
781 } else if (!MBB->back().isBarrier()) {
782 report("MBB exits via conditional branch/branch but doesn't end with a "
783 "barrier instruction!", MBB);
784 } else if (!MBB->back().isTerminator()) {
785 report("MBB exits via conditional branch/branch but the branch "
786 "isn't a terminator instruction!", MBB);
788 if (Cond.empty()) {
789 report("MBB exits via conditional branch/branch but there's no "
790 "condition!", MBB);
792 } else {
793 report("AnalyzeBranch returned invalid data!", MBB);
797 regsLive.clear();
798 if (MRI->tracksLiveness()) {
799 for (const auto &LI : MBB->liveins()) {
800 if (!Register::isPhysicalRegister(LI.PhysReg)) {
801 report("MBB live-in list contains non-physical register", MBB);
802 continue;
804 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
805 SubRegs.isValid(); ++SubRegs)
806 regsLive.insert(*SubRegs);
810 const MachineFrameInfo &MFI = MF->getFrameInfo();
811 BitVector PR = MFI.getPristineRegs(*MF);
812 for (unsigned I : PR.set_bits()) {
813 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
814 SubRegs.isValid(); ++SubRegs)
815 regsLive.insert(*SubRegs);
818 regsKilled.clear();
819 regsDefined.clear();
821 if (Indexes)
822 lastIndex = Indexes->getMBBStartIdx(MBB);
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
828 if (Indexes && Indexes->hasIndex(*MI)) {
829 SlotIndex idx = Indexes->getInstructionIndex(*MI);
830 if (!(idx > lastIndex)) {
831 report("Instruction index out of order", MI);
832 errs() << "Last instruction was at " << lastIndex << '\n';
834 lastIndex = idx;
837 // Ensure non-terminators don't follow terminators.
838 // Ignore predicated terminators formed by if conversion.
839 // FIXME: If conversion shouldn't need to violate this rule.
840 if (MI->isTerminator() && !TII->isPredicated(*MI)) {
841 if (!FirstTerminator)
842 FirstTerminator = MI;
843 } else if (FirstTerminator && !MI->isDebugEntryValue()) {
844 report("Non-terminator instruction after the first terminator", MI);
845 errs() << "First terminator was:\t" << *FirstTerminator;
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
852 // The first two operands on INLINEASM are the asm string and global flags.
853 if (MI->getNumOperands() < 2) {
854 report("Too few operands on inline asm", MI);
855 return;
857 if (!MI->getOperand(0).isSymbol())
858 report("Asm string must be an external symbol", MI);
859 if (!MI->getOperand(1).isImm())
860 report("Asm flags must be an immediate", MI);
861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863 // and Extra_IsConvergent = 32.
864 if (!isUInt<6>(MI->getOperand(1).getImm()))
865 report("Unknown asm flags", &MI->getOperand(1), 1);
867 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
869 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
870 unsigned NumOps;
871 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
872 const MachineOperand &MO = MI->getOperand(OpNo);
873 // There may be implicit ops after the fixed operands.
874 if (!MO.isImm())
875 break;
876 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
879 if (OpNo > MI->getNumOperands())
880 report("Missing operands in last group", MI);
882 // An optional MDNode follows the groups.
883 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
884 ++OpNo;
886 // All trailing operands must be implicit registers.
887 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
888 const MachineOperand &MO = MI->getOperand(OpNo);
889 if (!MO.isReg() || !MO.isImplicit())
890 report("Expected implicit register after groups", &MO, OpNo);
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
898 const MachineInstr *MI) {
899 if (Ty0.isVector() != Ty1.isVector()) {
900 report("operand types must be all-vector or all-scalar", MI);
901 // Generally we try to report as many issues as possible at once, but in
902 // this case it's not clear what should we be comparing the size of the
903 // scalar with: the size of the whole vector or its lane. Instead of
904 // making an arbitrary choice and emitting not so helpful message, let's
905 // avoid the extra noise and stop here.
906 return false;
909 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
910 report("operand types must preserve number of vector elements", MI);
911 return false;
914 return true;
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
918 if (isFunctionSelected)
919 report("Unexpected generic instruction in a Selected function", MI);
921 const MCInstrDesc &MCID = MI->getDesc();
922 unsigned NumOps = MI->getNumOperands();
924 // Check types.
925 SmallVector<LLT, 4> Types;
926 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
927 I != E; ++I) {
928 if (!MCID.OpInfo[I].isGenericType())
929 continue;
930 // Generic instructions specify type equality constraints between some of
931 // their operands. Make sure these are consistent.
932 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
933 Types.resize(std::max(TypeIdx + 1, Types.size()));
935 const MachineOperand *MO = &MI->getOperand(I);
936 if (!MO->isReg()) {
937 report("generic instruction must use register operands", MI);
938 continue;
941 LLT OpTy = MRI->getType(MO->getReg());
942 // Don't report a type mismatch if there is no actual mismatch, only a
943 // type missing, to reduce noise:
944 if (OpTy.isValid()) {
945 // Only the first valid type for a type index will be printed: don't
946 // overwrite it later so it's always clear which type was expected:
947 if (!Types[TypeIdx].isValid())
948 Types[TypeIdx] = OpTy;
949 else if (Types[TypeIdx] != OpTy)
950 report("Type mismatch in generic instruction", MO, I, OpTy);
951 } else {
952 // Generic instructions must have types attached to their operands.
953 report("Generic instruction is missing a virtual register type", MO, I);
957 // Generic opcodes must not have physical register operands.
958 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
959 const MachineOperand *MO = &MI->getOperand(I);
960 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
961 report("Generic instruction cannot have physical register", MO, I);
964 // Avoid out of bounds in checks below. This was already reported earlier.
965 if (MI->getNumOperands() < MCID.getNumOperands())
966 return;
968 StringRef ErrorInfo;
969 if (!TII->verifyInstruction(*MI, ErrorInfo))
970 report(ErrorInfo.data(), MI);
972 // Verify properties of various specific instruction types
973 switch (MI->getOpcode()) {
974 case TargetOpcode::G_CONSTANT:
975 case TargetOpcode::G_FCONSTANT: {
976 if (MI->getNumOperands() < MCID.getNumOperands())
977 break;
979 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
980 if (DstTy.isVector())
981 report("Instruction cannot use a vector result type", MI);
983 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
984 if (!MI->getOperand(1).isCImm()) {
985 report("G_CONSTANT operand must be cimm", MI);
986 break;
989 const ConstantInt *CI = MI->getOperand(1).getCImm();
990 if (CI->getBitWidth() != DstTy.getSizeInBits())
991 report("inconsistent constant size", MI);
992 } else {
993 if (!MI->getOperand(1).isFPImm()) {
994 report("G_FCONSTANT operand must be fpimm", MI);
995 break;
997 const ConstantFP *CF = MI->getOperand(1).getFPImm();
999 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1000 DstTy.getSizeInBits()) {
1001 report("inconsistent constant size", MI);
1005 break;
1007 case TargetOpcode::G_LOAD:
1008 case TargetOpcode::G_STORE:
1009 case TargetOpcode::G_ZEXTLOAD:
1010 case TargetOpcode::G_SEXTLOAD: {
1011 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1012 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1013 if (!PtrTy.isPointer())
1014 report("Generic memory instruction must access a pointer", MI);
1016 // Generic loads and stores must have a single MachineMemOperand
1017 // describing that access.
1018 if (!MI->hasOneMemOperand()) {
1019 report("Generic instruction accessing memory must have one mem operand",
1020 MI);
1021 } else {
1022 const MachineMemOperand &MMO = **MI->memoperands_begin();
1023 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1024 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1025 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1026 report("Generic extload must have a narrower memory type", MI);
1027 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1028 if (MMO.getSize() > ValTy.getSizeInBytes())
1029 report("load memory size cannot exceed result size", MI);
1030 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1031 if (ValTy.getSizeInBytes() < MMO.getSize())
1032 report("store memory size cannot exceed value size", MI);
1036 break;
1038 case TargetOpcode::G_PHI: {
1039 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040 if (!DstTy.isValid() ||
1041 !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1042 [this, &DstTy](const MachineOperand &MO) {
1043 if (!MO.isReg())
1044 return true;
1045 LLT Ty = MRI->getType(MO.getReg());
1046 if (!Ty.isValid() || (Ty != DstTy))
1047 return false;
1048 return true;
1050 report("Generic Instruction G_PHI has operands with incompatible/missing "
1051 "types",
1052 MI);
1053 break;
1055 case TargetOpcode::G_BITCAST: {
1056 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1057 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1058 if (!DstTy.isValid() || !SrcTy.isValid())
1059 break;
1061 if (SrcTy.isPointer() != DstTy.isPointer())
1062 report("bitcast cannot convert between pointers and other types", MI);
1064 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1065 report("bitcast sizes must match", MI);
1066 break;
1068 case TargetOpcode::G_INTTOPTR:
1069 case TargetOpcode::G_PTRTOINT:
1070 case TargetOpcode::G_ADDRSPACE_CAST: {
1071 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1072 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1073 if (!DstTy.isValid() || !SrcTy.isValid())
1074 break;
1076 verifyVectorElementMatch(DstTy, SrcTy, MI);
1078 DstTy = DstTy.getScalarType();
1079 SrcTy = SrcTy.getScalarType();
1081 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1082 if (!DstTy.isPointer())
1083 report("inttoptr result type must be a pointer", MI);
1084 if (SrcTy.isPointer())
1085 report("inttoptr source type must not be a pointer", MI);
1086 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1087 if (!SrcTy.isPointer())
1088 report("ptrtoint source type must be a pointer", MI);
1089 if (DstTy.isPointer())
1090 report("ptrtoint result type must not be a pointer", MI);
1091 } else {
1092 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1093 if (!SrcTy.isPointer() || !DstTy.isPointer())
1094 report("addrspacecast types must be pointers", MI);
1095 else {
1096 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1097 report("addrspacecast must convert different address spaces", MI);
1101 break;
1103 case TargetOpcode::G_GEP: {
1104 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1105 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1106 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1107 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1108 break;
1110 if (!PtrTy.getScalarType().isPointer())
1111 report("gep first operand must be a pointer", MI);
1113 if (OffsetTy.getScalarType().isPointer())
1114 report("gep offset operand must not be a pointer", MI);
1116 // TODO: Is the offset allowed to be a scalar with a vector?
1117 break;
1119 case TargetOpcode::G_SEXT:
1120 case TargetOpcode::G_ZEXT:
1121 case TargetOpcode::G_ANYEXT:
1122 case TargetOpcode::G_TRUNC:
1123 case TargetOpcode::G_FPEXT:
1124 case TargetOpcode::G_FPTRUNC: {
1125 // Number of operands and presense of types is already checked (and
1126 // reported in case of any issues), so no need to report them again. As
1127 // we're trying to report as many issues as possible at once, however, the
1128 // instructions aren't guaranteed to have the right number of operands or
1129 // types attached to them at this point
1130 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1132 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1133 if (!DstTy.isValid() || !SrcTy.isValid())
1134 break;
1136 LLT DstElTy = DstTy.getScalarType();
1137 LLT SrcElTy = SrcTy.getScalarType();
1138 if (DstElTy.isPointer() || SrcElTy.isPointer())
1139 report("Generic extend/truncate can not operate on pointers", MI);
1141 verifyVectorElementMatch(DstTy, SrcTy, MI);
1143 unsigned DstSize = DstElTy.getSizeInBits();
1144 unsigned SrcSize = SrcElTy.getSizeInBits();
1145 switch (MI->getOpcode()) {
1146 default:
1147 if (DstSize <= SrcSize)
1148 report("Generic extend has destination type no larger than source", MI);
1149 break;
1150 case TargetOpcode::G_TRUNC:
1151 case TargetOpcode::G_FPTRUNC:
1152 if (DstSize >= SrcSize)
1153 report("Generic truncate has destination type no smaller than source",
1154 MI);
1155 break;
1157 break;
1159 case TargetOpcode::G_SELECT: {
1160 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1161 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1162 if (!SelTy.isValid() || !CondTy.isValid())
1163 break;
1165 // Scalar condition select on a vector is valid.
1166 if (CondTy.isVector())
1167 verifyVectorElementMatch(SelTy, CondTy, MI);
1168 break;
1170 case TargetOpcode::G_MERGE_VALUES: {
1171 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172 // e.g. s2N = MERGE sN, sN
1173 // Merging multiple scalars into a vector is not allowed, should use
1174 // G_BUILD_VECTOR for that.
1175 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1176 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1177 if (DstTy.isVector() || SrcTy.isVector())
1178 report("G_MERGE_VALUES cannot operate on vectors", MI);
1180 const unsigned NumOps = MI->getNumOperands();
1181 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1182 report("G_MERGE_VALUES result size is inconsistent", MI);
1184 for (unsigned I = 2; I != NumOps; ++I) {
1185 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1186 report("G_MERGE_VALUES source types do not match", MI);
1189 break;
1191 case TargetOpcode::G_UNMERGE_VALUES: {
1192 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1193 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1194 // For now G_UNMERGE can split vectors.
1195 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1196 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1197 report("G_UNMERGE_VALUES destination types do not match", MI);
1199 if (SrcTy.getSizeInBits() !=
1200 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1201 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1202 MI);
1204 break;
1206 case TargetOpcode::G_BUILD_VECTOR: {
1207 // Source types must be scalars, dest type a vector. Total size of scalars
1208 // must match the dest vector size.
1209 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1210 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1211 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1212 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1213 break;
1216 if (DstTy.getElementType() != SrcEltTy)
1217 report("G_BUILD_VECTOR result element type must match source type", MI);
1219 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1220 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1222 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1223 if (MRI->getType(MI->getOperand(1).getReg()) !=
1224 MRI->getType(MI->getOperand(i).getReg()))
1225 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1228 break;
1230 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1231 // Source types must be scalars, dest type a vector. Scalar types must be
1232 // larger than the dest vector elt type, as this is a truncating operation.
1233 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1234 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1235 if (!DstTy.isVector() || SrcEltTy.isVector())
1236 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1237 MI);
1238 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1239 if (MRI->getType(MI->getOperand(1).getReg()) !=
1240 MRI->getType(MI->getOperand(i).getReg()))
1241 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1242 MI);
1244 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1245 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1246 "dest elt type",
1247 MI);
1248 break;
1250 case TargetOpcode::G_CONCAT_VECTORS: {
1251 // Source types should be vectors, and total size should match the dest
1252 // vector size.
1253 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1254 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1255 if (!DstTy.isVector() || !SrcTy.isVector())
1256 report("G_CONCAT_VECTOR requires vector source and destination operands",
1257 MI);
1258 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1259 if (MRI->getType(MI->getOperand(1).getReg()) !=
1260 MRI->getType(MI->getOperand(i).getReg()))
1261 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1263 if (DstTy.getNumElements() !=
1264 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1265 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1266 break;
1268 case TargetOpcode::G_ICMP:
1269 case TargetOpcode::G_FCMP: {
1270 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1271 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1273 if ((DstTy.isVector() != SrcTy.isVector()) ||
1274 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1275 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1277 break;
1279 case TargetOpcode::G_EXTRACT: {
1280 const MachineOperand &SrcOp = MI->getOperand(1);
1281 if (!SrcOp.isReg()) {
1282 report("extract source must be a register", MI);
1283 break;
1286 const MachineOperand &OffsetOp = MI->getOperand(2);
1287 if (!OffsetOp.isImm()) {
1288 report("extract offset must be a constant", MI);
1289 break;
1292 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1293 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1294 if (SrcSize == DstSize)
1295 report("extract source must be larger than result", MI);
1297 if (DstSize + OffsetOp.getImm() > SrcSize)
1298 report("extract reads past end of register", MI);
1299 break;
1301 case TargetOpcode::G_INSERT: {
1302 const MachineOperand &SrcOp = MI->getOperand(2);
1303 if (!SrcOp.isReg()) {
1304 report("insert source must be a register", MI);
1305 break;
1308 const MachineOperand &OffsetOp = MI->getOperand(3);
1309 if (!OffsetOp.isImm()) {
1310 report("insert offset must be a constant", MI);
1311 break;
1314 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1315 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1317 if (DstSize <= SrcSize)
1318 report("inserted size must be smaller than total register", MI);
1320 if (SrcSize + OffsetOp.getImm() > DstSize)
1321 report("insert writes past end of register", MI);
1323 break;
1325 case TargetOpcode::G_JUMP_TABLE: {
1326 if (!MI->getOperand(1).isJTI())
1327 report("G_JUMP_TABLE source operand must be a jump table index", MI);
1328 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1329 if (!DstTy.isPointer())
1330 report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1331 break;
1333 case TargetOpcode::G_BRJT: {
1334 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1335 report("G_BRJT src operand 0 must be a pointer type", MI);
1337 if (!MI->getOperand(1).isJTI())
1338 report("G_BRJT src operand 1 must be a jump table index", MI);
1340 const auto &IdxOp = MI->getOperand(2);
1341 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1342 report("G_BRJT src operand 2 must be a scalar reg type", MI);
1343 break;
1345 case TargetOpcode::G_INTRINSIC:
1346 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1347 // TODO: Should verify number of def and use operands, but the current
1348 // interface requires passing in IR types for mangling.
1349 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1350 if (!IntrIDOp.isIntrinsicID()) {
1351 report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1352 break;
1355 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1356 unsigned IntrID = IntrIDOp.getIntrinsicID();
1357 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1358 AttributeList Attrs
1359 = Intrinsic::getAttributes(MF->getFunction().getContext(),
1360 static_cast<Intrinsic::ID>(IntrID));
1361 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1362 if (NoSideEffects && DeclHasSideEffects) {
1363 report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1364 break;
1366 if (!NoSideEffects && !DeclHasSideEffects) {
1367 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1368 break;
1371 switch (IntrID) {
1372 case Intrinsic::memcpy:
1373 if (MI->getNumOperands() != 5)
1374 report("Expected memcpy intrinsic to have 5 operands", MI);
1375 break;
1376 case Intrinsic::memmove:
1377 if (MI->getNumOperands() != 5)
1378 report("Expected memmove intrinsic to have 5 operands", MI);
1379 break;
1380 case Intrinsic::memset:
1381 if (MI->getNumOperands() != 5)
1382 report("Expected memset intrinsic to have 5 operands", MI);
1383 break;
1385 break;
1387 case TargetOpcode::G_SEXT_INREG: {
1388 if (!MI->getOperand(2).isImm()) {
1389 report("G_SEXT_INREG expects an immediate operand #2", MI);
1390 break;
1393 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1394 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1395 verifyVectorElementMatch(DstTy, SrcTy, MI);
1397 int64_t Imm = MI->getOperand(2).getImm();
1398 if (Imm <= 0)
1399 report("G_SEXT_INREG size must be >= 1", MI);
1400 if (Imm >= SrcTy.getScalarSizeInBits())
1401 report("G_SEXT_INREG size must be less than source bit width", MI);
1402 break;
1404 case TargetOpcode::G_SHUFFLE_VECTOR: {
1405 const MachineOperand &MaskOp = MI->getOperand(3);
1406 if (!MaskOp.isShuffleMask()) {
1407 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1408 break;
1411 const Constant *Mask = MaskOp.getShuffleMask();
1412 auto *MaskVT = dyn_cast<VectorType>(Mask->getType());
1413 if (!MaskVT || !MaskVT->getElementType()->isIntegerTy(32)) {
1414 report("Invalid shufflemask constant type", MI);
1415 break;
1418 if (!Mask->getAggregateElement(0u)) {
1419 report("Invalid shufflemask constant type", MI);
1420 break;
1423 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1424 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1425 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1427 if (Src0Ty != Src1Ty)
1428 report("Source operands must be the same type", MI);
1430 if (Src0Ty.getScalarType() != DstTy.getScalarType())
1431 report("G_SHUFFLE_VECTOR cannot change element type", MI);
1433 // Don't check that all operands are vector because scalars are used in
1434 // place of 1 element vectors.
1435 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1436 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1438 SmallVector<int, 32> MaskIdxes;
1439 ShuffleVectorInst::getShuffleMask(Mask, MaskIdxes);
1441 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1442 report("Wrong result type for shufflemask", MI);
1444 for (int Idx : MaskIdxes) {
1445 if (Idx < 0)
1446 continue;
1448 if (Idx >= 2 * SrcNumElts)
1449 report("Out of bounds shuffle index", MI);
1452 break;
1454 case TargetOpcode::G_DYN_STACKALLOC: {
1455 const MachineOperand &DstOp = MI->getOperand(0);
1456 const MachineOperand &AllocOp = MI->getOperand(1);
1457 const MachineOperand &AlignOp = MI->getOperand(2);
1459 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1460 report("dst operand 0 must be a pointer type", MI);
1461 break;
1464 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1465 report("src operand 1 must be a scalar reg type", MI);
1466 break;
1469 if (!AlignOp.isImm()) {
1470 report("src operand 2 must be an immediate type", MI);
1471 break;
1473 break;
1475 default:
1476 break;
1480 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1481 const MCInstrDesc &MCID = MI->getDesc();
1482 if (MI->getNumOperands() < MCID.getNumOperands()) {
1483 report("Too few operands", MI);
1484 errs() << MCID.getNumOperands() << " operands expected, but "
1485 << MI->getNumOperands() << " given.\n";
1488 if (MI->isPHI()) {
1489 if (MF->getProperties().hasProperty(
1490 MachineFunctionProperties::Property::NoPHIs))
1491 report("Found PHI instruction with NoPHIs property set", MI);
1493 if (FirstNonPHI)
1494 report("Found PHI instruction after non-PHI", MI);
1495 } else if (FirstNonPHI == nullptr)
1496 FirstNonPHI = MI;
1498 // Check the tied operands.
1499 if (MI->isInlineAsm())
1500 verifyInlineAsm(MI);
1502 // Check the MachineMemOperands for basic consistency.
1503 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
1504 E = MI->memoperands_end();
1505 I != E; ++I) {
1506 if ((*I)->isLoad() && !MI->mayLoad())
1507 report("Missing mayLoad flag", MI);
1508 if ((*I)->isStore() && !MI->mayStore())
1509 report("Missing mayStore flag", MI);
1512 // Debug values must not have a slot index.
1513 // Other instructions must have one, unless they are inside a bundle.
1514 if (LiveInts) {
1515 bool mapped = !LiveInts->isNotInMIMap(*MI);
1516 if (MI->isDebugInstr()) {
1517 if (mapped)
1518 report("Debug instruction has a slot index", MI);
1519 } else if (MI->isInsideBundle()) {
1520 if (mapped)
1521 report("Instruction inside bundle has a slot index", MI);
1522 } else {
1523 if (!mapped)
1524 report("Missing slot index", MI);
1528 if (isPreISelGenericOpcode(MCID.getOpcode())) {
1529 verifyPreISelGenericInstruction(MI);
1530 return;
1533 StringRef ErrorInfo;
1534 if (!TII->verifyInstruction(*MI, ErrorInfo))
1535 report(ErrorInfo.data(), MI);
1537 // Verify properties of various specific instruction types
1538 switch (MI->getOpcode()) {
1539 case TargetOpcode::COPY: {
1540 if (foundErrors)
1541 break;
1542 const MachineOperand &DstOp = MI->getOperand(0);
1543 const MachineOperand &SrcOp = MI->getOperand(1);
1544 LLT DstTy = MRI->getType(DstOp.getReg());
1545 LLT SrcTy = MRI->getType(SrcOp.getReg());
1546 if (SrcTy.isValid() && DstTy.isValid()) {
1547 // If both types are valid, check that the types are the same.
1548 if (SrcTy != DstTy) {
1549 report("Copy Instruction is illegal with mismatching types", MI);
1550 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1553 if (SrcTy.isValid() || DstTy.isValid()) {
1554 // If one of them have valid types, let's just check they have the same
1555 // size.
1556 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1557 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1558 assert(SrcSize && "Expecting size here");
1559 assert(DstSize && "Expecting size here");
1560 if (SrcSize != DstSize)
1561 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1562 report("Copy Instruction is illegal with mismatching sizes", MI);
1563 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1564 << "\n";
1567 break;
1569 case TargetOpcode::STATEPOINT:
1570 if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1571 !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1572 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1573 report("meta operands to STATEPOINT not constant!", MI);
1574 break;
1576 auto VerifyStackMapConstant = [&](unsigned Offset) {
1577 if (!MI->getOperand(Offset).isImm() ||
1578 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1579 !MI->getOperand(Offset + 1).isImm())
1580 report("stack map constant to STATEPOINT not well formed!", MI);
1582 const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1583 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1584 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1585 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1587 // TODO: verify we have properly encoded deopt arguments
1588 break;
1592 void
1593 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1594 const MachineInstr *MI = MO->getParent();
1595 const MCInstrDesc &MCID = MI->getDesc();
1596 unsigned NumDefs = MCID.getNumDefs();
1597 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1598 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1600 // The first MCID.NumDefs operands must be explicit register defines
1601 if (MONum < NumDefs) {
1602 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1603 if (!MO->isReg())
1604 report("Explicit definition must be a register", MO, MONum);
1605 else if (!MO->isDef() && !MCOI.isOptionalDef())
1606 report("Explicit definition marked as use", MO, MONum);
1607 else if (MO->isImplicit())
1608 report("Explicit definition marked as implicit", MO, MONum);
1609 } else if (MONum < MCID.getNumOperands()) {
1610 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1611 // Don't check if it's the last operand in a variadic instruction. See,
1612 // e.g., LDM_RET in the arm back end.
1613 if (MO->isReg() &&
1614 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1615 if (MO->isDef() && !MCOI.isOptionalDef())
1616 report("Explicit operand marked as def", MO, MONum);
1617 if (MO->isImplicit())
1618 report("Explicit operand marked as implicit", MO, MONum);
1621 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1622 if (TiedTo != -1) {
1623 if (!MO->isReg())
1624 report("Tied use must be a register", MO, MONum);
1625 else if (!MO->isTied())
1626 report("Operand should be tied", MO, MONum);
1627 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1628 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1629 else if (Register::isPhysicalRegister(MO->getReg())) {
1630 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1631 if (!MOTied.isReg())
1632 report("Tied counterpart must be a register", &MOTied, TiedTo);
1633 else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1634 MO->getReg() != MOTied.getReg())
1635 report("Tied physical registers must match.", &MOTied, TiedTo);
1637 } else if (MO->isReg() && MO->isTied())
1638 report("Explicit operand should not be tied", MO, MONum);
1639 } else {
1640 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1641 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1642 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1645 switch (MO->getType()) {
1646 case MachineOperand::MO_Register: {
1647 const Register Reg = MO->getReg();
1648 if (!Reg)
1649 return;
1650 if (MRI->tracksLiveness() && !MI->isDebugValue())
1651 checkLiveness(MO, MONum);
1653 // Verify the consistency of tied operands.
1654 if (MO->isTied()) {
1655 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1656 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1657 if (!OtherMO.isReg())
1658 report("Must be tied to a register", MO, MONum);
1659 if (!OtherMO.isTied())
1660 report("Missing tie flags on tied operand", MO, MONum);
1661 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1662 report("Inconsistent tie links", MO, MONum);
1663 if (MONum < MCID.getNumDefs()) {
1664 if (OtherIdx < MCID.getNumOperands()) {
1665 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1666 report("Explicit def tied to explicit use without tie constraint",
1667 MO, MONum);
1668 } else {
1669 if (!OtherMO.isImplicit())
1670 report("Explicit def should be tied to implicit use", MO, MONum);
1675 // Verify two-address constraints after leaving SSA form.
1676 unsigned DefIdx;
1677 if (!MRI->isSSA() && MO->isUse() &&
1678 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1679 Reg != MI->getOperand(DefIdx).getReg())
1680 report("Two-address instruction operands must be identical", MO, MONum);
1682 // Check register classes.
1683 unsigned SubIdx = MO->getSubReg();
1685 if (Register::isPhysicalRegister(Reg)) {
1686 if (SubIdx) {
1687 report("Illegal subregister index for physical register", MO, MONum);
1688 return;
1690 if (MONum < MCID.getNumOperands()) {
1691 if (const TargetRegisterClass *DRC =
1692 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1693 if (!DRC->contains(Reg)) {
1694 report("Illegal physical register for instruction", MO, MONum);
1695 errs() << printReg(Reg, TRI) << " is not a "
1696 << TRI->getRegClassName(DRC) << " register.\n";
1700 if (MO->isRenamable()) {
1701 if (MRI->isReserved(Reg)) {
1702 report("isRenamable set on reserved register", MO, MONum);
1703 return;
1706 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1707 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1708 return;
1710 } else {
1711 // Virtual register.
1712 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1713 if (!RC) {
1714 // This is a generic virtual register.
1716 // If we're post-Select, we can't have gvregs anymore.
1717 if (isFunctionSelected) {
1718 report("Generic virtual register invalid in a Selected function",
1719 MO, MONum);
1720 return;
1723 // The gvreg must have a type and it must not have a SubIdx.
1724 LLT Ty = MRI->getType(Reg);
1725 if (!Ty.isValid()) {
1726 report("Generic virtual register must have a valid type", MO,
1727 MONum);
1728 return;
1731 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1733 // If we're post-RegBankSelect, the gvreg must have a bank.
1734 if (!RegBank && isFunctionRegBankSelected) {
1735 report("Generic virtual register must have a bank in a "
1736 "RegBankSelected function",
1737 MO, MONum);
1738 return;
1741 // Make sure the register fits into its register bank if any.
1742 if (RegBank && Ty.isValid() &&
1743 RegBank->getSize() < Ty.getSizeInBits()) {
1744 report("Register bank is too small for virtual register", MO,
1745 MONum);
1746 errs() << "Register bank " << RegBank->getName() << " too small("
1747 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1748 << "-bits\n";
1749 return;
1751 if (SubIdx) {
1752 report("Generic virtual register does not allow subregister index", MO,
1753 MONum);
1754 return;
1757 // If this is a target specific instruction and this operand
1758 // has register class constraint, the virtual register must
1759 // comply to it.
1760 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1761 MONum < MCID.getNumOperands() &&
1762 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1763 report("Virtual register does not match instruction constraint", MO,
1764 MONum);
1765 errs() << "Expect register class "
1766 << TRI->getRegClassName(
1767 TII->getRegClass(MCID, MONum, TRI, *MF))
1768 << " but got nothing\n";
1769 return;
1772 break;
1774 if (SubIdx) {
1775 const TargetRegisterClass *SRC =
1776 TRI->getSubClassWithSubReg(RC, SubIdx);
1777 if (!SRC) {
1778 report("Invalid subregister index for virtual register", MO, MONum);
1779 errs() << "Register class " << TRI->getRegClassName(RC)
1780 << " does not support subreg index " << SubIdx << "\n";
1781 return;
1783 if (RC != SRC) {
1784 report("Invalid register class for subregister index", MO, MONum);
1785 errs() << "Register class " << TRI->getRegClassName(RC)
1786 << " does not fully support subreg index " << SubIdx << "\n";
1787 return;
1790 if (MONum < MCID.getNumOperands()) {
1791 if (const TargetRegisterClass *DRC =
1792 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1793 if (SubIdx) {
1794 const TargetRegisterClass *SuperRC =
1795 TRI->getLargestLegalSuperClass(RC, *MF);
1796 if (!SuperRC) {
1797 report("No largest legal super class exists.", MO, MONum);
1798 return;
1800 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1801 if (!DRC) {
1802 report("No matching super-reg register class.", MO, MONum);
1803 return;
1806 if (!RC->hasSuperClassEq(DRC)) {
1807 report("Illegal virtual register for instruction", MO, MONum);
1808 errs() << "Expected a " << TRI->getRegClassName(DRC)
1809 << " register, but got a " << TRI->getRegClassName(RC)
1810 << " register\n";
1815 break;
1818 case MachineOperand::MO_RegisterMask:
1819 regMasks.push_back(MO->getRegMask());
1820 break;
1822 case MachineOperand::MO_MachineBasicBlock:
1823 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1824 report("PHI operand is not in the CFG", MO, MONum);
1825 break;
1827 case MachineOperand::MO_FrameIndex:
1828 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1829 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1830 int FI = MO->getIndex();
1831 LiveInterval &LI = LiveStks->getInterval(FI);
1832 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1834 bool stores = MI->mayStore();
1835 bool loads = MI->mayLoad();
1836 // For a memory-to-memory move, we need to check if the frame
1837 // index is used for storing or loading, by inspecting the
1838 // memory operands.
1839 if (stores && loads) {
1840 for (auto *MMO : MI->memoperands()) {
1841 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1842 if (PSV == nullptr) continue;
1843 const FixedStackPseudoSourceValue *Value =
1844 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1845 if (Value == nullptr) continue;
1846 if (Value->getFrameIndex() != FI) continue;
1848 if (MMO->isStore())
1849 loads = false;
1850 else
1851 stores = false;
1852 break;
1854 if (loads == stores)
1855 report("Missing fixed stack memoperand.", MI);
1857 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1858 report("Instruction loads from dead spill slot", MO, MONum);
1859 errs() << "Live stack: " << LI << '\n';
1861 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1862 report("Instruction stores to dead spill slot", MO, MONum);
1863 errs() << "Live stack: " << LI << '\n';
1866 break;
1868 default:
1869 break;
1873 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1874 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1875 LaneBitmask LaneMask) {
1876 LiveQueryResult LRQ = LR.Query(UseIdx);
1877 // Check if we have a segment at the use, note however that we only need one
1878 // live subregister range, the others may be dead.
1879 if (!LRQ.valueIn() && LaneMask.none()) {
1880 report("No live segment at use", MO, MONum);
1881 report_context_liverange(LR);
1882 report_context_vreg_regunit(VRegOrUnit);
1883 report_context(UseIdx);
1885 if (MO->isKill() && !LRQ.isKill()) {
1886 report("Live range continues after kill flag", MO, MONum);
1887 report_context_liverange(LR);
1888 report_context_vreg_regunit(VRegOrUnit);
1889 if (LaneMask.any())
1890 report_context_lanemask(LaneMask);
1891 report_context(UseIdx);
1895 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1896 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1897 bool SubRangeCheck, LaneBitmask LaneMask) {
1898 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1899 assert(VNI && "NULL valno is not allowed");
1900 if (VNI->def != DefIdx) {
1901 report("Inconsistent valno->def", MO, MONum);
1902 report_context_liverange(LR);
1903 report_context_vreg_regunit(VRegOrUnit);
1904 if (LaneMask.any())
1905 report_context_lanemask(LaneMask);
1906 report_context(*VNI);
1907 report_context(DefIdx);
1909 } else {
1910 report("No live segment at def", MO, MONum);
1911 report_context_liverange(LR);
1912 report_context_vreg_regunit(VRegOrUnit);
1913 if (LaneMask.any())
1914 report_context_lanemask(LaneMask);
1915 report_context(DefIdx);
1917 // Check that, if the dead def flag is present, LiveInts agree.
1918 if (MO->isDead()) {
1919 LiveQueryResult LRQ = LR.Query(DefIdx);
1920 if (!LRQ.isDeadDef()) {
1921 assert(Register::isVirtualRegister(VRegOrUnit) &&
1922 "Expecting a virtual register.");
1923 // A dead subreg def only tells us that the specific subreg is dead. There
1924 // could be other non-dead defs of other subregs, or we could have other
1925 // parts of the register being live through the instruction. So unless we
1926 // are checking liveness for a subrange it is ok for the live range to
1927 // continue, given that we have a dead def of a subregister.
1928 if (SubRangeCheck || MO->getSubReg() == 0) {
1929 report("Live range continues after dead def flag", MO, MONum);
1930 report_context_liverange(LR);
1931 report_context_vreg_regunit(VRegOrUnit);
1932 if (LaneMask.any())
1933 report_context_lanemask(LaneMask);
1939 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1940 const MachineInstr *MI = MO->getParent();
1941 const unsigned Reg = MO->getReg();
1943 // Both use and def operands can read a register.
1944 if (MO->readsReg()) {
1945 if (MO->isKill())
1946 addRegWithSubRegs(regsKilled, Reg);
1948 // Check that LiveVars knows this kill.
1949 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1950 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1951 if (!is_contained(VI.Kills, MI))
1952 report("Kill missing from LiveVariables", MO, MONum);
1955 // Check LiveInts liveness and kill.
1956 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1957 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1958 // Check the cached regunit intervals.
1959 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1960 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1961 if (MRI->isReservedRegUnit(*Units))
1962 continue;
1963 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1964 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1968 if (Register::isVirtualRegister(Reg)) {
1969 if (LiveInts->hasInterval(Reg)) {
1970 // This is a virtual register interval.
1971 const LiveInterval &LI = LiveInts->getInterval(Reg);
1972 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1974 if (LI.hasSubRanges() && !MO->isDef()) {
1975 unsigned SubRegIdx = MO->getSubReg();
1976 LaneBitmask MOMask = SubRegIdx != 0
1977 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1978 : MRI->getMaxLaneMaskForVReg(Reg);
1979 LaneBitmask LiveInMask;
1980 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1981 if ((MOMask & SR.LaneMask).none())
1982 continue;
1983 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1984 LiveQueryResult LRQ = SR.Query(UseIdx);
1985 if (LRQ.valueIn())
1986 LiveInMask |= SR.LaneMask;
1988 // At least parts of the register has to be live at the use.
1989 if ((LiveInMask & MOMask).none()) {
1990 report("No live subrange at use", MO, MONum);
1991 report_context(LI);
1992 report_context(UseIdx);
1995 } else {
1996 report("Virtual register has no live interval", MO, MONum);
2001 // Use of a dead register.
2002 if (!regsLive.count(Reg)) {
2003 if (Register::isPhysicalRegister(Reg)) {
2004 // Reserved registers may be used even when 'dead'.
2005 bool Bad = !isReserved(Reg);
2006 // We are fine if just any subregister has a defined value.
2007 if (Bad) {
2008 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
2009 ++SubRegs) {
2010 if (regsLive.count(*SubRegs)) {
2011 Bad = false;
2012 break;
2016 // If there is an additional implicit-use of a super register we stop
2017 // here. By definition we are fine if the super register is not
2018 // (completely) dead, if the complete super register is dead we will
2019 // get a report for its operand.
2020 if (Bad) {
2021 for (const MachineOperand &MOP : MI->uses()) {
2022 if (!MOP.isReg() || !MOP.isImplicit())
2023 continue;
2025 if (!Register::isPhysicalRegister(MOP.getReg()))
2026 continue;
2028 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
2029 ++SubRegs) {
2030 if (*SubRegs == Reg) {
2031 Bad = false;
2032 break;
2037 if (Bad)
2038 report("Using an undefined physical register", MO, MONum);
2039 } else if (MRI->def_empty(Reg)) {
2040 report("Reading virtual register without a def", MO, MONum);
2041 } else {
2042 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2043 // We don't know which virtual registers are live in, so only complain
2044 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2045 // must be live in. PHI instructions are handled separately.
2046 if (MInfo.regsKilled.count(Reg))
2047 report("Using a killed virtual register", MO, MONum);
2048 else if (!MI->isPHI())
2049 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2054 if (MO->isDef()) {
2055 // Register defined.
2056 // TODO: verify that earlyclobber ops are not used.
2057 if (MO->isDead())
2058 addRegWithSubRegs(regsDead, Reg);
2059 else
2060 addRegWithSubRegs(regsDefined, Reg);
2062 // Verify SSA form.
2063 if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2064 std::next(MRI->def_begin(Reg)) != MRI->def_end())
2065 report("Multiple virtual register defs in SSA form", MO, MONum);
2067 // Check LiveInts for a live segment, but only for virtual registers.
2068 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2069 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2070 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2072 if (Register::isVirtualRegister(Reg)) {
2073 if (LiveInts->hasInterval(Reg)) {
2074 const LiveInterval &LI = LiveInts->getInterval(Reg);
2075 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2077 if (LI.hasSubRanges()) {
2078 unsigned SubRegIdx = MO->getSubReg();
2079 LaneBitmask MOMask = SubRegIdx != 0
2080 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2081 : MRI->getMaxLaneMaskForVReg(Reg);
2082 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2083 if ((SR.LaneMask & MOMask).none())
2084 continue;
2085 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2088 } else {
2089 report("Virtual register has no Live interval", MO, MONum);
2096 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
2098 // This function gets called after visiting all instructions in a bundle. The
2099 // argument points to the bundle header.
2100 // Normal stand-alone instructions are also considered 'bundles', and this
2101 // function is called for all of them.
2102 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2103 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2104 set_union(MInfo.regsKilled, regsKilled);
2105 set_subtract(regsLive, regsKilled); regsKilled.clear();
2106 // Kill any masked registers.
2107 while (!regMasks.empty()) {
2108 const uint32_t *Mask = regMasks.pop_back_val();
2109 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
2110 if (Register::isPhysicalRegister(*I) &&
2111 MachineOperand::clobbersPhysReg(Mask, *I))
2112 regsDead.push_back(*I);
2114 set_subtract(regsLive, regsDead); regsDead.clear();
2115 set_union(regsLive, regsDefined); regsDefined.clear();
2118 void
2119 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2120 MBBInfoMap[MBB].regsLiveOut = regsLive;
2121 regsLive.clear();
2123 if (Indexes) {
2124 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2125 if (!(stop > lastIndex)) {
2126 report("Block ends before last instruction index", MBB);
2127 errs() << "Block ends at " << stop
2128 << " last instruction was at " << lastIndex << '\n';
2130 lastIndex = stop;
2134 // Calculate the largest possible vregsPassed sets. These are the registers that
2135 // can pass through an MBB live, but may not be live every time. It is assumed
2136 // that all vregsPassed sets are empty before the call.
2137 void MachineVerifier::calcRegsPassed() {
2138 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2139 // have any vregsPassed.
2140 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2141 for (const auto &MBB : *MF) {
2142 BBInfo &MInfo = MBBInfoMap[&MBB];
2143 if (!MInfo.reachable)
2144 continue;
2145 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
2146 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
2147 BBInfo &SInfo = MBBInfoMap[*SuI];
2148 if (SInfo.addPassed(MInfo.regsLiveOut))
2149 todo.insert(*SuI);
2153 // Iteratively push vregsPassed to successors. This will converge to the same
2154 // final state regardless of DenseSet iteration order.
2155 while (!todo.empty()) {
2156 const MachineBasicBlock *MBB = *todo.begin();
2157 todo.erase(MBB);
2158 BBInfo &MInfo = MBBInfoMap[MBB];
2159 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
2160 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
2161 if (*SuI == MBB)
2162 continue;
2163 BBInfo &SInfo = MBBInfoMap[*SuI];
2164 if (SInfo.addPassed(MInfo.vregsPassed))
2165 todo.insert(*SuI);
2170 // Calculate the set of virtual registers that must be passed through each basic
2171 // block in order to satisfy the requirements of successor blocks. This is very
2172 // similar to calcRegsPassed, only backwards.
2173 void MachineVerifier::calcRegsRequired() {
2174 // First push live-in regs to predecessors' vregsRequired.
2175 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2176 for (const auto &MBB : *MF) {
2177 BBInfo &MInfo = MBBInfoMap[&MBB];
2178 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
2179 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
2180 BBInfo &PInfo = MBBInfoMap[*PrI];
2181 if (PInfo.addRequired(MInfo.vregsLiveIn))
2182 todo.insert(*PrI);
2186 // Iteratively push vregsRequired to predecessors. This will converge to the
2187 // same final state regardless of DenseSet iteration order.
2188 while (!todo.empty()) {
2189 const MachineBasicBlock *MBB = *todo.begin();
2190 todo.erase(MBB);
2191 BBInfo &MInfo = MBBInfoMap[MBB];
2192 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
2193 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
2194 if (*PrI == MBB)
2195 continue;
2196 BBInfo &SInfo = MBBInfoMap[*PrI];
2197 if (SInfo.addRequired(MInfo.vregsRequired))
2198 todo.insert(*PrI);
2203 // Check PHI instructions at the beginning of MBB. It is assumed that
2204 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2205 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2206 BBInfo &MInfo = MBBInfoMap[&MBB];
2208 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2209 for (const MachineInstr &Phi : MBB) {
2210 if (!Phi.isPHI())
2211 break;
2212 seen.clear();
2214 const MachineOperand &MODef = Phi.getOperand(0);
2215 if (!MODef.isReg() || !MODef.isDef()) {
2216 report("Expected first PHI operand to be a register def", &MODef, 0);
2217 continue;
2219 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2220 MODef.isEarlyClobber() || MODef.isDebug())
2221 report("Unexpected flag on PHI operand", &MODef, 0);
2222 Register DefReg = MODef.getReg();
2223 if (!Register::isVirtualRegister(DefReg))
2224 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2226 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2227 const MachineOperand &MO0 = Phi.getOperand(I);
2228 if (!MO0.isReg()) {
2229 report("Expected PHI operand to be a register", &MO0, I);
2230 continue;
2232 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2233 MO0.isDebug() || MO0.isTied())
2234 report("Unexpected flag on PHI operand", &MO0, I);
2236 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2237 if (!MO1.isMBB()) {
2238 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2239 continue;
2242 const MachineBasicBlock &Pre = *MO1.getMBB();
2243 if (!Pre.isSuccessor(&MBB)) {
2244 report("PHI input is not a predecessor block", &MO1, I + 1);
2245 continue;
2248 if (MInfo.reachable) {
2249 seen.insert(&Pre);
2250 BBInfo &PrInfo = MBBInfoMap[&Pre];
2251 if (!MO0.isUndef() && PrInfo.reachable &&
2252 !PrInfo.isLiveOut(MO0.getReg()))
2253 report("PHI operand is not live-out from predecessor", &MO0, I);
2257 // Did we see all predecessors?
2258 if (MInfo.reachable) {
2259 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2260 if (!seen.count(Pred)) {
2261 report("Missing PHI operand", &Phi);
2262 errs() << printMBBReference(*Pred)
2263 << " is a predecessor according to the CFG.\n";
2270 void MachineVerifier::visitMachineFunctionAfter() {
2271 calcRegsPassed();
2273 for (const MachineBasicBlock &MBB : *MF)
2274 checkPHIOps(MBB);
2276 // Now check liveness info if available
2277 calcRegsRequired();
2279 // Check for killed virtual registers that should be live out.
2280 for (const auto &MBB : *MF) {
2281 BBInfo &MInfo = MBBInfoMap[&MBB];
2282 for (RegSet::iterator
2283 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2284 ++I)
2285 if (MInfo.regsKilled.count(*I)) {
2286 report("Virtual register killed in block, but needed live out.", &MBB);
2287 errs() << "Virtual register " << printReg(*I)
2288 << " is used after the block.\n";
2292 if (!MF->empty()) {
2293 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2294 for (RegSet::iterator
2295 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2296 ++I) {
2297 report("Virtual register defs don't dominate all uses.", MF);
2298 report_context_vreg(*I);
2302 if (LiveVars)
2303 verifyLiveVariables();
2304 if (LiveInts)
2305 verifyLiveIntervals();
2307 for (auto CSInfo : MF->getCallSitesInfo())
2308 if (!CSInfo.first->isCall())
2309 report("Call site info referencing instruction that is not call", MF);
2312 void MachineVerifier::verifyLiveVariables() {
2313 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2314 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2315 unsigned Reg = Register::index2VirtReg(i);
2316 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2317 for (const auto &MBB : *MF) {
2318 BBInfo &MInfo = MBBInfoMap[&MBB];
2320 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2321 if (MInfo.vregsRequired.count(Reg)) {
2322 if (!VI.AliveBlocks.test(MBB.getNumber())) {
2323 report("LiveVariables: Block missing from AliveBlocks", &MBB);
2324 errs() << "Virtual register " << printReg(Reg)
2325 << " must be live through the block.\n";
2327 } else {
2328 if (VI.AliveBlocks.test(MBB.getNumber())) {
2329 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2330 errs() << "Virtual register " << printReg(Reg)
2331 << " is not needed live through the block.\n";
2338 void MachineVerifier::verifyLiveIntervals() {
2339 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2340 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2341 unsigned Reg = Register::index2VirtReg(i);
2343 // Spilling and splitting may leave unused registers around. Skip them.
2344 if (MRI->reg_nodbg_empty(Reg))
2345 continue;
2347 if (!LiveInts->hasInterval(Reg)) {
2348 report("Missing live interval for virtual register", MF);
2349 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2350 continue;
2353 const LiveInterval &LI = LiveInts->getInterval(Reg);
2354 assert(Reg == LI.reg && "Invalid reg to interval mapping");
2355 verifyLiveInterval(LI);
2358 // Verify all the cached regunit intervals.
2359 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2360 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2361 verifyLiveRange(*LR, i);
2364 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2365 const VNInfo *VNI, unsigned Reg,
2366 LaneBitmask LaneMask) {
2367 if (VNI->isUnused())
2368 return;
2370 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2372 if (!DefVNI) {
2373 report("Value not live at VNInfo def and not marked unused", MF);
2374 report_context(LR, Reg, LaneMask);
2375 report_context(*VNI);
2376 return;
2379 if (DefVNI != VNI) {
2380 report("Live segment at def has different VNInfo", MF);
2381 report_context(LR, Reg, LaneMask);
2382 report_context(*VNI);
2383 return;
2386 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2387 if (!MBB) {
2388 report("Invalid VNInfo definition index", MF);
2389 report_context(LR, Reg, LaneMask);
2390 report_context(*VNI);
2391 return;
2394 if (VNI->isPHIDef()) {
2395 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2396 report("PHIDef VNInfo is not defined at MBB start", MBB);
2397 report_context(LR, Reg, LaneMask);
2398 report_context(*VNI);
2400 return;
2403 // Non-PHI def.
2404 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2405 if (!MI) {
2406 report("No instruction at VNInfo def index", MBB);
2407 report_context(LR, Reg, LaneMask);
2408 report_context(*VNI);
2409 return;
2412 if (Reg != 0) {
2413 bool hasDef = false;
2414 bool isEarlyClobber = false;
2415 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2416 if (!MOI->isReg() || !MOI->isDef())
2417 continue;
2418 if (Register::isVirtualRegister(Reg)) {
2419 if (MOI->getReg() != Reg)
2420 continue;
2421 } else {
2422 if (!Register::isPhysicalRegister(MOI->getReg()) ||
2423 !TRI->hasRegUnit(MOI->getReg(), Reg))
2424 continue;
2426 if (LaneMask.any() &&
2427 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2428 continue;
2429 hasDef = true;
2430 if (MOI->isEarlyClobber())
2431 isEarlyClobber = true;
2434 if (!hasDef) {
2435 report("Defining instruction does not modify register", MI);
2436 report_context(LR, Reg, LaneMask);
2437 report_context(*VNI);
2440 // Early clobber defs begin at USE slots, but other defs must begin at
2441 // DEF slots.
2442 if (isEarlyClobber) {
2443 if (!VNI->def.isEarlyClobber()) {
2444 report("Early clobber def must be at an early-clobber slot", MBB);
2445 report_context(LR, Reg, LaneMask);
2446 report_context(*VNI);
2448 } else if (!VNI->def.isRegister()) {
2449 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2450 report_context(LR, Reg, LaneMask);
2451 report_context(*VNI);
2456 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2457 const LiveRange::const_iterator I,
2458 unsigned Reg, LaneBitmask LaneMask)
2460 const LiveRange::Segment &S = *I;
2461 const VNInfo *VNI = S.valno;
2462 assert(VNI && "Live segment has no valno");
2464 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2465 report("Foreign valno in live segment", MF);
2466 report_context(LR, Reg, LaneMask);
2467 report_context(S);
2468 report_context(*VNI);
2471 if (VNI->isUnused()) {
2472 report("Live segment valno is marked unused", MF);
2473 report_context(LR, Reg, LaneMask);
2474 report_context(S);
2477 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2478 if (!MBB) {
2479 report("Bad start of live segment, no basic block", MF);
2480 report_context(LR, Reg, LaneMask);
2481 report_context(S);
2482 return;
2484 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2485 if (S.start != MBBStartIdx && S.start != VNI->def) {
2486 report("Live segment must begin at MBB entry or valno def", MBB);
2487 report_context(LR, Reg, LaneMask);
2488 report_context(S);
2491 const MachineBasicBlock *EndMBB =
2492 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2493 if (!EndMBB) {
2494 report("Bad end of live segment, no basic block", MF);
2495 report_context(LR, Reg, LaneMask);
2496 report_context(S);
2497 return;
2500 // No more checks for live-out segments.
2501 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2502 return;
2504 // RegUnit intervals are allowed dead phis.
2505 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2506 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2507 return;
2509 // The live segment is ending inside EndMBB
2510 const MachineInstr *MI =
2511 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2512 if (!MI) {
2513 report("Live segment doesn't end at a valid instruction", EndMBB);
2514 report_context(LR, Reg, LaneMask);
2515 report_context(S);
2516 return;
2519 // The block slot must refer to a basic block boundary.
2520 if (S.end.isBlock()) {
2521 report("Live segment ends at B slot of an instruction", EndMBB);
2522 report_context(LR, Reg, LaneMask);
2523 report_context(S);
2526 if (S.end.isDead()) {
2527 // Segment ends on the dead slot.
2528 // That means there must be a dead def.
2529 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2530 report("Live segment ending at dead slot spans instructions", EndMBB);
2531 report_context(LR, Reg, LaneMask);
2532 report_context(S);
2536 // A live segment can only end at an early-clobber slot if it is being
2537 // redefined by an early-clobber def.
2538 if (S.end.isEarlyClobber()) {
2539 if (I+1 == LR.end() || (I+1)->start != S.end) {
2540 report("Live segment ending at early clobber slot must be "
2541 "redefined by an EC def in the same instruction", EndMBB);
2542 report_context(LR, Reg, LaneMask);
2543 report_context(S);
2547 // The following checks only apply to virtual registers. Physreg liveness
2548 // is too weird to check.
2549 if (Register::isVirtualRegister(Reg)) {
2550 // A live segment can end with either a redefinition, a kill flag on a
2551 // use, or a dead flag on a def.
2552 bool hasRead = false;
2553 bool hasSubRegDef = false;
2554 bool hasDeadDef = false;
2555 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2556 if (!MOI->isReg() || MOI->getReg() != Reg)
2557 continue;
2558 unsigned Sub = MOI->getSubReg();
2559 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2560 : LaneBitmask::getAll();
2561 if (MOI->isDef()) {
2562 if (Sub != 0) {
2563 hasSubRegDef = true;
2564 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2565 // mask for subregister defs. Read-undef defs will be handled by
2566 // readsReg below.
2567 SLM = ~SLM;
2569 if (MOI->isDead())
2570 hasDeadDef = true;
2572 if (LaneMask.any() && (LaneMask & SLM).none())
2573 continue;
2574 if (MOI->readsReg())
2575 hasRead = true;
2577 if (S.end.isDead()) {
2578 // Make sure that the corresponding machine operand for a "dead" live
2579 // range has the dead flag. We cannot perform this check for subregister
2580 // liveranges as partially dead values are allowed.
2581 if (LaneMask.none() && !hasDeadDef) {
2582 report("Instruction ending live segment on dead slot has no dead flag",
2583 MI);
2584 report_context(LR, Reg, LaneMask);
2585 report_context(S);
2587 } else {
2588 if (!hasRead) {
2589 // When tracking subregister liveness, the main range must start new
2590 // values on partial register writes, even if there is no read.
2591 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2592 !hasSubRegDef) {
2593 report("Instruction ending live segment doesn't read the register",
2594 MI);
2595 report_context(LR, Reg, LaneMask);
2596 report_context(S);
2602 // Now check all the basic blocks in this live segment.
2603 MachineFunction::const_iterator MFI = MBB->getIterator();
2604 // Is this live segment the beginning of a non-PHIDef VN?
2605 if (S.start == VNI->def && !VNI->isPHIDef()) {
2606 // Not live-in to any blocks.
2607 if (MBB == EndMBB)
2608 return;
2609 // Skip this block.
2610 ++MFI;
2613 SmallVector<SlotIndex, 4> Undefs;
2614 if (LaneMask.any()) {
2615 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2616 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2619 while (true) {
2620 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2621 // We don't know how to track physregs into a landing pad.
2622 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2623 if (&*MFI == EndMBB)
2624 break;
2625 ++MFI;
2626 continue;
2629 // Is VNI a PHI-def in the current block?
2630 bool IsPHI = VNI->isPHIDef() &&
2631 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2633 // Check that VNI is live-out of all predecessors.
2634 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2635 PE = MFI->pred_end(); PI != PE; ++PI) {
2636 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2637 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2639 // All predecessors must have a live-out value. However for a phi
2640 // instruction with subregister intervals
2641 // only one of the subregisters (not necessarily the current one) needs to
2642 // be defined.
2643 if (!PVNI && (LaneMask.none() || !IsPHI)) {
2644 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2645 continue;
2646 report("Register not marked live out of predecessor", *PI);
2647 report_context(LR, Reg, LaneMask);
2648 report_context(*VNI);
2649 errs() << " live into " << printMBBReference(*MFI) << '@'
2650 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2651 << PEnd << '\n';
2652 continue;
2655 // Only PHI-defs can take different predecessor values.
2656 if (!IsPHI && PVNI != VNI) {
2657 report("Different value live out of predecessor", *PI);
2658 report_context(LR, Reg, LaneMask);
2659 errs() << "Valno #" << PVNI->id << " live out of "
2660 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2661 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2662 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2665 if (&*MFI == EndMBB)
2666 break;
2667 ++MFI;
2671 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2672 LaneBitmask LaneMask) {
2673 for (const VNInfo *VNI : LR.valnos)
2674 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2676 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2677 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2680 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2681 unsigned Reg = LI.reg;
2682 assert(Register::isVirtualRegister(Reg));
2683 verifyLiveRange(LI, Reg);
2685 LaneBitmask Mask;
2686 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2687 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2688 if ((Mask & SR.LaneMask).any()) {
2689 report("Lane masks of sub ranges overlap in live interval", MF);
2690 report_context(LI);
2692 if ((SR.LaneMask & ~MaxMask).any()) {
2693 report("Subrange lanemask is invalid", MF);
2694 report_context(LI);
2696 if (SR.empty()) {
2697 report("Subrange must not be empty", MF);
2698 report_context(SR, LI.reg, SR.LaneMask);
2700 Mask |= SR.LaneMask;
2701 verifyLiveRange(SR, LI.reg, SR.LaneMask);
2702 if (!LI.covers(SR)) {
2703 report("A Subrange is not covered by the main range", MF);
2704 report_context(LI);
2708 // Check the LI only has one connected component.
2709 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2710 unsigned NumComp = ConEQ.Classify(LI);
2711 if (NumComp > 1) {
2712 report("Multiple connected components in live interval", MF);
2713 report_context(LI);
2714 for (unsigned comp = 0; comp != NumComp; ++comp) {
2715 errs() << comp << ": valnos";
2716 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2717 E = LI.vni_end(); I!=E; ++I)
2718 if (comp == ConEQ.getEqClass(*I))
2719 errs() << ' ' << (*I)->id;
2720 errs() << '\n';
2725 namespace {
2727 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2728 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2729 // value is zero.
2730 // We use a bool plus an integer to capture the stack state.
2731 struct StackStateOfBB {
2732 StackStateOfBB() = default;
2733 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2734 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2735 ExitIsSetup(ExitSetup) {}
2737 // Can be negative, which means we are setting up a frame.
2738 int EntryValue = 0;
2739 int ExitValue = 0;
2740 bool EntryIsSetup = false;
2741 bool ExitIsSetup = false;
2744 } // end anonymous namespace
2746 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2747 /// by a FrameDestroy <n>, stack adjustments are identical on all
2748 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2749 void MachineVerifier::verifyStackFrame() {
2750 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
2751 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2752 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2753 return;
2755 SmallVector<StackStateOfBB, 8> SPState;
2756 SPState.resize(MF->getNumBlockIDs());
2757 df_iterator_default_set<const MachineBasicBlock*> Reachable;
2759 // Visit the MBBs in DFS order.
2760 for (df_ext_iterator<const MachineFunction *,
2761 df_iterator_default_set<const MachineBasicBlock *>>
2762 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2763 DFI != DFE; ++DFI) {
2764 const MachineBasicBlock *MBB = *DFI;
2766 StackStateOfBB BBState;
2767 // Check the exit state of the DFS stack predecessor.
2768 if (DFI.getPathLength() >= 2) {
2769 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2770 assert(Reachable.count(StackPred) &&
2771 "DFS stack predecessor is already visited.\n");
2772 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2773 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2774 BBState.ExitValue = BBState.EntryValue;
2775 BBState.ExitIsSetup = BBState.EntryIsSetup;
2778 // Update stack state by checking contents of MBB.
2779 for (const auto &I : *MBB) {
2780 if (I.getOpcode() == FrameSetupOpcode) {
2781 if (BBState.ExitIsSetup)
2782 report("FrameSetup is after another FrameSetup", &I);
2783 BBState.ExitValue -= TII->getFrameTotalSize(I);
2784 BBState.ExitIsSetup = true;
2787 if (I.getOpcode() == FrameDestroyOpcode) {
2788 int Size = TII->getFrameTotalSize(I);
2789 if (!BBState.ExitIsSetup)
2790 report("FrameDestroy is not after a FrameSetup", &I);
2791 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2792 BBState.ExitValue;
2793 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2794 report("FrameDestroy <n> is after FrameSetup <m>", &I);
2795 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2796 << AbsSPAdj << ">.\n";
2798 BBState.ExitValue += Size;
2799 BBState.ExitIsSetup = false;
2802 SPState[MBB->getNumber()] = BBState;
2804 // Make sure the exit state of any predecessor is consistent with the entry
2805 // state.
2806 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2807 E = MBB->pred_end(); I != E; ++I) {
2808 if (Reachable.count(*I) &&
2809 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2810 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2811 report("The exit stack state of a predecessor is inconsistent.", MBB);
2812 errs() << "Predecessor " << printMBBReference(*(*I))
2813 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2814 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2815 << printMBBReference(*MBB) << " has entry state ("
2816 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2820 // Make sure the entry state of any successor is consistent with the exit
2821 // state.
2822 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2823 E = MBB->succ_end(); I != E; ++I) {
2824 if (Reachable.count(*I) &&
2825 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2826 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2827 report("The entry stack state of a successor is inconsistent.", MBB);
2828 errs() << "Successor " << printMBBReference(*(*I))
2829 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2830 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2831 << printMBBReference(*MBB) << " has exit state ("
2832 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2836 // Make sure a basic block with return ends with zero stack adjustment.
2837 if (!MBB->empty() && MBB->back().isReturn()) {
2838 if (BBState.ExitIsSetup)
2839 report("A return block ends with a FrameSetup.", MBB);
2840 if (BBState.ExitValue)
2841 report("A return block ends with a nonzero stack adjustment.", MBB);