[ARM] VQADD instructions
[llvm-complete.git] / lib / CodeGen / PHIElimination.cpp
blob4dd4c4b1084e59db1fe6f354db6b561622dce5fd
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
47 using namespace llvm;
49 #define DEBUG_TYPE "phi-node-elimination"
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53 cl::Hidden, cl::desc("Disable critical edge splitting "
54 "during PHI elimination"));
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58 cl::Hidden, cl::desc("Split all critical edges during "
59 "PHI elimination"));
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
65 namespace {
67 class PHIElimination : public MachineFunctionPass {
68 MachineRegisterInfo *MRI; // Machine register information
69 LiveVariables *LV;
70 LiveIntervals *LIS;
72 public:
73 static char ID; // Pass identification, replacement for typeid
75 PHIElimination() : MachineFunctionPass(ID) {
76 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
79 bool runOnMachineFunction(MachineFunction &MF) override;
80 void getAnalysisUsage(AnalysisUsage &AU) const override;
82 private:
83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84 /// in predecessor basic blocks.
85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
87 void LowerPHINode(MachineBasicBlock &MBB,
88 MachineBasicBlock::iterator LastPHIIt);
90 /// analyzePHINodes - Gather information about the PHI nodes in
91 /// here. In particular, we want to map the number of uses of a virtual
92 /// register which is used in a PHI node. We map that to the BB the
93 /// vreg is coming from. This is used later to determine when the vreg
94 /// is killed in the BB.
95 void analyzePHINodes(const MachineFunction& MF);
97 /// Split critical edges where necessary for good coalescer performance.
98 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99 MachineLoopInfo *MLI);
101 // These functions are temporary abstractions around LiveVariables and
102 // LiveIntervals, so they can go away when LiveVariables does.
103 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
104 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
106 using BBVRegPair = std::pair<unsigned, unsigned>;
107 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
109 VRegPHIUse VRegPHIUseCount;
111 // Defs of PHI sources which are implicit_def.
112 SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 // Map reusable lowered PHI node -> incoming join register.
115 using LoweredPHIMap =
116 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117 LoweredPHIMap LoweredPHIs;
120 } // end anonymous namespace
122 STATISTIC(NumLowered, "Number of phis lowered");
123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124 STATISTIC(NumReused, "Number of reused lowered phis");
126 char PHIElimination::ID = 0;
128 char& llvm::PHIEliminationID = PHIElimination::ID;
130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131 "Eliminate PHI nodes for register allocation",
132 false, false)
133 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135 "Eliminate PHI nodes for register allocation", false, false)
137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138 AU.addUsedIfAvailable<LiveVariables>();
139 AU.addPreserved<LiveVariables>();
140 AU.addPreserved<SlotIndexes>();
141 AU.addPreserved<LiveIntervals>();
142 AU.addPreserved<MachineDominatorTree>();
143 AU.addPreserved<MachineLoopInfo>();
144 MachineFunctionPass::getAnalysisUsage(AU);
147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148 MRI = &MF.getRegInfo();
149 LV = getAnalysisIfAvailable<LiveVariables>();
150 LIS = getAnalysisIfAvailable<LiveIntervals>();
152 bool Changed = false;
154 // This pass takes the function out of SSA form.
155 MRI->leaveSSA();
157 // Split critical edges to help the coalescer.
158 if (!DisableEdgeSplitting && (LV || LIS)) {
159 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
160 for (auto &MBB : MF)
161 Changed |= SplitPHIEdges(MF, MBB, MLI);
164 // Populate VRegPHIUseCount
165 analyzePHINodes(MF);
167 // Eliminate PHI instructions by inserting copies into predecessor blocks.
168 for (auto &MBB : MF)
169 Changed |= EliminatePHINodes(MF, MBB);
171 // Remove dead IMPLICIT_DEF instructions.
172 for (MachineInstr *DefMI : ImpDefs) {
173 Register DefReg = DefMI->getOperand(0).getReg();
174 if (MRI->use_nodbg_empty(DefReg)) {
175 if (LIS)
176 LIS->RemoveMachineInstrFromMaps(*DefMI);
177 DefMI->eraseFromParent();
181 // Clean up the lowered PHI instructions.
182 for (auto &I : LoweredPHIs) {
183 if (LIS)
184 LIS->RemoveMachineInstrFromMaps(*I.first);
185 MF.DeleteMachineInstr(I.first);
188 // TODO: we should use the incremental DomTree updater here.
189 if (Changed)
190 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
191 MDT->getBase().recalculate(MF);
193 LoweredPHIs.clear();
194 ImpDefs.clear();
195 VRegPHIUseCount.clear();
197 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
199 return Changed;
202 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
203 /// predecessor basic blocks.
204 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
205 MachineBasicBlock &MBB) {
206 if (MBB.empty() || !MBB.front().isPHI())
207 return false; // Quick exit for basic blocks without PHIs.
209 // Get an iterator to the last PHI node.
210 MachineBasicBlock::iterator LastPHIIt =
211 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
213 while (MBB.front().isPHI())
214 LowerPHINode(MBB, LastPHIIt);
216 return true;
219 /// Return true if all defs of VirtReg are implicit-defs.
220 /// This includes registers with no defs.
221 static bool isImplicitlyDefined(unsigned VirtReg,
222 const MachineRegisterInfo &MRI) {
223 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
224 if (!DI.isImplicitDef())
225 return false;
226 return true;
229 /// Return true if all sources of the phi node are implicit_def's, or undef's.
230 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
231 const MachineRegisterInfo &MRI) {
232 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
233 const MachineOperand &MO = MPhi.getOperand(I);
234 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
235 return false;
237 return true;
239 /// LowerPHINode - Lower the PHI node at the top of the specified block.
240 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
241 MachineBasicBlock::iterator LastPHIIt) {
242 ++NumLowered;
244 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
246 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
247 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
249 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
250 Register DestReg = MPhi->getOperand(0).getReg();
251 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
252 bool isDead = MPhi->getOperand(0).isDead();
254 // Create a new register for the incoming PHI arguments.
255 MachineFunction &MF = *MBB.getParent();
256 unsigned IncomingReg = 0;
257 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
259 // Insert a register to register copy at the top of the current block (but
260 // after any remaining phi nodes) which copies the new incoming register
261 // into the phi node destination.
262 MachineInstr *PHICopy = nullptr;
263 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
264 if (allPhiOperandsUndefined(*MPhi, *MRI))
265 // If all sources of a PHI node are implicit_def or undef uses, just emit an
266 // implicit_def instead of a copy.
267 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
268 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
269 else {
270 // Can we reuse an earlier PHI node? This only happens for critical edges,
271 // typically those created by tail duplication.
272 unsigned &entry = LoweredPHIs[MPhi];
273 if (entry) {
274 // An identical PHI node was already lowered. Reuse the incoming register.
275 IncomingReg = entry;
276 reusedIncoming = true;
277 ++NumReused;
278 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
279 << *MPhi);
280 } else {
281 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
282 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
284 // Give the target possiblity to handle special cases fallthrough otherwise
285 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
286 IncomingReg, DestReg);
289 // Update live variable information if there is any.
290 if (LV) {
291 if (IncomingReg) {
292 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
294 // Increment use count of the newly created virtual register.
295 LV->setPHIJoin(IncomingReg);
297 // When we are reusing the incoming register, it may already have been
298 // killed in this block. The old kill will also have been inserted at
299 // AfterPHIsIt, so it appears before the current PHICopy.
300 if (reusedIncoming)
301 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
302 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
303 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
304 LLVM_DEBUG(MBB.dump());
307 // Add information to LiveVariables to know that the incoming value is
308 // killed. Note that because the value is defined in several places (once
309 // each for each incoming block), the "def" block and instruction fields
310 // for the VarInfo is not filled in.
311 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
314 // Since we are going to be deleting the PHI node, if it is the last use of
315 // any registers, or if the value itself is dead, we need to move this
316 // information over to the new copy we just inserted.
317 LV->removeVirtualRegistersKilled(*MPhi);
319 // If the result is dead, update LV.
320 if (isDead) {
321 LV->addVirtualRegisterDead(DestReg, *PHICopy);
322 LV->removeVirtualRegisterDead(DestReg, *MPhi);
326 // Update LiveIntervals for the new copy or implicit def.
327 if (LIS) {
328 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
330 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
331 if (IncomingReg) {
332 // Add the region from the beginning of MBB to the copy instruction to
333 // IncomingReg's live interval.
334 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
335 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
336 if (!IncomingVNI)
337 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
338 LIS->getVNInfoAllocator());
339 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
340 DestCopyIndex.getRegSlot(),
341 IncomingVNI));
344 LiveInterval &DestLI = LIS->getInterval(DestReg);
345 assert(DestLI.begin() != DestLI.end() &&
346 "PHIs should have nonempty LiveIntervals.");
347 if (DestLI.endIndex().isDead()) {
348 // A dead PHI's live range begins and ends at the start of the MBB, but
349 // the lowered copy, which will still be dead, needs to begin and end at
350 // the copy instruction.
351 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
352 assert(OrigDestVNI && "PHI destination should be live at block entry.");
353 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
354 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
355 LIS->getVNInfoAllocator());
356 DestLI.removeValNo(OrigDestVNI);
357 } else {
358 // Otherwise, remove the region from the beginning of MBB to the copy
359 // instruction from DestReg's live interval.
360 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
361 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
362 assert(DestVNI && "PHI destination should be live at its definition.");
363 DestVNI->def = DestCopyIndex.getRegSlot();
367 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
368 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
369 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
370 MPhi->getOperand(i).getReg())];
372 // Now loop over all of the incoming arguments, changing them to copy into the
373 // IncomingReg register in the corresponding predecessor basic block.
374 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
375 for (int i = NumSrcs - 1; i >= 0; --i) {
376 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
377 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
378 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
379 isImplicitlyDefined(SrcReg, *MRI);
380 assert(Register::isVirtualRegister(SrcReg) &&
381 "Machine PHI Operands must all be virtual registers!");
383 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
384 // path the PHI.
385 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
387 // Check to make sure we haven't already emitted the copy for this block.
388 // This can happen because PHI nodes may have multiple entries for the same
389 // basic block.
390 if (!MBBsInsertedInto.insert(&opBlock).second)
391 continue; // If the copy has already been emitted, we're done.
393 // Find a safe location to insert the copy, this may be the first terminator
394 // in the block (or end()).
395 MachineBasicBlock::iterator InsertPos =
396 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
398 // Insert the copy.
399 MachineInstr *NewSrcInstr = nullptr;
400 if (!reusedIncoming && IncomingReg) {
401 if (SrcUndef) {
402 // The source register is undefined, so there is no need for a real
403 // COPY, but we still need to ensure joint dominance by defs.
404 // Insert an IMPLICIT_DEF instruction.
405 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
406 TII->get(TargetOpcode::IMPLICIT_DEF),
407 IncomingReg);
409 // Clean up the old implicit-def, if there even was one.
410 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
411 if (DefMI->isImplicitDef())
412 ImpDefs.insert(DefMI);
413 } else {
414 NewSrcInstr =
415 TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
416 SrcReg, SrcSubReg, IncomingReg);
420 // We only need to update the LiveVariables kill of SrcReg if this was the
421 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
422 // out of the predecessor. We can also ignore undef sources.
423 if (LV && !SrcUndef &&
424 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
425 !LV->isLiveOut(SrcReg, opBlock)) {
426 // We want to be able to insert a kill of the register if this PHI (aka,
427 // the copy we just inserted) is the last use of the source value. Live
428 // variable analysis conservatively handles this by saying that the value
429 // is live until the end of the block the PHI entry lives in. If the value
430 // really is dead at the PHI copy, there will be no successor blocks which
431 // have the value live-in.
433 // Okay, if we now know that the value is not live out of the block, we
434 // can add a kill marker in this block saying that it kills the incoming
435 // value!
437 // In our final twist, we have to decide which instruction kills the
438 // register. In most cases this is the copy, however, terminator
439 // instructions at the end of the block may also use the value. In this
440 // case, we should mark the last such terminator as being the killing
441 // block, not the copy.
442 MachineBasicBlock::iterator KillInst = opBlock.end();
443 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
444 for (MachineBasicBlock::iterator Term = FirstTerm;
445 Term != opBlock.end(); ++Term) {
446 if (Term->readsRegister(SrcReg))
447 KillInst = Term;
450 if (KillInst == opBlock.end()) {
451 // No terminator uses the register.
453 if (reusedIncoming || !IncomingReg) {
454 // We may have to rewind a bit if we didn't insert a copy this time.
455 KillInst = FirstTerm;
456 while (KillInst != opBlock.begin()) {
457 --KillInst;
458 if (KillInst->isDebugInstr())
459 continue;
460 if (KillInst->readsRegister(SrcReg))
461 break;
463 } else {
464 // We just inserted this copy.
465 KillInst = NewSrcInstr;
468 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
470 // Finally, mark it killed.
471 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
473 // This vreg no longer lives all of the way through opBlock.
474 unsigned opBlockNum = opBlock.getNumber();
475 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
478 if (LIS) {
479 if (NewSrcInstr) {
480 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
481 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
484 if (!SrcUndef &&
485 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
486 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
488 bool isLiveOut = false;
489 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
490 SE = opBlock.succ_end(); SI != SE; ++SI) {
491 SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
492 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
494 // Definitions by other PHIs are not truly live-in for our purposes.
495 if (VNI && VNI->def != startIdx) {
496 isLiveOut = true;
497 break;
501 if (!isLiveOut) {
502 MachineBasicBlock::iterator KillInst = opBlock.end();
503 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
504 for (MachineBasicBlock::iterator Term = FirstTerm;
505 Term != opBlock.end(); ++Term) {
506 if (Term->readsRegister(SrcReg))
507 KillInst = Term;
510 if (KillInst == opBlock.end()) {
511 // No terminator uses the register.
513 if (reusedIncoming || !IncomingReg) {
514 // We may have to rewind a bit if we didn't just insert a copy.
515 KillInst = FirstTerm;
516 while (KillInst != opBlock.begin()) {
517 --KillInst;
518 if (KillInst->isDebugInstr())
519 continue;
520 if (KillInst->readsRegister(SrcReg))
521 break;
523 } else {
524 // We just inserted this copy.
525 KillInst = std::prev(InsertPos);
528 assert(KillInst->readsRegister(SrcReg) &&
529 "Cannot find kill instruction");
531 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
532 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
533 LIS->getMBBEndIdx(&opBlock));
539 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
540 if (reusedIncoming || !IncomingReg) {
541 if (LIS)
542 LIS->RemoveMachineInstrFromMaps(*MPhi);
543 MF.DeleteMachineInstr(MPhi);
547 /// analyzePHINodes - Gather information about the PHI nodes in here. In
548 /// particular, we want to map the number of uses of a virtual register which is
549 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
550 /// used later to determine when the vreg is killed in the BB.
551 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
552 for (const auto &MBB : MF)
553 for (const auto &BBI : MBB) {
554 if (!BBI.isPHI())
555 break;
556 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
557 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
558 BBI.getOperand(i).getReg())];
562 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
563 MachineBasicBlock &MBB,
564 MachineLoopInfo *MLI) {
565 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
566 return false; // Quick exit for basic blocks without PHIs.
568 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
569 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
571 bool Changed = false;
572 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
573 BBI != BBE && BBI->isPHI(); ++BBI) {
574 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
575 Register Reg = BBI->getOperand(i).getReg();
576 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
577 // Is there a critical edge from PreMBB to MBB?
578 if (PreMBB->succ_size() == 1)
579 continue;
581 // Avoid splitting backedges of loops. It would introduce small
582 // out-of-line blocks into the loop which is very bad for code placement.
583 if (PreMBB == &MBB && !SplitAllCriticalEdges)
584 continue;
585 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
586 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
587 continue;
589 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
590 // when the source register is live-out for some other reason than a phi
591 // use. That means the copy we will insert in PreMBB won't be a kill, and
592 // there is a risk it may not be coalesced away.
594 // If the copy would be a kill, there is no need to split the edge.
595 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
596 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
597 continue;
598 if (ShouldSplit) {
599 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
600 << printMBBReference(*PreMBB) << " -> "
601 << printMBBReference(MBB) << ": " << *BBI);
604 // If Reg is not live-in to MBB, it means it must be live-in to some
605 // other PreMBB successor, and we can avoid the interference by splitting
606 // the edge.
608 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
609 // is likely to be left after coalescing. If we are looking at a loop
610 // exiting edge, split it so we won't insert code in the loop, otherwise
611 // don't bother.
612 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
614 // Check for a loop exiting edge.
615 if (!ShouldSplit && CurLoop != PreLoop) {
616 LLVM_DEBUG({
617 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
618 if (PreLoop)
619 dbgs() << "PreLoop: " << *PreLoop;
620 if (CurLoop)
621 dbgs() << "CurLoop: " << *CurLoop;
623 // This edge could be entering a loop, exiting a loop, or it could be
624 // both: Jumping directly form one loop to the header of a sibling
625 // loop.
626 // Split unless this edge is entering CurLoop from an outer loop.
627 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
629 if (!ShouldSplit && !SplitAllCriticalEdges)
630 continue;
631 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
632 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
633 continue;
635 Changed = true;
636 ++NumCriticalEdgesSplit;
639 return Changed;
642 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
643 assert((LV || LIS) &&
644 "isLiveIn() requires either LiveVariables or LiveIntervals");
645 if (LIS)
646 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
647 else
648 return LV->isLiveIn(Reg, *MBB);
651 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
652 const MachineBasicBlock *MBB) {
653 assert((LV || LIS) &&
654 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
655 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
656 // so that a register used only in a PHI is not live out of the block. In
657 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
658 // in the predecessor basic block, so that a register used only in a PHI is live
659 // out of the block.
660 if (LIS) {
661 const LiveInterval &LI = LIS->getInterval(Reg);
662 for (const MachineBasicBlock *SI : MBB->successors())
663 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
664 return true;
665 return false;
666 } else {
667 return LV->isLiveOut(Reg, *MBB);