[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / CodeGen / CallingConvLower.h
blobaa339e1cc9138a147b4e6a5e98cbeec1a3df411e
1 //===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CCState and CCValAssign classes, used for lowering
10 // and implementing calling conventions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
15 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/TargetCallingConv.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/MC/MCRegisterInfo.h"
24 namespace llvm {
26 class CCState;
27 class MVT;
28 class TargetMachine;
29 class TargetRegisterInfo;
31 /// CCValAssign - Represent assignment of one arg/retval to a location.
32 class CCValAssign {
33 public:
34 enum LocInfo {
35 Full, // The value fills the full location.
36 SExt, // The value is sign extended in the location.
37 ZExt, // The value is zero extended in the location.
38 AExt, // The value is extended with undefined upper bits.
39 SExtUpper, // The value is in the upper bits of the location and should be
40 // sign extended when retrieved.
41 ZExtUpper, // The value is in the upper bits of the location and should be
42 // zero extended when retrieved.
43 AExtUpper, // The value is in the upper bits of the location and should be
44 // extended with undefined upper bits when retrieved.
45 BCvt, // The value is bit-converted in the location.
46 VExt, // The value is vector-widened in the location.
47 // FIXME: Not implemented yet. Code that uses AExt to mean
48 // vector-widen should be fixed to use VExt instead.
49 FPExt, // The floating-point value is fp-extended in the location.
50 Indirect // The location contains pointer to the value.
51 // TODO: a subset of the value is in the location.
54 private:
55 /// ValNo - This is the value number begin assigned (e.g. an argument number).
56 unsigned ValNo;
58 /// Loc is either a stack offset or a register number.
59 unsigned Loc;
61 /// isMem - True if this is a memory loc, false if it is a register loc.
62 unsigned isMem : 1;
64 /// isCustom - True if this arg/retval requires special handling.
65 unsigned isCustom : 1;
67 /// Information about how the value is assigned.
68 LocInfo HTP : 6;
70 /// ValVT - The type of the value being assigned.
71 MVT ValVT;
73 /// LocVT - The type of the location being assigned to.
74 MVT LocVT;
75 public:
77 static CCValAssign getReg(unsigned ValNo, MVT ValVT,
78 unsigned RegNo, MVT LocVT,
79 LocInfo HTP) {
80 CCValAssign Ret;
81 Ret.ValNo = ValNo;
82 Ret.Loc = RegNo;
83 Ret.isMem = false;
84 Ret.isCustom = false;
85 Ret.HTP = HTP;
86 Ret.ValVT = ValVT;
87 Ret.LocVT = LocVT;
88 return Ret;
91 static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
92 unsigned RegNo, MVT LocVT,
93 LocInfo HTP) {
94 CCValAssign Ret;
95 Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
96 Ret.isCustom = true;
97 return Ret;
100 static CCValAssign getMem(unsigned ValNo, MVT ValVT,
101 unsigned Offset, MVT LocVT,
102 LocInfo HTP) {
103 CCValAssign Ret;
104 Ret.ValNo = ValNo;
105 Ret.Loc = Offset;
106 Ret.isMem = true;
107 Ret.isCustom = false;
108 Ret.HTP = HTP;
109 Ret.ValVT = ValVT;
110 Ret.LocVT = LocVT;
111 return Ret;
114 static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
115 unsigned Offset, MVT LocVT,
116 LocInfo HTP) {
117 CCValAssign Ret;
118 Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
119 Ret.isCustom = true;
120 return Ret;
123 // There is no need to differentiate between a pending CCValAssign and other
124 // kinds, as they are stored in a different list.
125 static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
126 LocInfo HTP, unsigned ExtraInfo = 0) {
127 return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
130 void convertToReg(unsigned RegNo) {
131 Loc = RegNo;
132 isMem = false;
135 void convertToMem(unsigned Offset) {
136 Loc = Offset;
137 isMem = true;
140 unsigned getValNo() const { return ValNo; }
141 MVT getValVT() const { return ValVT; }
143 bool isRegLoc() const { return !isMem; }
144 bool isMemLoc() const { return isMem; }
146 bool needsCustom() const { return isCustom; }
148 Register getLocReg() const { assert(isRegLoc()); return Loc; }
149 unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
150 unsigned getExtraInfo() const { return Loc; }
151 MVT getLocVT() const { return LocVT; }
153 LocInfo getLocInfo() const { return HTP; }
154 bool isExtInLoc() const {
155 return (HTP == AExt || HTP == SExt || HTP == ZExt);
158 bool isUpperBitsInLoc() const {
159 return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
163 /// Describes a register that needs to be forwarded from the prologue to a
164 /// musttail call.
165 struct ForwardedRegister {
166 ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
167 : VReg(VReg), PReg(PReg), VT(VT) {}
168 unsigned VReg;
169 MCPhysReg PReg;
170 MVT VT;
173 /// CCAssignFn - This function assigns a location for Val, updating State to
174 /// reflect the change. It returns 'true' if it failed to handle Val.
175 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
176 MVT LocVT, CCValAssign::LocInfo LocInfo,
177 ISD::ArgFlagsTy ArgFlags, CCState &State);
179 /// CCCustomFn - This function assigns a location for Val, possibly updating
180 /// all args to reflect changes and indicates if it handled it. It must set
181 /// isCustom if it handles the arg and returns true.
182 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
183 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
184 ISD::ArgFlagsTy &ArgFlags, CCState &State);
186 /// CCState - This class holds information needed while lowering arguments and
187 /// return values. It captures which registers are already assigned and which
188 /// stack slots are used. It provides accessors to allocate these values.
189 class CCState {
190 private:
191 CallingConv::ID CallingConv;
192 bool IsVarArg;
193 bool AnalyzingMustTailForwardedRegs = false;
194 MachineFunction &MF;
195 const TargetRegisterInfo &TRI;
196 SmallVectorImpl<CCValAssign> &Locs;
197 LLVMContext &Context;
199 unsigned StackOffset;
200 unsigned MaxStackArgAlign;
201 SmallVector<uint32_t, 16> UsedRegs;
202 SmallVector<CCValAssign, 4> PendingLocs;
203 SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;
205 // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
207 // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
208 // tracking.
209 // Or, in another words it tracks byval parameters that are stored in
210 // general purpose registers.
212 // For 4 byte stack alignment,
213 // instance index means byval parameter number in formal
214 // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
215 // then, for function "foo":
217 // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
219 // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
220 // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
222 // In case of 8 bytes stack alignment,
223 // ByValRegs may also contain information about wasted registers.
224 // In function shown above, r3 would be wasted according to AAPCS rules.
225 // And in that case ByValRegs[1].Waste would be "true".
226 // ByValRegs vector size still would be 2,
227 // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
229 // Supposed use-case for this collection:
230 // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
231 // 2. HandleByVal fillups ByValRegs.
232 // 3. Argument analysis (LowerFormatArguments, for example). After
233 // some byval argument was analyzed, InRegsParamsProcessed is increased.
234 struct ByValInfo {
235 ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
236 Begin(B), End(E), Waste(IsWaste) {}
237 // First register allocated for current parameter.
238 unsigned Begin;
240 // First after last register allocated for current parameter.
241 unsigned End;
243 // Means that current range of registers doesn't belong to any
244 // parameters. It was wasted due to stack alignment rules.
245 // For more information see:
246 // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
247 bool Waste;
249 SmallVector<ByValInfo, 4 > ByValRegs;
251 // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
252 // during argument analysis.
253 unsigned InRegsParamsProcessed;
255 public:
256 CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
257 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
259 void addLoc(const CCValAssign &V) {
260 Locs.push_back(V);
263 LLVMContext &getContext() const { return Context; }
264 MachineFunction &getMachineFunction() const { return MF; }
265 CallingConv::ID getCallingConv() const { return CallingConv; }
266 bool isVarArg() const { return IsVarArg; }
268 /// getNextStackOffset - Return the next stack offset such that all stack
269 /// slots satisfy their alignment requirements.
270 unsigned getNextStackOffset() const {
271 return StackOffset;
274 /// getAlignedCallFrameSize - Return the size of the call frame needed to
275 /// be able to store all arguments and such that the alignment requirement
276 /// of each of the arguments is satisfied.
277 unsigned getAlignedCallFrameSize() const {
278 return alignTo(StackOffset, MaxStackArgAlign);
281 /// isAllocated - Return true if the specified register (or an alias) is
282 /// allocated.
283 bool isAllocated(unsigned Reg) const {
284 return UsedRegs[Reg/32] & (1 << (Reg&31));
287 /// AnalyzeFormalArguments - Analyze an array of argument values,
288 /// incorporating info about the formals into this state.
289 void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
290 CCAssignFn Fn);
292 /// The function will invoke AnalyzeFormalArguments.
293 void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
294 CCAssignFn Fn) {
295 AnalyzeFormalArguments(Ins, Fn);
298 /// AnalyzeReturn - Analyze the returned values of a return,
299 /// incorporating info about the result values into this state.
300 void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
301 CCAssignFn Fn);
303 /// CheckReturn - Analyze the return values of a function, returning
304 /// true if the return can be performed without sret-demotion, and
305 /// false otherwise.
306 bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
307 CCAssignFn Fn);
309 /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
310 /// incorporating info about the passed values into this state.
311 void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
312 CCAssignFn Fn);
314 /// AnalyzeCallOperands - Same as above except it takes vectors of types
315 /// and argument flags.
316 void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
317 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
318 CCAssignFn Fn);
320 /// The function will invoke AnalyzeCallOperands.
321 void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
322 CCAssignFn Fn) {
323 AnalyzeCallOperands(Outs, Fn);
326 /// AnalyzeCallResult - Analyze the return values of a call,
327 /// incorporating info about the passed values into this state.
328 void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
329 CCAssignFn Fn);
331 /// A shadow allocated register is a register that was allocated
332 /// but wasn't added to the location list (Locs).
333 /// \returns true if the register was allocated as shadow or false otherwise.
334 bool IsShadowAllocatedReg(unsigned Reg) const;
336 /// AnalyzeCallResult - Same as above except it's specialized for calls which
337 /// produce a single value.
338 void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
340 /// getFirstUnallocated - Return the index of the first unallocated register
341 /// in the set, or Regs.size() if they are all allocated.
342 unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
343 for (unsigned i = 0; i < Regs.size(); ++i)
344 if (!isAllocated(Regs[i]))
345 return i;
346 return Regs.size();
349 /// AllocateReg - Attempt to allocate one register. If it is not available,
350 /// return zero. Otherwise, return the register, marking it and any aliases
351 /// as allocated.
352 unsigned AllocateReg(unsigned Reg) {
353 if (isAllocated(Reg)) return 0;
354 MarkAllocated(Reg);
355 return Reg;
358 /// Version of AllocateReg with extra register to be shadowed.
359 unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
360 if (isAllocated(Reg)) return 0;
361 MarkAllocated(Reg);
362 MarkAllocated(ShadowReg);
363 return Reg;
366 /// AllocateReg - Attempt to allocate one of the specified registers. If none
367 /// are available, return zero. Otherwise, return the first one available,
368 /// marking it and any aliases as allocated.
369 unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
370 unsigned FirstUnalloc = getFirstUnallocated(Regs);
371 if (FirstUnalloc == Regs.size())
372 return 0; // Didn't find the reg.
374 // Mark the register and any aliases as allocated.
375 unsigned Reg = Regs[FirstUnalloc];
376 MarkAllocated(Reg);
377 return Reg;
380 /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
381 /// registers. If this is not possible, return zero. Otherwise, return the first
382 /// register of the block that were allocated, marking the entire block as allocated.
383 unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
384 if (RegsRequired > Regs.size())
385 return 0;
387 for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
388 ++StartIdx) {
389 bool BlockAvailable = true;
390 // Check for already-allocated regs in this block
391 for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
392 if (isAllocated(Regs[StartIdx + BlockIdx])) {
393 BlockAvailable = false;
394 break;
397 if (BlockAvailable) {
398 // Mark the entire block as allocated
399 for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
400 MarkAllocated(Regs[StartIdx + BlockIdx]);
402 return Regs[StartIdx];
405 // No block was available
406 return 0;
409 /// Version of AllocateReg with list of registers to be shadowed.
410 unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
411 unsigned FirstUnalloc = getFirstUnallocated(Regs);
412 if (FirstUnalloc == Regs.size())
413 return 0; // Didn't find the reg.
415 // Mark the register and any aliases as allocated.
416 unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
417 MarkAllocated(Reg);
418 MarkAllocated(ShadowReg);
419 return Reg;
422 /// AllocateStack - Allocate a chunk of stack space with the specified size
423 /// and alignment.
424 unsigned AllocateStack(unsigned Size, unsigned Align) {
425 assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
426 StackOffset = alignTo(StackOffset, Align);
427 unsigned Result = StackOffset;
428 StackOffset += Size;
429 MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
430 ensureMaxAlignment(Align);
431 return Result;
434 void ensureMaxAlignment(unsigned Align) {
435 if (!AnalyzingMustTailForwardedRegs)
436 MF.getFrameInfo().ensureMaxAlignment(Align);
439 /// Version of AllocateStack with extra register to be shadowed.
440 unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
441 MarkAllocated(ShadowReg);
442 return AllocateStack(Size, Align);
445 /// Version of AllocateStack with list of extra registers to be shadowed.
446 /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
447 unsigned AllocateStack(unsigned Size, unsigned Align,
448 ArrayRef<MCPhysReg> ShadowRegs) {
449 for (unsigned i = 0; i < ShadowRegs.size(); ++i)
450 MarkAllocated(ShadowRegs[i]);
451 return AllocateStack(Size, Align);
454 // HandleByVal - Allocate a stack slot large enough to pass an argument by
455 // value. The size and alignment information of the argument is encoded in its
456 // parameter attribute.
457 void HandleByVal(unsigned ValNo, MVT ValVT,
458 MVT LocVT, CCValAssign::LocInfo LocInfo,
459 int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
461 // Returns count of byval arguments that are to be stored (even partly)
462 // in registers.
463 unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
465 // Returns count of byval in-regs arguments proceed.
466 unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
468 // Get information about N-th byval parameter that is stored in registers.
469 // Here "ByValParamIndex" is N.
470 void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
471 unsigned& BeginReg, unsigned& EndReg) const {
472 assert(InRegsParamRecordIndex < ByValRegs.size() &&
473 "Wrong ByVal parameter index");
475 const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
476 BeginReg = info.Begin;
477 EndReg = info.End;
480 // Add information about parameter that is kept in registers.
481 void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
482 ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
485 // Goes either to next byval parameter (excluding "waste" record), or
486 // to the end of collection.
487 // Returns false, if end is reached.
488 bool nextInRegsParam() {
489 unsigned e = ByValRegs.size();
490 if (InRegsParamsProcessed < e)
491 ++InRegsParamsProcessed;
492 return InRegsParamsProcessed < e;
495 // Clear byval registers tracking info.
496 void clearByValRegsInfo() {
497 InRegsParamsProcessed = 0;
498 ByValRegs.clear();
501 // Rewind byval registers tracking info.
502 void rewindByValRegsInfo() {
503 InRegsParamsProcessed = 0;
506 // Get list of pending assignments
507 SmallVectorImpl<CCValAssign> &getPendingLocs() {
508 return PendingLocs;
511 // Get a list of argflags for pending assignments.
512 SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
513 return PendingArgFlags;
516 /// Compute the remaining unused register parameters that would be used for
517 /// the given value type. This is useful when varargs are passed in the
518 /// registers that normal prototyped parameters would be passed in, or for
519 /// implementing perfect forwarding.
520 void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
521 CCAssignFn Fn);
523 /// Compute the set of registers that need to be preserved and forwarded to
524 /// any musttail calls.
525 void analyzeMustTailForwardedRegisters(
526 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
527 CCAssignFn Fn);
529 /// Returns true if the results of the two calling conventions are compatible.
530 /// This is usually part of the check for tailcall eligibility.
531 static bool resultsCompatible(CallingConv::ID CalleeCC,
532 CallingConv::ID CallerCC, MachineFunction &MF,
533 LLVMContext &C,
534 const SmallVectorImpl<ISD::InputArg> &Ins,
535 CCAssignFn CalleeFn, CCAssignFn CallerFn);
537 /// The function runs an additional analysis pass over function arguments.
538 /// It will mark each argument with the attribute flag SecArgPass.
539 /// After running, it will sort the locs list.
540 template <class T>
541 void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
542 CCAssignFn Fn) {
543 unsigned NumFirstPassLocs = Locs.size();
545 /// Creates similar argument list to \p Args in which each argument is
546 /// marked using SecArgPass flag.
547 SmallVector<T, 16> SecPassArg;
548 // SmallVector<ISD::InputArg, 16> SecPassArg;
549 for (auto Arg : Args) {
550 Arg.Flags.setSecArgPass();
551 SecPassArg.push_back(Arg);
554 // Run the second argument pass
555 AnalyzeArguments(SecPassArg, Fn);
557 // Sort the locations of the arguments according to their original position.
558 SmallVector<CCValAssign, 16> TmpArgLocs;
559 TmpArgLocs.swap(Locs);
560 auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
561 std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
562 std::back_inserter(Locs),
563 [](const CCValAssign &A, const CCValAssign &B) -> bool {
564 return A.getValNo() < B.getValNo();
568 private:
569 /// MarkAllocated - Mark a register and all of its aliases as allocated.
570 void MarkAllocated(unsigned Reg);
573 } // end namespace llvm
575 #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H