[ARM] VQADD instructions
[llvm-complete.git] / lib / Target / SystemZ / SystemZISelDAGToDAG.cpp
blob751034c2d41a1aa32edc3533532e84d813a32902
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
23 #define DEBUG_TYPE "systemz-isel"
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28 // The shape of the address.
29 enum AddrForm {
30 // base+displacement
31 FormBD,
33 // base+displacement+index for load and store operands
34 FormBDXNormal,
36 // base+displacement+index for load address operands
37 FormBDXLA,
39 // base+displacement+index+ADJDYNALLOC
40 FormBDXDynAlloc
42 AddrForm Form;
44 // The type of displacement. The enum names here correspond directly
45 // to the definitions in SystemZOperand.td. We could split them into
46 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47 enum DispRange {
48 Disp12Only,
49 Disp12Pair,
50 Disp20Only,
51 Disp20Only128,
52 Disp20Pair
54 DispRange DR;
56 // The parts of the address. The address is equivalent to:
58 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59 SDValue Base;
60 int64_t Disp;
61 SDValue Index;
62 bool IncludesDynAlloc;
64 SystemZAddressingMode(AddrForm form, DispRange dr)
65 : Form(form), DR(dr), Base(), Disp(0), Index(),
66 IncludesDynAlloc(false) {}
68 // True if the address can have an index register.
69 bool hasIndexField() { return Form != FormBD; }
71 // True if the address can (and must) include ADJDYNALLOC.
72 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
74 void dump(const llvm::SelectionDAG *DAG) {
75 errs() << "SystemZAddressingMode " << this << '\n';
77 errs() << " Base ";
78 if (Base.getNode())
79 Base.getNode()->dump(DAG);
80 else
81 errs() << "null\n";
83 if (hasIndexField()) {
84 errs() << " Index ";
85 if (Index.getNode())
86 Index.getNode()->dump(DAG);
87 else
88 errs() << "null\n";
91 errs() << " Disp " << Disp;
92 if (IncludesDynAlloc)
93 errs() << " + ADJDYNALLOC";
94 errs() << '\n';
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100 assert(Count <= 64);
101 if (Count > 63)
102 return UINT64_MAX;
103 return (uint64_t(1) << Count) - 1;
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
110 // (or (rotl Input, Rotate), ~Mask)
112 // for RNSBG and:
114 // (and (rotl Input, Rotate), Mask)
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120 RxSBGOperands(unsigned Op, SDValue N)
121 : Opcode(Op), BitSize(N.getValueSizeInBits()),
122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123 Rotate(0) {}
125 unsigned Opcode;
126 unsigned BitSize;
127 uint64_t Mask;
128 SDValue Input;
129 unsigned Start;
130 unsigned End;
131 unsigned Rotate;
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135 const SystemZSubtarget *Subtarget;
137 // Used by SystemZOperands.td to create integer constants.
138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
142 const SystemZTargetMachine &getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine &>(TM);
146 const SystemZInstrInfo *getInstrInfo() const {
147 return Subtarget->getInstrInfo();
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp) const;
160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161 SDValue &Base, SDValue &Disp, SDValue &Index) const;
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167 SDValue &Base, SDValue &Disp) const;
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp) const;
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179 SystemZAddressingMode::DispRange DR, SDValue Addr,
180 SDValue &Base, SDValue &Disp, SDValue &Index) const;
182 // PC-relative address matching routines used by SystemZOperands.td.
183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184 if (SystemZISD::isPCREL(Addr.getOpcode())) {
185 Target = Addr.getOperand(0);
186 return true;
188 return false;
191 // BD matching routines used by SystemZOperands.td.
192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
205 // MVI matching routines used by SystemZOperands.td.
206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
213 // BDX matching routines used by SystemZOperands.td.
214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215 SDValue &Index) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217 SystemZAddressingMode::Disp12Only,
218 Addr, Base, Disp, Index);
220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221 SDValue &Index) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223 SystemZAddressingMode::Disp12Pair,
224 Addr, Base, Disp, Index);
226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227 SDValue &Index) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229 SystemZAddressingMode::Disp12Only,
230 Addr, Base, Disp, Index);
232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233 SDValue &Index) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235 SystemZAddressingMode::Disp20Only,
236 Addr, Base, Disp, Index);
238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239 SDValue &Index) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241 SystemZAddressingMode::Disp20Only128,
242 Addr, Base, Disp, Index);
244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245 SDValue &Index) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247 SystemZAddressingMode::Disp20Pair,
248 Addr, Base, Disp, Index);
250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251 SDValue &Index) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253 SystemZAddressingMode::Disp12Pair,
254 Addr, Base, Disp, Index);
256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257 SDValue &Index) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259 SystemZAddressingMode::Disp20Pair,
260 Addr, Base, Disp, Index);
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268 SDValue &Disp, SDValue &Index) const;
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
272 // set Op to that Y.
273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands &RxSBG) const;
283 // Return an undefined value of type VT.
284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
286 // Convert N to VT, if it isn't already.
287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode *N);
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode *N, unsigned Opcode);
297 // If Op0 is null, then Node is a constant that can be loaded using:
299 // (Opcode UpperVal LowerVal)
301 // If Op0 is nonnull, then Node can be implemented using:
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305 uint64_t UpperVal, uint64_t LowerVal);
307 void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308 SDNode *Node);
310 // Try to use gather instruction Opcode to implement vector insertion N.
311 bool tryGather(SDNode *N, unsigned Opcode);
313 // Try to use scatter instruction Opcode to implement store Store.
314 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
316 // Change a chain of {load; op; store} of the same value into a simple op
317 // through memory of that value, if the uses of the modified value and its
318 // address are suitable.
319 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
321 // Return true if Load and Store are loads and stores of the same size
322 // and are guaranteed not to overlap. Such operations can be implemented
323 // using block (SS-format) instructions.
325 // Partial overlap would lead to incorrect code, since the block operations
326 // are logically bytewise, even though they have a fast path for the
327 // non-overlapping case. We also need to avoid full overlap (i.e. two
328 // addresses that might be equal at run time) because although that case
329 // would be handled correctly, it might be implemented by millicode.
330 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
332 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
333 // from Y to X.
334 bool storeLoadCanUseMVC(SDNode *N) const;
336 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
337 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
338 // to X.
339 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
341 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
342 SDValue expandSelectBoolean(SDNode *Node);
344 public:
345 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
346 : SelectionDAGISel(TM, OptLevel) {}
348 bool runOnMachineFunction(MachineFunction &MF) override {
349 const Function &F = MF.getFunction();
350 if (F.getFnAttribute("mnop-mcount").getValueAsString() == "true" &&
351 F.getFnAttribute("fentry-call").getValueAsString() != "true")
352 report_fatal_error("mnop-mcount only supported with fentry-call");
354 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
355 return SelectionDAGISel::runOnMachineFunction(MF);
358 // Override MachineFunctionPass.
359 StringRef getPassName() const override {
360 return "SystemZ DAG->DAG Pattern Instruction Selection";
363 // Override SelectionDAGISel.
364 void Select(SDNode *Node) override;
365 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
366 std::vector<SDValue> &OutOps) override;
367 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
368 void PreprocessISelDAG() override;
370 // Include the pieces autogenerated from the target description.
371 #include "SystemZGenDAGISel.inc"
373 } // end anonymous namespace
375 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
376 CodeGenOpt::Level OptLevel) {
377 return new SystemZDAGToDAGISel(TM, OptLevel);
380 // Return true if Val should be selected as a displacement for an address
381 // with range DR. Here we're interested in the range of both the instruction
382 // described by DR and of any pairing instruction.
383 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
384 switch (DR) {
385 case SystemZAddressingMode::Disp12Only:
386 return isUInt<12>(Val);
388 case SystemZAddressingMode::Disp12Pair:
389 case SystemZAddressingMode::Disp20Only:
390 case SystemZAddressingMode::Disp20Pair:
391 return isInt<20>(Val);
393 case SystemZAddressingMode::Disp20Only128:
394 return isInt<20>(Val) && isInt<20>(Val + 8);
396 llvm_unreachable("Unhandled displacement range");
399 // Change the base or index in AM to Value, where IsBase selects
400 // between the base and index.
401 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
402 SDValue Value) {
403 if (IsBase)
404 AM.Base = Value;
405 else
406 AM.Index = Value;
409 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
410 // where IsBase selects between the base and index. Try to fold the
411 // ADJDYNALLOC into AM.
412 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
413 SDValue Value) {
414 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
415 changeComponent(AM, IsBase, Value);
416 AM.IncludesDynAlloc = true;
417 return true;
419 return false;
422 // The base of AM is equivalent to Base + Index. Try to use Index as
423 // the index register.
424 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
425 SDValue Index) {
426 if (AM.hasIndexField() && !AM.Index.getNode()) {
427 AM.Base = Base;
428 AM.Index = Index;
429 return true;
431 return false;
434 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
435 // between the base and index. Try to fold Op1 into AM's displacement.
436 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
437 SDValue Op0, uint64_t Op1) {
438 // First try adjusting the displacement.
439 int64_t TestDisp = AM.Disp + Op1;
440 if (selectDisp(AM.DR, TestDisp)) {
441 changeComponent(AM, IsBase, Op0);
442 AM.Disp = TestDisp;
443 return true;
446 // We could consider forcing the displacement into a register and
447 // using it as an index, but it would need to be carefully tuned.
448 return false;
451 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
452 bool IsBase) const {
453 SDValue N = IsBase ? AM.Base : AM.Index;
454 unsigned Opcode = N.getOpcode();
455 if (Opcode == ISD::TRUNCATE) {
456 N = N.getOperand(0);
457 Opcode = N.getOpcode();
459 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
460 SDValue Op0 = N.getOperand(0);
461 SDValue Op1 = N.getOperand(1);
463 unsigned Op0Code = Op0->getOpcode();
464 unsigned Op1Code = Op1->getOpcode();
466 if (Op0Code == SystemZISD::ADJDYNALLOC)
467 return expandAdjDynAlloc(AM, IsBase, Op1);
468 if (Op1Code == SystemZISD::ADJDYNALLOC)
469 return expandAdjDynAlloc(AM, IsBase, Op0);
471 if (Op0Code == ISD::Constant)
472 return expandDisp(AM, IsBase, Op1,
473 cast<ConstantSDNode>(Op0)->getSExtValue());
474 if (Op1Code == ISD::Constant)
475 return expandDisp(AM, IsBase, Op0,
476 cast<ConstantSDNode>(Op1)->getSExtValue());
478 if (IsBase && expandIndex(AM, Op0, Op1))
479 return true;
481 if (Opcode == SystemZISD::PCREL_OFFSET) {
482 SDValue Full = N.getOperand(0);
483 SDValue Base = N.getOperand(1);
484 SDValue Anchor = Base.getOperand(0);
485 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
486 cast<GlobalAddressSDNode>(Anchor)->getOffset());
487 return expandDisp(AM, IsBase, Base, Offset);
489 return false;
492 // Return true if an instruction with displacement range DR should be
493 // used for displacement value Val. selectDisp(DR, Val) must already hold.
494 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
495 assert(selectDisp(DR, Val) && "Invalid displacement");
496 switch (DR) {
497 case SystemZAddressingMode::Disp12Only:
498 case SystemZAddressingMode::Disp20Only:
499 case SystemZAddressingMode::Disp20Only128:
500 return true;
502 case SystemZAddressingMode::Disp12Pair:
503 // Use the other instruction if the displacement is too large.
504 return isUInt<12>(Val);
506 case SystemZAddressingMode::Disp20Pair:
507 // Use the other instruction if the displacement is small enough.
508 return !isUInt<12>(Val);
510 llvm_unreachable("Unhandled displacement range");
513 // Return true if Base + Disp + Index should be performed by LA(Y).
514 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
515 // Don't use LA(Y) for constants.
516 if (!Base)
517 return false;
519 // Always use LA(Y) for frame addresses, since we know that the destination
520 // register is almost always (perhaps always) going to be different from
521 // the frame register.
522 if (Base->getOpcode() == ISD::FrameIndex)
523 return true;
525 if (Disp) {
526 // Always use LA(Y) if there is a base, displacement and index.
527 if (Index)
528 return true;
530 // Always use LA if the displacement is small enough. It should always
531 // be no worse than AGHI (and better if it avoids a move).
532 if (isUInt<12>(Disp))
533 return true;
535 // For similar reasons, always use LAY if the constant is too big for AGHI.
536 // LAY should be no worse than AGFI.
537 if (!isInt<16>(Disp))
538 return true;
539 } else {
540 // Don't use LA for plain registers.
541 if (!Index)
542 return false;
544 // Don't use LA for plain addition if the index operand is only used
545 // once. It should be a natural two-operand addition in that case.
546 if (Index->hasOneUse())
547 return false;
549 // Prefer addition if the second operation is sign-extended, in the
550 // hope of using AGF.
551 unsigned IndexOpcode = Index->getOpcode();
552 if (IndexOpcode == ISD::SIGN_EXTEND ||
553 IndexOpcode == ISD::SIGN_EXTEND_INREG)
554 return false;
557 // Don't use LA for two-operand addition if either operand is only
558 // used once. The addition instructions are better in that case.
559 if (Base->hasOneUse())
560 return false;
562 return true;
565 // Return true if Addr is suitable for AM, updating AM if so.
566 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
567 SystemZAddressingMode &AM) const {
568 // Start out assuming that the address will need to be loaded separately,
569 // then try to extend it as much as we can.
570 AM.Base = Addr;
572 // First try treating the address as a constant.
573 if (Addr.getOpcode() == ISD::Constant &&
574 expandDisp(AM, true, SDValue(),
575 cast<ConstantSDNode>(Addr)->getSExtValue()))
577 // Also see if it's a bare ADJDYNALLOC.
578 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
579 expandAdjDynAlloc(AM, true, SDValue()))
581 else
582 // Otherwise try expanding each component.
583 while (expandAddress(AM, true) ||
584 (AM.Index.getNode() && expandAddress(AM, false)))
585 continue;
587 // Reject cases where it isn't profitable to use LA(Y).
588 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
589 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
590 return false;
592 // Reject cases where the other instruction in a pair should be used.
593 if (!isValidDisp(AM.DR, AM.Disp))
594 return false;
596 // Make sure that ADJDYNALLOC is included where necessary.
597 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
598 return false;
600 LLVM_DEBUG(AM.dump(CurDAG));
601 return true;
604 // Insert a node into the DAG at least before Pos. This will reposition
605 // the node as needed, and will assign it a node ID that is <= Pos's ID.
606 // Note that this does *not* preserve the uniqueness of node IDs!
607 // The selection DAG must no longer depend on their uniqueness when this
608 // function is used.
609 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
610 if (N->getNodeId() == -1 ||
611 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
612 SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
613 DAG->RepositionNode(Pos->getIterator(), N.getNode());
614 // Mark Node as invalid for pruning as after this it may be a successor to a
615 // selected node but otherwise be in the same position of Pos.
616 // Conservatively mark it with the same -abs(Id) to assure node id
617 // invariant is preserved.
618 N->setNodeId(Pos->getNodeId());
619 SelectionDAGISel::InvalidateNodeId(N.getNode());
623 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
624 EVT VT, SDValue &Base,
625 SDValue &Disp) const {
626 Base = AM.Base;
627 if (!Base.getNode())
628 // Register 0 means "no base". This is mostly useful for shifts.
629 Base = CurDAG->getRegister(0, VT);
630 else if (Base.getOpcode() == ISD::FrameIndex) {
631 // Lower a FrameIndex to a TargetFrameIndex.
632 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
633 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
634 } else if (Base.getValueType() != VT) {
635 // Truncate values from i64 to i32, for shifts.
636 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
637 "Unexpected truncation");
638 SDLoc DL(Base);
639 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
640 insertDAGNode(CurDAG, Base.getNode(), Trunc);
641 Base = Trunc;
644 // Lower the displacement to a TargetConstant.
645 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
648 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
649 EVT VT, SDValue &Base,
650 SDValue &Disp,
651 SDValue &Index) const {
652 getAddressOperands(AM, VT, Base, Disp);
654 Index = AM.Index;
655 if (!Index.getNode())
656 // Register 0 means "no index".
657 Index = CurDAG->getRegister(0, VT);
660 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
661 SDValue Addr, SDValue &Base,
662 SDValue &Disp) const {
663 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
664 if (!selectAddress(Addr, AM))
665 return false;
667 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
668 return true;
671 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
672 SDValue Addr, SDValue &Base,
673 SDValue &Disp) const {
674 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
675 if (!selectAddress(Addr, AM) || AM.Index.getNode())
676 return false;
678 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
679 return true;
682 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
683 SystemZAddressingMode::DispRange DR,
684 SDValue Addr, SDValue &Base,
685 SDValue &Disp, SDValue &Index) const {
686 SystemZAddressingMode AM(Form, DR);
687 if (!selectAddress(Addr, AM))
688 return false;
690 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
691 return true;
694 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
695 SDValue &Base,
696 SDValue &Disp,
697 SDValue &Index) const {
698 SDValue Regs[2];
699 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
700 Regs[0].getNode() && Regs[1].getNode()) {
701 for (unsigned int I = 0; I < 2; ++I) {
702 Base = Regs[I];
703 Index = Regs[1 - I];
704 // We can't tell here whether the index vector has the right type
705 // for the access; the caller needs to do that instead.
706 if (Index.getOpcode() == ISD::ZERO_EXTEND)
707 Index = Index.getOperand(0);
708 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
709 Index.getOperand(1) == Elem) {
710 Index = Index.getOperand(0);
711 return true;
715 return false;
718 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
719 uint64_t InsertMask) const {
720 // We're only interested in cases where the insertion is into some operand
721 // of Op, rather than into Op itself. The only useful case is an AND.
722 if (Op.getOpcode() != ISD::AND)
723 return false;
725 // We need a constant mask.
726 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
727 if (!MaskNode)
728 return false;
730 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
731 uint64_t AndMask = MaskNode->getZExtValue();
732 if (InsertMask & AndMask)
733 return false;
735 // It's only an insertion if all bits are covered or are known to be zero.
736 // The inner check covers all cases but is more expensive.
737 uint64_t Used = allOnes(Op.getValueSizeInBits());
738 if (Used != (AndMask | InsertMask)) {
739 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
740 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
741 return false;
744 Op = Op.getOperand(0);
745 return true;
748 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
749 uint64_t Mask) const {
750 const SystemZInstrInfo *TII = getInstrInfo();
751 if (RxSBG.Rotate != 0)
752 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
753 Mask &= RxSBG.Mask;
754 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
755 RxSBG.Mask = Mask;
756 return true;
758 return false;
761 // Return true if any bits of (RxSBG.Input & Mask) are significant.
762 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
763 // Rotate the mask in the same way as RxSBG.Input is rotated.
764 if (RxSBG.Rotate != 0)
765 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
766 return (Mask & RxSBG.Mask) != 0;
769 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
770 SDValue N = RxSBG.Input;
771 unsigned Opcode = N.getOpcode();
772 switch (Opcode) {
773 case ISD::TRUNCATE: {
774 if (RxSBG.Opcode == SystemZ::RNSBG)
775 return false;
776 uint64_t BitSize = N.getValueSizeInBits();
777 uint64_t Mask = allOnes(BitSize);
778 if (!refineRxSBGMask(RxSBG, Mask))
779 return false;
780 RxSBG.Input = N.getOperand(0);
781 return true;
783 case ISD::AND: {
784 if (RxSBG.Opcode == SystemZ::RNSBG)
785 return false;
787 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
788 if (!MaskNode)
789 return false;
791 SDValue Input = N.getOperand(0);
792 uint64_t Mask = MaskNode->getZExtValue();
793 if (!refineRxSBGMask(RxSBG, Mask)) {
794 // If some bits of Input are already known zeros, those bits will have
795 // been removed from the mask. See if adding them back in makes the
796 // mask suitable.
797 KnownBits Known = CurDAG->computeKnownBits(Input);
798 Mask |= Known.Zero.getZExtValue();
799 if (!refineRxSBGMask(RxSBG, Mask))
800 return false;
802 RxSBG.Input = Input;
803 return true;
806 case ISD::OR: {
807 if (RxSBG.Opcode != SystemZ::RNSBG)
808 return false;
810 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
811 if (!MaskNode)
812 return false;
814 SDValue Input = N.getOperand(0);
815 uint64_t Mask = ~MaskNode->getZExtValue();
816 if (!refineRxSBGMask(RxSBG, Mask)) {
817 // If some bits of Input are already known ones, those bits will have
818 // been removed from the mask. See if adding them back in makes the
819 // mask suitable.
820 KnownBits Known = CurDAG->computeKnownBits(Input);
821 Mask &= ~Known.One.getZExtValue();
822 if (!refineRxSBGMask(RxSBG, Mask))
823 return false;
825 RxSBG.Input = Input;
826 return true;
829 case ISD::ROTL: {
830 // Any 64-bit rotate left can be merged into the RxSBG.
831 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
832 return false;
833 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
834 if (!CountNode)
835 return false;
837 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
838 RxSBG.Input = N.getOperand(0);
839 return true;
842 case ISD::ANY_EXTEND:
843 // Bits above the extended operand are don't-care.
844 RxSBG.Input = N.getOperand(0);
845 return true;
847 case ISD::ZERO_EXTEND:
848 if (RxSBG.Opcode != SystemZ::RNSBG) {
849 // Restrict the mask to the extended operand.
850 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
851 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
852 return false;
854 RxSBG.Input = N.getOperand(0);
855 return true;
857 LLVM_FALLTHROUGH;
859 case ISD::SIGN_EXTEND: {
860 // Check that the extension bits are don't-care (i.e. are masked out
861 // by the final mask).
862 unsigned BitSize = N.getValueSizeInBits();
863 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
864 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
865 // In the case where only the sign bit is active, increase Rotate with
866 // the extension width.
867 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
868 RxSBG.Rotate += (BitSize - InnerBitSize);
869 else
870 return false;
873 RxSBG.Input = N.getOperand(0);
874 return true;
877 case ISD::SHL: {
878 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
879 if (!CountNode)
880 return false;
882 uint64_t Count = CountNode->getZExtValue();
883 unsigned BitSize = N.getValueSizeInBits();
884 if (Count < 1 || Count >= BitSize)
885 return false;
887 if (RxSBG.Opcode == SystemZ::RNSBG) {
888 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
889 // count bits from RxSBG.Input are ignored.
890 if (maskMatters(RxSBG, allOnes(Count)))
891 return false;
892 } else {
893 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
894 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
895 return false;
898 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
899 RxSBG.Input = N.getOperand(0);
900 return true;
903 case ISD::SRL:
904 case ISD::SRA: {
905 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
906 if (!CountNode)
907 return false;
909 uint64_t Count = CountNode->getZExtValue();
910 unsigned BitSize = N.getValueSizeInBits();
911 if (Count < 1 || Count >= BitSize)
912 return false;
914 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
915 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
916 // count bits from RxSBG.Input are ignored.
917 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
918 return false;
919 } else {
920 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
921 // which is similar to SLL above.
922 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
923 return false;
926 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
927 RxSBG.Input = N.getOperand(0);
928 return true;
930 default:
931 return false;
935 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
936 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
937 return SDValue(N, 0);
940 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
941 SDValue N) const {
942 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
943 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
944 DL, VT, getUNDEF(DL, MVT::i64), N);
945 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
946 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
947 assert(N.getValueType() == VT && "Unexpected value types");
948 return N;
951 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
952 SDLoc DL(N);
953 EVT VT = N->getValueType(0);
954 if (!VT.isInteger() || VT.getSizeInBits() > 64)
955 return false;
956 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
957 unsigned Count = 0;
958 while (expandRxSBG(RISBG))
959 // The widening or narrowing is expected to be free.
960 // Counting widening or narrowing as a saved operation will result in
961 // preferring an R*SBG over a simple shift/logical instruction.
962 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
963 RISBG.Input.getOpcode() != ISD::TRUNCATE)
964 Count += 1;
965 if (Count == 0)
966 return false;
968 // Prefer to use normal shift instructions over RISBG, since they can handle
969 // all cases and are sometimes shorter.
970 if (Count == 1 && N->getOpcode() != ISD::AND)
971 return false;
973 // Prefer register extensions like LLC over RISBG. Also prefer to start
974 // out with normal ANDs if one instruction would be enough. We can convert
975 // these ANDs into an RISBG later if a three-address instruction is useful.
976 if (RISBG.Rotate == 0) {
977 bool PreferAnd = false;
978 // Prefer AND for any 32-bit and-immediate operation.
979 if (VT == MVT::i32)
980 PreferAnd = true;
981 // As well as for any 64-bit operation that can be implemented via LLC(R),
982 // LLH(R), LLGT(R), or one of the and-immediate instructions.
983 else if (RISBG.Mask == 0xff ||
984 RISBG.Mask == 0xffff ||
985 RISBG.Mask == 0x7fffffff ||
986 SystemZ::isImmLF(~RISBG.Mask) ||
987 SystemZ::isImmHF(~RISBG.Mask))
988 PreferAnd = true;
989 // And likewise for the LLZRGF instruction, which doesn't have a register
990 // to register version.
991 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
992 if (Load->getMemoryVT() == MVT::i32 &&
993 (Load->getExtensionType() == ISD::EXTLOAD ||
994 Load->getExtensionType() == ISD::ZEXTLOAD) &&
995 RISBG.Mask == 0xffffff00 &&
996 Subtarget->hasLoadAndZeroRightmostByte())
997 PreferAnd = true;
999 if (PreferAnd) {
1000 // Replace the current node with an AND. Note that the current node
1001 // might already be that same AND, in which case it is already CSE'd
1002 // with it, and we must not call ReplaceNode.
1003 SDValue In = convertTo(DL, VT, RISBG.Input);
1004 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1005 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1006 if (N != New.getNode()) {
1007 insertDAGNode(CurDAG, N, Mask);
1008 insertDAGNode(CurDAG, N, New);
1009 ReplaceNode(N, New.getNode());
1010 N = New.getNode();
1012 // Now, select the machine opcode to implement this operation.
1013 if (!N->isMachineOpcode())
1014 SelectCode(N);
1015 return true;
1019 unsigned Opcode = SystemZ::RISBG;
1020 // Prefer RISBGN if available, since it does not clobber CC.
1021 if (Subtarget->hasMiscellaneousExtensions())
1022 Opcode = SystemZ::RISBGN;
1023 EVT OpcodeVT = MVT::i64;
1024 if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1025 // We can only use the 32-bit instructions if all source bits are
1026 // in the low 32 bits without wrapping, both after rotation (because
1027 // of the smaller range for Start and End) and before rotation
1028 // (because the input value is truncated).
1029 RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1030 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1031 ((RISBG.End + RISBG.Rotate) & 63) >=
1032 ((RISBG.Start + RISBG.Rotate) & 63)) {
1033 Opcode = SystemZ::RISBMux;
1034 OpcodeVT = MVT::i32;
1035 RISBG.Start &= 31;
1036 RISBG.End &= 31;
1038 SDValue Ops[5] = {
1039 getUNDEF(DL, OpcodeVT),
1040 convertTo(DL, OpcodeVT, RISBG.Input),
1041 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1042 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1043 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1045 SDValue New = convertTo(
1046 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1047 ReplaceNode(N, New.getNode());
1048 return true;
1051 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1052 SDLoc DL(N);
1053 EVT VT = N->getValueType(0);
1054 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1055 return false;
1056 // Try treating each operand of N as the second operand of the RxSBG
1057 // and see which goes deepest.
1058 RxSBGOperands RxSBG[] = {
1059 RxSBGOperands(Opcode, N->getOperand(0)),
1060 RxSBGOperands(Opcode, N->getOperand(1))
1062 unsigned Count[] = { 0, 0 };
1063 for (unsigned I = 0; I < 2; ++I)
1064 while (expandRxSBG(RxSBG[I]))
1065 // The widening or narrowing is expected to be free.
1066 // Counting widening or narrowing as a saved operation will result in
1067 // preferring an R*SBG over a simple shift/logical instruction.
1068 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1069 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1070 Count[I] += 1;
1072 // Do nothing if neither operand is suitable.
1073 if (Count[0] == 0 && Count[1] == 0)
1074 return false;
1076 // Pick the deepest second operand.
1077 unsigned I = Count[0] > Count[1] ? 0 : 1;
1078 SDValue Op0 = N->getOperand(I ^ 1);
1080 // Prefer IC for character insertions from memory.
1081 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1082 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1083 if (Load->getMemoryVT() == MVT::i8)
1084 return false;
1086 // See whether we can avoid an AND in the first operand by converting
1087 // ROSBG to RISBG.
1088 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1089 Opcode = SystemZ::RISBG;
1090 // Prefer RISBGN if available, since it does not clobber CC.
1091 if (Subtarget->hasMiscellaneousExtensions())
1092 Opcode = SystemZ::RISBGN;
1095 SDValue Ops[5] = {
1096 convertTo(DL, MVT::i64, Op0),
1097 convertTo(DL, MVT::i64, RxSBG[I].Input),
1098 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1099 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1100 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1102 SDValue New = convertTo(
1103 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1104 ReplaceNode(N, New.getNode());
1105 return true;
1108 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1109 SDValue Op0, uint64_t UpperVal,
1110 uint64_t LowerVal) {
1111 EVT VT = Node->getValueType(0);
1112 SDLoc DL(Node);
1113 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1114 if (Op0.getNode())
1115 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1118 // When we haven't passed in Op0, Upper will be a constant. In order to
1119 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1120 // SelectCode first and end up with an opaque machine node. This means that
1121 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1122 // SelectCode.
1124 // Note that in the case where Op0 is passed in we could just call
1125 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1126 // the handle at all, but it's fine to do it here.
1128 // TODO: This is a pretty hacky way to do this. Can we do something that
1129 // doesn't require a two paragraph explanation?
1130 HandleSDNode Handle(Upper);
1131 SelectCode(Upper.getNode());
1132 Upper = Handle.getValue();
1135 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1136 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1138 ReplaceNode(Node, Or.getNode());
1140 SelectCode(Or.getNode());
1143 void SystemZDAGToDAGISel::loadVectorConstant(
1144 const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1145 assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1146 VCI.Opcode == SystemZISD::REPLICATE ||
1147 VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1148 "Bad opcode!");
1149 assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1150 EVT VT = Node->getValueType(0);
1151 SDLoc DL(Node);
1152 SmallVector<SDValue, 2> Ops;
1153 for (unsigned OpVal : VCI.OpVals)
1154 Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1155 SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1157 if (VCI.VecVT == VT.getSimpleVT())
1158 ReplaceNode(Node, Op.getNode());
1159 else if (VT.getSizeInBits() == 128) {
1160 SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1161 ReplaceNode(Node, BitCast.getNode());
1162 SelectCode(BitCast.getNode());
1163 } else { // float or double
1164 unsigned SubRegIdx =
1165 (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1166 ReplaceNode(
1167 Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1169 SelectCode(Op.getNode());
1172 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1173 SDValue ElemV = N->getOperand(2);
1174 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1175 if (!ElemN)
1176 return false;
1178 unsigned Elem = ElemN->getZExtValue();
1179 EVT VT = N->getValueType(0);
1180 if (Elem >= VT.getVectorNumElements())
1181 return false;
1183 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1184 if (!Load || !Load->hasNUsesOfValue(1, 0))
1185 return false;
1186 if (Load->getMemoryVT().getSizeInBits() !=
1187 Load->getValueType(0).getSizeInBits())
1188 return false;
1190 SDValue Base, Disp, Index;
1191 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1192 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1193 return false;
1195 SDLoc DL(Load);
1196 SDValue Ops[] = {
1197 N->getOperand(0), Base, Disp, Index,
1198 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1200 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1201 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1202 ReplaceNode(N, Res);
1203 return true;
1206 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1207 SDValue Value = Store->getValue();
1208 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1209 return false;
1210 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1211 return false;
1213 SDValue ElemV = Value.getOperand(1);
1214 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1215 if (!ElemN)
1216 return false;
1218 SDValue Vec = Value.getOperand(0);
1219 EVT VT = Vec.getValueType();
1220 unsigned Elem = ElemN->getZExtValue();
1221 if (Elem >= VT.getVectorNumElements())
1222 return false;
1224 SDValue Base, Disp, Index;
1225 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1226 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1227 return false;
1229 SDLoc DL(Store);
1230 SDValue Ops[] = {
1231 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1232 Store->getChain()
1234 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1235 return true;
1238 // Check whether or not the chain ending in StoreNode is suitable for doing
1239 // the {load; op; store} to modify transformation.
1240 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1241 SDValue StoredVal, SelectionDAG *CurDAG,
1242 LoadSDNode *&LoadNode,
1243 SDValue &InputChain) {
1244 // Is the stored value result 0 of the operation?
1245 if (StoredVal.getResNo() != 0)
1246 return false;
1248 // Are there other uses of the loaded value than the operation?
1249 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1250 return false;
1252 // Is the store non-extending and non-indexed?
1253 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1254 return false;
1256 SDValue Load = StoredVal->getOperand(0);
1257 // Is the stored value a non-extending and non-indexed load?
1258 if (!ISD::isNormalLoad(Load.getNode()))
1259 return false;
1261 // Return LoadNode by reference.
1262 LoadNode = cast<LoadSDNode>(Load);
1264 // Is store the only read of the loaded value?
1265 if (!Load.hasOneUse())
1266 return false;
1268 // Is the address of the store the same as the load?
1269 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1270 LoadNode->getOffset() != StoreNode->getOffset())
1271 return false;
1273 // Check if the chain is produced by the load or is a TokenFactor with
1274 // the load output chain as an operand. Return InputChain by reference.
1275 SDValue Chain = StoreNode->getChain();
1277 bool ChainCheck = false;
1278 if (Chain == Load.getValue(1)) {
1279 ChainCheck = true;
1280 InputChain = LoadNode->getChain();
1281 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1282 SmallVector<SDValue, 4> ChainOps;
1283 SmallVector<const SDNode *, 4> LoopWorklist;
1284 SmallPtrSet<const SDNode *, 16> Visited;
1285 const unsigned int Max = 1024;
1286 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1287 SDValue Op = Chain.getOperand(i);
1288 if (Op == Load.getValue(1)) {
1289 ChainCheck = true;
1290 // Drop Load, but keep its chain. No cycle check necessary.
1291 ChainOps.push_back(Load.getOperand(0));
1292 continue;
1294 LoopWorklist.push_back(Op.getNode());
1295 ChainOps.push_back(Op);
1298 if (ChainCheck) {
1299 // Add the other operand of StoredVal to worklist.
1300 for (SDValue Op : StoredVal->ops())
1301 if (Op.getNode() != LoadNode)
1302 LoopWorklist.push_back(Op.getNode());
1304 // Check if Load is reachable from any of the nodes in the worklist.
1305 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1306 true))
1307 return false;
1309 // Make a new TokenFactor with all the other input chains except
1310 // for the load.
1311 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1312 MVT::Other, ChainOps);
1315 if (!ChainCheck)
1316 return false;
1318 return true;
1321 // Change a chain of {load; op; store} of the same value into a simple op
1322 // through memory of that value, if the uses of the modified value and its
1323 // address are suitable.
1325 // The tablegen pattern memory operand pattern is currently not able to match
1326 // the case where the CC on the original operation are used.
1328 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1329 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1330 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1331 SDValue StoredVal = StoreNode->getOperand(1);
1332 unsigned Opc = StoredVal->getOpcode();
1333 SDLoc DL(StoreNode);
1335 // Before we try to select anything, make sure this is memory operand size
1336 // and opcode we can handle. Note that this must match the code below that
1337 // actually lowers the opcodes.
1338 EVT MemVT = StoreNode->getMemoryVT();
1339 unsigned NewOpc = 0;
1340 bool NegateOperand = false;
1341 switch (Opc) {
1342 default:
1343 return false;
1344 case SystemZISD::SSUBO:
1345 NegateOperand = true;
1346 LLVM_FALLTHROUGH;
1347 case SystemZISD::SADDO:
1348 if (MemVT == MVT::i32)
1349 NewOpc = SystemZ::ASI;
1350 else if (MemVT == MVT::i64)
1351 NewOpc = SystemZ::AGSI;
1352 else
1353 return false;
1354 break;
1355 case SystemZISD::USUBO:
1356 NegateOperand = true;
1357 LLVM_FALLTHROUGH;
1358 case SystemZISD::UADDO:
1359 if (MemVT == MVT::i32)
1360 NewOpc = SystemZ::ALSI;
1361 else if (MemVT == MVT::i64)
1362 NewOpc = SystemZ::ALGSI;
1363 else
1364 return false;
1365 break;
1368 LoadSDNode *LoadNode = nullptr;
1369 SDValue InputChain;
1370 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1371 InputChain))
1372 return false;
1374 SDValue Operand = StoredVal.getOperand(1);
1375 auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1376 if (!OperandC)
1377 return false;
1378 auto OperandV = OperandC->getAPIntValue();
1379 if (NegateOperand)
1380 OperandV = -OperandV;
1381 if (OperandV.getMinSignedBits() > 8)
1382 return false;
1383 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1385 SDValue Base, Disp;
1386 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1387 return false;
1389 SDValue Ops[] = { Base, Disp, Operand, InputChain };
1390 MachineSDNode *Result =
1391 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1392 CurDAG->setNodeMemRefs(
1393 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1395 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1396 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1397 CurDAG->RemoveDeadNode(Node);
1398 return true;
1401 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1402 LoadSDNode *Load) const {
1403 // Check that the two memory operands have the same size.
1404 if (Load->getMemoryVT() != Store->getMemoryVT())
1405 return false;
1407 // Volatility stops an access from being decomposed.
1408 if (Load->isVolatile() || Store->isVolatile())
1409 return false;
1411 // There's no chance of overlap if the load is invariant.
1412 if (Load->isInvariant() && Load->isDereferenceable())
1413 return true;
1415 // Otherwise we need to check whether there's an alias.
1416 const Value *V1 = Load->getMemOperand()->getValue();
1417 const Value *V2 = Store->getMemOperand()->getValue();
1418 if (!V1 || !V2)
1419 return false;
1421 // Reject equality.
1422 uint64_t Size = Load->getMemoryVT().getStoreSize();
1423 int64_t End1 = Load->getSrcValueOffset() + Size;
1424 int64_t End2 = Store->getSrcValueOffset() + Size;
1425 if (V1 == V2 && End1 == End2)
1426 return false;
1428 return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1429 MemoryLocation(V2, End2, Store->getAAInfo()));
1432 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1433 auto *Store = cast<StoreSDNode>(N);
1434 auto *Load = cast<LoadSDNode>(Store->getValue());
1436 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1437 // instructions.
1438 uint64_t Size = Load->getMemoryVT().getStoreSize();
1439 if (Size > 1 && Size <= 8) {
1440 // Prefer LHRL, LRL and LGRL.
1441 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1442 return false;
1443 // Prefer STHRL, STRL and STGRL.
1444 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1445 return false;
1448 return canUseBlockOperation(Store, Load);
1451 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1452 unsigned I) const {
1453 auto *StoreA = cast<StoreSDNode>(N);
1454 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1455 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1456 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1459 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1460 // If we have a custom node, we already have selected!
1461 if (Node->isMachineOpcode()) {
1462 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1463 Node->setNodeId(-1);
1464 return;
1467 unsigned Opcode = Node->getOpcode();
1468 switch (Opcode) {
1469 case ISD::OR:
1470 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1471 if (tryRxSBG(Node, SystemZ::ROSBG))
1472 return;
1473 goto or_xor;
1475 case ISD::XOR:
1476 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1477 if (tryRxSBG(Node, SystemZ::RXSBG))
1478 return;
1479 // Fall through.
1480 or_xor:
1481 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1482 // split the operation into two. If both operands here happen to be
1483 // constant, leave this to common code to optimize.
1484 if (Node->getValueType(0) == MVT::i64 &&
1485 Node->getOperand(0).getOpcode() != ISD::Constant)
1486 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1487 uint64_t Val = Op1->getZExtValue();
1488 // Don't split the operation if we can match one of the combined
1489 // logical operations provided by miscellaneous-extensions-3.
1490 if (Subtarget->hasMiscellaneousExtensions3()) {
1491 unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1492 // Check whether this expression matches NAND/NOR/NXOR.
1493 if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1494 if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1495 ChildOpcode == ISD::XOR)
1496 break;
1497 // Check whether this expression matches OR-with-complement.
1498 if (Opcode == ISD::OR && ChildOpcode == ISD::XOR) {
1499 auto Op0 = Node->getOperand(0);
1500 if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1501 if (Op0Op1->getZExtValue() == (uint64_t)-1)
1502 break;
1505 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1506 splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1507 Val - uint32_t(Val), uint32_t(Val));
1508 return;
1511 break;
1513 case ISD::AND:
1514 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1515 if (tryRxSBG(Node, SystemZ::RNSBG))
1516 return;
1517 LLVM_FALLTHROUGH;
1518 case ISD::ROTL:
1519 case ISD::SHL:
1520 case ISD::SRL:
1521 case ISD::ZERO_EXTEND:
1522 if (tryRISBGZero(Node))
1523 return;
1524 break;
1526 case ISD::Constant:
1527 // If this is a 64-bit constant that is out of the range of LLILF,
1528 // LLIHF and LGFI, split it into two 32-bit pieces.
1529 if (Node->getValueType(0) == MVT::i64) {
1530 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1531 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1532 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1533 uint32_t(Val));
1534 return;
1537 break;
1539 case SystemZISD::SELECT_CCMASK: {
1540 SDValue Op0 = Node->getOperand(0);
1541 SDValue Op1 = Node->getOperand(1);
1542 // Prefer to put any load first, so that it can be matched as a
1543 // conditional load. Likewise for constants in range for LOCHI.
1544 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1545 (Subtarget->hasLoadStoreOnCond2() &&
1546 Node->getValueType(0).isInteger() &&
1547 Op1.getOpcode() == ISD::Constant &&
1548 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1549 !(Op0.getOpcode() == ISD::Constant &&
1550 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1551 SDValue CCValid = Node->getOperand(2);
1552 SDValue CCMask = Node->getOperand(3);
1553 uint64_t ConstCCValid =
1554 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1555 uint64_t ConstCCMask =
1556 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1557 // Invert the condition.
1558 CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1559 SDLoc(Node), CCMask.getValueType());
1560 SDValue Op4 = Node->getOperand(4);
1561 SDNode *UpdatedNode =
1562 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1563 if (UpdatedNode != Node) {
1564 // In case this node already exists then replace Node with it.
1565 ReplaceNode(Node, UpdatedNode);
1566 Node = UpdatedNode;
1569 break;
1572 case ISD::INSERT_VECTOR_ELT: {
1573 EVT VT = Node->getValueType(0);
1574 unsigned ElemBitSize = VT.getScalarSizeInBits();
1575 if (ElemBitSize == 32) {
1576 if (tryGather(Node, SystemZ::VGEF))
1577 return;
1578 } else if (ElemBitSize == 64) {
1579 if (tryGather(Node, SystemZ::VGEG))
1580 return;
1582 break;
1585 case ISD::BUILD_VECTOR: {
1586 auto *BVN = cast<BuildVectorSDNode>(Node);
1587 SystemZVectorConstantInfo VCI(BVN);
1588 if (VCI.isVectorConstantLegal(*Subtarget)) {
1589 loadVectorConstant(VCI, Node);
1590 return;
1592 break;
1595 case ISD::ConstantFP: {
1596 APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1597 if (Imm.isZero() || Imm.isNegZero())
1598 break;
1599 SystemZVectorConstantInfo VCI(Imm);
1600 bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1601 assert(Success && "Expected legal FP immediate");
1602 loadVectorConstant(VCI, Node);
1603 return;
1606 case ISD::STORE: {
1607 if (tryFoldLoadStoreIntoMemOperand(Node))
1608 return;
1609 auto *Store = cast<StoreSDNode>(Node);
1610 unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1611 if (ElemBitSize == 32) {
1612 if (tryScatter(Store, SystemZ::VSCEF))
1613 return;
1614 } else if (ElemBitSize == 64) {
1615 if (tryScatter(Store, SystemZ::VSCEG))
1616 return;
1618 break;
1622 SelectCode(Node);
1625 bool SystemZDAGToDAGISel::
1626 SelectInlineAsmMemoryOperand(const SDValue &Op,
1627 unsigned ConstraintID,
1628 std::vector<SDValue> &OutOps) {
1629 SystemZAddressingMode::AddrForm Form;
1630 SystemZAddressingMode::DispRange DispRange;
1631 SDValue Base, Disp, Index;
1633 switch(ConstraintID) {
1634 default:
1635 llvm_unreachable("Unexpected asm memory constraint");
1636 case InlineAsm::Constraint_i:
1637 case InlineAsm::Constraint_Q:
1638 // Accept an address with a short displacement, but no index.
1639 Form = SystemZAddressingMode::FormBD;
1640 DispRange = SystemZAddressingMode::Disp12Only;
1641 break;
1642 case InlineAsm::Constraint_R:
1643 // Accept an address with a short displacement and an index.
1644 Form = SystemZAddressingMode::FormBDXNormal;
1645 DispRange = SystemZAddressingMode::Disp12Only;
1646 break;
1647 case InlineAsm::Constraint_S:
1648 // Accept an address with a long displacement, but no index.
1649 Form = SystemZAddressingMode::FormBD;
1650 DispRange = SystemZAddressingMode::Disp20Only;
1651 break;
1652 case InlineAsm::Constraint_T:
1653 case InlineAsm::Constraint_m:
1654 case InlineAsm::Constraint_o:
1655 // Accept an address with a long displacement and an index.
1656 // m works the same as T, as this is the most general case.
1657 // We don't really have any special handling of "offsettable"
1658 // memory addresses, so just treat o the same as m.
1659 Form = SystemZAddressingMode::FormBDXNormal;
1660 DispRange = SystemZAddressingMode::Disp20Only;
1661 break;
1664 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1665 const TargetRegisterClass *TRC =
1666 Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1667 SDLoc DL(Base);
1668 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1670 // Make sure that the base address doesn't go into %r0.
1671 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1672 if (Base.getOpcode() != ISD::TargetFrameIndex &&
1673 Base.getOpcode() != ISD::Register) {
1674 Base =
1675 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1676 DL, Base.getValueType(),
1677 Base, RC), 0);
1680 // Make sure that the index register isn't assigned to %r0 either.
1681 if (Index.getOpcode() != ISD::Register) {
1682 Index =
1683 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1684 DL, Index.getValueType(),
1685 Index, RC), 0);
1688 OutOps.push_back(Base);
1689 OutOps.push_back(Disp);
1690 OutOps.push_back(Index);
1691 return false;
1694 return true;
1697 // IsProfitableToFold - Returns true if is profitable to fold the specific
1698 // operand node N of U during instruction selection that starts at Root.
1699 bool
1700 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1701 SDNode *Root) const {
1702 // We want to avoid folding a LOAD into an ICMP node if as a result
1703 // we would be forced to spill the condition code into a GPR.
1704 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1705 if (!N.hasOneUse() || !U->hasOneUse())
1706 return false;
1708 // The user of the CC value will usually be a CopyToReg into the
1709 // physical CC register, which in turn is glued and chained to the
1710 // actual instruction that uses the CC value. Bail out if we have
1711 // anything else than that.
1712 SDNode *CCUser = *U->use_begin();
1713 SDNode *CCRegUser = nullptr;
1714 if (CCUser->getOpcode() == ISD::CopyToReg ||
1715 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1716 for (auto *U : CCUser->uses()) {
1717 if (CCRegUser == nullptr)
1718 CCRegUser = U;
1719 else if (CCRegUser != U)
1720 return false;
1723 if (CCRegUser == nullptr)
1724 return false;
1726 // If the actual instruction is a branch, the only thing that remains to be
1727 // checked is whether the CCUser chain is a predecessor of the load.
1728 if (CCRegUser->isMachineOpcode() &&
1729 CCRegUser->getMachineOpcode() == SystemZ::BRC)
1730 return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1732 // Otherwise, the instruction may have multiple operands, and we need to
1733 // verify that none of them are a predecessor of the load. This is exactly
1734 // the same check that would be done by common code if the CC setter were
1735 // glued to the CC user, so simply invoke that check here.
1736 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1737 return false;
1740 return true;
1743 namespace {
1744 // Represents a sequence for extracting a 0/1 value from an IPM result:
1745 // (((X ^ XORValue) + AddValue) >> Bit)
1746 struct IPMConversion {
1747 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1748 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1750 int64_t XORValue;
1751 int64_t AddValue;
1752 unsigned Bit;
1754 } // end anonymous namespace
1756 // Return a sequence for getting a 1 from an IPM result when CC has a
1757 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1758 // The handling of CC values outside CCValid doesn't matter.
1759 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1760 // Deal with cases where the result can be taken directly from a bit
1761 // of the IPM result.
1762 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1763 return IPMConversion(0, 0, SystemZ::IPM_CC);
1764 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1765 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1767 // Deal with cases where we can add a value to force the sign bit
1768 // to contain the right value. Putting the bit in 31 means we can
1769 // use SRL rather than RISBG(L), and also makes it easier to get a
1770 // 0/-1 value, so it has priority over the other tests below.
1772 // These sequences rely on the fact that the upper two bits of the
1773 // IPM result are zero.
1774 uint64_t TopBit = uint64_t(1) << 31;
1775 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1776 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1777 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1778 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1779 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1780 | SystemZ::CCMASK_1
1781 | SystemZ::CCMASK_2)))
1782 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1783 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1784 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1785 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1786 | SystemZ::CCMASK_2
1787 | SystemZ::CCMASK_3)))
1788 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1790 // Next try inverting the value and testing a bit. 0/1 could be
1791 // handled this way too, but we dealt with that case above.
1792 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1793 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1795 // Handle cases where adding a value forces a non-sign bit to contain
1796 // the right value.
1797 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1798 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1799 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1800 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1802 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1803 // can be done by inverting the low CC bit and applying one of the
1804 // sign-based extractions above.
1805 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1806 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1807 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1808 return IPMConversion(1 << SystemZ::IPM_CC,
1809 TopBit - (3 << SystemZ::IPM_CC), 31);
1810 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1811 | SystemZ::CCMASK_1
1812 | SystemZ::CCMASK_3)))
1813 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1814 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1815 | SystemZ::CCMASK_2
1816 | SystemZ::CCMASK_3)))
1817 return IPMConversion(1 << SystemZ::IPM_CC,
1818 TopBit - (1 << SystemZ::IPM_CC), 31);
1820 llvm_unreachable("Unexpected CC combination");
1823 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1824 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1825 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1826 if (!TrueOp || !FalseOp)
1827 return SDValue();
1828 if (FalseOp->getZExtValue() != 0)
1829 return SDValue();
1830 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1831 return SDValue();
1833 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1834 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1835 if (!CCValidOp || !CCMaskOp)
1836 return SDValue();
1837 int CCValid = CCValidOp->getZExtValue();
1838 int CCMask = CCMaskOp->getZExtValue();
1840 SDLoc DL(Node);
1841 SDValue CCReg = Node->getOperand(4);
1842 IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1843 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1845 if (IPM.XORValue)
1846 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1847 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1849 if (IPM.AddValue)
1850 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1851 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1853 EVT VT = Node->getValueType(0);
1854 if (VT == MVT::i32 && IPM.Bit == 31) {
1855 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1856 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1857 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1858 } else {
1859 if (VT != MVT::i32)
1860 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1862 if (TrueOp->getSExtValue() == 1) {
1863 // The SHR/AND sequence should get optimized to an RISBG.
1864 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1865 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1866 Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1867 CurDAG->getConstant(1, DL, VT));
1868 } else {
1869 // Sign-extend from IPM.Bit using a pair of shifts.
1870 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1871 int SraAmt = VT.getSizeInBits() - 1;
1872 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1873 CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1874 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1875 CurDAG->getConstant(SraAmt, DL, MVT::i32));
1879 return Result;
1882 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1883 // If we have conditional immediate loads, we always prefer
1884 // using those over an IPM sequence.
1885 if (Subtarget->hasLoadStoreOnCond2())
1886 return;
1888 bool MadeChange = false;
1890 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1891 E = CurDAG->allnodes_end();
1892 I != E;) {
1893 SDNode *N = &*I++;
1894 if (N->use_empty())
1895 continue;
1897 SDValue Res;
1898 switch (N->getOpcode()) {
1899 default: break;
1900 case SystemZISD::SELECT_CCMASK:
1901 Res = expandSelectBoolean(N);
1902 break;
1905 if (Res) {
1906 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1907 LLVM_DEBUG(N->dump(CurDAG));
1908 LLVM_DEBUG(dbgs() << "\nNew: ");
1909 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1910 LLVM_DEBUG(dbgs() << "\n");
1912 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1913 MadeChange = true;
1917 if (MadeChange)
1918 CurDAG->RemoveDeadNodes();